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Abstract

Practice, and the performance improvement that it engenders, has long been a major topic in psychology.
In this paper, both experimental and theoretical approaches are employed in an invegtigation of the
mechaniams underlying thisimprovement On the experimental sde, it isargued that a single law, the power
law of practice, adequatdly describes all of the practice data. On the theoretical side, a model of practice
rooted in modern cognitive psychology, the chunking theory oflearning, isformulated. The paper consists of
(1) the presentation of a sat of empirical practice curves, (2) mathematical investigations into the nature of
power law functions; (3) evaluations of the ability of three different classes of functions to adequatdy mode
the empirical curves, (4) a discussion of the existing modds of practice (5) a presentation of the chunking
theoryoflearning.
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MECHANISMS OF SKILL ACQUISITION
AND THE LAW OF PRACTICE!

L INTRODUCTION

Practice makes perfect. Correcting the overstatcment of a maxim: Almost always, practice brings
improvement, and more practice brings more improvement. We all expect improvement with practice to be
ubiquitous, though obviously limits exist both in scope and extent. Take only the experimental laboratory:
We do not expect people to perform an experimental task correctly without at least some practice; and we
design all our psychology experiments with onc eye to the confounding influence of practice effects.

Practice used to be a basic topic. For instance, the first edition of Woodworth (1938) has a chapter entitled
Practice and Skill. But, as Woodworth (p156) says, "There is no essential difference between practice and
learning except that the practice cxperiment takes longer”. Thus, practice has not remained a topic by itself,
but become simply a variant term for talking about learning skills through the repetition of their performance.

With the ascendence of verbal learning as the paradigm case of learning, and its transformation into the
acquisition of knowledge in long term memory, the study of skills took up a less central position in the basic
study of human behavior. It did not remain entirely absent, of course. A good exemplar of its continued
presence can be seen in the work of Neisser, taking first the resuits in the mid-sixtics on detecting the presence
of ten targets as quickly as one in a visual display (Neisser, Novick & Lazar, 1963), which requires extensive
practice to occur; and then the recent work (Spelke, Hirst & Neisser, 1976) showing that reading aloud and
shadowing prose could be accomplished simultancously, again after much practice. In these sudies, practice
plays an essential but supporting role; center stage is held by issues of pre-attentive processes, in the earlier
work, and the possibility of doing multiple complex tasks simultaneously, in the later.

Recently, especiaily with the paper by Shiffrin & Schneider (1977; Schneider & Shiffrin, 1977), but starting
earlier (LaBerge, 1974, Posner & Snyder, 1975), emphasis on automatic processing has grown substantiaily
from its level in the sixties. It now promises to take a prominent place in cognitive psychology. The
development of automatic processing seems always to be tied to extended practice and so the notions of skill
and practice are again becoming central. ‘

There exists a ubiquitoixs quantitative law of practice: It appears to follow a power law. That is, plotting the
logarithm of the time to perform a task against the logarithm of the trial number always yields a straight line,
more or less. We shall refer to this law variously as the log-log linear learning law or the power law of practice.

l1‘hispaper1'diesm| the daia of many other investigators. We arc decply grawcful to those who made available original data: John
Andcrson, Stu Card. Paut Kolers. Tom Moran. David Neves. Patrick Rabbitt. and Robent Seibel. We are also grateiul to John .\nderson.
Sw Card. Clayton Lewis and Tom Moran for discussions on the fundamemal issues: and ospecially 10 Ciayton Lewis jor letting us read
his paper. which heiped to cnergize us to this effort.
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Thisempirical law has been known for along time; it apparently showed up first in Snoddy's (1926) sudy
of minor-tracing of visual mazes (see also Fitts, 1964), though it has been rediscovered independently on
occasion (DeJong, 1957). Itsubiquity iswidely recognized; for instance, it occupiesamajor position in books
on human performance (Fitts & Posner, 1967, Welford, 1968). Despite this, it has captured little attention,
espeadally theoretical attention, in basic cognitive or experimental psychology, though it is sometimes used as
the form for displaying data (Kolcrs, 197S, Reisberg, Baron & Kemler, 1980). Only a single modd, that of
Crossman (1959), appearsto have been put forwardto explainit? It is hardly mentioned asan interesting or
important regularity in any of the modern cognitive science texts (Calfec, 1975, Crowder, 1976, Kintsch, 1977,
Lindsay & Normon, 1977). Likewise, it is not a part of the long hisory of work on the learning curve
(Thiustone, 1919, Guilliksen, 1934, Restle & Greeno, 1970), which considersonly exponential, hyperbolic and
IogisI'ic functions. Indeed, a recent extensive paper on the learning curve (Mazur & Hagie, 1978) smply
dismissesthelog-log for m asunworthy of consder ation and dearly dominated by the other forms.

The aim of this paper isto investigate thislaw. How widespread is its occurrence? What could it Sgnify?
What theories might explain it? Our moativation for this invéstigation is threefold. Fird, an interest in
applying modern cognitive psychology to user-computer interaction (Card, Moran & Newdll, 1980a,
Robertson, McCracken & Newell, 1980) led us to the literature on human performance, where this law was
prominently displayed. Itsgeneral quantitative form marked it as interesting, an interest only heightened by
die apparent general neglect of the law in modern cognitive psychology. Second, atheoretical interest in the
nature of die ar chitecture for human cognition (Newell, 1980) has led us to search for experimental facts that
might yield some useful congraints A genera regularity such as the log-log law might say something
interegting about the basic mechaniams of turning knowledge into action. Third, an incomplete manuscript
by Clayton Lewis (Note 2) took up this same problem; this served to convince us that an attack on the
problem would be ussful. Thus, we welcomed the excuse of this conference to take a deeper look at this law
oyl what might lay behind it.

In Section 2 we provide many examplesof the log-log law and characterize its universality. In Section 3 we
perfimn some basic finger exercises about the nature of power laws! In Section 4 we investigate questions of
curve fitting. In Section 5 we address the possible types of explanations for the law; and we develop one
approach, which we call the chunking theory of learning. Finally, in-Section 6, we sum up our results.

zm see Suppcs. Fletcher and Zanoui (1976). who do develop a mode! yielding a power law for ingructional learning, though ther
effort appears independent of a concern with the general regularity. Unfortunately, their description is too fragmentary and faulty to
permitit tobeconsidered farther.




PAGE 3

2. THE UBIQUITOUSLAW OF PRACTICE

We have two objccdvesfor this section. First, we amply wish to show enough examplesof die regularity to
lend conviction of its empirical reality. Second, die law is generally viewed as associated with skill, in
particular, with perceptual-motor skills. We wish to replace this with a view that die law holds for practice
learning of all kinds. In this section we will be presenting data. We leave to die next section issues about
alternative waysto describe die regularity and to yet subsequent sections ways to explain the regularity.

