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A b s t r a c t

This paper presents an algorithm for estimating the dynamics parameters of an N

degrees-of-freedom robotic manipulator. In our previous work [8] it was shown that the

Newton-Euler model model which is nonlinear in the dynamic parameters can be

transformed into an equivalent modified model which is linear in dynamic parameters.

To introduce our identification algorithm, we cast this modified Newton-Euler model in a

form wherein the joint torques/forces are expressed as a product of a matrix and a vector

of dynamics parameters. The elements of this matrix are a function of the joint variables

and the kinematic parameters only. The dynamics parameters are then estimated from

this linear (in dynamics parameters) formulation using the least squares estimation

method. We have implemented our algorithm and the results of this experimental

implementation to estimate the dynamics parameters of the six degrees-of-freedom CMU

DD Arm II are presented. The estimated dynamics parameters have also been used to

evaluate the effect of dynamics compensation in model-based manipulator control

methods.



1. In t roduc t ion

The model-based control schemes such as the computed-torque [14] and

resolved-acceleration [12] methods incorporate the complete dynamics model of the

manipulator in the control law. Further, in order to achieve accurate trajectory tracking

these schemes assume that the robot dynamics and kinematics parameters are known

accurately. This assumption, however, is hardly valid in practice and there exists a need

to develop techniques to estimate the dynamics and the kinematic parameters of a

manipulator. In practice, it is also necessary to identify on-line the mass and inertia!

characteristics of the payload in order to achieve accurate trajectory tracking with varying

payload.

Earlier work in identification of robot dynamics concentrated on estimating the mass of

the payload. Paul [19] presented two techniques with the assumption that the

manipulator is at rest. The first method used the joint torques/forces, and the second

metliod a wrist torque/force sensor. Coiffet [3] extended this technique, for a manipulator

at rest, to estimate also the center-of-mass of the payload. By using special test torques

and moving only one degree-of-freedom at a time, the moments-of-inertia of the payload

can also be estimated. Olsen and Bekey [17] proposed an identification algorithm that was

restricted to rotary joint manipulators. Further, it required special test motions that

involved rotations about one axis at a time. Recently, the work was expanded to general

purpose manipulators and without any trajectory restrictions [18]. However, in estimating

the center-of-mass of the links, they assumed that the accelerations due to rotations are

insignificant compared to the gravitational and translational acceleration. This restrictive

assumption allows one to approximate the N-E dynamic equations such that they are

linear in all the dynamics parameters, fa this paper, we show that such an approximation

is unnecessary because it is possible to obtain a nonlinear transformation that will make

the Newtoa-Euler recursions linear m ail the dynamics parameters [8,7,16]. Other

researchers [15, 1] have also independently proposed algorithms for estimating the

dynamics parameters of a manipulator. We outline the salient features of our algorithm

and the differences from other algorithms later in this paper.

1ft this paper? we present an algorithm to estimate the dynamics parameters of a robot



from the measurements of its inputs (actuating torques/forces) and outputs (joint

positions, velocities and accelerations). To facilitate the identification procedure, we

modify the Newton-Euler formulation, through a nonlinear transformation, so that it

becomes linear in the dynamic parameters. We then reformulate the backward recursions

of the Newton-Euler model to obtain the joint torques/forces as a product of a matrix

(that is a function of only the joint variables and the kinematic parameters) and a vector

of inertial parameters. This formulation is very suitable from the estimation point-of-view

as it represents a set of linear equations that can be solved using standard linear

estimation techniques [4, 5, 6]. We have implemented our identification algorithm to

estimate the dynamics parameters of the six degrees-of-freedom CMU DD Arm II [7].

Our general-purpose algorithm is suited for both on-line and off-line applications: in off-

line identification only one link of the robot is commanded to move for the purpose of

parameter estimation, whereas in on-line identification the parameters are estimated while

the robot is in motion performing the task in hand. We can adopt the strategy of

estimating off-line the dynamics parameters of the robot and then estimating on-line the

',; inertial characteristics of the payload. This procedure improves the robustness of the

estimation, decreases the computational requirements, and adapts to varying payloads.

We have implemented our identification "algorithm to estimate the dynamics parameters

of the six degrees-of-freedoxn CMU DD Arm II [7]. The obtained dynamics parameters

were then used to experimentally implement and evaluate the effect of dynamics

compensation in model-based schemes [9, 10].

This paper is organized as follows: In section 2, we review the Newton-Euler formulation

* and identify its properties applicable to robot parameter identification. We thea derive* in

I section 3, our identification procedures for a general-purpose N degr^e-of-frcedom robot,

i la section 4t we evaluate the performance of omr algorithm on the two case study robots.

