
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Dynamic Quorum Adjustment for Partitioned Data
Maurice Herlihy

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213
18 September 1986

Abstract

A partition occurs when functioning sites in a distributed system are unable to communicate. This paper
introduces a new method for managing replicated data objects in the presence of partitions. Each
operation provided by a replicated object has a set of quorums, which are sets of sites whose cooperation
suffices to execute the operation. The method permits an object's quorums to be adjusted dynamically in
response to failures and recoveries. A transaction that is unable to progress using one set of quorums
may switch to another, more favorable set, and transactions in different partitions may progress using
different sets. This method has three novel aspects: (1) it supports a wider range of quorums than earlier
proposals, (2) it scales up effectively to large systems because quorum adjustments do not require global
reconfiguration, and (3) it systematically exploits the semantics of typed objects to support more flexible
quorum adjustment.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs — abstract
data types; data types and structures; D.4.3 [Operating Systems]: File System Management —
distributed file systems; D.4.5 [Operating Systems]: Reliability — fault-tolerance; H.2.4 [Database
Management]: Systems — distributed systems; Transaction Processing

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Replication, reconfiguration, abstract data types

Copyright © 1986 Maurice Herlihy

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

1

1. Introduction
A replicated object is a data item that is stored redundantly at multiple locations to enhance availability. A

replication method is a technique for managing a physically distributed collection of data objects to appear

as if it were a single, highly available data object. This paper introduces a new replication method that

tolerates site crashes, timing failures, and communication link failures. Each operation provided by a

replicated object has a set of quorums, which are sets of sites whose cooperation suffices to execute the

operation. The method permits an object's quorums to be adjusted dynamically in response to failures

and recoveries. A transaction unable to make progress using one set of quorums may switch to another,

more favorable set, and transactions in different partitions may progress using different sets. This method

has three novel aspects: (1) it supports a wider range of quorums than earlier proposals (e.g.,

[9,10,11]), (2) it scales up effectively to large systems because quorum adjustments do not require

global reconfiguration, and (3) it systematically exploits the semantics of typed objects to support more

flexible quorum adjustment.

Section 2 describes our model of computation. Section 3 describes our basic technique for untyped

objects providing read and write operations, and Section 4 extends these methods to exploit the

semantics of typed objects providing a richer set of operations. Section 5 presents correctness

arguments, and Section 6 surveys and analyzes related work. Section 7 summarizes our results.

2. Terminology
A distributed system consists of multiple computers (called sites) that communicate through a network.

Distributed systems are typically subject to faults such as site crashes, variations in timing, and

communication link failures. Transient communication failures may be hidden by low level protocols, but

longer-lived failures can cause partitions, in which functioning sites are unable to communicate. These

classes of failures are usually indistinguishable; a site that fails to receive a response after a certain

duration cannot tell whether the original message was lost, the reply was lost, the recipient has crashed,

or whether the recipient is just slow to respond.

A database consists of a collection of objects. In this paper, we consider untyped objects that provide
read and write operations, as well as typed objects such as counters, queues, or directories, that provide
a richer set of operations. A transaction is an activity that observes and modifies a set of objects. A
widely-accepted approach to preserving consistency in the presence of failures and concurrency is to
ensure that transactions are atomic: that is, serializable and recoverable. Serializable means that
transactions appear to execute in a serial order [26], and recoverable means that an activity either
succeeds completely or has no effect. We assume that replicated objects display the same semantics as
single-site objects, a property called one-copy serializability [2].

The techniques proposed in this paper are intended to enhance the availability of transactions that
execute to completion within a single physical partition. We rely on standard commitment protocols (e.g.,
[17, 29]) to abort transactions interrupted by failures. Skeen [29] has shown that partitions can cause

any commitment protocol to block, delaying the transaction's final commit or abort until the partition is

UNIVERSITY LIBRARIES
CARWEGiE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

2

rejoined. Before a transaction's commitment protocol has reached the "prepared" state, however, a site

can unilaterally abort the transaction and release its locks. We also rely on standard techniques to

resolve deadlocks [24] and to recover from crashes [31].

3. Basic Techniques
Replicated objects are implemented by two kinds of modules: repositories and front-ends. Repositories

provide long-term storage for the object's state, while front-ends carry out operations for clients. Different

objects may have different sets of repositories. Because front-ends can be replicated to an arbitrary

extent, perhaps placing one at each client's site, the availability of a replicated object is dominated by the

availability of its repositories.

A quorum for an operation is any set of repositories whose cooperation suffices to execute that operation.

A quorum assignment associates each operation with a set of quorums. An operation's quorums

determine its availability, and the constraints governing an object's quorum assignments determine the

range of availability properties realizable by a replication method. Gifford[16] has shown that one

convenient way to characterize quorums is to assign weighted votes to repositories so that a collection of

repositories is a quorum if and only if the sum of its votes exceeds a threshold value. Barbara and

Garcia-Molina [15], however, have shown that not all valid quorum assignments can be characterized by

weighted voting. Our examples all use voting schemes in which repositories have equal weight.

This section introduces two complementary techniques for dynamic quorum adjustment: quorum inflation

shrinks write quorums, possibly expanding read quorums, and quorum deflation shrinks read quorums,

possibly expanding write quorums. These two techniques can be combined to realize a wide range of

adaptive replication methods, including generalizations of techniques in the literature [9,10,11]. This

section considers only untyped objects providing read and write operations; extensions for typed objects

are considered in Section 4.

3.1. Quorum Inflation
When a transaction begins execution, it chooses a natural number called its level. Transactions at

different levels are serialized in the order of their levels, but transactions at the same level are serialized

by standard techniques. Each object provides a sequence of quorum assignments, one for each level,

and each transaction must use the quorum assignments for its level.

Concurrency control is accomplished by two separate mechanisms, one to ensure that transactions at the
same level remain serializable, and one to ensure that higher-level transactions are serializable after
lower-level transactions. Transactions at the same level are synchronized by the underlying system,
using any mechanism capable of assigning logical timestamps [25] to transactions so that their timestamp
ordering reflects their serialization ordering. For example, Reed's scheme [28] issues such a timestamp
to each transaction when it begins execution, and ensures that transactions remain serializable in
timestamp order. Alternatively, under strict two-phase locking [12], such a timestamp can be chosen at

3

any time in the interval after all the transaction's locks have been acquired, but before any have been
released. The coordinator for the commitment protocol could choose the timestamp when it initiates the
protocol, distributing the value during the first round of messages. We emphasize that the timestamp
order is significant only for transactions at the same level.

We ensure that lower-level transactions are serialized before higher-level transactions by a mechanism

similar to Reed's multiversion scheme [28]. Each repository has a ratchet lock, which is a counter that

records the highest level of a transaction that has read the object at that repository. A repository rejects

write requests from any transaction whose level is less than the repository's ratchet lock, ensuring that a

value read by a higher-level transaction cannot be overwritten by a lower-level transaction. An attempt to

read a value written by an uncommitted lower-level transaction is delayed until the latter commits or

aborts. Writes are enabled'for an object at level n if none of its ratchet locks exceeds n.

An object's quorum assignments must satisfy the following quorum intersection invariant

If writes to that object are enabled at level n, then each write quorum at level n must intersect
each read quorum at levels greater than or equal to n.

For example, an object replicated among three identical repositories might provide either of the quorum

assignments shown in Figure 3-1 or 3-2, where levels 3 and higher are bound to the same quorum

assignment. In Figure 3-1, if the repositories partition into two groups, transactions at level 1 can read but

not write in either partition, transactions at level 2 can read and write in the majority partition, and

transactions at higher levels can write but not read in either partition. In Figure 3-2, if R3 is partitioned

from the others, transactions at level 1 can read but not write in either partition, and transactions at higher

levels can read or write in the majority partition. If, instead, R1 is partitioned from the other two,

transactions at level 1 can read but not write in either partition, transactions at level 2 can read but not

write in R1's partition, and transactions at higher levels can read and write in R1's partition.