We organize die presentation of die data by die subsystem that seem to be engaged in dietask. In Table 1
wetabulate several parameters of each of the curves. Their definitions win be given at die points in the paper
wherethe parametersarefirst used. '

Data Set Power Law

T =BN"

B a r !
Sooddy(1926) 7920 26 .981
Croesman(1959) 1701 21 579

K ota (1975)-Subject HA 1485 .44 531

Ndascretal (1%3)
Tentargets Ldl H 573
Ooetarget 68 Sl 544
Cant English A Burr (1978)
Stepping keys-Subj. 14 455 08 33
Mouse-Sub). 14 102 .13 398
Shbd (1963)-Subject JK 1113 32 591

Aadenon (Note 1) - Fan 1 2358 J9 527

Maoan (Xm
Total time 3027 « .08 139
Method tune 1959 .06 182
Neres& Anderson (1980) _ )
Total time-Subject.D QL2 S 780
I be Gameof Stair
W00 games 1763 .21 149
Li?s Games 980 .18 142
Much (1952) 1001 J2 532

Table1: Power | .aw Parametersfar the
(Log-Log) Linear Data Segments.
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2J. Perceptual-Motor Nhdiis

Let usdart with iho historical case of Snoddy (1926). As remarked earlier, die task was mirror-tracing, a
duU that involves intimate and continuous coor dination of the motor and perceptual systems. Ffgure 1 pIots-
thelog of performance on the vertical axisagaing the log of the trial nOmba for asingle subject

100<k
g : . . —e T=120N5
+

10 o

10

T o rronm

1 10 _ 100
’ Trials
Figurel: Lmuningin aMirror Tracing Task (L og-L og Coordinates). |
Replotted from Snoddy (1926).

Thefirs important point is:
» Thelaw holdsfor performance measured as the time to achieve a fixed task.

Analysesoflearnihg and practiceare free a priori to use any index of performance: eg, errorsor performance
time, which decrease with practice; or amount or quality attained, which increase with practice. However, we
wfll focus exclusively on measures of performance time, with quality measures (errors, amount, judged
quality) taken to be essentially constant Given that humans can often engage in tradeoffs between speed and
accuracy, speed curvesarc not definable without a specification of accuracy, implicit or otherwise® Aswe will
illugrate Liter, the log-log law also appears to hold for learning curves defined on other performance criteria.
Though sgnificant for understanding the cause of the power law, we will only note the existence of these

"ASooddy used an indicator. I/(Timc+Errors), and we have replotted the figure using Ttmc+Errors. This strikes the modern eye as
jacoflffuous. adding together apples and oranges. In (act the measure is almost purely performancetime Snoddy was endeavoring to
cupe with the speed/accuracy trade o(t\ He fixed the error rate to be equal to the performance lime (in seconds): and had ihc subject
work faucr or slower in order tohold theerror rate at that level Thustheerror ratebore a fixed average relationship to tune: and adding
Hie 3CluaJ value of the errors to the performance time was a way of compensating for momentary shiftsin the fpccd/scciir acy tradeoff.
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other curves.

Several other thingscan benoted in Figure 1, which will show up generally in the other curvée

* The points are spar<e at the left and become denser to die right This arises from taking the log of
the trial number. Even when trials are aggregated into blocks this is usually done uniformly in
linear space. Thus, thisisjust an artifact of the display.

* Thereissystematic deviation at one end. Hereit isthe beginning. Snoddy made alot of this initial
deviation, though we need not follow him in this. Aswe shall see, systematic deviation can occur
at either end.

* Thereislittle doubt that die bulk of die curve liesalong a line in log-log space. This arises in part
because of the relatively large number of points available* The curves are for an individual, not
for grouped data. Thisisnot acondition of the law, but showsthat it holds for individual data.

* Data are rardy presented on many subjects, ‘though in some cases such data exists and
(apparently) is robust For instance, Snoddy took his curve as diagnostic and appears to have
gathered it on large numbers of individuals, though he never reported any mass of data.

In Table 1 we tabulate several critical features of die Snoddy's data. The following equations describe the
power law in linear and log-log spaces. ‘
T-Bir* ()
tog(7>log(5)-al og(iV) (2)
B is the performance time on the firg tria (N - 1) and a is the slope of the line, ie, the learning rate. A
positive value of a, eg, .26 for the curve of Figure U indicates a decreasing curve, since we have located the
minussign in the equation itsclfl

Another example from a task that appears to involve intimate motor'-perceptual coordination is shown in
Flgure 2. This is Crossman's (1959) famous data on die manufacture of cigars by female operators using a
cigar-making machine. Noteworthy is the number of trials, namely, up to 20 million cigars. Also, thereisa
known lower bound for die performance time, namely die cycle time of the machine. The curve eventually
deviates from the log-log line, flattening out in submission to physical necessity. Still, practice followed die
law for almost 3 million trials (and 2 years). Furthermore, additional small improvements continued; and it
would be foolish indeed to predict that no further improvements would occur. Crossman's data differs from
all other datain being cross-sectional ie, different individuals make up each point

Obvious deviations at the ends of the empirical curves were eliminated before the fitsin Table | were computed. The equations
thereforeprimarily represent this linear portion of the curve. The<olid Hno in Figure | (and in the following figures! reflects this fit.
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o—e T=10INZ

Machinecydetime

A end A L3

10000 100000
Number produced  (I00Q's)

10 100 1000

Figure2: Cross-sectional Sudy of Learning in Ggar Manufacturing (L og-L og Coordinates).
Rcplotted from Crossman (1959).

L 2. Perception

Figure 3 shows the data from one subject (of eight) in Kolerss well known studies on reading graphicaly
transformed text (Kolers, 1975). Here, die transformation is inversion of each line around its horizontal axis.
Thetask of the subject is to read many pages of such text for comprehension. Reading in general is acomplex
task, but the difficulties here are clearly strongly perceptual being caused primarily by the perceptua
transformation. Without inversion, reading is much faster and improves hardly at al (though we don't show
- Kolersscontrol dataon this). Inany event, asthefigure shows, learning islog-log linear.

Figure 4 shows some data replotted from a paper by Neisser, Novick & Lazar (1963). The task consisted of
finding any of multiple targets in pages of letters. The result was that, with practice, identification time
becomes essentialy independent of the size of the target set As Figure 4 shows, this data also follows the log-
log law, though there seems to be adlight drop at the end. These two curves (scanning for one target and for
ten targets) represent the two bounding conditions of the five used in the experiment. Each curve is the
average of Sx subjects. One of the reasons for exhibiting these particular curves is to point out that much
lear ning data in the literature fits the log-log law, even though it has not been plotted that way.
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L o L] I-!v-lg

Reading time (minutes)

Pages read

Figure3: learningto Read Inverted Text (Log-Log Coordinates).
Plotted from the original datafor Subject HA (Kolers, 1975).