; The experimental results for the six degrees-of-freedoitt CMU DD Arm II we presented in

! section 5 and finally, la section Sf we draw oar conclusions.



2. Newton-Euler Dynamics Model

2.1. Newton-Euler Formulation

The Newton-Euler formulation [13, 2] shown in equations (l)-(9) computes the inverse

dynamics (ie., joint torques/forces from joint positions, velocities, and accelerations) based

on two sets of recursions: the forward and backward recursions. The forward recursions

(l)-(3) transform the kinematic varables from the base to the end-effector. The initial

conditions (for i=0) assume that the manipulator is at rest in the gravitational field. The

backward recursions (4)-(9) transform the forces and moments from the end-effector to the

base, and culminate with the calculation of the joint torques/forces.

={
w. + zff.,,] rotational, O.+1J ( 1 )

A. , , a/. translational

^K+^1+«.^.y (2)

-^ Jrl Um translational

Af+1v. 4- wf.+ 1Xp i + 1 + w i+,X(w i+1Xp.+1) rotational

translational



OJQ=UJQ—VQ=0 initial Conditions

yn=[9x 9 9]' gravitational acceleration

y.*=uiXsi + uiX{uiXai) + Yi (4)

Ft.=m-v;* (5)

N.=I^. + uXflp.) (6)

f-=A.+1f .+1 + F - (7)

(
H

TV T \

n. (A.z ) rotational

ff. (A-s ) translation^

: external force at the end-effector.^ nioment at the end-effector.

From equations (l}-(9), we note the following properties:

L The Newton-Euler model is linear in the classical link inertia tensors I..
t

This property follows directly from the^ backward recursions in (5)-(9). The joint
torque/force rf in (9) is linear ia the moment n;. In the recursion for the moment n^ in
(8)? the net momexit N. exerted on link i appears additively. Finally3 the moment N-
in (6) is linear in the classical link inertia tensor L.

2. For rotatioaal joints, the Newioa-Enler model is nonlinear in the center-of-mass
vectors s..

From equations (4) aad (5), the aei force Wi & linear 5n the center-of^mass rector s..
The Yector cross product s-XF. ia {8} Is thereby aonliaear (quadratic) in s^ Hence,
the torque r̂ . for a rotational joint in (9) is nonlinear in the center-of-mass vector s.. It
mast he noted that for translation*] joints the ecuter-of*mass vectors appear linearly.

3. The Newton*Euler model Is nonlinear in the kiaematlc parameter vectors p..

From equatloos (3}«{5) and (7), tie link force IF is linear ia the vector, p.. The vector
cross product Pg-Xff in (8) Is thereby nonlinear in p.. Hence, the torque/force r. In (9)



Table 1: Kinematic and Dynamic Parameters

m. Total mass of link i

r. Joint torque/force at joint i

<j. and a;. Angular velocity and acceleration of the i-th coordinate frame

v. and v. Linear velocity and acceleration of the i-th coordinate frame

v .* and v .* Linear velocity and acceleration of the center-of-mass of link i

F. and 1ST. Net force and moment exerted on link i

f. and n. Force and moment exerted on link i by link i—1

p. Position of the i-th coordinate frame with respect to the (i—l)-th coordinate
frame: p .=[a . d.sina. d.cosa^

s. Position of the center-of-mass of link i: s.=\s. s. s. }
i i L tx ty izj

=[0 0 l ] r

A. Orthogonal rotation matrix which transforms a vector in the i-th coordinate
frame to a coordinate frame which is parallel to the (i—l)-th coordinate frame:

Af:

for ,2

COS$£

sind^

0

3

—cosa^ sindj

cosa^ cosQ^

sina.

,N. where A . r i 1

sina* sind-

—sina^ cos6

cosa.

I. Classical inertia tensor of link i about the center-of-mass of link i (and parallel
to the i-th coordinate frame); with principal Inertias /- , / . and /- ; and
cross-inertias J. , / . and J- •%xy3 %xz tyz



is nonlinear in the vector, p..

4. The dynamic equations of links i+1 through iVare independent of the mass m. and the
classical inertia tensor I. of link i.

This physically intuitive property is an immediate consequence of the backward
recursions.

