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Abstract

Practice, and the performance improvement that it engenders, has long been a major topic in psychology.
In this paper, both experimental and theoretical approaches are employed in an investigation of the
mechanisms underlying this improvement On the experimental side, it is argued that a single law, the power
law of practice, adequately describes all of the practice data. On the theoretical side, a model of practice
rooted in modern cognitive psychology, the chunking theory of learning, is formulated. The paper consists of
(1) the presentation of a set of empirical practice curves; (2) mathematical investigations into the nature of
power law functions; (3) evaluations of the ability of three different classes of functions to adequatdy model
the empirical curves; (4) a discussion of the existing models of practice; (5) a presentation of the chunking
theory of learning.



PAGE I

Table of Contents
L INTRODUCTION 1
2. THE UBIQUITOUS LAW OF PRACTICE 3

1L Perceptual-Motor Skills 4
22. Perception * 6
23. Mocor Behavior S
2.4. Bemcntary Decisions g
US. Memory 9
16. Complex Routines ' 9
2.7. Problem Solving • 10
2J. Other Tasks and Measures 13
19. Summary 14

3. BASICS ABOUT POWER LAWS 16
3.1. Differencial Forms and Rates of Change 16
3.2. Asymptotes and Prior Experience 17
33. Trials or Tune? 20

4. FITTING THE DATA TO A FAMILY OF CURVES 22
4.L The Data Analysis Procedure 23
4.2. The Transformation Spaces 23
4 J. The Theoretical Curves 25
4.4. The Analysis of a Data Set 26

4.4.L The exponential family 26
4A2. The power law family 28
4.4J. The hyperbolic family 31

4.5. Summary 31
5. POSSIBLE EXPLANATIONS 33

5.L General Mixtures 33
52. Stochastic Selection 36

52A. Crossman's model 36
5^2. The Accumulator and Replacement models 37

5 J. Exhaustion of Exponential Learning 38
5.4. The Chunking Theory Of I earning ' 38

5.4 J. A simple version 43
5A2. A combinatorial task environment 44
5.43. The power law chunking model 46
5.4.4. Relation to existing work on chunking 46

6. CONCLUSION 48

£ REFERENCE NOTES 52



PAGEH

List of Figures
Figure 1: Learning in a Mirror Tracing Task (Log-Log Coordinates). Replottcd from Snoddy 4

(1926).
Figure 2: Cross-sectional Study of Learning in Ggar Manufacturing (Log-Log Coordinates). 6

Replottcd from Crossman (19S9).
Figure £ Learning to Read Inverted Text (Log-Log Coordinates). Plotted from the original data for 7

Subject HA (Koleis, 1975).
Figure 4: Learning to Scan for Visual Targets (Log-Log Coordinates). Replottcd from Neisser, 7

Novick&Lazar(1963).
Fignre 5: Learning to Use Cursor Positioning Devices (Log-Log Coordinates). Plotted from the 8

original data for Subject 14 (Card, English & Burr, 1978).
Figure 6: Learning in a Ten Finger, 1023 Choice Task (Log-Log Coordinates). Plotted from the 9

original data for Subject JK (Seibel, 1963).
Fignre 7: Learning in a Sentence Recognition Task (Log-Log Coordinates). Plotted from the fan 1 10

data of Anderson (Note 1).
Figure 8: Learning of a Complex On-line Editing Routine (Log-Log Coordinates). Plotted from the 11

original data of Moran (Note 4).
Figure 9: Learning in a Geometry Proof Justification Task (Log-Log Coordinates). Plotted from 11

the original data (Neves & Anderson, In press)
Figure 10: Learning in the Card Game Stair (Log-Log Coordinates). 12
Figure 11: Eight Cumulated Response Practice Cunres (Log-Log Coordinates). Figure from Stevens 14

& Savin (1962). Copyright 1962 by the Society for the Experimental Analysis of
Behavior, Inc.

Figure 12: The Effect of Practice on Direct Labor Requirement Machine Production (Log-Log 15
Coordinates). Replotted from Hirsch (1952).

Figure 13: Basic Learning Curves: Power Law, Exponential, and a Generalized Curve. -V 17
Figure 14: A General Power Law Curve. 18
Fignre 15: A General Power Law in Log-Log Coordinates. The simple power law with die same a 19

ami B is also shown.
Figure 16: Optimal Fit of a Power Law in the Exponential Transformation Space (Semi-Log 27

Coordinates).
Figure 17: Optimal Fit of a Power Law in the Hyperbolic Transformation Space (Log-Log 27

Coordinates).
Figure 18: A General Exponential Function in Log-Log Coordinates. 28
Figure 19: Optimal Fit to Seibel's Data in the Exponential Transfonnation Space (Semi-Log 29

Coordinates).
Figure 20: Optimal Fit to Kolers's Data in the Exponential Transformation Space (Semi-Log 29

Coordinates).
Figure 21: Optimal Fit to SeibeTs Data in the Power Law Transformation Space (Log-Log 30

Coordinates).
Figure 22: Optimal Fit to Kolers's Data in the Power Law Transfonnation Space (Log-Log 30

Coordinates).
Figure 23: Optimal Fit to Seibcl's Data in the Hyperbolic Transformation Space (Log-Log 32

Coordinates).
Figure 24: Optimal Fit to Kolers's Data in the Hyperbolic Transfonnation Space (Log-Log 32

Coordinates).
Figure 25: A Forty Term Additive Exponential Mixture (Log-Log Coordinates). The weights (0 < 34

W. < 5) and exponents (0 < (ii < .1) were selected at random.
Figure 26: Seibel's Task Environment for Four Lights. Ac the left arc two primitive chunks for each 41

light (for the on and ^stoics) and at the right arc the top-level chunks.
Figure 27: The Learning Cunrc for the Chunking Model in a Combinatorial Task Environment 45

(Log-Log Coordinates). Hie parameter values arc: b » 2, P » 50. X - 1. \t » 20. and E
-10 .



PAGE ffl

List of Tables
Table 1: Pdwer Law Parameters for the (Log-Log) Linear Data Segments. 3
Table 2: The General Learning Cunres: Parameters from Optimal Fits in the Log Transformation 24



PAGE1

MECHAiNISMS OF SKILL ACQUISITION
AND THE LAW OF PRACTICE1

L INTRODUCTION
Practice makes perfect Correcting the overstatement of a maxim: Almost always, practice brings

improvement, and more practice brings more improvement We all expect improvement with practice to be

ubiquitous, though obviously limits exist both in scope and extent Take only the experimental laboratory:

We do not expect people to perform an experimental task correctly without at least some practice; and we

design ail our psychology experiments with one eye to the confounding influence of practice effects.

Practice used to be a basic topic For instance, the first edition of Woodworth (1938) has a chapter entitled

Practice and Skill. But as Woodworth (pl56) says, There is no essential difference between practice and

learning except that the practice experiment takes longer*9. Thus, practice has not remained a topic by itself,

but become simply a variant term for talking about learning skilh through the repetition of their performance.

With the ascendence of verbal learning as the paradigm case of learning, and its transformation into the

acquisition of knowledge in long term memory, the study of skills took up a less central position in the basic

study of human behavior. It did not remain entirely absent of course. A good exemplar of its continued

»can be seen in the work of Neisser, taking first the results in the mid-sixties on detecting the presence

often targets as quickly as one in a visual display (Neisser, Novick & Lazar, 1963), which requires extensive

practice to occur; and then the recent work (Spelke, Hirst & Neisser, 1976) showing that reading aloud and

shadowing prose amid be accomplished simultaneously, again after much practice. In these studies, practice

plays an essential but supporting role; center stage is held by issues of pre-attentive processes, in the earlier

work, and the possibility of doing multiple complex tasks simultaneously, in the later.

Recently, especially with the paper by Shiffrin & Schneider (1977; Schneider & Shiffrin, 1977), but starting

earlier (LaBerge, 1974, Posner & Snyder, 1975), emphasis cm automatic processing has grown substantially

from its level in the sixties. It now promises to take a prominent place in cognitive psychology. The

development of automatic processing seems always to be tied to extended practice and so the notions of skill

and practice are again becoming central.

There exists a ubiquitous quantitative law of practice: It appears to follow a power law. That is, plotting the

logarithm of the time to perform a task against the logarithm of the trial number always yields a straight line,

more or less. We shall refer to this law variously as the fog-log linear learning law or the power law of practice.

H h s paper idles on the data of many other investigators. We are deeply grateful to those who made available original data: John
Anderson, Stii Card. Paul KoJers. Tom Moran. David Neves. Patrick Rabbiu. and Robert Scibci. We arc also grateful to John .\nderson.
Scu Card. Clayton Lewis and Tom Moran for discussions on the fundamental issues; and especially to Clayton Lewis for leuing us read
his paper, which helped to energize us to this effort
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This empirical law has been known for a long time; it apparently showed up first in Snoddy's (1926) study

of minor-tracing of visual mazes (see also Fitts, 1964), though it has been rediscovered independently on

occasion (DeJong, 1957). Its ubiquity is widely recognized; for instance, it occupies a major position in books

on human performance (Fitts & Posner, 1967, Welford, 1968). Despite this, it has captured little attention,

dally theoretical attention, in basic cognitive or experimental psychology, though it is sometimes used as

the form for displaying data (Kolcrs, 197S, Reisberg, Baron & Kemler, 1980). Only a single model, that of

Crossman (1959), appears to have been put forward to explain i t 2 It is hardly mentioned as an interesting or

important regularity in any of the modern cognitive science texts (Calfec, 1975, Crowder, 1976, Kintsch, 1977,

Lindsay & Normon, 1977). Likewise, it is not a part of the long history of work on the learning curve

(Thiustone, 1919, Guilliksen, 1934, Restle & Greeno, 1970), which considers only exponential, hyperbolic and

logistic functions. Indeed, a recent extensive paper on the learning curve (Mazur & Hastie, 1978) simply

dismisses the log-log form as unworthy of consideration and dearly dominated by the other forms.

The aim of this paper is to investigate this law. How widespread is its occurrence? What could it signify?

What theories might explain it? Our motivation for this investigation is threefold. First, an interest in

applying modern cognitive psychology to user-computer interaction (Card, Moran & Newell, 1980a,

Robertson, McCracken & Newell, 1980) led us to the literature on human performance, where this law was

prominently displayed. Its general quantitative form marked it as interesting, an interest only heightened by

die apparent general neglect of the law in modern cognitive psychology. Second, a theoretical interest in the

nature of die architecture for human cognition (Newell, 1980) has led us to search for experimental facts that

might yield some useful constraints. A general regularity such as the log-log law might say something

interesting about the basic mechanisms of turning knowledge into action. Third, an incomplete manuscript

by Clayton Lewis (Note 2) took up this same problem; this served to convince us that an attack on the

problem would be usefuL Thus, we welcomed the excuse of this conference to take a deeper look at this law

myfl what might lay behind it.