[ON]¢

Time = scanned: ‘seconds)

1 | 10 | 100

Figure4: Leaminsto Scan for Visud Targets (Log-Log Coordinates).
Rcplottcd from Ncisscr, Novick & Lalar (1963).
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13. Motor Beharior

Figure 5 isfrom a tak where a subject seesa target mark appear on avideo terminal and has to position the
cursor at that mark (Card, English & Burr, 1978). Four different pointing deviceswereused: amouse, which
permits a smooth pointing motion isomor phic to the mation of the cursor, ajoysick; a set of sepping keys,
and a st of text keys, which allow movement by paragraph, word, etc. Some of these devices are well
described by Fittss Law (Fitts, 1954); some have a different Sructure. The two curvesin Figure 5 show the
mouse and stepping key data for one subject, averaged over blocks of 20 trials (excluding errors). For all of
the devices, the total performance time follows die law, though the degree of variability increases as one
movesfrom die Fitts slaw devices(the mouse) toward die other ones.

1OQr
g : _ -06
-~ B——@ Stepping keys  T=4SSN
s o—0 Mouse: 7= 302AT"
g
s 1
1 . 10 100

Block monber

Figure5: Learningto Use Cursor Positioning Devices (L og-L og Coor dinates).
Plotted from dieoriginal datafor Subject 14 (Card, English & Burr, 1978).

14. Elementary Decisions

Figure 6 is from atask designed by Seibel (1963) to prébe the d'ependence of reaction time on the number
of alternatives. It followed in the wake of the work by Hick (1952), Hyraan (1953) and others showing that
dioice RT waslinear in the information (bits) required to select the response, at least for amall ensembles (up
to 3 or 4 bits). The subject's 10 fingersrested on 10 response keys (shaped to fit the natural position of the
resing hand) and looked at 10 stimulus lights that wer e configured isomor phically to the keys. A subset of the
lightswould turn on. and the subject was to srike the corresponding keys. There arc 1023 (219 - 1) different
subsets of the lights hence, the arrangement achieves a Choice RT task of 10 bits. For our purposes what is
interegting is that the learning over a large numbcr of trials (40.000) was log-lug linear, though at the end the
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curve flattensout Thisis data for a single éubject, averaged over blocks of 1023 trials approximately the
same behavior was shown by each of three subjects. -

—s r-nﬁlf‘n

L}
ut
o6 woo . oo 100000
Trial number
Ffenrefc Learning inaTen Fihger, 1023 Choice Task (Log-Log Coordinates).
Plotted from the original dau for Subject JK (Seibel 1963).
27 Memory .

Figure 7 is from some unpublished work of John Anderson (Note 1). It shows learning performance in a
task thai would appear to sress mosdy memory, though of course it has both a perceptual and a motor
respCTae sspect The tak is an old-new judgment on a set of smple sentences, such as T he doctor talked to
the lady."” There is a fixed population of grammatical subjects, objects and verbs, a subset of these are seen
initially, and then sets of the originals phis distractors (made fiom the same pdpulations) are shown
repeatedly. After awhile of course a subject has seen both the targets and die digractors several times. The
figure showsthat the reaction time to make the memory judgment follows thelog-log linear law.

16. Complex Routines

Figure 8 is from some work done in connection with a general attack on understanding user-computer
interaction (Moran, Note 4). A specific, complex on-line editing task of completely rearranging a given
sentence of three clauses is being performed repeatedly. The task is absolutely identical each time. ie. the
same sentence. Thus we are seeing a subject smply follow an internally familiar, complex plan. The top
curve is the total time to perform the task; The lower curve shows the execution time attributable to the
specific method being used, computed according to amodel based on the keystroke sequence (Card. Moran &
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o—e T=230N1

Reaction time (seconds)

10 00 1000 10000
Trialnumber

Figure7: Learningin a Sentence Recognition Task (L og-L og Coordinates).

Plotted from the fan 1 data of Anderson (Note 1).
- Newell, 1980b). It decreases only if the subject makes some improvement that changes the number of
keystrokes, rather than decreasing think time. Both curves show log-tog linear practice effects.

Figure 9 shows a more complex cognitive task (Neves & Anderson,:In press), but one that ill can be
consdered asevolving toward acomplex routine. The tak isto find the rulejustifying each step in aproofin
a simple formal proof sysem, taken to mirror the typical proof sysem of synthetic geometry. The subject
facesa display that shows (on request) the lines of the proof, the axioms, or the theoremsthat are applicableto
derive new stepsin the proof. He mugt assign to each step whether it isan axiom or which rule isused in its
derivation. Asdiefigureshows, the timeto perform thistask follows the log-log linear law.

2.7. Problem Solving ) .

Figure 10 shows our own small addition to the population of tasks known to follow the log-log linear law.
As the ubiquity of the law became dear, it seemed that it was miscast as something applying only to
peroeptual and motor skills, but rather it applied to all forms of mental behavior. To test whether the law
applied to problem solving tasks, we had a single subject play 500 hands of a game of solitaire called Stair.




PAGE 11

~

—e Toultime: T= NTN®
+—t Method time: T = 19.59N"05

Editing time (seconds)

Plo A Y ......Ib A A .“.-.Ih .. " ;‘...IL.

Trial number

Figure 8: Learning of a Complex On-line Editing Routine (Log-Log Coordinates).
Plotted from the original data of Moran (Note 4).

[

et T= 99].2N.'51

Just{fication time (seconds)
g

A A A Ardembendedad

1000
Proof number

Figure 9: Leaming in a Geometry Proof Justification Task (Log-1.og Coordinates).
Plotted from the original data (Neves & Anderson, In press)
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© Stair involveslaying out ail 52 cards face up from a shuffled deck, in 3 columns (four with 7 rows,
four with 6 rows). There arealso four spots (initially empty), each of which can hold only asingle
card. The aim is to build four stacks, Ace to King, one for each suit, by moving cards around
under typical solitaire congraints. A card in a spot or at the bottom of a column may be moved:
(1) toaspat, ifit isempty; (2) to a gack, if the card is the next in order building up; or (3) to the
bottom of another column, if the card is the next lower in the same suit (eg, the sx of spades
appended to the seven of spades).

o—o Wngames T= vaN2
—=eA Lostgpt'T% 7= J80N"
0——0 Proportion of wins

100 1000
Gamenumber

Figure 10: Learningmthe Card Game Stair (Lpg—Lé_g Coordinates).

The game can be seen to be one of perfect information - al cards are faceup. The shuffled deck smply
picks out one of the possible initial conditionsat random. From that point no further chance element enters.