Each repository stores a sequence of timestamped versions, associating with each level its most recently

written version, if any. A level n transaction reads an object by sending a read request to a front-end,

which forwards the request to a level n read quorum. Each repository responds with its closest preceding

version, which is the version associated with the highest level less than or equal to n. The front-end

returns to the client the version with the highest level and latest timestamp. When the reader commits,

each ratchet lock is set to the maximum of its current value and the reader's level. A level n transaction

writes an object by sending the new version to a front-end. The front-end appends the transaction's

timestamp1 and forwards the version to a level n write quorum.2 After checking the ratchet lock, the

repository tentatively installs the new version and responds with a confirmation. The tentative version

^ s discussed in more detail elsewhere [23], if strict two-phase locking is used, the front-end creates a
timestamp template to be filled in at commit.

2For brevity, we assume that each transaction writes to an object no more than once. Multiple writes
can be accommodated simply by appending to each version's timestamp a low-order field that reflects the
value of the front-end's logical clock when the write occurred.

4

Level Read Write

3

2
1 1 of R1,R2,R3

2 of R1,R2,R3
3 Of R1,R2,R3

3 Of R1,R2,R3
2 of R1,R2,R3
1 Of R1,R2,R3

Level

Figure 3-1 : First Multi-Level Quomm Assignment

Read Write

2
1 1 Of R1,R2,R3 3 Of R1,R2,R3

1 of R1,R2 2 of R1.R2

3 1 Of R1 1 of R1

Figure 3-2: Second Multi-Level Quorum Assignment

becomes permanent when the writer commits.

A transaction that cannot locate a write quorum because of failures or ratchet lock conflicts may abort and

restart at a higher level, a process called quorum inflation. To increase the likelihood the desired quorum

is available at the new level, the underlying system should provide hints about which sites are accessible.

To decrease the likelihood of further ratchet lock conflicts, the transaction should restart at a level at least

as high as any it has observed in use.

Quorum inflation is illustrated by a simple example. Consider a database in which objects are partially
replicated, and object x has repositories R1, R2, and R3. Initially, x binds level 1 to the "read one, write
all" quorum assignment, and levels 2 and higher are bound to majority quorum assignments.

Level Read Write
1 1 of R1,R2,R3 3 Of R1,R2,R3
2 2 of R1 ,R2,R3 2 of R1 ,R2,R3
3 2 of R1 ,R2,R3 2 of R1 ,R2,R3

Object x is represented schematically as follows. The ratchet lock at each repository is shown at the top
of each column. Each version is tagged with its level and timestamp, separated by a colon. In this
simplified, schematic representation, logical timestamps are represented by two digits, and new
timestamps are generated sequentially. In practice, however, logical timestamps would be much longer,
and successive timestamps would separated by arbitrary gaps. Transaction A creates and initializes x

with value a at level 1.

5

Bl
Ratchet: 1

R2
Ratchet: 1

R3
Ratchet: 1

1:00 a 1:00 a 1:00 a

If a failure partitions R1 from the others, a transaction B executing in the majority partition at level 1 can
no longer write to x. B inflates to level 2, the lowest level at which a write quorum is available, and writes
the new value b.

Level 1 transactions can still read the object's old version in either partition.

This example illustrates both the advantages and the limitations of quorum inflation. If quorum

assignments were fixed, the object could be read and written in at most one partition. Quorum inflation,

however, permits transactions in one partition to read and write the object, and transactions in the other

partition to read it. Nevertheless, quorum inflation by itself has three important limitations. First, once the

object has been read at a higher level, it can no longer be written at lower levels, hence there is no way to

restore the original quorum assignment when the partition is repaired. Second, a transaction restarting at

a higher level must use the higher-level quorum assignments for all objects it accesses, including objects

whose repositories are unaffected by failures. Finally, reading is more expensive at higher levels, since

read quorums are larger. These limitations are addressed in the next section.

3.2. Quorum Deflation
This section introduces quorum deflation, a complementary technique used primarily to shrink read

quorums. Each object maintains a binding between level numbers and quorum assignments. So far, we

have assumed that this binding is fixed, but it need not be. An object's bindings are kept in a quorum

assignment table replicated among its repositories and cached at its front-ends. Quorum deflation is a

protocol that alters the quorum assignment bound to a particular level by updating the replicated quorum

assignment table, redistributing data as necessary to preserve the quorum intersection invariant.

A coquorum for an operation is any set of repositories that has a non-empty intersection with every

quorum for that operation. The quorum deflation protocol for level n consists of the following steps, which

are executed as a transaction, and which must preserve the quorum intersection invariant.
1. From each repository in an old read quorum, read the closest preceding version for level n,

its timestamp, and the repository's ratchet lock. If there exists an m, n > m, such that writes
are enabled at level m but some new read quorum does not intersect some level m write
quorum, disable writes at level mby advancing the repositories' ratchet locks beyond m.

2. Copy the latest version and its timestamp to a new write quorum, and the highest ratchet
lock value to a new read quorum.

3. Update the quorum assignment tables at an old coquorum for read and write.

Step 1 ascertains the current version for level n, advancing ratchet locks as necessary to preserve the

R2
Ratchet: 1

R3
Ratchet: 1

1:00 a
2:01 b

1:00 a
2:01 b

6

quorum intersection invariant. Because Step 2 copies an existing version, it does not generate a new

timestamp, and it ignores existing ratchet locks.

Step 3 ensures the consistency of the cached quorum assignment tables by the following "tripwire"

mechanism. Each binding in an object's quorum assignment table has a logical timestamp that is

updated each time the binding is changed. Whenever a front-end sends a message to a repository on

behalf of a level n transaction, it includes its cached timestamp for level rfs binding. If a repository

receives a message with an out-of-date timestamp, it refuses the request, and notifies the front-end of the

new binding. When a front-end receives notification of the new binding, it updates its cache and retries

the operation. Step 3 ensures that any level n quorum chosen by a front-end whose cache is out of date

will include at least one repository whose binding is more current.

Objects decide when to deflate. Each object has a preferred quorum assignment, initially bound to level

1. Front-ends for the object can keep track of the set of accessible repositories, responding to recoveries

by rebinding levels to more preferable quorum assignments. In the following example, we assume that

reads are much more common than writes, and that partitions are long-lived. Whenever a front-end

observes a transaction executing at a level whose read quorums encompass multiple repositories, it tries

to rebind that level to single-site read quorums. Deflation could be triggered by the first read attempt, or it

could be undertaken asynchronously by a background process. Less aggressive strategies are

appropriate if writes are relatively common, or if partitions are expected to be short-lived. For example,

deflation might be used only to restore earlier quorum assignments when enough repositories rejoin the

partition.

For brevity, we abbreviate the following quorum assignments:
Abbreviation Read Write
Q13 1 Of R1,R2,R3 3 of R1,R2,R3
Q22 2 Of R1 ,R2,R3 2 of R1 ,R2,R3
Q12 1ofR2,R3 2ofR2,R3
Q12' 10fR1,R2 2ofR1,R2

Each repository's quorum assignment table is shown at the top of its column. As a notational

convenience, entries in quorum assignment tables are tagged with level 0. The first entry is the binding

for level 1, the second for level 2, and so on. The last entry in the quorum assignment table implicitly

binds higher levels to the same quorum assignment.