In Section 2 we provide many examples of the log-log law and characterize its universality. In Section 3 we

perfimn some basic finger exercises about the nature of power laws! In Section 4 we investigate questions of

curve fitting. In Section 5 we address the possible types of explanations for the law; and we develop one

approach, which we call the chunking theory of learning. Finally, in Section 6, we sum up our results.

see Suppcs. Fletcher and Zanoui (1976). who do develop a mode! yielding a power law for instructional learning, though their
effort appears independent of a concern with the general regularity. Unfortunately, their description is too fragmentary and faulty to
permit it to be considered farther.
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2. THE UBIQUITOUS LAW OF PRACTICE
We have two objccdves for this section. First, we amply wish to show enough examples of die regularity to

lend conviction of its empirical reality. Second, die law is generally viewed as associated with skill, in

particular, with perceptual-motor skills. We wish to replace this with a view that die law holds for practice

learning of all kinds. In this section we will be presenting data. We leave to die next section issues about

alternative ways to describe die regularity and to yet subsequent sections ways to explain the regularity.

We organize die presentation of die data by die subsystem that seem to be engaged in die task. In Table 1

we tabulate several parameters of each of the curves. Their definitions win be given at die points in the paper

where the parameters are first used.

Data Set

Sooddy(1926)

Croesman(1959)

Kota (1975)-Subject HA

NdascretaL(l%3)
Ten targets
Ooe target

Cant English A Burr (1978)
Stepping keys-Subj. 14
Mouse-Sub). 14

Sbbd (1963)-Subject JK

Aadenon (Note 1) - Fan 1

Moan (Xm
Total time
Method tune

Neres & Anderson (1980)
Total time-Subject D

Ibe Game of Stair
Woo games
Ii?st Games

Much (1952)

Power Law
T = BN'"

B a r 1

79.20 .26 .981

1701 21 579

14.85 .44 531

Ldl H 573
.68 SI 544

455 08 .335
102 .13 398

1113 32 591

2358 J9 527

3027 • .08 139
19.59 .06 182

99L2 SI .780

1763 .21 149
980 .18 142

10.01 J2 532

Table 1: Power I .aw Parameters for the
(Log-Log) Linear Data Segments.
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2J. Perceptual-Motor N

Let us start with iho historical case of Snoddy (1926). As remarked earlier, die task was mirror-tracing, a

duU that involves intimate and continuous coordination of the motor and perceptual systems. Figure 1 plots

the log of performance on the vertical axis against the log of the trial nOmbcr for a single subject

100<k

100

10

100
Trials

Figure 1: L

10

uning in a Mirror Tracing Task (Log-Log Coordinates).
Replotted from Snoddy (1926).

The first important point is:

• The law holds for performance measured as the time to achieve a fixed task.

Analyses of learning and practice are free a priori to use any index of performance: eg, errors or performance

time, which decrease with practice; or amount or quality attained, which increase with practice. However, we

wfll focus exclusively on measures of performance time, with quality measures (errors, amount, judged

quality) taken to be essentially constant Given that humans can often engage in tradeoffs between speed and

accuracy, speed curves arc not definable without a specification of accuracy, implicit or otherwise.3 As we will

illustrate Liter, the log-log law also appears to hold for learning curves defined on other performance criteria.

Though significant for understanding the cause of the power law, we will only note the existence of these

^Sooddy used an indicator. l/(Timc+Errors), and we have replotted the figure using Ttmc+Errors. This strikes the modern eye as
jacoflffuous. adding together apples and oranges. In (act the measure is almost purely performance time Snoddy was endeavoring to
cupe with the speed/accuracy trade o(t\ He fixed the error rate to be equal to the performance lime (in seconds): and had ihc subject
work faucr or slower in order to hold the error rate at that level Thus the error rate bore a fixed average relationship to tune: and adding
Hie 3CluaJ value of the errors to the performance time was a way of compensating for momentary shifts in the fpccd/scciiracy tradeoff.
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other curves.

Several other things can be noted in Figure 1, which will show up generally in the other curves.

• The points are sparse at the left and become denser to die right This arises from taking the log of
the trial number. Even when trials are aggregated into blocks this is usually done uniformly in
linear space. Thus, this is just an artifact of the display.

• There is systematic deviation at one end. Here it is the beginning. Snoddy made a lot of this initial
deviation, though we need not follow him in this. As we shall see, systematic deviation can occur
at either end.

• There is little doubt that die bulk of die curve lies along a line in log-log space. This arises in part
because of the relatively large number of points available.4 The curves are for an individual, not
for grouped data. This is not a condition of the law, but shows that it holds for individual data.

• Data are rarely presented on many subjects, though in some cases such data exists and
(apparently) is robust For instance, Snoddy took his curve as diagnostic and appears to have
gathered it on large numbers of individuals, though he never reported any mass of data.

In Table 1 we tabulate several critical features of die Snoddy's data. The following equations describe the
power law in linear and log-log spaces:

T-Bir* (i)

tog(7>log(5)-aIog(iV) (2)
B is the performance time on the first trial (N - 1) and a is the slope of the line, ie, the learning rate. A
positive value of a, eg, .26 for the curve of Figure U indicates a decreasing curve, since we have located the
minus sign in the equation itsclfl

Another example from a task that appears to involve intimate motor-perceptual coordination is shown in
Figure 2. This is Crossman's (1959) famous data on die manufacture of cigars by female operators using a
cigar-making machine. Noteworthy is the number of trials, namely, up to 20 million cigars. Also, there is a
known lower bound for die performance time, namely die cycle time of the machine. The curve eventually
deviates from the log-log line, flattening out in submission to physical necessity. Still, practice followed die
law for almost 3 million trials (and 2 years). Furthermore, additional small improvements continued; and it
would be foolish indeed to predict that no further improvements would occur. Crossman's data differs from
all other data in being cross-sectional ie, different individuals make up each point

Obvious deviations at the ends of the empirical curves were eliminated before the fits in Table I were computed. The equations
therefore primarily represent this linear portion of the curve. The <olid Hno in Figure I (and in the following figures! reflects this fit.
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lOOr

Machine cyde time

100 1000 10000 1OOOOO
Number produced (lOOO's)

Figure 2: Cross-sectional Study of Learning in Ggar Manufacturing (Log-Log Coordinates).
Rcplottcd from Crossman (1959).

L2. Perception

Figure 3 shows the data from one subject (of eight) in Kolers's well known studies on reading graphically

transformed text (Kolers, 1975). Here, die transformation is inversion of each line around its horizontal axis.

The task of the subject is to read many pages of such text for comprehension. Reading in general is a complex

task, but the difficulties here are clearly strongly perceptual being caused primarily by the perceptual

transformation. Without inversion, reading is much faster and improves hardly at all (though we don't show

Kolers's control data on this). In any event, as the figure shows, learning is log-log linear.

Figure 4 shows some data replotted from a paper by Neisser, Novick & Lazar (1963). The task consisted of

finding any of multiple targets in pages of letters. The result was that, with practice, identification time

becomes essentially independent of the size of the target set As Figure 4 shows, this data also follows the log-

log law, though there seems to be a slight drop at the end. These two curves (scanning for one target and for

ten targets) represent the two bounding conditions of the five used in the experiment. Each curve is the

average of six subjects. One of the reasons for exhibiting these particular curves is to point out that much

learning data in the literature fits the log-log law, even though it has not been plotted that way.
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Figure 3: learning to Read Inverted Text (Log-Log Coordinates).
Plotted from the original data for Subject HA (Kolers, 1975).

lOJk

-^•^

1
u

01

10 100

Figure 4: Leamins to Scan for Visual Targets (Log-Log Coordinates).
Rcplottcd from Ncisscr, Novick & La/ar (1963).
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13. Motor Beharior

Figure 5 is from a task where a subject sees a target mark appear on a video terminal and has to position the

cursor at that mark (Card, English & Burr, 1978). Four different pointing devices were used: a mouse, which

permits a smooth pointing motion isomorphic to the motion of the cursor, a joystick; a set of stepping keys;

and a set of text keys, which allow movement by paragraph, word, etc. Some of these devices are well

described by Fitts's Law (Fitts, 1954); some have a different structure. The two curves in Figure 5 show the

mouse and stepping key data for one subject, averaged over blocks of 20 trials (excluding errors). For all of

the devices, the total performance time follows die law, though the degree of variability increases as one

moves from die Fitts's law devices (the mouse) toward die other ones.

lOOr

10

Stepping keys: T=4SSN

Mouse: 7= 3.02AT13

.06

10 100
Block monber

Figure 5: Learning to Use Cursor Positioning Devices (Log-Log Coordinates).
Plotted from die original data for Subject 14 (Card, English & Burr, 1978).

14. Elementary Decisions

Figure 6 is from a task designed by Seibel (1963) to probe the dependence of reaction time on the number

of alternatives. It followed in the wake of the work by Hick (1952), Hyraan (1953) and others showing that

dioice RT was linear in the information (bits) required to select the response, at least for small ensembles (up

to 3 or 4 bits). The subject's 10 fingers rested on 10 response keys (shaped to fit the natural position of the

resting hand) and looked at 10 stimulus lights that were configured isomorphically to the keys. A subset of the

lights would turn on. and the subject was to strike the corresponding keys. There arc 1023 (210 - 1) different

subsets of the lights: hence, the arrangement achieves a Choice RT task of 10 bits. For our purposes what is

interesting is that the learning over a large numbcrof trials (40.000) was log-lug linear, though at the end the
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curve flattens out This is data for a single subject, averaged over blocks of 1023 trials; approximately the

same behavior was shown by each of three subjects.

u

0Jto6 ' ' woo ' ' idooo ' ' 100000

Ffenrefc Learning ina Ten Finger, 1023 Choice Task (Log-Log Coordinates).
Plotted from the original dau for Subject JK(Seibel 1963).

2^ Memory

Figure 7 is from some unpublished work of John Anderson (Note 1). It shows learning performance in a

task thai would appear to stress mosdy memory, though of course it has both a perceptual and a motor

spect The task is an old-new judgment on a set of simple sentences, such as The doctor talked to#1196 CD

the lady.w There is a fixed population of grammatical subjects, objects and verbs; a subset of these are seen

initially, and then sets of the originals phis distractors (made from the same populations) are shown

repeatedly. After awhile of course a subject has seen both the targets and die distractors several times. The

figure shows that the reaction time to make the memory judgment follows the log-log linear law.