The proofs of the above properties are presented by Khosla [8] and have been omitted

here for the sake of brevity. In summary, the classical link inertia tensors I. and the link

masses m. appear linearly in the Newton-Euler dynamics model, but the link masses are

multiplied by linear and/or quadratic functions of the center-of-mass vectors s. and

nonlinear functions of the joint position variables 6-, Further, it can be shown that if the

Newton-Euler model in equations (l)-(9) is reformulated such that the link inertia tensors

are expressed about the link coordinate frames instead of the link center-of-mass

coordinate frame, the modified Newton-Euler formulation will be linear in the center of

the mass vectors s- [7].

2,2. Transformation of Inertia Tensor

Let C~=(xy y^ z^ be a Denavifr-Hartenberg coordinate frame for link i and let

Cf. == (z- , t/f. , z. ) be a coordinate frame which is fixed at the center-of-mass of link i and

whose axes are parallel with those of C.. From the definition, s. is the translational vector

from the origin of the link coordinate frame C- to to the origin of the center~of-the-mass

coordiaate frame C~ .

IS I. is the classical link inertia tensor about the center-of-mass of link t, the

corresponding inertia tensor I ' , about the link i coordinate frame C. is computed

according to the parallel-axis theorem or Steiner's law:

I '.ssj.+m is /».Er-S 41 ?) (10)

where E is the 3X3 identity matrix. This transformation of the inertia teasor when

substituted tu the N-E model absorbs the terms that are quadratic in s. thus resulting in

tie modified N-E formulation that is linear in the dynamics parameters [8, 7].

Properties 1 and 2 together with this transformation lay the foundation for our



identification algorithms, and Property 4 will be used to derive our off-line identification

algorithm.

3. Reformula t ion of the N - E Dynamics Model

The N-E dynamics model is reformulated by using the nonlinear transformation in 10

and compacting the backward recursions in (6)-(9) into a single matrix-vector equation.

To facilitate the reformulation, we introduce the following vector identities:

aX(bX(bXa)) = bX[aTaE - aa r]b (11)

aX(bXa) = [aTaE - aaT]b (12)

where a and b are 3X1 vectors and E is the 3X3 identity matrix.

Upon substituting (4)-(6) in equation (8), we obtain:

V=A i + 1n .+1 + PtXf - + 1,^ + w.-Xfl^) (13)
+ misiX[u}iXsi + i^.X^.Xs^) + v j .

The above equation can be further simplified by using the identities (ll),(12) and equation

(10), and written as:

p.Xf. + I ' ,« . + *.X(I >,.) + m ftXv'. (14)

where I'- is the inertia of link i expressed about the link coordinate frame. Equation (14) is

the equivalent of the backward recursions in (4)-(6) and (8) and will henceforth be used in

our development.

As the next step in our reformulation, we define a 6 X1 vector g - as

g£=[f- n.)T (15)

and combine (7) aad (13) in, a single matrix-vector equation:

where R., - is the six by six pseudo-rotation matrix



and G. is defined as:

Ni'

with N- being:

j

The actuating torques are chosen from the vector g. as:

ri =
A/ 0

0 A.r
t J

(17)

where <r.=l for a x-t/i rotary joint and cr.=O for a i-th translational joint. The complete

dynamic robot model is given by the forward recursions in equations (l)-(3) and the

backward recursion in (16), the selection of torques according to (17).

4. Identification Algori thm

The identification problem is to estimate all of the kinematic and dynamic parameters

that affect the link torques/forces* The Denavit-Hartenberg parameters constitute the

kinematic parameters, and the link masses, link inertias, and center-of-inass vectors are

the dynamic parameters. Improving the kinematic accuracy of a manipualtor by

estimating the kinematics parameters has received a lot of attention and algorithms to

estimate these have beea proposed [21, 20]. Further, these algorithms have also been

experimentally implemented to demonstrate the improved kinematic accuracy.

Consequently, in our development, we will assume that the kinematics parameters arc

accurately known and the problem then is to accurately estimate the dynamics

To develop tic identification algorithm, we expand the recursions in equation {16} to



obtain explicit expressions for the vector g.. To facilitate the development, we use the

following notation for denoting the cross product of two vectors and the multiplication of

a vector by a matrix. If UJ . and a are 3X1 vectors, then

w.Xa = [a/.X]a

where

0

°]z 0 ""~ îx

Cd\Y 0

and the multiplication of the 3X3 classical inertia matrix I. with the vector u>. is denoted

as

\»i = K31;
where

and

ii.