Recall that R2 and R3 are partitioned from R1, and transaction B has just inflated to level 2 and written b

to x.

R2 R3
0i00Q13 0i00Q13
0:00 Q22 0:00 Q22

Ratchet: 1 Ratchet: 1

1:00 a
2:01 b

1:00 a
2:01 b

7

When B attempts to read from y, an object unaffected by the partition, / s front-end uses the deflation

protocol to rebind level 2 to its preferred quorum assignment.

When B writes to x at level 2, the front-end schedules a deflation transaction that eventually rebinds level
2 to Q12. Deflation provides two benefits: it restores the ability to read from a single site, and it ensures
that the object will be readable at level 2 if, say, R2 is partitioned from R3. The quorum assignment table
is updated at R2 and R3, an old coquorum for read and write.

R2 R3
0:00 Q13 0:00 Q13
0:02 Q12 0:02 Q12
0:00 Q22 0:00 Q22

Ratchet: 1 Ratchet: 1

1:00 a 1:00 a
2:01 b 2:01 b

Because each read quorum in Q12 intersects each write quorum in Q13, the deflation transaction does
not need to to advance the ratchet locks. If a level 2 transaction attempts to read the object from a
front-end whose cache is out of date, at least one repository will detect a timestamp mismatch, and
respond with the up-to-date binding.

R2 is suddenly partitioned from R3 and rejoined to R1. At levels 2 and higher in the majority partition, the
object can be read and written, but at levels 1 and 2, it can only be read. (For clarity, a missing version is
indicated by a dash.)

Bl R2
0:00 Q13 0:00 Q13
0:00 Q22 0:02 Q12
0:00 Q22 0:00 Q22

Ratchet: 1 Ratchet: 1

1:00 a 1:00 a
2:01 b

Transaction C, intending to read and write x, inflates to level 3. Cs front-end rebinds level 3 to Q12' by

reading the current version, writing it to R1 and R2, and updating the quorum assignment tables at R1

and R2. Because Q12' includes a read quorum (R1) that does not intersect a write quorum in Q12 (R2

and R3), the ratchet locks at R1 and R2 must be advanced to 3. C reads x and writes a new value c.

8

R1 R2
0:00 Q13 0:00 Q13
0:00 Q22 0:02 Q12
0:03 Q12' 0:03 Q12'
0:00 Q22 0:00 Q22

Ratchet: 3 Ratchet: 3

1:00 a 1:00 a
2:01 b 2:01 b
3:04 c 3:04 c

Although deflation is primarily useful for shrinking read quorums, it can also be used to move objects from

one set of repositories to another. The deflation protocol is easily extended to permit a single deflation

transaction to rebind the quorum assignments for multiple levels. In Step 1, the deflation protocol

chooses a set of repositories that encompasses an old read quorum for all levels being rebound, and

reads the closest preceding versions for all levels. Even if the number of levels being rebound is infinite,

there will be only a finite number of versions, and a finite number of distinct quorum assignments. In Step

2, these versions are written to a new write quorum for all levels, and in Step 3 the quorum assignment

tables are updated at old coquorums for all levels.

For example, if it becomes apparent that R3 will be inaccessible for a long time, the deflation protocol can
be used to replace R3 with a new repository R4 at levels 3 and higher.

Abbreviation Read Write
Q13' 1 of R1,R2,R4 3 of R1,R2,R4
Q22' 2 of R1 ,R2,R4 2 of R1 ,R2,R4

To rebind level 3 to Q13' and levels 4 and higher to Q22', the front-end reads the one version current at

levels 3 and higher, writes it to R4, and updates the quorum assignment tables at R1, R2, and R4. To

save storage, repositories eventually discard versions and quorum information for levels 1 and 2. Later

requests from transactions at those levels will be refused.
R l R2 R4

0:05 Q13' 0:05 Q13' 0:05 Q13'
0:05 Q22' 0:05 Q22' 0:05 Q22'

Ratchet: 3 Ratchet: 3 Ratchet:3

3:04 c 3:04 c 3:04 c

3.3. Remarks

Inflation and deflation are complementary techniques. Inflation shrinks a transaction's write quorums for
multiple objects, while deflation shrinks an object's read quorums for multiple transactions. Inflation can
enhance availability, since a transaction restarting at a higher level may be able to locate a write quorum
unavailable at lower levels. Although deflation cannot make unavailable operations available again, it can

9

enhance efficiency since smaller read quorums require fewer messages, and it can enhance long-term
availability, since smaller read quorums are more likely to survive subsequent failures. For both
techniques, quorum adjustment is a local process; inflation is undertaken by individual transactions, and
deflation by individual objects.

Inflation and deflation can be combined to implement a wide range of adaptive replication techniques. In
Section 6, we show that inflation and deflation can provide at least as much availability as certain
techniques in the literature. Choosing the best adaptive strategy for a particular application is a complex
optimization problem that must take into account the frequency and distribution both of failures and of
operations. For example, the quorum assignment shown in Figure 3-1 has the advantage that
transactions in the majority partition can both read and write the object, and transactions in a minority
partition can read or write the object, but not both. It has the disadvantage that levels 3 and higher can
be deflated only when all three repositories are available. In the quorum assignment used in the
example, deflation at levels 2 and higher requires only a majority, but minority write quorums are not
supported. In the quorum assignment shown in Figure 3-2, the object can always be read and written in
R1*s partition, but it can never be written elsewhere.

A typical application of inflation and deflation can be summarized as follows. Each object's read quorums

are smaller at lower levels, and write quorums are smaller at higher levels. A transaction unable to locate

a write quorum for an object inflates to a level where such a quorum is still available. As illustrated in the

example above, the object may then use the deflation protocol to "customize" that level's quorum

assignment to the current physical partition. The inflated transaction advances ratchet locks as it reads,

which in turn provoke other transactions to inflate, and the higher level gradually propagates through the

system. As soon as it can, each object accessed by a higher-level transaction rebinds that level to its

preferred quorum assignment, and in the absence of additional failures, the system stabilizes in a state

where all transactions execute at the higher level, but using the original, preferred quorum assignments.

The accuracy of the underlying failure detection mechanism does not affect the correctness of our

replication method, although unnecessary quorum adjustments would harm performance.

A transaction executing at a level where write quorums are large might reduce write latency by spawning
an asynchronous process to update repositories in parallel with the transaction's other activities. Such
asynchronous writes would have to be integrated with the underlying synchronization mechanism to
ensure serializability, perhaps using a nested transaction mechanism. Failure to complete the updates at
a write quorum for the transaction's current level would force the parent transaction to restart.

No transaction that can locate a read quorum is ever prohibited from reading the object (provided that
level's version has not been discarded), but a transaction may be prohibited from writing if the object has
been read by a higher-level transaction. As discussed in Section 6, related quorum adjustment
techniques [9,10, 11] impose equivalent limitations on writes, and somewhat stronger limitations on
reads.

10

4. Extensions for Typed Objects
Elsewhere [23, 20], we have shown that replication techniques that exploit the semantics of typed objects

can realize a wider range of quorum assignments than techniques that classify operations only as reads

and writes. This section shows how those techniques can be extended to support quorum inflation and

deflation. The discussion here is informal, focusing on examples and motivation. A formal treatment is

given in Section 5.

An object's type defines a set of possible states and a set of primitive operations that provide the only

means to manipulate objects of that type. For example, a bank account might be modeled by an account

object that provides Balance, Credit and Debit operations. Balance returns the current account balance:

Balance = Operation() Returns (Dollar)
Credit increments the balance:

Credit = Operation(sum: Dollar).
Debit attempts to decrement the balance:

Debit = Operation(sum: Dollar) Signals (Overdrawn).
If the amount to be debited exceeds the balance, the operation signals an exception, leaving the balance

unchanged. For brevity, a Debit operation that terminates normally is simply called a debit otherwise it is

called an overdraft.