16. Complex Routines

Figure 8 is from some work done in connection with a general attack on understanding user-computer

interaction (Moran, Note 4). A specific, complex on-line editing task of completely rearranging a given

sentence of three clauses is being performed repeatedly. The task is absolutely identical each time. ie. the

same sentence. Thus we are seeing a subject simply follow an internally familiar, complex plan. The top

curve is the total time to perform the task; The lower curve shows the execution time attributable to the

specific method being used, computed according to a model based on the keystroke sequence (Card. Moran &
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10 100 1000 10000
Trial number

Figure 7: Learning in a Sentence Recognition Task (Log-Log Coordinates).
Plotted from the fan 1 data of Anderson (Note 1).

Newell, 1980b). It decreases only if the subject makes some improvement that changes the number of

keystrokes, rather than decreasing think time. Both curves show log-tog linear practice effects.

Figure 9 shows a more complex cognitive task (Neves & Anderson, In press), but one that still can be

considered as evolving toward a complex routine. The task is to find the rule justifying each step in a proof in

a simple formal proof system, taken to mirror the typical proof system of synthetic geometry. The subject

faces a display that shows (on request) the lines of the proof, the axioms, or the theorems that are applicable to

derive new steps in the proof. He must assign to each step whether it is an axiom or which rule is used in its

derivation. As die figure shows, the time to perform this task follows the log-log linear law.

2.7. Problem Solving

Figure 10 shows our own small addition to the population of tasks known to follow the log-log linear law.

As the ubiquity of the law became clear, it seemed that it was miscast as something applying only to

perceptual and motor skills, but rather it applied to all forms of mental behavior. To test whether the law

applied to problem solving tasks, we had a single subject play 500 hands of a game of solitaire called Stair.
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1000 10000
Trial ntmber

Figure & la ir ing of a Complex On-line Editing Routine (Log-Log Coordinates).
Plotted from the original data of Moran (Note 4).

70000b

700 7000
Proof number

Fignre 9: Learning in a Geometry Proof Justification Task (Log-Log Coordinates).
Plotted from the original data (Neves & Anderson, In press)
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Stair involves laying out ail 52 cards face up from a shuffled deck, in 3 columns (four with 7 rows,
four with 6 rows). There are also four spots (initially empty), each of which can hold only a single
card. The aim is to build four stacks, Ace to King, one for each suit, by moving cards around
under typical solitaire constraints. A card in a spot or at the bottom of a column may be moved:
(1) to a spot, if it is empty; (2) to a stack, if the card is the next in order building up; or (3) to the
bottom of another column, if the card is the next lower in the same suit (eg, the six of spades
appended to the seven of spades).

10000c « 1-Or

J

1000:

100:

as
a?

0.6-

(L5

0.4

03

02

0.1

o o Won games: T
A— • A Lostgp*'T* 7":

o o Proportion of wins

100

Figure 10: Learning m the Card Game Stair (Log-Log Coordinates).

1000
Game number

The game can be seen to be one of perfect information - all cards are face-up. The shuffled deck simply

picks out one of the possible initial conditions at random. From that point no further chance element enters.

Whether the game can be won or not, or how many cards can be moved to the stacks, is derivable from the

initial configuration. The subject, whose ability to calculate ahead is of course limited, may create a partial

plan and then proceed to execute it; in doing so, he may make irrevocable moves that lose him the possibility

of winning. But such failures all arise, as in chess or checkers, because of his limited problem solving ability.

Although this task certainly has a strong perceptual component (and a weak motor component), it is to be

dassed as fundamentally an intellectual task, in the same way as games such as chess and checkers, or

problems such as the traveling salesman problem.

Turning to the figure, the top curve shows the time for games that the subject won; the lower curve shows

the time for games that die subject lost; at the bottom the proportion of games won is shown. The points are

averaged over 50 games. There is of course only one scries of trials, since all games, won or lose contribute to

practice. Each group of 50 games is therefore split between the two curves before being averaged. Both



PAGE 13

curves essentially follow the log-log linear law. In general it takes longer to win than to lose, since losing

involves becoming stuck after a relatively small number of cards has been played to die stack, whereas

winning always involves working through all 52 cards (though the tail end goes rapidly).

The issue of die speed-accuracy trade off reveals itself in this data. Clearly, the subject is applying various

criteria of certainty to his play. He could conceivably, as a strategy choice, study each initial layout for 5 hours

before making his first move; or play impulsively with no contemplation at alL In fact, the subject felt he had

little genuine control of die speed/accuracy tradeoff, partly because die complexity of the initial position

made it unclear whether an apparently lost game was just a bad layout or was due to a failure to spend enough

time analyzing. Note that die most deviant point from the log-log line (at 150-200 trials) corresponds to the

lowest win frequency.

18. Other Tasks and Measures

The story does not quite end at this point Learning in other tasks and measured on other criteria seems to

fbQow the log-log law. We give here a ample of examples.

Figure 11 is reproduced from Stevens and Savin (1962). It plots eight tasks with various response measures

in log-log space. The criteria are all oriented to increase with practice. The plot is actually of the cumulated

responses, ie, the integral of the usual curve. This is just the same as the usual power law, since the integral of

a power law is a power law (though integration tends to smooch the curve, helping to account for the lovely

appearance of the curves, in addition to the relatively large numbers of subjects).

f Bx-adx-B{l-arl{Nl-"-l) • (3)

Some of these curves are time curves (actually, amount accomplished per unit time, to make them positive

curves); but several are not, eg, #1 is the number of correct anticipations in learning nonsense syllables, #2 is

the time on target in a pursuit tracking task; #3 is the number of balls thrown into a target area; #4 is the

number of correct responses in an animal experiment in learning a maze, and so on.

As a second type of example, it has long been known in Industrial Engineering that the so-called learning

curve for production of manufactured projects was tog-log linear. In part this comes of various simple rules of

thumb, eg,"_ each time the quantity of [airfolancs is doubled, the cumulative average man-hours per plane

will be [reduced by] 80%" (Rigon, 1944). However, Figure 12 shows an empirical curve from machine tool

manufacture (Hirsch, 1952). Notice that the index of performance is not time, but cost
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Figure 11: Eight Cumulated Response Practice Cunres (Log-Log Coordinates).
Figure from Stevens & Savin (1962). Copyright 1962 by the Society for the

Experimental Analysis of Behavior, Inc.

23. Summary

We have shown some 12 diverse examples of the log-log linear law of practice for trials versus time. From

Table 1 we can make one more particular point:

• The learning rates, a, are all less than one.

Our main point is that the law is ubiquitous when one measures the log of performance time against the log

of trial number. Where the general impression seems to have been that the law showed up in perceptual*

motor behavior, we think it is clear that it shows up everywhere in psychological behavior - at least it cannot

easily be restricted to some part of the human operation.

Our proposition on ubiquity is extended, perhaps beyond our druthers, to learning curves involving other

measures of pcrfonnance and even to tasks possibly (but not certainly) beyond the pale of individual human

behavior. We do not however claim that all learning is log-log linear. Nor do we claim that practice always
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Ffenre 12: The Effect of Practice on Direct Labor Requirement
Machine Production (Log-Log Coordinates).

Replooed from Hirscfa (1952).

100

We do not wish to assert that such an effect stems from a single cause or mechanism. Indeed, its ubiquity

to indicate multiple explanations. We do wish to make one general comment about die regularity

and what might be expected from understanding it Its widespread occurrence implies that it depends on

quite general features of die learning situation or of the system that learns. If we develop a theory that

depends on detailed perceptual or motor mechanisms, we will just create trouble for the more cognitive

instances, or vice versa.

One is immediately reminded of other examples of ubiquitous regularities and their explanation. The

normal distribution, which arises out of the independent additive combination of many small increments, is

the most well known. Another, usually known as Zipfs Law, gives the distribution for items according to their

rank order, which is common to word frequencies, city sizes, incomes and many other ordered phenomena

(Simon, 1955). Consistently, highly general stochastic models undcriy these various phenomena. They

explain the regularity, but leave open the detailed mechanisms that produce the stochastic processes.

Thus, in searching for an explanation for this regularity, we should expect at best to find some such general

considerations. Though it will not tell us in detail about the learning mechanism, it may still tell us something

worth having.
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3. BASICS ABOUT POWER LAWS
In this section we present some general perspective on power laws and what they mean.

3LL Differential Forms and Rates of Change
We start with the power law and its equivalent log-log form:

(4)

(5)

It is instructive to see this in terms of the local rate of learning, dT/dN?

(6)

m-aT/N--(a/N)T (7)

(8)

Now, one baseline form for learning is exponential. It can arise, for instance, from any mechanism that is
completely tocaL If there is something mat teams on each local part of a performance, independent of any
other part, men the change in 7* (the sum of the changes to each part of T) is proportional to T:

dT/dN--aT (9)

T-Be"*" (10)

Comparing mis differential form to that of the power law, shows that power-law learning is like exponential
teaming in which the instantaneous rate a? decreases with N, te:

where o ' - a / i V (11)

Both the exponential and the power function are monotonkaUy decreasing functions that asymptote at 0.
The decreasing rate of learning in the power function leads to its approaching asymptote much more slowly.
Figure 13 shows these two curves in linear coordinates, with identical initial values (2? - 1). This corresponds
to N - 0 for the exponential, and N * 1 for the power. Thus, one way to think of power law learning is that it
is a learning process in which some mechanism is slowing down the rate of learning.

Not every scheme of slowed-down learning leads to the power law. For instance, if we generalize the
differential equation above we get a different law:

dT/dN-{a/NP)T, where 0*1 (12)

T-Be-*"1'* (13)
A representative curve for fi less than 1 is also shown in Figure 13, which produces asymptoting between the

exponential and the power law.

For case of exposition we treat the trial number ;V as a continuous variable In (act nothing material depends on ic we could wort
with finite differences throughout at the cost of added complexity.
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Figure 13: Base Learning Cams: Power Law, Exponential and a Generalized Curve,

The form of the power law can be appreciated in terms of a simple global rule, as well as in differential

fixnu

Power Law Decay: If T decreases by a factor 5 in the first N trials, it will take another N(N-l)
trials to decrease by a factor of 5 again.

Comparison with the corresponding global rule for the exponential shows again how much more slowly the

power law drops off:

Exponential Law Decay: If 7 decreases by a factor of 5 in the first N trials, it will take another N
trials to decrease by a factor of 5 again.

