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Abstract 

This paper describes the communication functions required for distributed transaction processing. 
The paper begins with a discussion of models that illustrate how a communication subsystem fits into 
a proposed system architecture. Then, it describes the system and user activities that depend on the 
communication subsystem. Finally, it uses these activities to motivate the facilities that should be 
provided by a communication subsystem that supports transaction processing. 
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1. Introduction 
Communication subsystems permit their client programs to invoke operations on remote sites and 

to perform auxiliary control tasks. For example, an application-level client may send a SQL Select 
operation and associated data to a remote database, which then returns the data that matches the 
selection criteria. A client system facility may piggyback time information on application-level 
messages to maintain a consistent global notion of time. The exact nature of the applications and 
system control facilities using a communication subsystem substantially influence the functions it 
must implement. 

The functions may be complex if they must support distributed transaction processing, that is, the 
execution of transactions on data stored in multiple partitioned and replicated databases on various 
network nodes. Distributed transaction processing provides applications with access to shared data 
that are stored with high data integrity and availability. Such applications require the usual 
communication functions such as datagram, file transfer, data streaming, network virtual terminal, 
and RPC. They may also require more unusual facilities to support support data replication, atomic 
commitment, a coherent system-wide notron of time, and authenticated protected data access. In 
addition, the volume and frequency of communication performed by distributed applications may 
require high bandwidth, low-latency communication if users' response time and throughput 
requirements are to be met. 

Because of such complexity, this paper takes the view that a communication subsystem for 

supporting distributed transactions must be designed to fit within the complete framework of 

processing that will occur. With this viewpoint as a basis, this paper first describes generic system, 

computation and architecture models. Only then does it describe the communication facilities that 

are required. While this approach has the disadvantage of limiting the discussion of communication 

to that required for one particular set of models, it shows more clearly how a communication 

subsystem is integrated into the greater system — the major point of the document. Furthermore, the 

system, computation, and architectural models are general enough to apply to many real systems. 

Following the discussion of models, Section 3 discusses the system activities that require 
communication support. Section 4 uses these activities as a basis to describe important 
communication primitives and implementation strategies. These primitives are motivated by the 
Camelot distributed transaction processing system, developed at the Carnegie Mellon Computer 
Science Department [Spector et al. 86]. The paper concludes with Section 5, which is a brief 
summary. 

UNiVERsi 
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2. Three Models 
There is substantial agreement on the underlying system model for distributed processing. The 

model has processing nodes and communication networks, as illustrated in Figure 2-1. Processing 

nodes are fail-fast and may be either uniprocessors or shared memory multiprocessors. In general, 

there are many types of processing nodes on the same distributed system. Processing nodes are 

assumed to have independent failure modes. 
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Figu re 2 - 1 : Hardware Model 

be implemented on disks. 

Storage on processing nodes comprises volatile storage — where portions of objects reside when 

they are being accessed, non-volatile storage — where objects reside when they have not been 

accessed recently, and stable storage — memory that is assumed to retain information despite 

failures. The contents of volatile storage are lost after a system crash, and the contents of non

volatile storage are lost with lower frequency, but always in a detectable way. Stable storage can be 



implemented using two non-volatile storage units on a nnri« „ - • 
86]. 9 ° 3 n ° d e i 0 r u s , n 9 a n e t w o r k service [Daniels et al. 

The system model's communication network provides datagram-oriented, internetworked OSI Level 
3 functions [Zimmermann 82] such as the Arpanet IP protocol [Postel 82]. In other words, the network 
comprises both long-haul and local components and permits processes to send datagrams having a 
fixed maximum size. Some local area networks may specially support multicast or broadcast, and the 
network protocols are assumed to support these features for reasons of efficiency. Because 
applications using the system may need high availability, communication networks should have 
sufficient redundancy to render network partitions unlikely. However, network partitions can 
nonetheless occur, so higher levels of the system must take measures to protect themselves against 
the erroneous computations or inconsistencies that could result. 