The conventional approach to replicating typed objects is to treat all operations as combinations of reads

and writes. For example, both Credit and Debit would read the current balance, perform some arithmetic,

and write out the altered balance. Clearly, quorum inflation and deflation can do little to enhance the

availability of such an implementation, since Credit and Debit each require both a read and a write

quorum. This section describes an alternative approach that permits Credit and Debit to occur in distinct

partitions.

4.1. Representing Typed Objects
A replicated object's state is represented as a log, which is a sequence of entries, each consisting of a
level, a logical timestamp, and an operation. An operation is written op(args*)/term(res*), where op is an
operation name, args* is a sequence of argument values, term is a termination condition name, and res*

is a sequence of result values. The operation name and argument values constitute the invocation, and
the termination condition and result values constitute the response. We use "Ok" for normal termination.

Log entries are partially replicated among the repositories. For example, the following is a schematic

representation of an account replicated among three repositories.

The account has been credited three times, twice at level 1 and once at level 2, but no single repository

has an entry for all three credits.

ELL
1:01 Credit($5)/Ok()

R2
1:01 Credit($5)/Ok()
1:03 Credit($10)/Ok()

R3

2:02 Credit($15)/Ok()
1:03 Credit(10)
2:02 Credit(15)

11

It is convenient to divide an operation's quorum into two parts: a front-end executing the invocation reads
from an initial quorum of repositories, performs a local computation to choose a response, and records
the new event at a final quorum. Initial quorums depend on the operation name, and final quorums also
depend on the termination condition name. (Initial and final quorums may also depend on argument and
result values, but we do not use them in this paper.) For untyped objects, read quorums are really initial
quorums for Read, and write quorums are really final quorums for Write. Final Read quorums and initial
Write quorums are empty.

To execute an operation, a level n transaction sends the invocation to a front-end, which collects the logs

for levels less than or equal to n from a level n initial quorum for that invocation. The front-end merges

the logs by level and by timestamp, discarding duplicates, to construct a history called the view. It

chooses a response to the invocation consistent with the object's state as reconstructed from the view.

(The view may not completely reflect the object's current state, but it will contain enough information to

choose a correct response.) The front-end records the operation by appending a new entry to the view,

and sends the updated view to a level n final quorum. Each repository in the final quorum merges the

updated view with its resident log. The front-end returns the response to the client transaction when it

has received acknowledgments from the final quorum.

We emphasize that logs represent a conceptual model for the replicated data, not a literal design for an
implementation. The advantage of the log formalism is that it allows us to reason abstractly about the
fundamental constraints governing availability without having to consider ad hoc techniques for data
representation. In practice, the best representation for an object is application-specific. For example, if a
repository has a prefix of the object's complete log, it may replace that prefix with a version whose
timestamp is that of the last entry it replaces. For an untyped object, the version is just the last value
written at that level, and for an account, the version is the account balance. A more detailed discussion of
log and message compaction appears elsewhere [23].

4.2. Quorum Inflation
The fundamental constraint governing quorum assignments, and hence realizable levels of availability, is

a property called serial dependency^, 23]. A precise definition of dependency is given in Section 5.

Informally, however, an operation p depends on an operation q if the front-end executing the invocation

for p must observe earlier entries for q to choose a valid response. For example, reads depend on earlier

writes, and debits and balance inquiries depend on earlier credits and debits, but not on earlier overdrafts.

Writes and credits do not depend on any earlier operations.

Each repository maintains a ratchet lock for each invocation. The ratchet lock is a counter that records
the highest level of a transaction that has included that repository in an initial quorum for that invocation.
The ratchet lock ensures that operations executed by higher-level transactions cannot be invalidated by
later operations of lower-level transactions. Let p and q be operations, and let inv(p) denote the
invocation part of p. If p depends on q, the repository will not participate in a final quorum for q for any
transaction whose level is less than the ratchet lock for inv(p). An attempt to execute an invocation that

12

depends on an uncommitted lower-level operation is delayed until the lower-level transaction commits or
aborts. An operation q is enabled at level n if no conflicting ratchet locks exceed n. The ratchet locks for
untyped objects are really ratchet locks for read invocations; ratchet locks for writes are unnecessary
because writes cannot be invalidated by lower-level operations.

Quorum assignments must satisfy the following generalized quorum intersection invariant

If p depends on q and q is enabled at level n, then each final quorum for q at level n must
intersect each initial quorum for p at levels greater than or equal to n.

If all transactions are restricted to a single level, this constraint is equivalent to that imposed by general

quorum consensus [23].

An account replicated among three repositories might support the following quorum assignments, where

an entry of the form (m,n) means that the operation has initial quorums of any m repositories and final

quorums of any n repositories.
Abbreviation Credit Debit Overdraft/Balance
Q1 (0,3) Of R1 ,R2,R3 (1,3) of R1 ,R2,R3 (1,0) of R1 ,R2,R3
Q2 (0,2) of R1 ,R2,R3 (2,2) of R1 ,R2,R3 (2,0) of R1 ,R2,R3
Q3 (0,1) Of R1,R2,R3 (3,1) of R1.R2.R3 (3,0) of R1,R2,R3

Initially, level 1 is bound to Q1, level 2 to Q2, and levels 3 and higher to Q3.

The account is initialized with a balance of zero. Transaction A at level 1 credits ten dollars.

R1 R2 R3
0i00Q1 0i00Q1 OiQO Q1
0:00 Q2 0:00 Q2 0:00 Q2
0:00 Q3 0:00 Q3 0:00 Q3

Debit: 1 Debit: 1 Debit: 1
Balance: 1 Balance: 1 Balance: 1

1:01 Credit($10)/Ok() 1:01 Credit($10)/Ok() 1:01 Credit($10)/Ok()

The repositories are partitioned into a group containing R1 and a group containing R2 and R3. In the

minority partition, transaction B discovers it cannot locate a level 1 final credit quorum, restarts at level 3,

and credits five dollars at R1.

El
Debit: 1
Balance: 1

1:01 Credit($10)/Ok()
3:02 Credit($5)/Ok()

Meanwhile, in the other partition, transaction C discovers it cannot locate a level 1 initial debit quorum,
inflates to level 2, and debits ten dollars at R2 and R3, advancing the ratchet locks for debit.

13

R2
Debit: 2
Balance: 1

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()

R3
Debit: 2
Balance: 1

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()

The partitions are rejoined, and C executes a Balance at R1 and R2, observing that the account is empty
and advancing the ratchet locks. C does not observe the five dollars credited by B because B is
serialized "in the future."

Bl
Debit: 1
Balance: 2

1:01 Credit($10)/Ok()

3:02 Credit($5)/Ok()

R2
Debit: 2
Balance: 2

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()

R3
Debit: 2
Balance: 1

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()

4.3. Quorum Deflation
The quorum assignment for level n is rebound in the following steps, which must be executed atomically.

1. Merge the level n entries from an old initial quorum for each invocation, advancing ratchet
locks as necessary to preserve the generalized quorum intersection invariant.

2. Write out the entries to a new final quorum for each operation, and the ratchet locks to a
new initial quorum for each invocation.

3. Update the quorum assignment table at an old coquorum for each operation.

Step 1 ensures that each level n entry appears in the merged log, and Step 2 ensures that each level n

entry appears at its new final quorum. Step 3 preserves cache consistency, as discussed above.