12. Asymptotes and Prior Experience

As given in Equation 4, the law assumes (1) the asymptote of the learning is 0, ie, the task can be performed

in arbitrarily small time after enough learning; and (2) the initial trial of the learning occurs at the first trial of

the measured series. Neither of these assumptions need be true.

The more general form of the law is:

E)-~ (14)

A (>0) is die asymptote of learning as N increases indefinitely. E (>0) is the number of trials of learning that

occurred prior to the first trial as measured, ie, prior experience', it thus identifies the true starting point of

learning. (Neither A < 0 or E < 0 make immediate sense, given these interpretations: A • 0, £ » 0
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reproduces the basic form of Equation 4.)

Plotting k>g(r - A) against JogCJV + £) still yields a straight line whose slope is - a . The difficulty of course

is that A and £ are not known in advance, so the curve cannot be plotted as an initial exploratory step in an

investigation.

05)
One alternative is just to plot in log(7>log(jV) spare and understand the deviations:

log(r - A) - tog(£) - alo^N • £)

togfT) - log(5) - k>g(l - A/T) - alog(JV) - alog(l + E/N)

There is an error term for each parameter. If T is large with respect to the asymptote, A% then log(l -

is dose to tog(l), which is 0. This occurs at early values of N. If N is large with respect to £, then log(l +

£/A0 is dose to log(l), which is 0. Thus, die two deviations affect the curve at opposite parts: Non-zero

values of £ distort the straight line for taw N9 non-zero values of A distort it for high N.

Figure 14 shows a power law with a starting point ( -£ ) of -25 and a time .asymptote (A) of 5. Figure IS

shows the same curve in log-log space. Characteristically, die starting point pulls the initial segment of die

curve down towards the horizontal and the finite asymptote pulls the high N tail of the curve up towards the

horizontal A central region of the curve appears as a straight line. It is however less than the true slope (-a),

as the One shows.

K W

General power law: 75(^+25)"

-200 200 400 600 800 1000
N

Figure 14: A General Power Î aw Curve
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Figure 15: A General Power Law in Log-Log Coordinates.
The simple power law with the same a and B is also shown.

The derivative of the general power function in log-log space is given by:

- a (1 - A/T) / (1 + E/N) (17)

It can be seen that the slope is everywhere smaller than a, and becomes increasingly so as either A or E

increases. A reasonable estimate of the apparent slope as viewed on die graph, a*, is at the inflection point It

is easy to obtain by setting the derivative of Equation 17 to zero:

d/dN[d(\o&T))/d{\Q&N))\ - -(a/NXE/N - aA/T) (1 - A/T) (1 + E/N)'1 - 0 (18)

a*-(aN*-E)/(N* + E) (19)
IV* is the point at which the inflection occurs. The exact value of N* is not expressible in simple terms, but a
reasonable approximation is:

< l (20)

The structure of Figure 15 suggests that many of the deviations in the empirical curves could be due simply
to starting point or asymptote effects. Since the effect of these two phenomena is to bend towards the
horizontal at separate ends, it is possible to tell from the curve in log-log space what effect might be operating.
The original Snoddy data in Figure 1 provides an example of a clear initial deviation* It cannot possibly be
due to an earlier starting point, because the initial curve rises toward the vertical However it could be due to
the asymptote, since raising the asymptote parameter (A) will pull ihc right hand part of the curve down, and
make its slope steeper. The Scibel data in Figure 6 provides an example where there arc deviations from
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linearity at both ends. Use of a non-zero value for E (previous experience) will steepen the initial portion of
the curve, while doing likewise for A will steepen the high N portion of the curve. (The results of such a
manipulation will be seen later in Figure 21.)

13-Trials or Time?

The form of the law of practice is performance time (T) as a function of trials (N). But trials is simply a way
of marking die temporal continuum (/) into intervals, each one performance-time long. Since the
performance time is itself a monotone decreasing function of trial number, trials (A0 becomes a non-linear

. of time (/). It is important to understand the effect on the law of practice of viewing it in terms
of time or in terms of trials.

Hie fundamental relationship between time and trials is:

i-iTi - V ^ M ^ - V

rQ is the time from the arbitrary time origin to die start of die first triaL This equation cannot be inverted
explicitly to obtain an expression for N(t) that would permit the base law (Equation 4) to be transformed to
yield T{(). Instead, we proceed indirectly by means of the differential forms. From Equation 21 we obtain:

dt/dN-T (22)

(Think of the corresponding integral formulation, d/dzf J{x) dx «/(z)).

Now, starting with the power law in terms of trials we gee

dT/di-(dT/dN)/(dl/dN)-(-aT/N)/(T)--a/N (23)
But from the bask equation (4):

N-(T/ByUa (24)

Thus, we get die trials power law re-expressed in terms of time:

d r / A - - a ^ - 1 / a r 1 / a (25)

For a * 1 this integrates to yield:
j - a - « V « » ( 1 . a ) B - l / « / + Cf fora+l (26)

But C is an arbitrary constant of integration and if the origin and scale of / is adjusted appropriately we get:
( 2 7 )

Thus, a power law in terms of trials is a power law in terms of time, though with a different exponent,
reflecting the expansion of time over trials. The results are significantly altered when a « I (the hyperbolic)
however. Equation 25 becomes:

dT/dt - -B~lT (28)
This is no longer the differential form of a power law. Instead it is that of an exponential:

T-Ce-*'1' • (29)
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It is left as an exercise for the reader to confirm that an exponential function in trials transforms to a linear
function in time (hence. Zcno-like, an infinite set of trials can be accomplished in a finite amount of time).
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4 FITTING THE DATA TO A FAMILY OF CURVES
Given empirical curves, such as occur in abundance in Section 2, it is important to understand how well

they are described by curves of a given family (eg, power laws) and whether there are alternative general

forms that fit them just as well (As noted in the introduction, exponential hyperbolic and logistic curves have

enjoyed much more favor than power functions.). Curve fitting without benefit of a model is notoriously a

black art Nonetheless, we have deliberately chosen not to be model driven initially, because we want to have

empirical generalizations as the starting point in the search for theory, not just the iaw data.

The basic issue of curve fitting can be introduced from Seibei's own treatment of his data (Figure 6), which

appears to be an extremely good fit to the log-log law over an extensive range (40,000 trials). Scibel (Seibel,

1963) fit his points to three curves by least squares: (1) a power law with asymptote only (ie, E fixed at 0); (2)

an exponential with asymptote; and (3) a general power law with both asymptote and starting point6 He

obtained an r2 of 391 for the power function with asymptote only. But he also obtained an r2 of .971 for the

exponential with asymptote. His general power law fit was .997. (His parameters for asymptotes and starting

points are mostly reasonable, but not entirely.) Thus, all the curves give good fits by normal standards. If

only differences in the least squared residual are used, there can hardly be much to choose from. This is an

annoying result, in any case; but it is also somewhat unexpected, for the plots that we have shown, though

they surely contain noise, are still impressively linear by intuitive standards and involve lots of data.

It is important to recognize that two bask kinds of failure occur in fitting data to a family of smooth curves:

(1) failure of the shape of die data curve to fit to die shapes available within the family; and (2) noise in the

data, which win not be fit by any of the families under consideration or even noticeably changed by

parametric variation within a family. These distinctions are precisely analogous to the frequency spectrum of

the noise in die data. However, the analogy probably should not be exploited too literally, since an attempt to

filter out the high frequency noise prior to data fitting simply adds another family of empirical curves (the

filters) to confound the issues. What does seem sensible is to attempt to distinguish fits of shape without

worrying too much about the jitter.

A simple example of this point of view is the (sensible) rejection of the family of logistic curves from

consideration for our data. The logistic provides a sigmoid curve (ie, a slow but accelerating start with a point

of inflection and then asymptoting). No trace of an S-shapc appears in any of our data, though it would not

be lost to view by any of the various monotone transformations (logs, powers and exponentials) that we are

considering. Hence, independent of how competing the measure of error, the logistic is not to be considered.

The size of the jitter (ie, the high frequency noise) win limit the precision of the shape that can be detected

and the confidence of the statements that can be made about it. It provides a band through which smooch

exponential is translation invariant, so a special staiting point is not distmgusfaablc for k.ie.^e' + -(Be )el - fl V .
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curves can be threaded, and if that band is wide enough — and it may not have to be very wide — then it may

be possible ID get suitable members of conceptually distinct curves through it In all cases, the main

contribution to any error measure will be provided by the jitter, so that only relatively small differences will

the different fam^^in

4L The Data Analysis Procedure

With die elimination of the logistic from consideration, we have focused our efforts on three families of

curves: exponential, hyperbolic* and power law. The analysis procedure that we have ended up using is

primarily graphical in nature. We look at what types of deviations remain, once an empirical curve has been

fit opdmafly by a family of theoretical curves. The analysis consists of judgments as to whether the deviations

represent actual distortions ofshape, or merely jitter. The procedure has the following components:

L Find spaces where the family of curves should plot as straight lines. Judgments of shape deviation
are most easily made and described when the norm is a line. These arc die transformation spaces
of the given family. There may be more than one such space.

2. For each family of curves, find the best linear approximation to the data in the transformation
spaces of the family. This will generally involve a combination of search and linear regression.

3. Accept a curve for a family, if the best fit plots as a straight line in the space of that family. Reject
it, if it has îgnifiratif shape distortion.

4. Understand the shape distortion of family X when plotted in the space of family Y. Expect curves
of family X to show the characteristic distortion when plotted in the spaces of alternative families.

5. Compute an estimate of fit (r2) for the best approximation in each transformation space. Expect
these values to support the judgments made on the basis of shape distortion.

These criteria contain dements both of acceptance and rejection, and provide a mixture of absolute

judgments about whether data belongs to a given family and relative judgments about the discrimination
between families. The parameter* for rhg hezt fit* a* w«M1 ag rim P^rimat^ tyf flj (r2) r^n fr» found *n Tflfrfr ?

The remainder of this section shows how we applied this data analysis procedure. We will start by looking

at the transformation spaces. This win be followed by an examination of the distortions that occur when a

theoretical curve is plotted in a space belonging to a different family. We will then be in a position to analyze

a couple of the empirical curves that appeared in Section 2.