Whether the game can be won or not, or how many cards can be moved to the stacks, is derivable from the
' initial configuration. The subject, whose ability to calculate ahead is of course limited, may create a partial
plan and then proceed to execute it; in doing so, he may make irrevocable moves that lose him the possbility
of winning. But such failuresall arise, asin chess or checkers, because of his limited problem solving ability.
Although this task certainly has a srong perceptual component (and a weak motor component), it is to be
dassed as fundamentally an intellectual task, in the same way as games such as chess and checkers, or
problemssuch asthe traveling salesman problem.

Turning to the figure, the top curve shows the time for games that the subject won; the lower curve shows
thetime for gamesthat die subject lost; at the bottom the proportion of games won isshown. The pointsare
averaged over 50 games. There is of course only one scries of trials, Snce al games, won or lose contribute to
practice. Each group of 50 games is therefore split between the two curves before being averaged. Both
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curves essentially follow the Iog-Iog linear law. In general it takes longer to win than to lose, since losing
involves becoming stuck after a relatively small number of cards has been played to die stack, whereas
winning always involves working through all 52 cards (though the tail end goes rapidly).

The issue of die speed-accuracy trade off reveals itsdf in this data. Clearly, the subject is applying various
criteria of certainty to hisplay. He could conceivably, asa grategy choice, sudy each initial layout for 5 hours
before making hisfirs move; or play impulsively with no contemplation at aL In fact, the subject felt he had
little genuine control of die speed/accuracy tradeoff, partly because die complexity of the initial postion
made it unclear whether an apparently lost game wasjust a bad layout or was dueto a failure to spend enough
time analyzing. Note that die most deviant point ffom the log-log line (at 150-200 trials) corresponds to the
lowest win freguency.

18. Other Tasksand Measures .
The gory doesnot quite end at thispoint Learning in other tasks and measured on other criteria seemsto
fbQow thelog-log law. We give here aample of examples. )

Figure 11 isreproduced from Stevensand Savin (1962). It plots eight tasks with various response measures
in log-log space. The criteria are all oriented to increase with practice. The plot is actually of the cumulated
responses, ie, theintegral of the usual curve. Thisisjust the same asthe usual power law, since the integral of
apower law isa power law (though integration tends to smooch the curve, helping to account for the lovely
appearance of the curves, in addition to the reatively large numbers of subjects).

fr Bx-2dx-B{l-ar'{N'-" -I) . ' ®d

Some of these curves are time curves (actually, amount accomplished per unit time, to make them positive
curves); but saveral are not, eg, #1 is the number of correct anticipations in learning nonsense syllables, #2 is
the time on target in a pursuit tracking task; #3 is the number of balls thrown into a target area; #4 isthe
number of correct responsesin an animal experiment in learning a maze, and so on.

As a second type of example, it has long been known in Indugrial Engineering that the so-called learning
curvefor production of manufactured projects was tog-log linear. In part this comes of various smple rules of
thumb, eg," _ each time the quantity of [airfolancs is doubled, the cumulative average man-hours per plane
will be [reduced by] 80%" (Rigon, 1944). However, Figure 12 shows an empirical curve from machine tool
manufacture (Hirsch, 1952). Notice that the index of performance is not time, but cost
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Figure 11: Eight Cumulated Response Practice Cunres (L og-L og Coor dinates).
Figurefrom Stevens & Savin (1962). Copyright 1962 by the Society for the
~ Experimental Analysis of Behavior, Inc. :

23. Summary
We have shown some 12 diverse examples of the log-log linear law of practice for trials versustime. From

Table 1 wecan make one more particular point:

» Thelearning rates, a, areall lessthan one.

Our main point isthat the law is ubiquitous when one measur es the log of performance time against thelog
of trial number. Where the general impression seems to have been that the law showed up in perceptual*
motor behavior, we think it isclear that it shows up everywhere in psychological behavior - at least it cannot
eadly be regricted to some part of the human operation. '

‘Our proposition on ubiquity is extended, perhaps beyond our druthers, to learning curves involving other
measur es of pcrfonnance and even to tasks possibly (but not certainly) beyond the pale of individual human
behavior. We do not however claim that all learning islog-log linear. Nor do we claim that practice always
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1d

Total dirsct labor requirement per maching

1 : ' 10 100

Ffenre 12: The Effect of Practice on Direct Labor Requirement
Machine Production (Log-L og Coordinates).
Replooed from Hirscfa (1952).

leads to learning,

" We donot wish to assert that such an effect stems from a single cause or mechanism. Indeed, its ubiquity
might seem to indicate multiple explanations. We do wish to make one 'general comment about die regularity
and what might be expected from understanding it Its widespread occurrence implies that it dépends on
quite general features of die learning situation or of the system that learns. If we develop a theory that
depends on detailed perceptual or motor mechanisms, we will just create trouble for the more cognitive
instances, or vice versa.

One is immediately reminded of other examples of ubiquitous regularities and their explanation. The
normal distribution, which arises out of the independent additive combination of many smal increments, is
the most well known. Another, usudly known as Zipfs Law, gives the distribution for items according to their
rank order, which is common to word frequencies, city sizes, incomes and many other ordered phenomena
(Simon, 1955). Consistently, highly general stochastic models undcriy these various phenomena. They
explain the regularity, but leave open the detailed mechanisms that produce the stochastic processes.

Thus, in searching for an explanation for this regularity, we should expect at best to find some such genera
considerations. Though it will nottell usin detail about the learning mechanism, it may ill tell us something
worth having.
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3.BASCSABOUT POWER LAWS
In thissection we present somegeneral per spective on power lawsand what they mean.

3L Differential Formsand Rates of Change
Wedart with the power law and its equivalent log-log form:

T=B8N* . (4)
log(T) = log(B) ~ alog(N) (%)

It isingructive to see thisin terms of the local rate of learning, dT/dN?
dT/dN = -aBN™®"1 _ (6)
m-aT/N--(a/N)T )
- -gf /e T+ Va ' ) )

Now, one basdline form for learning is exponential. It can arise, for instance, from any mechanism that is
completely tocal If there is something Mat teams on each local part of a performance, independent of any
other part, men thechange in 7* (the sum of thé changesto each part of T) isproportional to T:

dT/dN--aT ©)
T-Be"*" (10)

Comparing misdifferential form to that of the power law, shows that power -law learning is like exponential
teaming in which theinstantaneousr ate a? decreaseswith N, te |
dT/dN = -«’T, Whereo'-aliV ' (12)

Both the exponential and the power function are monotonkaUy decreasing functions that asymptote at 0.
The decreasing rate of learning in the power function leads to its approaching asymptote much more slowly.
Ftgure 13 shows these two curvesin linear coordinates, with identical initial values (2? - 1). This corresponds
toN - 0 for the exponential, and N * 1 for the power. Thus, one way to think of power law learning is that it
isalearning processin which some mechanism is slowing down therateof learning.