To rebind level 2 to Q1, the first step is to collect the entries at level 2 and lower from an initial quorum in
Q2 for Credit and Debit, say R1 and R2. These entries are then written out to a final quorum in Q1 for
Credit and Debit, here consisting of all three repositories. The final step is to update the quorum
assignment table at a coquorum in Q2 for each operation, say R1 and R2.

Bl
0:00 Q1
0:03 Q1
0:00 Q3

Debit: 2
Balance: 2

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()
3:02 Credit($5)/Ok()

R2
0:00 Q1
0:03 Q1
0:00 Q3

Debit: 2
Balance: 2

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()

R3
0i00 Q1
0:00 Q2
0:00 Q3

Debit: 2
Balance: 2

1:01 Credit($10)/Ok()
2:03 Debit($10)/Ok()

If a level 2 transaction attempts to credit the account from a front-end whose cache is out of date, it will
send the credit entry to two repositories, at least one of which will detect a mismatch, and respond with
the up-to-date binding. The front-end updates its cache and retries the operation.

14

4.4. Remarks
We have assumed an Independent atomicity mechanism provided by a lower level of the system. An

alternative approach is to provide an integrated mechanism that handles concurrency control and

recovery as well as replication. Integrated mechanisms are more complex, but we have shown elsewhere

[20, 21] that they can provide better concurrency because they can exploit more information. For

example, consensus locking [20] is a generalization of strict two-phase locking in which each operation

must acquire initial locks at its initial quorum, and final locks at its final quorum. Certain initial and final

locks conflict. A necessary and sufficient condition to ensure atomicity is that the intersection of the lock

conflict relation and the quorum intersection relation be a serial dependency relation, thus atomicity and

replication mechanisms are bound by a common constraint. Consensus locking can be extended to

support multiple levels by observing that initial locks need not conflict with higher-level final locks [22].

Even more concurrency can be achieved if scheduling decisions use state information as well as

operation conflicts, although such mechanisms may impose additional constraints on quorum

assignments [20, 21].

5. Correctness Arguments
This section gives formal correctness arguments for quorum inflation and deflation. Our model extends

techniques used to to prove the correctness of simpler quorum-consensus techniques for typed objects

[23]. Weihl [32] has used a similar formalism to prove correctness for atomicity mechanisms.

5.1. Serial Computations
In the absence of concurrency and failures, a computation is modeled by a history, which is a finite

sequence of object/operation pairs. For example,

x Credit(20)/Ok()
xDebit(15)/Ok()
xDebit(10)/Overdraft()
x Balance()/Ok(5)

is a history for account object x. Initially, Vs balance is zero. The account is credited $20, debited $15,

and an attempt to debit $10 for x is rejected. Finally, x*s balance is observed to be $5.

An object's specification defines a set of legal histories for that object. For example, the specification for

an Account object includes only histories in which the balance covers each debit and fails to cover each

overdraft. A history is legal\\ the subhistory associated with each object is legal for that object.

Constraints on quorum intersection are governed by the notion of a serial dependency relation between

invocations and operations. Let » be any relation between invocations and operations. (For brevity, we

write "p » cf' for "inv(p) » q.") Informally, a subhistory g of h is closed u n d e r » if whenever it contains

an operation p it also contains every earlier operation q of h such that p » q. More precisely, let h(i)

denote the Mh operation of h:
Definition 1 : A history g is a closed subhistory of h with respect to » if there exists an injective
order-preserving map s such that g(i) = h(s(i)) for all / in the domain of g, and if p » q, j > j\ h(j)
= P. h(j') = 9. a n d s(i) = y, then there exists /'such that s(i') = j\

15

Informally, » is a serial dependency relation if a response to an invocation is legal for a complete history

whenever it is legal for a closed subhistory of h that includes the operations on which the invocation
depends. More precisely, let" • " denote concatenation:

Definition 2: A relation » is a serial dependency relation if, for all operations p and all legal
histories ft, whenever g is a closed subhistory containing all operations q such that p » q:

g • p is legal ft • p is legal.

Of principal interest are minimal serial dependency relations, having the property that no smaller relation

is a serial dependency relation. As discussed elsewhere [23], a data type may have multiple minimal

serial dependency relations, and concurrency control and replication methods based on serial

dependency provide more concurrency and more quorum choices than conventional techniques based on
commutativity.

5.2. Concurrent Computations
A schedule is a sequence of object/operation/transaction triples. Operations of different transactions are
not interleaved; we assume that individual operations are serialized and recovered by an independent
underlying atomicity mechanism. The order induced by this mechanism is called the physical serialization

order.

Each transaction has an associated level. We define the logical serialization order as follows: A

precedes B in the logical serialization order if As level is lower than B*s, or if their levels are equal, and A

is physically serialized before B. If S is a schedule, let reorder(S) be the history constructed by reordering
the operations of S in the logical serialization order of their transactions. S is logically serializable if
reorder(S) is a legal history. Logical serializability plays the same role as one-copy serializability in
graph-oriented models [2]; it states that a replicated object satisfies the same specification as a single-site
object.

Since all objects agree on the relative physical ordering of transactions and on their levels, a system's
schedules are logically serializable if and only if each individual object's schedules are logically
serializable. Henceforth, we consider only schedules for individual objects, omitting object names from
schedules and histories. A replicated object is modeled as an automaton that accepts certain schedules.
We show that ail schedules accepted by the automaton are logically serializable if and only if it satisfies
the generalized quorum intersection invariant.

5.3. Multi-Level Automata
We use the following primitive domains: INV is the set of invocations, RES is the set of responses, REPOS
is the set of repositories, NAT is the set of natural numbers, and TIMESTAMP is the set of timestamps. We
also use the following derived domains: OP = INV X RES is the set of operations, QUORUM = 2 R E P 0 S is the
set of quorums, and a log is a map from a finite set of timestamps to operations: LOG = TIMESTAMP -> OP.

Two logs L and M are coherent if they agree for every value where they are both defined. The merge
operation u is defined on pairs of coherent logs by:

16

(L u M)(t) =if L(0 is defined then L(/) else M(f).

Every log corresponds to a history constructed by ordering its operations in timestamp order. For brevity,

we sometimes refer to a log L in place of its history, e.g., "L is legal" instead of "the history represented

by L is legal." The exact meaning should be clear from context.

A replicated object is modeled as a non-deterministic automaton that accepts certain schedules. A

multi-level automaton has the following state components:

• Log: REPOS x NAT - » LOG

• ClOCk: TIMESTAMP

• Ratchet: REPOS X INV - > NAT

• Initial: INV X NAT - > 2 Q U 0 R U M

• Final: OP X NAT - > 2 Q U 0 R U M

The Log component associates a log (initially empty) with each repository and each level. The Clock

component models a system of logical clocks; it may have an arbitrary initial value. Ratchet(RJ) is the

value of the ratchet lock for invocation / at repository R, initially 1. Initial(inv(p),n) and Final(p,n) are the

sets of initial and final quorums for p at level n. For brevity, we write "lnitial(p,n)" and "Ratchet(R.p)" for

"lnitial(inv(p),n)" and "Ratchet(R,inv(p))."

An operation p is enabled at level n if Ratchet(R,p) < n at all repositories R. Initial and Final induce a

quomm intersection relation » Q :

P » Q 9 =
If q is enabled at level n then each final quorum for q at level n intersects each initial quorum
for p at levels n and higher.

If Q is a set of repositories, define:

Log(Q,n) = u R € Q L o g (R , n) ,

View(Q,A) = Log(Q,1) u ... u Log(Q,Level(A)), and

Ratchet(Q,p) = m a x R € Q (Ratchet(R.p)).
As view of Q is the log of operations recorded at Q that are logically serialized before A.