42. The Transformation Spaces

The curves that we are interested in belong to multi-parameter families (3 for the exponential and

hyperbolic; 4 for the power law). Regression can be used to fit a line to an empirical curve plotted in a multi-

dimensional space. Unfortunately, for the three families that we arc interested in. there is no space in which

all of the parameters (3 or 4) can be determined by linear regression. The most that we can get is 2
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Table 2: The General Learning Cunres: Parameters from Optimal Fits
in the Log Transformation Spaces

parameters. The remainder must be determined by some other means, such as search. The choice of which

parameters are to drop out of the analysis determines the transformation space. We have primarily worked in

two different types of transformation spaces. The first type consists of the log spaces. These are the most

commonly used linearizing spaces for functions with powers. The log transformations that we use are the

following:
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Exponential: 7"«log(S)-aiV, f b r T - l o g ( r - ^ ) (30)

Hyperbolic r - l o g ( S ) - t f ' , forT « log(r - iOandAr- log( t f+ E) (31)

PtowerLaw: T- log(2*) - aN*9 fi>rr-log(r-^)andiV-k)g(iV + £) (32)

The log spaces for the hyperbolic and die power law aim out to be the standard log-log space, while the

exponential is in semi-log space. Determining fits in these spaces requires a combination of search (over 0 <

A £ Tjoin and 0 <; E) and regression (for B and a). Since the exponential and hyperbolic families are each

missing one of these parameters, the process becomes simpler for them. The exponential only requires a one

dimensional search (over 0 < A < T^ while die hyperbolic can replace die regression (for B and a) with

the computation of the average for B.

The log spaces have been used exclusively for the data analyses diat will be described in die following

section (Table 2 was computed in die log spaces). It is important to realize though that they are not die only

transformation spaces that can be used. We have explored what we call die T-X spaces, though space

precludes presenting the analysis. Transforming a curve into its T-X space involves pushing all of the non-

linearities into the definition of A" as follows:

Exponential: 7- A + BX, fbrA>€mmN (33)

Hyperbolic: T-A + BX, forJT «l / ( iV+£) (34)

PbwerLaw: T-A+BX. for*•(#+£)"• (35)

In the T-X spaces, searches are over a > 0 and £ > 0, with A and B determined by regression. Only single

dimensional searches are needed for the two 3 parameter families. The T-X spaces prove especially useful for

estimating die asymptote {A\ since it maps into die intercept of the transformed curve.

43 . The Theoretical Carres

When a curve is optimally fit in a space corresponding to its family, it plots as a straight line (by definition).

This is not true though when die curve is fit in a space corresponding to some other family. There will be

distortions that show up as nonlinearitics in the plot By understanding these characteristic shape distortions,

we are able to interpret the deviations that we find when we plot the data in these spaces. This will help us to

distinguish between random jitter, and distortions that signal a bad fit by die family of curves. Data that plots

with the same deviations as one of die theoretical curves has a good chance of belonging to that curve's family.

Figure 16 shows the best that a power law can be fit in exponential log space. The power law curve is:

This is the same curve that is plotted in Figures 14 and 15. The parameters for the optimal exponential fit

can be found in Table 2. The r2 value of 583 is deceptively high, as an examination of Figure 16 shows.

There arc strong deviations in all portions of the curve. The curve starts out high, goes low, then high again,

and finally tails off downwards. If we sec deviations of this type when a set of data has been optimally tit by
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mi exponential we can conclude that the exponential family is not a good model for the data, and that the

power law might be.

Figure 17 shows the same curve optimally fit in hyperbolic log space. We see die same sons of deviations

that were found in the exponential case, but they are much attenuated. It win be hard to rule out the

hyperbolic family in such a case because die variability of the data is likely to swamp out much of die

distortion. At most we can hope to see the slight upturn at low N and die slight downturn for highiV.

It is not necessary to look at the theoretical plots for the hyperbolic as it is a special case of the power law.

It will plot with no distortion in die power law log space, and it will have die same type of distortion in the

exponential log space as did die power law. This leaves only exponential curves to be examined. We cannot

present a plot of die optimal fit of an exponential in die power law log space. All attempts to find such

optimal fits have led to at least one of die parameters requiring a value that is too large to be represented in

our computer. Though this makes die generation of a plot impossible, this information can be used in lieu of

a plot If analysis in the power law tog space leads to immense parameter values, then that is evidence against

a power law, and for an exponential.

In addition to this information, it is useful to see what an exponential function looks like in log-log space.

Figure 18 is characteristic of such plots. In log-log space, exponentials tend to have a flat portion followed by

a rapid drop to asymptote. The central portion is considerably steeper (a > 1) than the equivalent portion of

die empirical curves that we have seen, and die asymptote is approached more suddenly.

44. The Analysis ofa Data Set

We can now use the machinery that we have generated to analyze the data from some of the tasks in Section

2. There is no space to provide a detailed examination of die data analysis techniques or of their results over

the entire data set. But we do need to illustrate diem enough to support the conclusions. To do this we win

look closely at two curves: Kolers s subject 3 (Figure 3) and SeibeTs subject JK (Figure 6).

We will first attempt to show that the exponential is not a good fit to die data, that shape distortions remain,

even though die measure of fit is impressive. Then we will attempt to show that both the general power and

the hyperbolic families provide adequate representations of the empirical curves.

AA1. The exponential family

Figure 19 shows the optimal fit of Seibefs data in the exponential log space. As was true of the theoretical

power law curve, the value of r2 and die the plot of die optimal fit tell different stories. The value of r2 is a

respectable .956, so the exponential family can account for over 95% of the variance of ScibcFs data. The

characteristic power law distortions can be clearly seen in the figure though. The value of r2 notwithstanding,

Sdbcl's data is not adequately fit by an exponential curve.
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Figure 17: Optimal Fit of a Power Law in the Hyperbolic Transformation Space (Log-Log Coordinates).
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Figure 18: A General Exponential Function in Log-Log Coordinates.

same distortions can be seen in Kolers's data when it is optimally fit by an exponential (Figure 20).

Though they are somewhat obscured by die variability of the data, there are significant nonlinearities. With

respect to the optimal fit, the data is high, then low, then high, and finally low again. These distortions are the

signal that Kolers's data is also not adequately fit by an exponential curve.

4A2. The power law family

In contrast to the exponential plots, the power law plots are highly linear. Figures 21 and 22 show die

optimal power law transformations for the two data sets. Very little needed to be done to Kolers's data to

achieve die optimal fit (the asymptote was assigned the value of .18). There was not much to straighten out in

Kolers's data to begin with. Figure 3 shows that even the raw tog-log plot of the data is quite linear. Scibel's

data is a different matter though. In the raw tog-log plot it has deviations at both ends of the curve. By giving

non-zero values to die asymptote (324) and to the prior experience (2690), the data gets straightened. This

straightening yields a sharply higher a. It rises from .32 to .95 during this process. Though seemingly large,

the initial experience of 2690 trials is not excessive, given the full trial range of 70,000.

The linearity of the optimal power law plots is strong evidence for the power law as a model of learning

curves. This is bolstered even further by the r2 values which are considerably higher than chose for the

equivalent exponential fits (.993 vs. .956 for Scibel, and .931 vs. .849 for Kolcrs). An examination of Table 2

reveals that the value of r2 for a power law fit is higher than for an exponential fit for all of the practice curves

that we have examined.
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4 4 1 The hyperbolic family

bis not surprising that Seibefs data is well fit by a hyperbolic since the optimal power (a) turned out to be

55. The r2 value remains unchanged in a shift of a to L and the plot remains highly linear (Figure 23). What

is more surprising (considering the amount of data involved) is that Kolcrs's data (with an optimal a of .46) is

also adequately fit by a hyperbolic (Figure 24). By assuming larger values for A and £\ the whole curve is

tilted to be steeper. There is a small loss in r2, from .931 for the power law to .915 for the hyperbolic, but it is

nowhere near as large a drop as to the exponential (.849). There does appear to be a small upturn at the

beginning of the curve, and a similar downturn at the end, but the overall deviation ftom linearity is not large.

This small inferiority of the hyperbolic (with respect to the power law) must be traded off against the fact that

it has one kss parameter.

45L Summary

Table 2 show the results of this analysis for all of die data sets shown in Section 1 We believe that it

establishes the reasonableness of excluding the possibility that practice learning is exponential and the

reasonableness of describing the data by power laws. The hyperbolic family is somewhere in the middle.

From Table 2 it is apparent that most of the data sets can be adequately modelled as hyperbolks. There are

cases though, such as the data from Moran (Note 4\ that do seem to suffer by the loss of the extra parameter.

It would be nice to be more precise about die appropriateness of the hyperbolic, but the data we have

considered do not allow it These conclusions agree with those of Mazur and Hastie (1978) in rejecting

exponentials, but not in rejecting general power laws.
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5. POSSIBLE EXPLANATIONS
For the purposes of this paper, we have come to accept two propositions:

• Practice learning is described by performance-time as a power function of the number of trials
since the start of learning (the hyperbolic is included as a special case).

• The same law is ubiquitous over all types of mental behavior (possibly even more widely).

What are the possible explanations for such a regularity? In this section we try to enumerate die major

alternatives, and concentrate on one.

There seem to be three major divisions of explanation, The first reaches for the most general characteristics

of the learning situation, in accord with the end of Section 2 that such a widespread phenomenon can only

result from some equally widespread structural feature. One of the assumptions underlying much of cognitive

psychology is die decomposability of thought processes. A task can be broken down into independent

^ihra^w Mixture models attempt to derive the power law from the aggregate behavior of such a collection of

independent learners. The second division is some sort of improving statistical selection, in the manner of

mathematical learning theory or evolution. No specific orientation exists to obtain die power law. Rather,

simple or natural selective schemes are simply posited and examined. The third division takes the exponential

as somehow die natural form of learning. Observing that the power law is much slower, it seeks for what

slows down learning. What could be exhausted that keeps the learning from remaining exponential?

We will concentrate on an explanation of the exhaustion type. However, we do not consider it the exclusive

source of the power law of practice. So we first wish to lay out the wider context, before narrowing to one.

5X General Mixtures

The following qualitative argument has a certain appeaL

The Mixtures Argument: Performance depends on a collection of mechanisms in some monotone
way - ie, an increase in die time taken for any mechanism increases (possibly leaves unchanged)
the total performance time. The learning mechanisms that improve these performance
mechanisms will have a distribution of rates of improvement - some faster, some slower. At any
moment total system learning will be dominated by die fast learners, since a fortiori they are the
fist (mes. However, the fast learners will soon make little contribution to changes in total
performance, precisely because their learning will have been effective (and rapidly so. to boot), so
the components they affect cannot continue to contribute substantially to total performance. This
will leave only slow learners to yield improvement. Hence the rate of improvement later will be
slower than die rate of improvement initially. This is the essential feature of the log-log law - the
slowing down of the learning rate. Hence learning in complex systems will tend to be
approximately linear in tog-log space*

The great virtue of this argument, or some refinement of it is that it would explain the ubiquity, even unto

the industrial production functions.