Not every scheme of dowed-down learning leads to the power law. For instance, if we generalize the
differential equation above we get a different law:
dT/dN-{a/NP)T, whee(0*1 . : (12)
T-Be*"1'*x ; (13)
A repr&entath/e curve for fi lessthan 1 isalso shown in Figure 13, which produces asymptoting between the
exponential and the power law. '

SFor case of exposition we treat the trid number ;V as a continuous variable In {act nothing material dependson ic we could wort
with finite differencesthroughout at the cost of added complexity.
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—— Powerlaw: T=l00N1
cemrem  Generalized: T 1D0¢"
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Figure13: BaSeLearningCams: Power Law, Exponential and aGeneralized Curve,

The form of the power law can be appreciated in terms of a smple global rule, as well as in differential
- fixnu ' '

Power Law Decay: If T decreases by a factor 5 in the firg N trials, it will take another N(N-I)
trialsto decrease by a factor of 5 again.

Comparison with the corresponding global rulefor the exponential showsagain how much moredowly the
power law drops off:

Exponential Law Decay: If 7 decreases by a factor of 5 in thefirst N trials, it will take another N
trialsto decrease by afactor of 5 again.

12. Asymptotesand Prior Experience

Asgiven in Equation 4, thelaw assumes (1) the asymptote of the learning is0, ie, the task can be performed
in arbitrarily small time after enough learning; and (2) the initial trial of the learning occurs at the firg trial of
the measured series. Neither of these assumptions need be true.

The moregeheral form of the law is: _
T=A4+BN+E)~ (14)
A (=0) is die asymptote of learning as N increases indefinitely. E (=0) is the number of trials of learning that
occurred prior to the first trial as measured, ie, prior experience, it thus identifies the true starting point of
learning. (Neither A < 0 or E < 0 make immediate sense, given these interpretations: A < 0, £ » 0
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reproducesthe basic form of Equation 4.)

Plotting k>g(r - A) againg JCV + £) Hill yieldsagraight line whose dopeis-a. The difficulty of course
isthat A and £ are not known in advance, so the curve cannot be plotted as an initial exploratory step in an
investigation.

Oneadlternativeisjust to plot in log(7>log(j V) spare and under gand the deviations.
log(r - A) - tog(E) - alo*N » £) _ 05)
togfT) - log(5) - k>g(l - A/T) - alogdV) - alog(l + E/N) ) (16)

Thereisan error term for each parameter. If T islarge with respect to the asymptote, Ay, thenlog(l - A/T)
isdose to tog(l), which is 0. This occurs at early values of N. If N is large with respect to £, then log(l +
£/A0 isdose to log(l), which is0. Thus, die two deviations affect the curve at opposite parts Non-zero
valuesof £ distort the sraight line for taw Ng non-zero valuesof A digtort it for high N.

Figure 14 shows a power law with a garting point (-£) of -25 and a time .asymptote (A) of 5. Figure IS
shows the same curve in log-log space. Characterigtically, die garting point pulls the initial segment of die
curve down towards the horizontal and the finite asymptote pulls the high N tail of the curve up towards the
horizontal A central region of the curve appearsasadraight line. It is however lessthan the true dope(-a),
astheOneshows.

w3
— Gengralpowerlaw: T= 5+ 75("+25)

200 0 200 200 600 800 1000

Flgure 14: A General Power ["av Curve
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Figure 15: A General Power Law in Log-Log Coordinates.
The simple power law with the same a and B is also shown.
The derivative of the general power function in log-log space is given by:
d(log(T))/ d(log(N)) = -a (1 - A/T) / (1 + E/N) an
Itéanbeéeenthattheslopeiseverywhemmaﬂerthana,andbecoﬁnsincwsinglysoasétherdorE
“increases. A reasonable estimate of the apparent slope as viewed on the graph, a*, is at the inflection point. It
is easy to obtain by setting the derivative of Equation 17 to zero:
d/dN{d(log(T))/ d(log(N))] = (a/NXE/N - ad/T)(1 - A/T)(1 + l:'/I\I)'2 =0 (18)
a*=(aN*-E)/(N*+E) 19)

N* is the point at which the inflection occurs. The exact value of N* is not expressible in simple terms, but a
reasonable approximation is:
N* = [BE/aAY0*®) where E/N*<<a <1 : _ (20)

The structure of Figure 15 suggests that many of the deviations in the empirical curves could be due simply
to starting point or asymptote effects. Since the cffect of these two phenomena is to bend towards the
horizontal at separate ends, it is possible to tell from the curve in log-log space what cffect might be operating.
The original Snoddy data in Figure 1 providcs an cxample of a cicar initial deviation. It cannot possibly be
duc to an carlicr starting point. becausc the initial curve rises toward the vertical. However it could be duc to
the asymptote, since raising the asymptote parameter (A) will pull the right hand part of the curve down, and
make its slope stceper. The Scibel data in Figurc 6 provides an exampie where there are deviations from
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linearity at both ends. Use of a non-zero valuefor E (previous experience) will seepen the initial portion of
the curve, while doing likewise for A will steepen the high N portion of the curve. (The reults of such a
manipulation will be seen later in Figure 21.)

13-Trialsor Time?

Theform of the law of practice is performance time (T) as a function of trials (N). But trialsisSmply a way
of marking die temporal continuum (/) into intervals, each one performancetime long. Since the
performance time is itself a monotone decreasing function of trial number, trials (AO becomes a non-linear
compression. of time (/). It isimportant to undergand the effect on the law of practice of viewing it in terms
oftimeor in teemsoftrials ' '

Hie fundamental relationship between timeand trialsis.
N
=Tyt iiTi v~ A - B @
ro isthetime from the arbitrary time origin to die gart of die firg trisl  This equation cannot be inverted
explicitly to obtain an expresson for N(t) that would permit the base law (Equation 4) to be transformed to
yied T{(). Instead, we proceed indirectly by means of the différential forms. From Equation 21 we obtain:
dt/dN-T (22)

(Think of the corresponding integral for mulation, d/dzf :]{x) dx «/(2)).