An operation/transaction pair <pA> is accepted only in states satisfying the following preconditions:
• There exists IQ e lnitial(p,Level(A)) such that View(IQ,A) • p is a legal history.

• There exists FQ e Final(p,Level(A)) such that Ratchet(FQ,q) < Level(A)

These preconditions state that that the new operation must produce a legal history when appended to the
transaction's view, and there are no conflicting ratchet locks at the final quorum. This transition produces
the following postcondition, where x' denotes the new value of component x.

• Clock' > Clock

• Log'(R,m)(t) = If R * FQ then Log(R,m)(t)
elseif m = n and t = Clock* then p
else (Log(R,m) u Log(IQ,m))(t)

• Ratchet'(R.p) = if R e IQ then Ratchet(R,p)

17

else max(Ratchet(R,p),Level(A))
These postconditions state that the clock is advanced, the new operation is appended to the transaction's
view, the view is merged with the logs at the final quorum, and the ratchet locks are advanced at the initial
quorum.

The automaton also undergoes spontaneous deflation transitions, which have the following
postconditions. There exists nt and sets of repositories I, P, and F' such that:

• For all p, I G lnitial(p,n), P e lnitial'(p,n), and F* e Final'(p,n).

• For all R e F\ Log'(R,k) = Log(R,k) u Log(l.k).

• For all R e P, Ratchet'(R,p) > Ratchet(l,p).

• For all k>j, if p » Q q, IQ e lnitial'(p,k), FQ e Final'(qj), and Ratchet'(IQ,p) < j , then IQ n FQ

These postconditions state that for some level, deflation reads the logs and ratchet locks from an old
initial quorum for all operations, writes out the merged logs to a new final quorum for all operations, and
writes out the current ratchet lock value to a new initial quorum. Finally, the new quorum assignments
and ratchet lock values satisfy the generalized quorum intersection invariant.

5.4. The Proof
We use the following technical lemmas. Let S be the schedule accepted by an automaton in a given
state.

Lemma 3: If » is an arbitrary relation between invocations and operations, the result of
merging logs closed u n d e r » produces a closed subhistory of reorder(S).

Lemma 4: If p » Q q and IQ e lnitial(p,Level(A)), then View(IQ,A) includes all entries for q in S
executed by transactions logically serialized before A.

Proof: The property clearly holds for the original quorum assignments, and it is preserved by
deflation.

Lemma 5: Let » be a serial dependency relation, p an operation, and and h2 histories such
that A71 • h2 and • p are legal. If h2 contains no q such that q » p, then • p • h2 is
legal.

Proof: The result is immediate if h2 is empty. Otherwise, assume h2 has a prefix h3 • q such
that h 1 • p • h3 is legal, but • p • h3 • q is not. The history ft1 • h3\s a closed legal
subhistory of /?1 • p • h3 containing all operations r such that q » r. Because » is a serial
dependency relation, and • p h3 is legal, so is A?1 • p • h3 • q, a contradiction.

We now identify an invariant property of multi-level automata.

Lemma 6: If the automaton has accepted S, then View(Q,A) is a closed subhistory of
reorder(S) for any set of repositories Q and any transaction A.

Proof: The argument is by induction on the number of transitions. The base case is trivial, and
the induction hypothesis asserts the result in the current state. The induction step shows that
the result is preserved across both kinds of transitions: deflation and accepting an
operation/transaction pair. It suffices to show that View(Q,R) remains closed for any single
repository R; the more general result follows from Lemma 3.

18

Following a deflation transition that merges the logs from Q and sends them to R, View'(R,A) =
View(R,A) u View(Q,A) = View(Q u (R},A) which is closed by the induction hypothesis.

Suppose the automaton accepts <p,B>, where R is in B's initial quorum, IQ. If Level(A) <
Level(B), then View'(R.A) = View(R,A) u View(IQ,A), which is closed by the induction
hypothesis. Otherwise,

View'(R,A) = View(R,A) u (View(IQ,B) • p)
View(IQ,B) and View(R,A) are closed by the induction hypothesis, and View(IQ,B) • p is closed
by construction, therefore View'(R,A) is closed by Lemma 3.

Corollary 7: If IQ e lnitial(p,Level(A)), then View(IQ,A) is a closed subhistory of reorder(S).

We are now ready to present the basic correctness result:

Theorem 8: If » Q is a serial dependency relation, then every schedule accepted by a quorum
consensus automaton is logically serializable.
Proof: The argument proceeds by induction on the number of transitions. The result holds
trivially in the automaton's initial state. Assume as the induction hypothesis that the automaton
has accepted the logically serializable schedule S. The result is trivially preserved across
deflation transitions. We show the result is preserved if the automaton accepts the
operation/transaction pair <p,A> with an initial quorum IQ. Let reorder(S • <p,A>) =
ft1 • p • h2. View(IQ,A) is a closed subhistory of hA (Lemma 6), it is legal (because
View(IQ,A) • p is legal), and it contains every q such that p » Q q (Lemma 4). Because » Q is
a serial dependency relation and View(IQ,A) • p is legal by construction, • p is legal.
Reorder(S) = rt1 • ft2 is legal by the induction hypothesis, and the ratchet locks and Lemma 4
ensure that there is no q in h2 such that q » Q p, thus hA p h2 is legal by Lemma 5.

If all transactions execute at the same level, then the multi-level automaton reduces to a quorum

consensus automaton. Elsewhere [23; Theorem 9], we have shown that no constraint on quorum

intersection weaker than serial dependency guarantees correctness for quorum consensus automata, a

result that translates into the basic optimality result for quorum inflation/deflation:

Theorem 9: For any » Q that is not a serial dependency relation, there exists a multi-level
automaton that accepts a schedule that is not logically serializable.

Theorem 8 shows that multi-level automata accept only logically serializable histories, but the following

lemma is need to show that they accept any histories at all. The proof is omitted since it is a

straightforward generalization of a proof given elsewhere [23; Lemma 6].

Lemma 10: If the quorum intersection relation » Q is a serial dependency relation, then
View(Q,A) is a legal history for all sets of repositories Q.

This lemma ensures, for example, that a Credit or Debit will succeed in choosing a response whenever it

can locate an appropriate quorum. This lemma also reveals the following fail-safety property: if a

catastrophic failure makes it permanently impossible to assemble a quorum for certain operations, the

result of merging the logs from any set of surviving repositories yields a logically serializable subschedule

of the true (lost) schedule.

19

6. Related Work
The first part of this section surveys background material, and the remainder of the section gives a
detailed comparison of our method with similar methods proposed by Eager and Sevcik [9], by El-Abbadi,
Skeen, and Cristian [10], and by El-Abbadi and Toueg[11]. Some differences are apparent: our
techniques support more flexible quorum adjustment for typed objects, and our use of multiple versions
forces fewer restarts. Even for untyped objects, however, we show that our scheme provides greater
flexibility: every quorum adjustment permitted by any of the alternatives can be achieved by some
combination of quorum inflation and deflation, but not vice-versa. Moreover, our techniques scale up
more effectively to large distributed systems because they do not require reconfiguration transactions that
span multiple objects.

6.1. Background
Early replication methods for untyped objects [1, 30] did not preserve one-copy serializability, nor do more

recent replication methods for directories [4,13]. Replication methods that preserve one-copy

serializability in the presence of site crashes but not partitions include SDD-1 [18] and the available

copies scheme [3].

Optimistic replication methods permit inconsistencies to develop during partitions, but these
inconsistencies are detected and reconciled when communication is restored. Reconciliation methods
may be ad hoc, as in Locus [27] or Data-patch [14], or systematic, as in proposals by Davidson [7] and
Wright [33].