We do not know how to examine diis law in full generality. However, restriction to a subclass of learning
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functions, if the subclass is rich enough, can shed some useful light on the issue, for the argument should hold

for the subclass as welL

The complete definition of a mixture model requires both the specification of a class of learning functions

and a scheme by which they are aggregated. A natural class of learning functions are the exponential

functions. They form a rich enough class (a three parameter family of a, A and B). They also are as good a

candidate as any for primitive learning functions. We can place sufficient restriction on the means of

aggregation if we assume that performance consists of the serial execution of sub-tasks. This places us within

die class of additive systems, ie, where each component adds it contribution to the total performance.7 The

result is that T is a weighted sum of exponentials:

T-Ew+f (37)

Figure 25 shows a plot in tog-log space of a forty term sum with weights (the Ws) and rates (the p's)

selected at random (0 < IV. <SandO</ i / < J). One gets a reasonable approximation to a straight line over

much of the range, though it is a little wavy.

1000c

Figure 25: A Forty Term Additive Exponential Mixture (Log-Log Coordinates).
The weights (0 < W. < 5) and exponents (0 < p. < .1) were selected at random.

Simple additive combination is not the only way to put learning mechanisms together. Clayton Lewis (Note 2) explored the notion of
series-parallel combinations of exponential learning mechanisms. The results were unclear, sometimes looking log-log, sometimes
looking more like an exponential, sometimes wandering. He. arrived (Note 3) at the position that another source of constraint or
uniformity is needed.
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Mixtures of this type have one primary source of variation: the set of weights { W.}. The plausibility of

mixture models as a source for power laws can best be evaluated by determining the classes of functions that

are generated under reasonable assumptions for {IV.}. If the result is always a power law, then mixture

models are strongly mpiir^M. On the other hand, if any function can be generated with equal facility,

mixtures would be of little use as an explanation for the ubiquity of power laws.

of exponentials do provide a sufficient ensemble of functions to compose (essentially) any function

desired. A convenient way to see this is to gp over to the continuous case:

7XiV)- f^WW*dp (38)

On the one hand, this simply expresses the continuous analog of a sum of exponentials: die exponential for

every p is represented, each with its own weight, W{p). On the other hand, this will instantly be recognized

(at least by engineers and mathematicians) as the Laplace Transform of the function W (Churchill, 1972).

The qgnifirann> of this is that we know that for any function T(N) there is a function W(ju) that produces it*

Thus, by choosing appropriate weights, any total learning function whatsoever can be obtained.
«

We can of course choose weights to make T a power law, as in Equation 4, with a and 5. Consulting any

standard table of Laplace Transforms shows:

JK(M)- (5 / r (a ) )^ - a > (39)

That is:

f ^ ^ V N (40)

The component exponentials correspond to learning at all rates, indefinitely fast (large ji) to indefinitely

slow (small jt). Since (1 - a) > Q, the weight W becomes very small for fast learning and very large for slow

learning. Without a justification for this particular distribution of weights, it would seem implausible that

mixtures of learning components would always lead to power laws.

However, we can turn die argument around and get a positive result One distribution of weights for which

there is a natural justification is the rectangular, ie, all component processes have the same weight, at least

stochastically. This is especially true in the present approximation, where a random distribution of weights

would be taken to be rectangular. As can be seen from Equations 39 and 40, this corresponds to (1 - a) - 0,

which yields a - 1 . The resulting law is the hyperbolic

It is beyond the bounds of this paper to inquire how closely random weighting functions can be

approximated by the mean. Within our limits, it appears that a mixture of exponentials yields a special case of

the power law, namely the hyperbolic Put together with the results of the data-fit analysts, which showed that

^ must be mathematically well behaved in certain ways to be so represented, but these arc of noconsequence m the present context
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hyperbolics were a reasonable candidate descriptive curve, this adds up to a significant observation (it can

hardly be distinguished as a "result").

Real mixtures can only strive to approximate the distribution of exponentials that the use of rectangular

weights implies. They must fail short because there can only be a finite number of components. The initial

portion of Figure 25 is flattened because of the lack of terms in the mixture that decay quickly enough to

affect that portion. We restricted the fastest term to have a /t less than X but there must always be a

maximum p. Regions of the curve which are affected by only a few terms will look highly exponential,

leading to a roller coaster effect where two such regions meet (eg, for N in die region [10, 200] in Figure 25).

In legions where only one term is relevant, the curve is an exponential This must always occur at least in die

tail of the curve, where only the slowest term in the mixture is still active.

The amount of deviation within a region of die curve is thus determined by die number of terms affecting

that region. Linearity over a wide range requires a large number of terms in the mix ture.

52. Stochastic Selection

The work in stochastic modelling generated a large range of models, well beyond what we can review.

However, a few of the models are particularly relevant to this work.

5.2.1. Grossman's model

Twenty years ago, Crossman (1959), in an effort similar in spirit to die present one, wrote a paper reviewing

much data on practice. He proposed a general model based on an improving process of selecting methods

from a fixed population of methods with fixed durations, {/,.}. Improvement occurs, because each method is

selected according to a probability and these probabilities are adjusted on the basis of experience. Namely,

the change in probability is proportional to the difference between the mean time, T(N)9 and the actual time

of the selected method, /,:

«Pi»-*<*,-W» (41)

By assuming that the entire probability vector shifts at each trial according to its expected adjustment (ie, as

if all methods were tried each trial, each with frequency p.\ the expected shift for the mean time can be

expressed as: -

T{N+l) - T(N) - *Vai(iV) (42)

Where Vai(A0 is die variance of the {/,.} on cycle N. In general, the time course cannot be calculated, without

knowing the actual distribution of the tp for die following, relationships hold for this model (Mj(N) is die jth

moment of die {/,.} on cycle N):

(43)

(44)

(45)
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Thus, as N increases, higher moments of the initial distribution are needed to compute Vai{JV). Crossman
assumed a (somewhat arbitrary) example distribution and examined the resulting curve numerically. In log-
log space it plotted as a sigmoid with a large straight section, somewhat in the manner of Figure IS. He
concluded that it was a satisfactory form of model though clearly needing more development

Unfortunately, the model rests very heavily on the way it uses its expected value assumptions. As can be
seen from Equation 41, nothing prevents p. from moving outside die [0,1] interval, thereby violating the basic
property of being a probability. Indeed, if the Hh method is selected often enough, it must move outside.
Crossman avoids the unavoidable by making die change really be p.Spp the expected change. Even this
modification is not sufficient to guarantee that/?f remains in the range of [0,1]. If ii: s greater than l / ( / Q a x -
ttna) t ^ * {i * POBftte f o r 5Pmm to be less than -L An additional assumption about the legal values of k
could of course be added to handle this problem.

We have expounded Grossman's model at some length, because it is not only die one existing attempt to
deal with the power law data, but it is often referred to as a viable explanation of this law.

522* The Accumulator and Replacement models
Among the basic stochastic teaming models two broad classes are often distinguished, depending on

whether correct responses replace incorrect ones ~ called replacement models - or whether correct responses
are simply added to the total pool, thus gradually swamping out the incorrect ones — called accumulator
models. A presentation of these two models is given in Restle and Greeno (1970).

The replacement models yield exponential functions (when expressed in terms of rate of generation of
correct responses). It is worth taking a look at an accumulator model, as it will provide another model that
yields die hyperbolic Restle and Greeno show that the proportion of correct responses in the pool at trial N
(PN) is given by (die interpretations of the other parameters are not important for our purposes):

V I* + *°tN-W & + *<tf-Dl (46)

To get this in terms of time, we can assume that the time to generate a response is inversely proportional to
the rate of generation of correct response. Thus T(N) would be the inverse of Equation 46:

7TiV)-[l + ^(iV.l)]/[6 + M ^ - l ) ] (47)
With a little rearrangement, this becomes:

T\N) - [I/a] + [(a - 6) / 9a2] / (N + [b/9a - ID (48)

This is the equation for a general hyperbolic function, with A » I /a , B » ( a - b ) / 8 a \ and E * b/Ba -L
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S3. Exhaustion of Exponential Learning

The notion of exhaustion comes from examining Equation 11. A power law is like an exponential in which

the exponent (a) docs not remain constant over trials. In fact, a decreases as l/N. An exhaustion model

would postulate that this decrease stems from the diminishment of some necessary portion of the learning

process. Many different exhaustion models can be developed according to what is being diminished. We

have concentrated our efforts on one variety of exhaustion model; what we call die chunking model of

learning. Before we examine it in detail, it is useful to look briefly at the range of possible exhaustion models.

In the descriptions that follow it is assumed that the learner uses some method for the performance of the task

on which he is working. Learning consists of finding and incorporating improvements to the current method.

• Improvements harder to find (Search exliaustion): Improvements may not always be right at hand.
It would then be necessary to search for improvements that can be made in the method being
used. Each time one is found, it would result in the time (T) decreasing by some constant factor
(a\ just as in exponential learning. As improvements are found and applied, the space of unused
improvements becomes sparser, decreasing the rate at which new improvements can be found.
The effective rate of learning would thus be slowed.

• Less time for improvement (Time exhaustion): If learning is exponential in time (rather than in
trials), then as the trials get shorter, there is less time for improvement on each triaL From Section
3 J we know that an exponential in time yields a hyperbolic in trials.

One long standing view is that learning consists of transforming a deliberate, conscious and
resource limited process into an automatic, unconscious and resource independent one. One
image of this in mechanism is that learning consists of a transformation from a serial to a parallel
processing structure. The amount of processing required remains constant Only the elapsed time
until completion decreases. Exhaustion occurs if it is assumed that learning is proportional to the
amount of time available (7) — the usual exponential assumption. As the amount of process that
is packed into a fixed time slice increases, the amount of learning per unit of process would have to
decrease. A simple version of this model that we have developed yields the hyperbolic.

# Improvements less effective (Effectiveness exhaustion): Improvements used later in learning, may
prove to be less effective than the same improvements used earlier.

• Improvements less applicable (Applicability exhaustion): Improvements may vary from being
general purpose to being highly specialized General purpose improvements are always
applicable, while special purpose ones may only be applicable under highly constrained
conditions. In order to fully specify a model of this type, an assumption must be made as to the
order in which die improvements are incorporated into the method. If they are used in order of
decreasing applicability, then learning would slow down even if the improvements are equal in
effectiveness (when they are applicable): The theory we present below is a version of this case.

5A The Chunking Theory Of Learning

We take as central to our model a theme which has been a mainstay of information processing psychology

since Miller's famous 19S6 paper.