The computation model comprises applications that perform processing by executing transactions 
performing operations on data objects. Data objects are distributed across the network and are 
encapsulated within protection domains that (1) export only operations that make-up the defined 
interface and (2) guarantee that the invoker has sufficient access rights. Data objects may be nested. 
This model applies to many systems, including R*, Argus, TABS, and Camelot [Lindsay et al. 
84, Liskov and Scheifler 83, Spector et al. 85, Spector et al 86, Spector et al. 86]. 

The model further defines transactions as encapsulation units that provide three properties [Gray 
80]: Synchronization properties, such as serializability, guarantee that concurrent readers and writers 
of data do not interfere with each other. Failure atomicity simplifies the maintenance of invariants on 
data by ensuring that updates are not partially done. For example, failure atomicity guarantees that a 
transaction that updates two distributed copies of a replicated file will either succeed and modify 
both, or fail and modify neither. Permanence ensures that only catastrophic failures in stable storage 
will corrupt or erase previously made updates. Transactions can be nested to reduce the likelihood 
that they need to abort completely and to provide protection from concurrently executing processes 
within a transaction. 

The architectural model describes how processing on a node is organized; that is, it describes how 

to realize the computation model on the system model. It is structured in five logical levels, as shown 

in Figure 2-2. As one might hope, few calls proceed from lower levels to upper levels. (The levels 

referred to in this model are distinct from the OSI levels, and subsume functions in OSI levels 4 to 7.) 

At the base in Level 1 is the operating system kernel that implements processes, local 
synchronization, and local communication. Examples are the V, Accent, and Mach kernels [Cheriton 
84, Rashid and Robertson 81,Accetta et al. 86], though V and Mach also include inter-node 
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communication facilities which this model includes in Level 2, the communication level. This level is 

the subject of this paper and the following sections analyze it in more detail. 

Above the communication level is the distributed transaction facility (DTF), Level 3. Although there 

is room for diversity in its functions, the DTF must make it easy to initiate and commit transactions, to 

call operations on objects from within transactions, and to implement abstract types that have correct 

synchronization and recovery properties. For example, it is this level that implements commit 

protocols, stable storage, recovery, and deadlock detection. The DTF uses the process, 

synchronization and local and inter-node communication facilities of the kernel and communication 

levels for its own needs and exports them to higher levels as well. 

Level 5: Applications 

Level 4: Data Objects 

Level 

- Distr ibuted Transaction F a c i l i t y 

Level 2: Communication 

Level 1 : Operating System Kernel 

Figure 2-2: Five Level Architecture Model 

Level 5. 

Implementors of abstract data objects, such as database managers, use the DTF to construct 

objects that can be used by clients within transactions. Objects may be grouped into a subsystem, 

and there may be multiple subsystems in the Data Object Level (Level 4). These subsystems are 

called Resource Managers in R*, Guardians in Argus, and Data Servers in TABS and Camelot. On a 



distributed system, subsystems are frequently called servers and invoked via a request; the user of a 
subsystem is frequently called a client. Frequently, servers send a response to clients to return a 
result. In the common case that a client calls a server on the same node, protected procedure calls 
may be substituted for messages to reduce invocation overhead. 

In Level 5, applications use the DTF to begin, commit, and abort transactions and to execute 
operations on objects. Example applications include a banking terminal system and an interactive 
interface to a database manager. 

This architecture provides two benefits over traditional architectures that blur the distinction 
between Levels 3, 4, and 5: First, because many of the components that support transactions are 
standardized and moved lower into the system hierarchy, there is the potential to implement them 
more efficiently. Second, the architecture provides a common notion of transaction and data object 
for all objects and applications in the system, and permits more uniform access to data. This permits 
an application, for example, to update transactional^ a relational database containing indexing 
information, a file containing image data, and a hierarchical database containing performance 
records. All the system components also use standardized facilities for performing remote accesses, 
for transaction commitment, etc. 