Pessimistic replication methods prevent inconsistencies from developing. Wright [33] has proposed a
pessimistic scheme in which transactions taken from a predefined set are classified by their read and
write sets. A dependency analysis determines which classes can execute concurrently in distinct
partitions. Unlike the scheme proposed here, Wright's scheme requires that each transaction's data
dependencies be known in advance.

Quorum consensus methods are pessimistic; an operation invocation will succeed in any partition
containing an appropriate quorum. Quorum consensus replication methods have been proposed for files
by Gifford[16], for directories by Bloch, Daniels, and Spector[5], and for arbitrary data types by the
author [19,23, 20].

Davidson, Garcia-Molina, and Skeen [8] have published a survey of techniques for preserving
consistency in partitioned networks, and Coan, Oki, and Kolodner[6] have published a quantitative
analysis of some of these techniques.

20

6.2. Missing Writes
In Eager and Sevcik's missing write scheme [9], transactions execute in one of two modes: normal or

partitioned. In normal mode, transactions read from any copy of an object and write to all copies. In

partitioned mode, transactions use Gifford's quorum consensus method to read and write a majority of

copies. Each partitioned-mode transaction posts missing write information at each site it visits. When a

normal-mode transaction attempts to read or write an object with posted missing write information, it must

restart in partitioned mode, or execute a restoration protocol as discussed below.

Quorum inflation is a straightforward generalization of Eager and Sevcik's protocol. The quorum

assignments for normal and partitioned modes are the same as those for levels 1 and 2 in Figure 3-1.

Missing write information serves the same function as ratchet locks; it ensures that transactions in normal

mode are never serialized after transactions in partitioned mode. Quorum inflation extends this technique

by incorporating more than two levels, multiple versions, timestamps instead of version numbers, and the

exploitation of data type semantics.

More fundamental distinctions arise when we turn our attention to deflation. In Eager and Sevcik's

method, a normal-mode transaction that becomes aware of missing writes may avoid restarting in

partitioned mode if it can carry all the missing writes. A complex protocol ensures that the missing writes

are executed in the correct order, and that any other missing writes discovered during the protocol are

themselves executed correctly. Once a missing write has been executed, it need no longer be posted.

Using our terminology, Eager and Sevcik's restoration protocol retroactively lowers the levels of the

transactions whose missing writes are carried out.

Although this protocol has the advantage that a normal-mode transaction that becomes aware of missing

writes may still execute to completion if it is able to carry out the missing writes, it has the disadvantage

that it imposes a high level of interdependence among distinct objects. A repository for one object may

have to keep track of an arbitrary amount of missing write information for other objects. Propagation of

missing write information may force a transaction to use partitioned-mode quorums even when all

repositories for all objects it uses are available. Restoring normal quorums for one object may require

visiting an arbitrary number of other sites, making it difficult or impossible to predict the amount of work

required, or the likelihood that the necessary sites will be available. Finally, restoration may become

progressively more difficult as missing write information propagates through the system.

The principal advantage of our protocol is that deflation is accomplished on a per-object basis instead of a
per-transaction basis. Each object manages its quorum assignments independently of the others. One
object's preferred quorum assignment can be restored without affecting other objects. Because object
boundaries are fixed in advance, while transaction boundaries are not, this independence makes it
possible to predict both the amount of work required to restore a quorum assignment, and the likelihood
that the necessary repositories will be available. Repositories for one object do not keep track of
information about other objects, and deflation does not become progressively more difficult.

21

6.3. Virtual Partitions
In a scheme proposed by El-Abbadi, Skeen, and Cristian [10], levels are called virtual partitions. Each
virtual partition is associated with a set of sites. An object is accessible in virtual partitions that include a
majority of its sites. A transaction may read or write only those objects that are accessible in its virtual
partition. A read quorum for a virtual partition is any site in that partition, and a write quorum is all sites in
that partition. Virtual partitions are totally ordered by logical timestamps, and each site keeps track of the
latest virtual partition to which it belongs. Sites use these timestamps as ratchet locks, rejecting requests
from transactions in earlier virtual partitions.

The principal advantage of the virtual partition scheme is that any accessible object can be reconfigured

to be read at any accessible repository. Quorum inflation and deflation can be combined as follows to

achieve the same property. Each object binds level 1 to the "read one, write all" quorum assignment, and

higher levels to majority quorums, just as in the example in Section 3. Transactions respond to failures by

inflating to higher levels. Whenever a front-end for an object receives a read or write request at a level

bound to majority quorums, it ascertains which repositories are accessible, and starts a deflation

transaction to rebind that level to read from any accessible site and to write to all accessible sites. The

deflation transaction reads from a majority of sites, advancing their ratchet locks, and writes the current

version to all accessible sites, updating (at least) a majority of that object's quorum assignment tables.

As illustrated by the examples in Section 3, our techniques also permit quorums and quorum adjustments
not permitted by virtual partitions. For example, when a site rejoins a partition, objects may respond by
executing small deflation transactions instead of a single large transaction to create a new virtual partition.
Our techniques support multi-site read quorums, minority write quorums, and objects that may be moved
from one set of repositories to another.

The principal disadvantage of the virtual partition scheme is that it does not appear to scale up effectively
to large decentralized systems. While our scheme adjusts quorums lazily, inflating and deflating
individual transactions and objects as the opportunity arises, the virtual partition scheme adjusts quorums
eagerly, responding to a failure or recovery by executing a single transaction that must lock, read, and
update every object accessible in the new virtual partition, effectively shutting down the database while
reconfiguration is in progress. Eager quorum adjustment takes longer to respond to failures and
recoveries, and there may be a substantial likelihood that such a large transaction will be aborted by
failures or synchronization conflicts, perhaps causing much work to be lost. If partitions are long-lived,
both schemes reconfigure each accessible object once, but if partitions are short-lived, the lazy approach
may avoid some unnecessary quorum adjustment. As the number of sites and objects grows, the
lifetimes of virtual partitions shrink, the cost and latency of creating new virtual partitions increases, and
the overall availability of the system diminishes.

22

6.4. Accessibility Thresholds
El-Abbadi and Toueg [11] have proposed an extension to the virtual partition scheme that replaces the

"read one, write all" mechanism with a more flexible quorum consensus mechanism. In this scheme,

levels are called views, and each view is associated with a set of sites. Each object x is assigned read

and write accessibility thresholds, which are integers denoted A^x] and Aw[x], such that A r[x]+Aw[x]

exceeds the number of copies of x, and Aw[x] exceeds half the number of copies of x. An object is read

(write) accessible in a view only if A^x] (Aw[xJ) copies of x are associated with that view. In a view v, each

accessible object x is assigned read and write quorums, which are integers denoted qr[x,v] and qw[x,v],

such that qrlx.vj+q^x.v] exceeds the number of copies of x in v, q^x.v] is less than the number of copies

of x in v, and qw[x,v] exceeds AJx].

The principal advantage of the threshold scheme over the virtual partition scheme is that it permits a

wider range of trade-offs between quorum sizes for read and write operations. An analysis similar to that

undertaken for virtual partitions shows that quorum inflation and deflation can be combined to realize

every quorum assignment permitted by the threshold scheme. If v is the first view, each x binds level 1 to

read and write quorums of sizes q^v.x] and q^v.x], and each higher level to read and write quorums of

sizes A^x] and Aw[x]. A transaction creates a new view v' by restarting at a higher level. When a

front-end for x receives a read or write request at a new level, it ascertains which repositories are

accessible, and executes a deflation transaction to rebind that level to read and write quorums of sizes

qr[v',x] and c^Jv'.x]. Here, too, quorum inflation and deflation is more flexible, since quorum sizes are not

constrained by fixed read and write thresholds.