The Chunking Hypothesis: A human acquires and organizes knowledge of die environment by
forming and storing expressions, called chunks, which arc structured collections of the chunks
existing at the time of learning.
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This brief statement glosses over things not central to our purpose, eg: (1) the nature of the primitive

dnmks; (2) the internal representation of chunks as collections of symbols for chunks, rather than the chunks

themselves; and (3) distinctions, if any, between perceptual chunks, internal-processing diunks and motor

chunks. Other aspects, such as the size and composition of diunks, require further specification.

Consider SeibeFs task (Seibel, 1963), to make matters concrete. There are ten lights Lv _ Lw which

define perceptual events of a light being off (-) or on (+) . Originally, the only chunks available are die

individual lights and the states of off and on. If we define die notion of the jpa/j of a chunk as the number of

primitive dements that it contains, then these are diunks with a span of one. Clearly they are built up from

still more primitive features, relations etc, but they can be taken as die primitives from the point of view of

SeibeFs task. Gradually, with learning, diunks win form: first diunks such as (Lx +X whidi we might also

write as L£ then diunks such as ( I j Lp, or (L[ L^); then still higher chunks such as (L*(L~3 L^\ and so

on. The chunks need not just be of perceived lights; they could be of responses (R$ Rp (the + meaning to

press the button), or even of mixed character, (L* flp or ((I* Lp (R^ Up). These diunks are of increasing

span; eg, the span of the last mentioned chunk, ((L^ L^)(R* R^)\is eight of the primitive diunks such as LT

+, Lg, etc Chunks thus hold information about die patterns in the environment and in the subject's relation

to the environment

The chunking assumption only defines a unit of structure and declares it central. To create a learning

system, we must tie down how this structure couples ©(1) the perfonnaox of the tasfc

task environment and (3) die process of learning new information about the task environment. These lead to

three corresponding general assumptions:

• Performance Assumption: The performance program of the system is coded in terms of high-level
chunks, with the time to process a chunk being less than the time to process its constituent chunks.

• Task Structure Assumption: The probability of recurrence of an environmental pattern decreases
as the pattern size in

• Learning Assumption: Chunks are learned at a constant time rate on average from the relevant
patterns of stimuli and responses that occur in die specific environments experienced.

On performance: If having diunks does not permit the system to perform more quickly, then one major

reason for their existence vanishes (though there might be other reasons). How high-level aggregate chunks

enter into performance programs is actually somewhat problematical. For instance, computers gain no

performance advantage from the subroutine hierarchy (an example of multi-level chunking); it is completely

unwound down to the lowest level machine operations on every execution.

In SeibeFs task the performance program can be related directly to the chunks that exist If only the lowest

diunks are available, then it might take the processing of five chunks for each light:
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The top diunk is die rule derived from die instructions for general lights (Lx) and responses (R J; it is used

to interpret each of die four primitive chunks of information about the task, one after die other. If, on die

odier hand, more complete chunks are available, such as (Ll +) . then this part can be done in a single step,

and so on for more aggregate chunks. Aggregation, of course, takes place not just within a light, but across

lights. Thus, a lowest level performance program would take something like 5 steps per light times 10 lights -

SO steps. At the other extreme, the highest level program would take only a single step, using many mammoth

chunks, such as the one below of span 40, to cover all die cases.

^ g (49)

Most programs would be composed of chunks of some intermediate span. Our example chunks have used

stimulus adjacency and stimulus-response connection as the principles on which to chunk. Lots of others arc

possible, e&, symmetry of position. likewise, wrong connections arc possible as well as correct ones.

On the structure of the task environment: Task environments can be thought of as being composed from a

set of dements which can vary with respect to attributes, locations, relations to other dements, etc Seibel's

task is a good example of such a task environment once chunking has reached beyond die most primitive levd

(die lights, on, oft etc). Observe that (thinking only about the lights) there is a set of dements (the ten lights)

each of which has an attribute for the state of the light (on or off). On each trial the subject is exposed to a

single concrete environment out of the ensemble of concrete environments that make up die task environment.

A subject in SdbeFs experiment would see the ten lights in one particular state on each trial. The trial

sequence provides the sample of concrete environments actually experienced.

Figure 26 shows a four light version of Seibel's task environment. At the left are the primitive chunks; the

fights, which can be either on or oft Proceeding towards die right yields higher level chunks made by

combining lower levd ones. At die far right arc the top-level chunks. Each top-levd chunk spans one

concrete environment (consisting of each light in one particular state). The bold lines outline one concrete

environment out of die ensemble that makes up the task environment One important point to nodec is that

the branchiness of the task environment (increasing towards the right) is in the opposite direction from that of

the tree for a single concrete environment (increasing towards the left). As the chunks increase in span, there

arc more of diem in die task environment, but fewer in any one concrete environment.

Task environments such as Scibcfs present the learner with a combinatorial number of possible patterns.

There arc only two patterns of one light (on and off), but four patterns of two lights, eight patterns of three

lights, and so on, up to 1024 patterns of ten lights. Inherently, many more possibilities for patterns of

dements exist than for the elements themselves. Correspondingly, there are many more possibilities for

chunks that encode larger patterns dian smaller ones. If each of the elements can take on any of b different
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flight 1~1

span 1 span 2 span 4

Figure 26: Scibcl's Task Environment for Four Lights.
At the left arc two primitive chunks for each light (for chc on and o//states)

and at the right arc the top-level chunks.
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values (the bmnchiness of the task environment), then for every set of s elements there would be b5 possible

patterns. Different task environments will have constraints that limit what new combinations can in fact

occur; not all elements are or can be chunked with each other. The basic combinatorial nature of most task

environments, combined with these constraints, will determine what Can be called die cardinality of die task

environment, namely, die number of patterns that can actually occur of each different span. This canlinality

(whether exponential, power law, etc.) will have a great deal to do with the form of die final learning curve.

The task structure assumption follows directly from this structure of die task environment. There are more

of the larger patterns, but each one appears in fewer concrete environments. Indeed, at the top-most level, die

entire concrete environment at a trial can be encoded in a single chunk, as in Example 49 above. Chunks of

diis type appear in only one concrete environment each, whereas a chunk that only contains a angle light and

its state would appear in many concrete environments. The multiplicity of patterns (chunks) depends on

there being an entire ensemble of possible concrete environments. In any particular concrete environment

only a small number of the possible chunks occur.

On learning by experience: This assumption starts from the view that die human is a time-independent

processing mechanism. It processes information the same way one hour as the next, one day as die next - as a

function of stored knowledge and learned procedures, but not of time per se. In short, there is no built-in

historical clock. Thus, there exists a basic constant rate of chunk acquisition (with respect to time, not trials).

This same view underlies the appeal of die total time hypothesis of verbal learning (Cooper & Pantle, 1967).

Not all chunks learned need be relevant to the task at hand. The assumption that learning is by experience

says the subject is picking up relevant chunks while performing in a concrete environment This is consonant

with theories that have learning occuring automatically from the chunks that are built in working memory

(involving both die stimuli and the subject's own responses). When the subject is attending to the task,

working memory is full of task related chunks, and relevant learning occurs.

In our example, given L1 and + perceived by the subject, the chunk ( I 1 +) could be built, but not die

chunk ( I 1 - ) . Also, it would take die same length of time to build die first-level chunk as to build (((Lx +)

(*! +)) ((£2 ") (*2 "^ * v e n t h a t me c011^11101* chu^s, ((Ll +) (/?1 •)) and ((L2 -) (R2 -)) were available

in the subject (ie, had already been learned) and were bang perceived in the environment

These three assumptions, though still general, provide a basis on which specific learning models can be

built In this paper we only present the simplest form of this model so that die basic mechanisms can be

dearly seen. Various limiting conditions and the like may appear a little strained in this simple version.
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£4.1. A simple version
For the theory to be specific, we need to determine Tas a function of N. One way to do this is to define the

differencial learning law, dT/dN. Corresponding to the previous assumptions, we introduce the following

variables:
C • The total number of diunks learned at any time.

5 • The span to which the subject has chunked.

In terms of these variables, we can compose dT/dN as follows:

dT/dN-(dT/ds)(ds/dO(dC/dN) (50)

The first term, dT/ds% expresses how performance time (7) changes with die chunk span. In a simple form
of our performance assumption, the time to perform the task will simply be proportional to the number of
high-level diunks it takes to describe the task (at the time of the performance). Let P be the number of
chunks involved in the perfonnance initially (and take the unit of time to be the time to process one chunk, so
as to avoid an arbitrary constant). Then, if chunking has proceeded to a span of 5, each top-level chunk spans
s initial chunks. Thus, the number of top-level chunks that are required to span the performance is P/s and
we get for the performance time:

T-P/s (51)

dT/ds - - P / J 2 - -7*//> (52)
If this holds for unlimited values of 5, it implies that P is infinitely divisible and that 7 can be driven to zero.
We will just accept such simplifications for the purposes of this modeL Given this amplification however, we
cannot expect to find an asymptote parameter (A) in this version.

The second term of Equation 50, ds/dC, expresses how fast the span of die chunks increases as die subject
accumulates more chunks. It depends on how many chunks of each span are needed to describe the task
environment According to the assumption about die structure of the task environment, new chunks will be
formed to encompass larger patterns in the environment If a chunk covers a pattern of some set of elements,
then it win be relevant to connect it with a certain number of additional dements in the environment to form
the next higher level of chunk. We will postpone until later the quantification of this process. For now we
can just talk in terms ofCJ^sX the number of chunks needed to cover all patterns of s elements or less in the
task environment

We need to relate C^s) to C(iV), die number of chunks that the subject has at a given trial. By the nature
of how diunks are learned, low-level chunks must be xquired before higher-level chunks. That is, chunks
are learned from the bottom up. If C chunks have been learned, they will constitute a pyramid up from the
bottom. By making the further simplifying assumption that the pyramid is acquired layer by layer (ic, if the
subject has learned C chunks, these will consist of all the chunks provided by the environment from the
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elementary chunks up to some span), we can equate C and C^.9 Hence we get:
C - C t e (53)
dC/ds~Cjis\ Writing C^(s) for dCJ^/ds for clarity (54)

ds/dC-VC'^s) (55)

Hie final term of Equation 50 follows directly from the assumptions on learning; that the number of
chunks learned per unit time is a constant, say X chunks:

dC/dt-X (56)
Therefore by Equation 22, which relates time to trials:

dC/dN - (dC/di) (di/dN) - XT (57)

We now have assembled all the components of Equation 50:

dT/dN - (-T2/P) QJC'Jis)) (XT) (58)

(59)

We can see in what sense this is an exhaustion modeL The subject continues to learn at a constant rate and
chunks remain equally potent in terms of what they do to the performance programs in which they occur.
However, the chance that a chunk will be used becomes increasingly rare. It becomes rarer, actually, because
of the increased span of the chunk, which makes it ever more specialized, thus occurring in ever fewer
environments. However, this turns out to be correlated with time, because general (ie, low-level) chunks are
learned first and specialized chunks are learned later.