Having characterized the computational activities required for distributed transaction processing, it 
is now possible to examine the activities that use the communication subsystem. We can then turn 
our attention to requirements of the communication subsystem and how to meet them. 

3- Activities Requiring Communication Support 
Distributed transaction facilities require communication for data objects and applications in Levels 4 

and 5 and system activities in Levels 1 through 3. This section lists those activities and then describes 
a set of communication subsystem functions that will support them. 

3 .1 . Communication-related Activities of Data Objects and Applications 

Before data objects and applications can begin to access other data objects, they must first 
establish a communication path to them. A name service locates servers that encapsulate objects 
and returns lower-level names that can be used to establish communication. To support distributed 
replication algorithms, a single object name may be associated with a several copies of objects, each 
stored on a different node. Typically, replication techniques specify the number of copies of an object 
to which they require access. 

The name service must manage the name space to prevent unintended name duplication and to 
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ensure appropriate authorization for name insertion and deletion operations. This is clearly a 

distributed data management problem, which is best solved by a collection of trusted Level 4 objects 

that can use the DTF. Thus, while the name service is logically related to communication services, it 

need not be implemented within the communication subsystem. However, the communication 

subsystem must provide the name service with well-known connections through which name servers 

can communicate with each other. 

Questions arise concerning the permanence of name mappings, the granularity of objects that are 

named, and the management of the name space. There are many feasible answers to these 

questions, but here are some reasonable ones: 
• Name mappings are relatively useless for objects that are inaccessible; when an object is 

unusable, it usually does not help to know its location. Hence, the motivation for 
replicating name mappings on another node is to reduce communication, not to provide 
availability. 

• Objects registered in the system-wide name service should be coarsely grained; e.g., a 
database name rather than the names of all its relational tables. More detailed name 
resolution can be performed in an object-specific fastrion. This decision is almost a 
necessity, both to reduce the number of communication paths to a server and to obviate 
the need for a uniform name space for each data object in an entire distributed system. 

• Name mappings should survive node crashes to reduce the amount of work required to 

restart a node. 

Once the name service has located an object, the lower-level object name can be passed to the 

communication subsystem and a session created. Clients and servers require sessions betwen them 

for many reasons: 
• Authentication and protection. If clients are to be certain they are accessing a 

particular server and servers are to check the access rights of a caller, then the 
communication session must be authenticated in some way, possibly using encryption 
techniques [Needham and Schroeder 78]. Prevention of active and passive attacks on 
the communication channel is also a desirable service for many applications [Sansom et 
al. 86, Birrell and Nelson 84]. 

• Flow-control and pipelining. Large amounts of data may be passed to and from 
objects and require flow-control. For example, a request to a remote object could result 
in a response containing megabytes of data. Pipelining may be useful on networks 
having long latencies. Even on local area networks, the increasing use of networks 
interconnected by bridges or gateways tends to increase delays and the consequent 
need for pipelining. 

• Crash detection. There must be a mechanism for determining if a server has crashed 
after its first use and prior to commit. Timing out while awaiting a response from an 
object is one crash detection technique, but a session failure provides more uniform and 
timely information for most errors. For example, sessions can detect most crashes even 
when a client is not calling its server. 
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Communication on a session usually takes the form of a (synchronous) remote procedure call 
having at-most-once semantics. While there is room for diversity in the definition of these semantics, 
all definitions guarantee that an operation on a server will be performed at most one time, despite 
network failures and retransmissions. Providing higher service levels in the communication 
subsystem (atomicity, or exactly-once semantics) is unneeded because the DTF can completely abort 
arbitrary units of work, which may then be retried. As mentioned above, requests and responses may 
have unlimited lengths so intra-message flow control may be needed. 