Now, garting with the power law in termsof trialswe gee

dT/di-(dT/dN)/(dlI/dN)-(-aT/N)/(T)--a/N . ' : (23)
But from the bask equation.(4):

N-(T/By"? : (24)
Thus, weget dietrialspower law re-expressad in termsof time:

dr/A--an-taptla (25) .
For a * 1thisintegratesto yield: ‘

j-a-«Ve»(1.ay8- 11«1 ct fora+l (26)

But C isan arbitrary congtant of integration and if the origin and scale of / is adjusted appropriatey we get:
TaBrvl-a forgal ' (27)

Thus, a power law in terms of trials is a power law in terms of time, though with a different exponent,
reflecting the expansion of time over trials. The results are sgnificantly altered when a « | (the hyperbalic)
however. Equation 25 becomes: '

dT/dt - -B~'T (28)
Thisisno longer the differential form of a power law. Ingead it is that of an exponential:
T-Ce*'1 . : (29)
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It-isleft-asan exercise for the reader to confirm that an exponential function in trials transformsto a linear
function in time (hence. Zcno-like, an infinite set of trials can be accomplished in afiniteamount of time).
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AFITTING THE DATA TO A FAMILY OF CURVES

Given empirical curves, such as occur in abundance in Section 2, it isimportant to understand how well
they are described by curves of a given family (eg, power laws) and whether there are alternative general
forms that fit them just aswell (Asnoted in the introduction, exponeritial hyperbolic and logistic curves have
enjoyed much more favor than power functions). Curve fitting without benefit of a mode is notorioudy a
black art Nonetheless, we have ddiberatdy chosen not to be modd driven initially, because we want to have
empirical generalizations asthe starting point in the search for theory, notjust theiaw data. .

The basic issue of curvefitting can beintroduced from Seibei's own treatment of his data (Figure 6), which
appearsto be an extremey good fit to the log-log law over an extensiverange (40,000 trials). Scibd (Seibdl,
1963) fit his pointsto threecurves by least squares. (1) apower law with asymptote only (ie, E fixed at 0); (2)
an exponential with asymptote; and (3) a general power law with both asymptote and starting point® He
obtained an r? of 391 for the power flinction with asymptote only. But he also obtained an r? of .971 for the
exponential with asymptote. Hisgeneral power law fit was .997. (His parametersfor asymptotes and garting
points are mostly reasonable, but not entirely.) Thus, all the curves give good fits by normal gandards. If
only differencesin the least squared resdual are used, there can hardly be much to choose from. Thisis an
annoying result, in any case; but it is also somewhat unexpected, for the plots that we have shown, though
they surdy contain noise, are still impressively linear by intuitive sandards and involve lots of data.

It isimportant to recognize that two bask kinds of failure occur in fitting data to a family of smooth curves:
(1) failure of the shape of die data curve to fit to die shapes available within the family; and (2) noisein the
data, which win not be fit by any of the families under consderation or even noticeably changed by
parametric variation within a family. These digtinctions are precisdy analogous to the frequency spectrum of
thenoisein diedata. However, the analogy probably should not be exploited too literally, snce an attempt to
filter out the high frequency noise prior to data fitting smply adds another family of empirical curves (the
filters) to confound the issues. What does seem sensble is to attempt to distinguish fits of shape without
worrying too much about thejitter.

A simple example of this point of view is the (sensible) reection of the family of logistic curves from
consideration for our data. The logigtic provides a sigmoid curve (ie, a dow but accderating dart with a point
of inflection and then asymptoting). No trabe of an Sshapc appearsin any of our data, though it would not
bé lost to view by any of the various monotone transformations (logs, powers and exponentials) that we are
considering. Hence, independent of how competing the measure of error, the logistic is not to be considered.

The dze of thejitter (ie, the high frequency noise) win limit the precison of the shape that can be detected
and the confidence of the gatements that can be made about it. It provides a band through which smooch

6l‘heexponential istrandation invariant, so a special staiting point isnot di&mgusfaablc for k.ie."ér £ -(BeE)év -fl Vv.
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curvescan bethreaded, and if that band iswide enough — and it may not have to be very wide— then it may
be possible ID get suitable members of conceptually distinct curves through it In all cases, the main
contribution to any error measure will be provided by thejitter, so that only reatively small differences will
distinguish thedifferent fam22in

4L The Data Analysis Procedure
With die dimination of the logistic ffom consideration, we have focused our efforts on three families of
curves. exponential, hyperbolic* and power law. The analysis procedure that we have ended up using is
primarily graphical in nature. We look at what types of deviations remain, once an empirical curve has been
fit opdmafly by a family of theoretical curves. The analyss consists of judgments as to whether the deviations
represent actual distortions ofshape, or merdy jitter. The procedure has the following components:
L Find spaces where the family of curves should plot as straight lines. Judgments of shape deviation

aremog easly made and described when the norm isaline. Thesearc die transformation spaces
ofthe given family. There may be more than one such space.

2. For each family of curves, find the best linear approximation to the data in the transformation
gpacesof the family. Thiswill generally involve acombination of search and linear regression.

3. Accept acurvefor a family, if the best fit plotsasa straight linein the space of that family. Reject
it, ifit has ignificatif. shape distortion.

4. Understand the shape distortion of family X when plotted in the space of family Y. Expect curves
of family X to show the characterigtic distortion when plotted in the spaces of alternative families.

5. Compute an estimate of fit (r?) for the best approximation in each transformation space. Expect
these valuesto support thejudgmentsmade on the basis of shape digtortion.

These criteria contain dements both of acceptance and regection, and provide a mixture of absolute
judgments about whether data belongs to a given family and rdative judgments about the discrimination
between families The parameter: for thy hezt fit* & widl agripuPArimat™ tyf flj (r) 1 n fry found *n Thififr 2,

The remainder of this section shows how we applied this data analysis procedure. We will start by looking
at the trandformation spaces. This win be followed by an examination of the distortions that occur when a
theoretical curveisplotted in aspace belonging to a different family. Wewill then bein a position to analyze
acouple of the empirical curves that appeared in Section 2.

42. The Trandormation Spaces

The curves that we are interesed in belong to multi-parameter families (3 for the exponential .and
hyperbalic; 4 for the power law). Regression can be used tofit alineto an empirical curve plotted in a multi-
dimensional space. Unfortunatdly, for the three families that we arc interested in. there is no space in which
al of the parameters (3 or 4) can be determined by linear regresson. The most that we can get is 2
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DrtaSet Exponential N IfypcfboK ¢ Power Law
T=d4+8c" '=A+B/AN+E) T*A+B(N +i5y®
A B a 1 A B E 2] A B E a r?

Sooddy(1926) 27.01 3880 061 516| 2449 2436 13 562 2L74 1292 oD .71 575
Crossman(1959) 719 459 uxlo"” 142| 710 14xI0° 151000 583] 651 20481 31000 .66 590
K okrs(1975) -Subject HA L3 312 108 849} UO 9402 91 515 18 1535 00 46 531
Nasser etal. (1963)

Tenurgets S 13 23 505 00 174 5 565 .00 135 6 95 565

Onetarget . Jos 44 JOH 538 .00 316 46 551 .00 257 35 54 551
Card, English & Burr (1979) .