SAJL A combinatorial task environment
To complete die definition of the chunking model it will be necessary to be more specific about CJ^sX die

cardinality of the task environment, which expresses how fast the number of patterns increase as their span
One possibility is to start from the basic combinatorial structure described under the task structure

assumption. Suppose there are M elements in the task environment, each with b possible values. We need to
know how many chunks of span 5 it takes to cover the task environment One way to do this is to partition the
task environment into M/s groups of s dements. It will take bs chunks of span s to cover each group, so
(M/s)bs chunks to cover die whole task environment We thus get:

(60)

This summation docs not have a dosed form solution. We can however derive C'Jis) directly from the
summation in the same manner that di/dN is obtained in Equation 22.

We axe glossing over three complications to this picture: (I) M dements can be covered by chunks of span s in a number of ways,
depending on how the M dements arc partitioned into groups of size s: (2) M demons can be covered by a number of different chunks
of span M that vary in internal structure: and (}) many patterns in the environment arc totally irrc!e\ant to performance on ihc task
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j *, where 0

Substituting Cj^s) into Equation 59 we get:

dT/dN - -QJPM) f*se+s

We can eliminate 5 by noticing that s - P/T (from Equation SI):

dT/dN - - (VAQT 2 e ^ ' / r

By suitable rearrangement and integration, the final form of the teaming curve is obtained:

rx£riTdT - -(A/A/) dN

(61)

(62)

(63)

(64)

(65)

(66)

(67)

Though this is not a power law, it does resemble one when plotted in tog-log coordinates. Figure 27 shows
such a learning curve with parameters of 6-2, P-50, X-l , A/-20, and £-10. The reason for this linearity can
best be seen by looking at dT/dN. Substituting for 1/7* in the exponent of Equation 63 yields:

dT/dNm-KfiPr^iN+EftT1 (68)

»-{a/(N+E))T, where a-T/fiP (69)
The function thus behaves like a power law with a slowly decreasing a. In log-log space the decreasing a is

from the prwiffncff of an asymptote.

(PF)~xePr/T- (X/A/XiV+£). where £ comes from the integration constant

7 -

/00b

Figure 27: The Learning Curve Tor the Chunking Model
in a Combinatorial Task tnvironment (Log-Log Coordinates).

The parameter values are: b -1 P » 50. X - L M « 20, and E - 10.
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5L43. The power law chunking model

Instantiations of the chunking model can be generated for various types of task environment that a learner
may have to deal with. There is no space here to examine possible task environments systematically. An
alternative is to determine what type of task environment leads the chunking model to predict power law
learning. From Equation 8 we know that one form for the differential of a power law is:

dT/dN - -aB-u* Tl + Ua (70)
Combining this with Equation 59 yields:

a Tl +Va - -(X/PXrVC(*)) . (71)

We want CJis\ so first solving for C'JLs):

CjLs)-(kBl/a/Pa)Tl-l/* (72)

- (XB^/Pa) (P/sf - Ua (73)

~(XB1/aPi-l/a/a)si/a-1 (74)
Now we can get CJis) by integrating Cjis) with respect to s.

- 1 (75)

Though it is somewhat obscured by the complex initial constant, this is a power law in s. Power law
learning thus implies a power law environment. An important, and indeed pleasing, feature of the chunking
model is this connection between the structure of the task environment and the teaming behavior of the
subject The richer the task environment - ie, die ensemble of environments with which the subject must
potentially cope - die more difficult his learning.

S 4 A Relation to existing work on chunking

An important aspect of the chunking model of learning is the amount of power it gets by making
connection with a wide body of existing psychological work. For example, the pervasiveness of the
phenomenon of chunking amply accounts for the ubiquity of log-log learning. We have been able to develop
the primary assumptions of the model from this work without the necessity of pulling an arbitrary "natural"
learning curve out of the air.

Much of the existing work cm chunking has fbcussed on showing that chunks are the structures of memory
and operate in behavior in various ways (Bower & Winzenz, 1969, Johnson, 1972). It is consonant with the
present model, but does not make interesting contact with it. However, the work on chess perception
(DeGroot, 1965, Chase & Simon, 1973) bears directly on the present model The basic phenomenon
investigated there was the differential short term memory for meaningful chess positions with expertness.
Novices are able to recall only a few pieces of a complex middle game position after a five second exposure,
while masters can recall most of the pieces.

A well articulated theory has evolved to explain this striking phenomenon. The theory is an elaboration of
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the basic assumptions about chunking. The master has acquired an immense memory for chess positions,

organized as a collection of chunks. His ability for immediate perception and short term memory of chess

positions depends directly on how many chunks are used to encode a position. Estimates of the number of

chunks available to the master are of the order of 50,000, based on extrapolation of a simulation program

(Simon & Gilmartin, 1973) Oat fits novice and expert level players. By implication, master players must spend

an mmense amount of time with the game, in order to acquire the large number of chunks; this seems to be

wcD supported by historical data.

The chunking model of learning presented here for die power law is essentially the same as the chess

perception model. The present model has been elaborated quantitatively for learning data, whereas the chess

perception data had the products of learning to work with. The explanation for why the number of

perceptual chess chunks is so large lies in die combinatorial complexity of chess positions. High level chess

chunks encode large subpattems of pieces on the board; they are the necessary means for rapid perception.

But the actual configurations to which they apply do not show up often. Thus to gain coverage of the

population of chess positions requires acquisition of immense numbers of high-level chunks. This is precisely

the notion of environmental exhaustion that is the key mechanism of the present model.

One would expect from this that the time course of chess skill would also follow the power law, if one

would take die trouble to measure iL Indeed, the data on the Stair game of solitaire in Figure 10 can be taken

as a reasonable analogue of the chess game.
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6. CONCLUSION
If we may, let us start this conclusion by recounting our personal odyssey in this research. We started out,

simply enough, intrigued by a great quantitative regularity that seemed to be of immense importance (and of

consequence for an applied quantitative psychology), well known, yet seemingly ignored in cognitive

psychology. We saw die law as tied to skill, hence relevant to die modern work in automatization. The

commitment to write this paper was the goad to serious research. When we started, our theoretical stance was

neutral - we just wanted to find out what the law could tell us. Through the fall of 1979, in searching for

explanations, we became convinced that plausible substantive theories of power laws were hard to find,

though it seemed relatively easy to obtain an exponent of -1 , ie, hyperbolics. In November, discovering the

chunking model (by looking for forms of exhaustion, in fact), we became convinced that it was the right

theory (at least AN did), and that lack of good alternative theories helped to make the case. The chunking

model also implied that the power law was not restricted to perceptual-motor skills, but should apply much

more generally. This led to our demonstration experiment on Stairy which showed a genuine problem solving

task to be log-log linear. At the same time, in conversations with John Anderson, additional data emerged

from the work of his group (Figures 7 and 9) that bolstered this.

This picture seemed reasonably satisfactory, though the existence of log-log linear industrial learning curves

(Figure 12) nagged a bit, as did the persistence of some of our colleagues in believing in the argument of

mixtures. However, as we proceeded to write the paper, additional work kept emerging from the literature,

including especially the work by Mazur and Hastie (1978), that raised substantial doubts that the power law

was the right empirical description of the data. The resulting investigation has brought us to the present

paper.

The picture that emerges is somewhat complex, though we believe at the moment that this complexity is in

the phenomena, and not just in our heads as a reflection of only a momentary understanding. We summarize

this picture below, starting with the data and progressing through theoretical considerations.

L The empirical curves do not fit the exponential family. Their tails are genuinely slower than
exponential learning and this shape deviation docs not disappear with variation of asymptote.

2. The data do satisfactorily fit the family of generalized power functions (which includes the
hyperbolic subfamily). There is little, shape variance remaining in the existing data to justify
looking for other empirical families.

In particular, there is no reason to treat apparent systematic deviations, such as occur
in Snoddy's or SeibeFs data in log-log space (Figures 1, 6), as due to special causes,
distinct from their description as a generalized power function.

3. The data does not fit the simple power law (ie, without asymptote or variable starting point).
There are systematic shape deviations in log-log space (the space that linearizes the simple power
law), which disappear completely under the general power law.

4. We were unable to confirm cither whether the data (1) fits within the hyperbolic subfamily or (2)
actually requires the general power family. This is so despite the multitude of existing data sets.
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some with extremely lengthy data series (some of it as extensive as any data in psychology).

5. The major phenomenon is the ubiquity of the learning data, ic. its common description by a single
family of empirical curves. We extended the scope to all types of cognitive behavior, not just
perceptual-motor skill.

However, we restricted our view to performance time as die measure of performance,
though learning curves measured on other criterion also yield similar curves. Also, we
restricted our view to dear situations of individual learning, though some social (ie,
industrial) situations yield similar curves. Our restriction was dictated purely by the

itary need to bound the research effort.

6. Psychological models that yield the power law with arbitrary rate (a) are difficult to find. (Positive
asymptotes and arbitrary starting points are, of course, immediately plausible, indeed,
unavoidable.)

7. Models that yield the hyperbolic law arise easily and naturally from many sources - simple
accumulation assumptions, parallelism, mixtures of exponentials, etc

8. The various models are not mutually exclusive, but provide an array of sources of the power law.
Several hyperbolic mechanisms could co-exist in the same learner. Independent of these, if the
humans team by creating and storing chunks, as there is evidence they do, then the
environmental-exhaustion effect would also operate to produce power-law learning, independent
of whether there were other effects such as mixing to produce hyperbolic learning curves.

9. A maintainable option is that the entire phenomenon is due to exponential component learning
yielding an effective hyperbolic law through mixing.

This would cover not only the data dealt with here, but probably also the data with
other criteria and the data from industrial processes.

However, die exponential learning of the component learners remains unaccounted
for.

10. The chunking model provides a theory of the phenomena that offers qualitatively satisfactory
explanations for the major phenomena.

However, some of die phenomena, such as the industrial processes, probably need to
be assigned to mixing. Parsimony freaks probably will not like this.

The theory is pleasantly consistent with the existing general theory of information
processing, and avoids making any a priori assumptions.

Though power laws are not predicted for all task environments, die learning curves do
dosdy approximate power laws.
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