The principal disadvantage of the threshold scheme is similar to that of the virtual partition scheme: the

cost and latency of view creation increases with system size. The threshold scheme aborts any

transaction that attempts to read or write a version residing at a site belonging to a different view. A site

joins a view by executing an update transaction that updates the local copy of each read accessible

object x after reading Ar[x] copies. Creating a new view requires more message traffic than creating a

new virtual partition, since each of x"s sites independently reads Ar[x] copies, but individual update

transactions will be smaller than virtual partition creation transactions if objects are partially replicated,

since a site's update transaction ignores objects that have no copies at that site. Unlike deflation

transactions, update transactions may require locking multiple replicated objects, and our earlier remarks

about cost and latency apply here as well. Even in the extreme case where each site stores a version for

only one object, tfs new quorum assignment is fully installed only after every one of x's sites has

completed its update transaction. Our simulation of the threshold scheme achieves the same effect by a

deflation transaction that spans only Aw[x] sites. If the view's quorums and thresholds are the same, our

scheme does not need to deflate at all. In the threshold scheme, the minimum delay before a transaction

can read (write) x in a new view v is the time needed to execute update transactions at qr[x,v] (qw[x,v])

sites. In our scheme, the transaction can read or write immediately if it postpones deflation and uses read

and write quorums of sizes Ar[x] and Aw[x].

23

7. Conclusions
This paper has proposed new techniques for managing replicated data in the presence of crashes and
partitions. Like similar methods, we exploit the observation that transactions serialized "in the future"
may use different quorum assignments from transactions serialized "in the past." We provide two basic
techniques for quorum adjustment: quorum inflation shrinks write quorums, and quorum deflation shrinks
read quorums. These two techniques can be combined to implement a wide range of adaptive strategies
for enhancing the availability of replicated data, generalizing several techniques in the literature. This
approach scales up effectively to large systems because quorum adjustment occurs locally at
transactions and objects, and its effects propagate lazily through the system as circumstances require.
Finally, this approach systematically exploits the semantics of typed objects to enhance the flexibility of
quorum adjustment.

Acknowledgments
I am grateful to Joshua Bloch, Elliot Kolodner, Sharon Perl, and the anonymous referees for their
comments and suggestions.

References
[1] P.A. Alsberg, and J.D. Day.

A principle for resilient sharing of distributed resources.
In Proceedings, 2nd Annual Conference on Software Engineering. 1976.
San Francisco, CA.

[2] P.A. Bernstein, and N. Goodman.
The failure and recovery problem for replicated databases.
In Proceedings, 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing.

1983.
Montreal, Quebec.

[3] P. Bernstein and N. Goodman.
An algorithm for concurrency control and recovery in replicated distributed databases.
ACM Transactions on Database Systems 9(4):596-615, December, 1984.

[4] A.D. Birrel, R. Levin, R. Needham, and M. Schroeder.
Grapevine: an exercise in distributed computing.
Communications of the ACM 25C\4):260-274, April, 1982.

[5] J.J. Bloch, D.S. Daniels, and A.Z. Spector.
Weighted Voting for Directories: a Comprehensive Study.
Technical Report CMU-CS-84-114, Carnegie-Mellon University, April, 1984.

[6] B.A. Coan, B.M. Oki, and E.K. Kolodner.
Limitations on database availability when networks partition.
In Fifth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages

187-194. 1986.
Calgary, Alberta.

[7] S.B. Davidson.
Optimism and consistency in partitioned distributed database systems.
ACM Transactions on Database Systems 9(3), September, 1984.

24

[8] SB. Davidson, H. Garcia-Molina, and M.D. Skeen.
Consistency in a partitioned network: a survey.
ACM Computing Surveys 17(3):341-370, September, 1985.

[9] D.L. Eager and K.C. Sevcik.
Achieving robustness in distributed database systems.
ACM Transactions on Database Systems 8(3):354-381, September, 1983.

[10] A. El-Abbadi, D. Skeen, and F. Cristian.
An efficient, fault-tolerant protocol for replicated data management.
In Conference on Principles of Database Systems. ACM SIGACT/SIGMOD, December, 1985.

[11] A. El-Abbadi and S. Toueg.
Availability in Partitioned Replicated Databases.
Technical Report TR 85-721, Dept. of Computer Science, Cornell University, December, 1985.

[12] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.
The notion of consistency and predicate locks in a database system.
Communications of the ACM 19(11):624-633, November, 1976.

[13] M. Fischer and A. Michael.
Sacrificing serializability to attain high availability of data in an unreliable network.
In Proceedings, ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March, 1982.

[14] H. Garcia-Molina, T. Allen, B. Blaustein, R.M. Chilenskas, and D. Ries.
Data-Patch: integrating inconsistent copies of a database after a partition.
In Proceedings, 3rd Symposium on Reliability in Distributed Software and Database Systems.

October, 1983.

[15] H. Garcia-Molina and D. Barbara.
How to assign votes in a distributed system.
Journal of the ACM 34(2):841 -861, October, 1985.

[16] D. K. Gifford.
Weighted voting for replicated data.
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM SIGOPS,

December, 1979.

[17] J.Gray.
Notes on database operating systems.
Lecture Notes in Computer Science 60.
Springer-Verlag, Berlin, 1978, pages 393-481.

[18] M.M. Hammer, and D.W. Shipman.
Reliability mechanisms in SDD-1, a system for distributed databases.
ACM Transactions on Database Systems 5(4):431 -466, December, 1980.

[19] M.P. Herlihy.
Replication Methods for Abstract Data Types.
Technical Report MIT/LCS/TR-319, MIT Laboratory for Computer Science, May, 1984.
Ph.D. Thesis.

[20] M.P. Herlihy.
Availability vs. Atomicity: Concurrency Control for Replicated Data. .
Technical Report CMU-CS-85-108, Carnegie-Mellon University, February, 1985.

[21] M.P. Herlihy.
Comparing how atomicity mechanisms support replication.
In Fourth ACM SIGACT-S1GOPS Symposium on Principles of Distributed Computing. August,

1985.

25

[22] M P . Herlihy.
Using Type Information to Enhance the Availability of Partitioned Data..
Technical Report CMU-CS-85-119, Carnegie-Mellon University, April, 1985.

[23] M P . Herlihy.
A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems 4(1), February, 1986.

[24] W.H. Kohler.
A survey of techniques for synchronization and recovery in decentralized, computer systems.
ACM Computing Surveys 13(2) :149-185, June, 1981.

[25] L. Lamport.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (7):558-565, July, 1978.

[26] C.H. Papadimitriou.
The serializability of concurrent database updates.
Journalof the ACM 26(4):631-653, October, 1979.

[27] G.J. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.
Locus: a network transparent high reliability distributed system.
In Proceedings, Eighth Symposium on Operating Systems Principles. December, 1981.

[28] D P . Reed.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

[29] M.D. Skeen.
Crash Recovery in a Distributed Database System.
PhD thesis, University of California, Berkeley, May, 1982.

[30] R.H. Thomas.
A majority consensus approach to concurrency control.
ACM Transactions on Database Systems 4(2):180-209, June, 1978.

[31] J.S.M. Verhofstad.
Recovery techniques for database systems.
ACM Computing Surveys 10(2) :167-196, June, 1978.

[32] W.E. Weihl.
Specification and implementation of atomic data types.
Technical Report TR-314, M.l.T. Laboratory for Computer Science, March, 1984.
Ph.D. Thesis.

[33] D.D. Wright.
Managing Distributed Databases in Partitioned Networks.
Technical Report 83-572, Cornell University, September, 1983.