Stepping keys-Subj. 14 135 159 mi J3s}) 114 17L.4 753 338 .02 636 93 24 340

Mouse-Subj. 14 L46 L28 028 452} L46 1670 ° 50 603 59 438 00 33 .729
Seibel (1963)-Subj ect JK J71 461 000055 556| 328 3888) 3042 593} .324 24395 2690 55 593
Anderson (Note 1)-Fan 1 487 383 00055 774 466 23L6 3197 502] 353 4322 d0 39 547
M oan (1980)

Total time 1310 666 .00073 546} 1477 33355 4746 .637 03 3024 00 .08 139

Methodtime 1161 111 0010 652} 1L75 13811 3600 .737 2B 1935 00 .06 182
Neves& Anderson (1980)

Total time-Subject D 575 2402 019 660 416 50003 73 728 00 99L2 00 51 .780
The Game of Stair

Won games 476 319 0052 689 449 29600 401 .783] 120 1763 00 35 149

Lost Games 152° 326 -.0016 634] 247 41270 1241 .751 1 1009 15 29 141
Hindi (195" 176 . 435 070 119| 134 3705 45 197 00 1001 00 .32 532
General Power Law as

T=5+175N+ 25 721 678 0037 983] 641 10696 9L2 597] 500 7485 245 50L000
40 Term Additive Mfcture L60 4537 0065 504 58 1232 102 597 29 7531 12 19 598
Chunking Model

Combinatorial TE 461 471 006 5577 4J5 3657 55J 592§ 216 1740 66 J3L000

Table2: TheGeneral Learning Cunres. Parameters from Optimal Fits
in the Log Transformation Spaces

parameters. The remainder must be determined by some other means, such as search. The choice of which

parametersare to drop out of the analysis determines the transformation space. We have primarily worked in

two different types of transformation spaces. The first type consists of the log spaces. These are the most

commonly used linearizing spaces for functions with powers. The log transformations that we use are the

following:
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Exponential: 7" «log(S)-aiV, fbrT-log(r-") (30)

Hyperbolic r-log(S)-tf', forT «log(r-iOandAr-log(tf+ E) (31)
PtowerLaw: T- log(2*) - aN*q fi>rr-log(r-")andiVv-k)g(iv + £) (32

The log spaces for the hyperboalic and die power law aim out to be the gandard log-log space, while the
exponential is in semi-log space. Deter mining fits in these spaces reguires a combination of search (over 0 g
A £ Tjsinand 0 < E) and regresson (for B and a). Since the exponential and hyperbolic families are each
missing one of these parameters, the process becomes smpler for them. The exponential only requires a one
dimensional search (over 0 < A < T" while die hyperbaolic can replace die regression (for B and a) with
the computation of the average for B.

The log spaces have been used exclusvely for the data analyses diat will be described in die following
section (Table 2 was computed in die log spaces). It isimportant to realize though that they are not die only
transformation spaces that can be used. We have explored what we call die T-X gpaces, though space
precludes presenting the analyss. Trangorming a curve into its T-X space involves pushing all of the non-
linearitiesinto the definition of A" as follows

Exponential: 7- A + BX, fbrA>€™ "~ (33
Hyperbolic: T-A + BX, fordT «l/(iV+£) (34)
PbwerLaw: T-A+BX. for*e(#+£)" o (35)

In the T-X spaces, searchesareover a > 0and £ >0, with A and B determined by regresson. Only single
dimensional searches are needed for the two 3 parameter families. The T-X spaces prove especially useful for
estimating die asymptote {A\ since it maps into die intercept of the transormed curve.

43.TheTheoretical Carres

When acurveisoptimally fit in a space corresponding to its family, it plotsasa graight line (by definition).
Thisis not true though when die curve isfit in a space corresponding to some other family. There will be
digtortionsthat show up as nonlinearitics in the plot By understanding these characterigtic shape digortions,
weare ableto interpret the deviations that we find when we plot the data in these spaces. Thiswill help usto
distinguish between randomjitter, and distortions that signal a bad fit by die family of curves. Data that plots
with the same deviations as one of die theor etical curves has a good chance of belonging to that curve's family.

Figure 16 showsthe best that a power law can befit in exponential log space. The power law curveis.
Ta$5+75(N + 25 - (36)

Thisisthe samecurve that is plotted in Figures 14 and 15. The parameters for the optimal exponential fit
can be found in Table 2. The r? value of 583 is deceptively high, as an examination of Figure 16 shows.
There arc grong deviations in all portions of the curve. The curve gartsout high, goes low, then high again,
and finally tails off downwards. |f we sec deviations of this type when a set of data has been optimally tft by
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mi exponential we can conclude that the ex_ponential family is not a good modd for the data, and that the
" power law might be.

Figure 17 shows the same curve optimally fit in hyperbalic log space. We see die same sons of deviations
that were found in the exponential case, but they are much attenuated. It win be hard to rule out the
hyperbalic family in"such a case because die variability of the data is likely to svamp out much of die
digtortion. At most we can hope to see the dight upturn at low N and die dight downturn for highiV.

It isnot necessary to look at the theoretical plotsfor the hyperbolic asit isa special case of the power law.
It will plot with no digtortion in die power law log space, and it will have die same type of digortion in the
exponential log gpace asdid die power law. Thisleaves only exponential curves to be examined. We cannot
present a plot of die optimal fit of an exponential in die power law log space. All attempts to find such
optimal fitshave led to at least one of die parameters requiring a value that is too large to be represented in
our computer. Though this makes die generation of a plot impossble, this information can be used in lieu of
aplot Ifanalyssin the power law tog space leadsto immense parameter values, then that is evidence againgt
apower law, and for an exponential.

In addition to this information, it is useful to see what an exponential function looks like in log-log space.
Figure 18 ischaracterigtic of such plots. In log-log space, exponentialstend to have aflat portion followed by
arapid drop to asymptote. The central portion isconsderably steeper (a > 1) than the equivalent portion of
dieempirical curvesthat we have seen, and die asymptote isapproached more suddenly.

44. The Analysis ofa Data Set .

Wecan now use the machinery that we have gener ated to analyze the data from some of the tasks in Section
~ 2. Thereisno space to provide a detailed examination of die data analyss techniques or of their results over
the entire data set. But we do need to illugrate diem enough to support the conclusions. To do this we win
look closdly at two curves: Kolersssubject 3 (Figure 3) and SeibeT's subject JK (Figure 6).

Wewill firgt attempt to show that the exponential is not a good fit to die data, that shape distortionsremain,
even though die measure of fit is impressive. Then we will attempt to show that both the general power and
the hyperbolic families provide adequate r epresentations of the empirical curves.