Sometimes, more general forms of remote procedure call may be useful [Spector 82]. 
Asynchronous RPC's permit a client to continue processing and to receive a signal when a response 
is returned. Multicast RPC's issue a request to multiple servers. A multicast RPC primitive may await 
all responses before returning or it may signal the client as each response arrives. The latter 
organization is useful when a client invokes an operation on multiple servers but does not need all 
responses before continuing work. Multicast RPC's may be implemented on multiple sessions, or 
may use a single session having multiple destinations. The latter is required if low-level network 
multicast primitives are to be used. 

3.2. Communication-related Activities of System Levels 

The data objects and applications of Levels 4 and 5 require communication primitives that provide 
very general functions: support for arbitrarily long messages, authentication, and the like. In Levels 1, 
2, and 3, communication is more constrained and there is more a-priori knowledge of message 
contents. For example, knowledge that a message usually fits within a network packet permits a 
simpler transmission protocol to be used. Similarly, some data can be piggy-backed on messages 
sent by Levels 4 and 5. 

Communication services required by Levels 1, 2, and 3 must support at least five different functions: 
time services, commit processing, deadlock detection, certain higher-level communication services 
themselves, and failure inducement for testing purposes. 

Logical time services, as provided by a Lamport distributed clock [Lamport 78], order events in a 
distributed system. All observable dependencies between events are reflected in time values 
provided by the clock; that is, if Server 1 observes the time as A and it sends a message to Server 2, 
and then Server 2 receives the message, Server 2 will then observe the time as B, with B > A. Such a 
mechanism is useful for various types of synchronization, for example, for supporting hybrid 
atomicity [Herlihy 85]. The underlying algorithm makes use of a counter on each node and a field 
included in each inter-node message that may update the counter. 
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A distributed real time service that is synchronized across nodes supports synchronization 

algorithms and performance measurement techniques. Many implementations of such mechanisms 

require periodic exchange of time information, which is done by appending information to existing 

message traffic and sending short messages during idle periods. 

To perform atomic commit processing, the DTF must send control messages such as 

Prepare-to-Commit, Prepare-Ack, Commit and Commit-Ack [Lindsay et al. 79]. Some of these 

messages are typically sent to one or more of the nodes involved in a transaction. Regardless of 

protocol, the communication subsystem should maintain appropriate information on the nodes 

involved in the transaction, and control messages should be sent with low-overhead. Usually, they 

can be sent as network datagrams because messages are short and reliable transmission is not 

needed; the transaction manager must deal with node crashes anyway. Even though data encryption 

and authentication may be needed for Level 4 and 5 communication, control messages are difficult to 

forge and they contain so little data that is valuable to outsiders that there may be no reason to 

encrypt them. However, certain commit protocols can benefit from transmission to a multicast 

address that is incrementally developed as the transaction executes. 

A DTF that supports nested transactions also requires a lock-resolution protocol in addition to the 

commit protocols. This protocol is invoked to determine if a nested transaction can inherit a lock 

from a relative in the tree of transactions. Depending upon the frequency of lock inheritance, this 

protocol may be invoked often and require high performance. 

Distributed deadlock detection algorithms typically require piecing together enough of the 

distributed Mwait-for" graph to break cycles. This requires the periodic transmission or the piggy

backing of information on other messages. 

The communication facilities themselves require communication in addition to the usual demands 

for session establishment and the transmission and acknowledgment of user-supplied data. For 

example, control messages are sent by authentication servers as part of session creation. "Are you 

there messages" may be periodically sent on sessions to rapidly detect server or node crashes. 

Finally, to aid in reliability testing, the communication subsystem should enable users to test the 

system under conditions of communication failures: lost, duplicate, and corrupted packets; partitions; 

and delays. Being able to simulate these conditions is an important feature. Also, facilities for 

monitoring the performance of the communication subsystem are useful. Methodical, empirical 

testing is needed to develop robust systems. 



4. Communication Subsystem Functions and Implementation 
This section lists a plausible set of functions that a communication subsystem should provide, given 

the requirements described in the previous section. It also describes the broad outlines of an 
implementation strategy for them. This ideas are loosely based on our design of TABS and Camelot 
with additions from other systems where needed. 