0 O)jX 0 OJjy €0^ 0

0 0 <% 0 O)jy

i. J. / . / . i. }T

ixy %xz ipy tyz xzz>

For a six degrees-of-freedom manipulator, assuming that the vector of externally applied

forces and moments is zero, and expanding the recursions in equation (16), we obtain:

8l

g2

§3

Ki R1
2K2 R

1
3K3 R

1
4K4 R^Kj R^Kg

0 K2 R2
3K3 R

2
4K4 R

2
5K5 R

2
6K6

0 0 K3 R3
4K4 R

3
5K5 R

3
6K6

0 0 0 K4 R4
5K5 R

4
6K6

0 0 0 0 K5 R5
6K6

0 0 0 0 0 K6

91

92

93

94

95

96

where R*.
j

as E |;, ^R. 2 R- •» the matrix K. is:
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oiXjtcojX] 0

iXJVi [-vpc] +{pix][^ix

and the vector <f>. is:

^ . = fm. m.5- m.5. rn-s. / . / . / . / . / . 1*. }T

*t L i i u % %y t %z xxx ixy ixz tyy vyz izz*

In the sequel, we will refer to K. and <j)* as the kinematic matrix and vector of dynamics

parameters of link i, respectively. An et al. [l] and Mukerjee and Ballard [15] have

independently derived a similar form for the kinematic matrix with one important

difference. In their derivation, the element (strictly speaking it is a 3 vector) in second row

and first column of the matrix K- is zero. This implies that the dynamics equations of a

manipulator are independent of terms that multiply only the mass element of the

dynamics parameter vector (for a rotary joint). We have verified the correctness of our

form of the kinematic matrix by symbolically deriving the dynamics equations of a three

degrees-of-freedom manipulator using the standard Newton-Euler formulation [13] and

comparing the results with those obtained from the modified formulation of this paper.

The identification problem is to obtain the estimates of the elements of ^- (for

i = l , 2 , . . . ,iV) and is formulated as the solution of a set of linear equations

(18)

fm each sample point im the trajectory. In the above equation, the 6X1 vector r and the

80X1 vector ^are:

fr, f4 r5 r

r! tht matrix M is formed! by selecting the row of g;. corresponding to r.. If the twist

angles of the manipulator m* are assumed to be either 0 or ±90 degrees then equation (17)

mxy be used to select the actuating torques T>. The above formulation of the identification

problem Is particularly suited for computer implementation and is used to estimate the

dynamics parameters of the CMU DD Arm IL
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5. Exper imental Implementa t ion

Experimental implementation of the identification algorithm requires the knowledge of

the applied joint torques and the measured joint positions3 velocities and accelerations.

Each joint of the DD Arm II is instrumented to measure the position and the velocity. The

applied joint torques are assumed to be the same as the torques computed from the control

law. This assumption is valid because we use current controlled servo motors and has also

been verified by experimentation. Further, the joint acceleration is obtained by

differentiating the measured velocity.

5.1. Obtaining the Joint Acceleration

The operation of obtaining the derivative of a set of data is inherently noisy because the

differentiator essentially behaves like a high pass-filter. And this effect is further

accentuated if the measured data is known to have some noise. In such a circumstance a

commonly used method is to low-pass filter the measured data and then differentiate the

resultant signal. This procedure serves to reduce the noise in the differentiated signal at

the cost of incorporating a phase shift and hence the loss of fidelity.

Another method involves using the principle of least-squares for solving the problem of

differentiation [ll]. In this method, the differentiating filter is designed by fitting a

second-order parabola to five conseqeutive points with the assumption that the derivative

does not change much during the period of the observations. This assumption is especially

true since we sample the position and the velocity of the joints every 2 ms. As the five

data points, in general, cannot be guaranteed to lie on a second-order curve, we obtain the

coefficients of the parabola by using the principle of least-squares. The resulting filter is

described by the following difference equation:

at % ~-Zf(z-2T)-fjz-T}+f(x+T)+2f{x+2T)
/(*)

where the symbol denotes the derivative and T is the sampling period in seconds. The

above filter obtains the derivative of the function j[x) at the point x by using the two

immediate neighbors on both sides and thus represents a noncausal operation for real-time

implementation. However, if we are able to tolerate a delay of two sampling periods then

the filter can be made causal by shifting the data by two sampling instants to obtain:
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lor

In the off-line implementation [8] of our identification algorithm, the noncausal nature of

the filter presents no problem as all the data is known in advance. In order to obtain the

joint acceleration from the measured joint velocity, we experimented with many methods

of implementing differentiating filters and found the filter designed on the basis of the

principle of least-squares to possess superior noise rejection properties,

5.2. Trajectory Selection

One of the important constituents of identification is the selection of input trajectories

for exciting the system. The input trajectory must be such that it allows complete

identification of the system. Such a trajectory is known as a persistently exciting

trajectory [6]. Choosing a persistently exciting trajectory is sufficiently complex and has

not been addressed in this research. However, a method to determine if a chosen

trajectory is persistently exciting is presented by Khosla [7j- In the experimental

implementatioEj we used this method to ensure that the trajectories chosen for

identification of the dynamics parameters were persistently exciting.

5.3. Experimental Results

We implemented the numerical version of the identification algorithm together with thf

differentiating filter to obtain the estimates of the dynamics parameters of the CMU DJ>

Ann 1L The modeled values of the dynamics parameters were chosen to be the initial

estimates and the data of a sample trajectory ran recorded. We then estimated the

dynamics parameters based on the off-line implementation of our algorithm, and these are

depicted in Table (2), (3), and (4). Due to space restriction we have listed the estimated

parameters of the first two links of the CMU DO Arm EL The estimated parameters of all

six Inks may be found in [7].

The identification experiments were performed with two different, pcrsisieiiily exciting

trajectories And two sets of Initial values for the modeled dynamics parameters. In all the

four experiments, the estimated values of the dynamics parameters were found to be

within 5% of the values depicted In Table (2) through (4). This variation is practically
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Table 2: Experimental Results for the CMU DD Arm II

Link Parameter Initial Value Estimated Value
(Dimensions)

hzz

mfi (kg)

0.000426

0.0

0.0

0.000421

0.0

0.000047

0.0

0.0

0.002199

0.269

0.002092

0.000011

0.000022

0.001979

0.000010

0.000310

-0.000090

-0.000187

0.008709

0.90018

rn5s5x

m 5 + m 4

0.002018

0.0

0.0

0.001049

-0.000092

0.001396

0.0

0.005130

-0.016784

2.817

0.002602

0.000302

-0.000108

0.001349

-0.000070

0.001211

0.000981

0.006744

-0.019689

3.0895
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Table 3: Experimental Results for the CMU DD Arm II (contd.)

Value E s t i m a t e d

hxx ( W )
^ ( k g - m 2 )

hyyiH-m2)

0.023775

0.0

0.0

0.004055

0.003083

0.021652

0.0

0.134764

0.043011

0.030765

-0.00100

0.000302

0.003655

0.004207

0.029002

-0.002402

0.160372

0.081462

^ ( k g - m ^ 0.014622

0.0

0.0

0.006615

0-001269

0.012432

0.0

-0.039703

-0.G124S7

2.801

0.015192

0.000726

0.000109

0.006209

0.001872

0.014080

0.015242

-0432251

2.92106
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Table 4: Experimental Results for the CMU DD Arm II

Link Parameter Initial Value Estimated Value
(Dimensions)

J) 0.264736 0.322156

a) -1.039971 -1.156482

m-So (kg-m) 0.008722 0.008234

m 2 (kg) 7.894 8.2501

') 1.193645 1.270784

Q) -5.925900 -6.478305

ij (kg) 19.753000 20.152630

negligible and may be attributed to the noise in the measurements which tends to bias the

estimates, and also to the errors in the kinematic parameters which also have a similar

effect.

5.4, Identifiable Parameters

Each link of a manipulator is characterized by ten dynamics parameters: the link mass,

the six classical inertias and the three elements of the center-of-mass vector. In practice,

only a fraction of these ten parameters are identifiable. This is evident from Table 4

wherein only seven of the twenty parameters are identifiable. In general, all the dynamics

parameters can be classified into three categories [7]: uniquely identifiable, identifiable in

linear combinations and unidentifiable. In order to make the numerical estimation

procedure robust it is imperative to categorize the parameters. A procedure to categorize

the dynamics parameters, based on the knowledge of the kinematic parameters^ is

presented by Khosla [7].
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6. Summary

In this paper, we have presented the numerical version of the identification algorithm

which is suitable from computer implementation point-of-view. Using the nonlinear

transformation, we reformulated the Newton-Euler inverse dynamics implementation to

obtain the estimation equations. We then used the least squares estimation procedure to

obtain the numerical estimates of the dynamics parameters. The identification algorithm

together with the experimental implementation is an important step forward, in the area

of model-based manipulator control, because it serves to satisfy the fundamental

assumption that the model of the manipulator is accurately known. Based on the

presented identification algorithm, we have implemented the nonlinear, feedback-based

computed-torque scheme and evaluated the effect of dynamics compensation [9, 10].
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