4 . 1 . Name Service 

The name service should provide primitives to associate a name with one or more servers that 
implement the named object. It may also associate a lower-level name used by a server to distinguish 
between the multiple objects it implements. The name service also provides primitives to lookup and 
delete names. The lookup primitive should permit the caller to specify how many servers should be 
returned and to set a timeout interval after which control will be returned. While the name service 
does not need to be part of the communication subsystem, it is closely related and worthwhile to 
include in this section. 

One implementation strategy is to have multiple name servers on the network that communicate 

with each other. Because of the desirability of storing name bindings permanently (so as to not have 

to register objects after a crash), the name service should be implemented as transactional (Level 4) 

servers, which can utilize stable storage. The DTPs services also simplify the consistency 

management of the name space. For example, new names can be added within a transaction. 

Locally storing recently used name bindings (hints) reduces the amount of inter-node 

communication, provided that applications are willing to detect and handle potentially out-of-date 
information. 

4.2. Session-based Communication 

Sessions should be the basis for communication between Level 4 and 5 entities. They are also 
appropriate for some of the communication between system-level entities. At minimum, sessions 
should support an efficient implementation of RPC with "are you there" messages to detect crashes. 
However, a session's required functions and implementation (including the amount of state that must 
be maintained) varies with the requirements of the DTF and the structure of the underlying system. 
For example, sessions supporting multicast RPC should have multiple recipients to take advantage of 
low-level multicast facilities. Differing needs for asynchronous RPC's, protection, authentication, 
conversion of heterogeneous data, and arbitrary internetworking also influence the functions and 
implementation of sessions. 

There are at least two facilities for supporting a DTF that a communication subsystem can perform: 

It can record the participants in a transaction by watching the messages and the transaction 
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identifiers contained in them. This information is needed at commit time. Additionally, the 

communication subsystem can incrementally distribute a network multicast address to all the sites 

within a transaction so that network multicast can be used during the two-phase commit protocol. 

This multicast address can be related to the global transaction identifier and be piggy-backed on 

request messages. Cheriton describes a design for this in the V System [Cheriton 86]. 

4.3. Datagram-based Communication 

The raison d'etre of datagram-based communication is to reduce transmission latency and CPU 

overhead. In order to keep datagram-based communication sufficiently lightweight, it is inevitably 

restricted in function: limited datagram sizes, lack of protection or authentication, etc. New functions 

that slow datagram transmission should be avoided. 

Certainly, datagram communication should support unreliable point-to-point transmissions; also, it 

should support multicast, because many networks provide necessary hardware support. Both of 

these two services require little protocol layering. Possibly, there should be some datagram support 

that is tailored to operation on a single locaf area network recognizmg-that there are services that 

would not be used over a long-haul network. For example, a stable storage server (log) would almost 

certainly be on the same local area network as its client nodes [Daniels et al. 86]. 

4.4. Miscellaneous Features 
There are a collection of miscellaneous features that a communication subsystem should support: a 

distributed (logical and/or real) time service, the parameterized insertion of errors or creation of 

network partitions, and a communication performance monitor. Other features may be needed for 

real-time applications or some high-availability architectures. 

5. Summary 
After examining the uses of a communication subsystem in a distributed transaction processing 

environment, it is not surprising to find that sessions and datagrams are the two most important 

facilities. However, in this environment where there is closely-coupled distributed processing, atomic 

commitment, replication, and a strong emphasis on reliable, highly available operation, there are 

some additional features that a communication subsystem should support. These include multicast, 

logical time, real time, performance evaluation, and fault insertion services. Higher level protocols not 

part of the communication subsystem but closely related to it are needed for commitment, nested 

transaction lock resolution, deadlock detection, and name resolution. 

All these additional facilities necessarily require standardized interfaces and protocols to support 
open systems. In some instances, these facilities are being considered by standardization 
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committees. In others the 
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