AAL. Theexponential family _

Figure 19 showsthe optimal fit of Seibefs data in the exponential log space. Aswas true of the theoretical
power law curve, the value of r? and die the plot of die optimal fit tdl different stories. The value of r?isa
respectable .956, 0 the exponential family can account for over 9% of the variance of ScibcFs data. The
characteritic power law distortions can be dearly seen in the figure though. The value of r? notwithstanding,
Sdbcl'sdata is not adequately fit by an exponential curve.
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-~ Powerlaw: T=$+ TN + 25
——— Bestexponential fit: T =721 + 67
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Figure 16: Optimal Fit of a Power Law m the Exponential Transformation Space (Semi-Log Coordinates).

&~ 1
e Powerlaw: T= S + TSN + 25
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Figure 17: Optimal Fit of a Power Law in the Hyperbolic Transformation Space (Log-Log Coordinates).




PAGE2S

K 100
E— .
s —=== Exponedtia: 7/ 5+ 75¢" %°*
1G
1 - 10 : 100 1000

Figure 18: A General Exponential Function in Log-L og Coordinates.

The same distortions can be seen in Kolerss data when it is optimally fit by an exponential (Figure 20).
Though they are somewhat obscured by die variability of the data, there are signifi'cant nonlinearities. With
respect to the optimal fit, the datais high, then low, then high, and finally low again. These digortionsarethe
sgnal that Kolerssdataisalso not adequatdly fit by an exponential curve. '

4A2. Thepower law family _

In contrast to the exponential plots, the power law plots are highly linear. Figures 21 and 22 show die
optimal power law transformations for the two data sets. Very little needed to be done to Kolerss data to
achieve die optimal fit (the asymptote was assigned the value of .18). There wasnot much to sraighten out in
Kolerssdata to begin with. Figure 3 shows that even the raw tog-log plot of the data is quite linear. Scibel's
dataisadifferent matter though.- In the raw tog-log plot it has deviations at both ends of the curve. By giving
non-zero values to die asymptote (324) and to the prior experience (2690), the data gets sraightened. This
graightening yields a sharply higher a. It rises ffom .32 to .95 during this process. Though seemingly large,
theinitial experience of 2690 trials is not excessive, given the full trial range of 70,000.

The linearity of the optimal power law plots is grong evidence for the power law as a modd of learning
curves. This is bolstered even further by the r® values which are considerably higher than chose for the
equivalent exponential fits (.993 vs. .956 for Scibel, and .931 vs. .849 for Kolcrs). An examination of Table 2
reveals that the value of r? for a power law fit is higher than for an exponential fit for all of the practice curves
that we have examined. ' '
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Figure 21: Optimal Fit to SeibeTs Data in the Power Law Transformation Space (L og-L og Coor dinates).
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Ftgorc 22: Optimal Fit to Kolcrss Data in the Power Law Transformation Space (L og-L og Coor dinates).
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- 441 Thehyperbalic family

bisnot saurprising that Seibefsdatais wel fit by a hyperbolic since the optimal power (a) turned out to be
55. Ther?valueremainsunchanged in a shift of ato L and the plot remains highly linear (Figure 23). What
ismore surprisng (considering the amount of data involved) is that Kolcrss data (with an optimal a of .46) is
also adequatdly fit by a hyperbolic (Figure 24). By assuming larger values for A and £\ the whole curve is
tilted to be steeper. Thereisasmall lossin r? ffom .931 for the power law to 915 for the hyperboalic, but it is
nowhere near as large a drop as to the exponential (.849). There does appear to be a small upturn at the
beginning of the curve, and a smilar downturn at the end, but the overall deviation ftom linearity isnot large.
Thissmall inferiority of the hyperbalic (with respect to the power law) must be traded off againg the fact that
it hasonekss parameter.

451 Summary ) _

Table 2 show the results of this analysis for all of die data sets shown in Section 1 We bédlieve that it
establishes the reasonableness of excluding the possbility that practice learning is exponential and the
reasonableness of describing the data by power laws. The hyperbolic family is somewhere in the middle.
From Table 2 it isapparent that most of the data sets can be adequately modelled as hyperbolks. There are
casesthough, such asthe datafrom Moran (Note 4\ that do seem to suffer by the loss of the extra parameter.
It would be nice to be more precise about die appropriateness of the hyperbolic, but the data we have
considered do not allow it These conclusions agree with those of Mazur and Hagie (1978) in rgecting
exponentials, but not in reecting general power laws.
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5. POSS BLE EXPLANATIONS
For the purposes of this paper, we have come to accept two propositions:

* Practice learning is described by performance-time as a power function of the number of trials
since the start of learning (the hyperbolic is included as aspecia case).

» The same law is ubiquitous over al types of mental behavior (possibly even more widely).

What are the possible explanations for such a regularity? In this section we try to enumerate die major
aternatives, and concentrate on one.

There seem to be three major divisions of explanation,. The first reaches for the most general characteristics
of the Iearhi ng situation, in accord with the end of Section 2 that such a widespread phenomenon can only
result from some equally widespread structural feature. One of the assumptions underlying much of cognitive
psychology is die decomposability of thought processes. A task can be broken down into independent
Aca’w, Mixture models attempt to derive the power law from the aggregate behavior of such acollection of
independent learners. The second division is some sort of improving statistica selection, in the manner of
mathematical learning theory or evolution. No specific orientation exists to obtain die power law. Rather,
simple or natural sdlective schemesare simply posited and examined. The third division takes the exponential
- as somehow die natural form of learning. Observing that the power law is much dower, it seeks for what
dowsdown learning. What could be exhausted that keeps the learning from remaining exponential ?

Wewill concentrate on an explanation of the exhaustion type. However, we do not consider it the exclusive
source of the power law of practice. So wefirst wish to lay out the wider context, before narrowing to one.

5X General Mixtures
Thefollowing qualitative argument has acertain appeal

The Mixtures Argument: Performance depends on a collection of mechanisms in some monotone
way - ie, an increase in die time taken for any mechanism increases (possibly leaves unchanged)
the total performance time. The learning mechanisms that improve these performance
mechanisms will have a distribution of rates of improvement - some faster, some sower. At any
moment total system learning will be dominated by die fast learners, since a fortiori they are the
fist (mes. However, the fast learners will soon make little contribution to changes in total
performance, precisaly because their learning will have been effective (and rapidly so. to boot), so
the components they affect cannot continue to contribute substantially to total performance. This
will leave only dow learners to yield improvement. Hence the rate of improvement later will be
dower than die rate of improvement initially. This is the essential Teature of the log-log law - the
dowing down of the learning rate. Hence learning in complex systems will tend to be

approximately linear in tog-log space*

The great virtue of this argument, or some refinement of it is that it would explain the ubiquity, even unto
the industrial production functions.

We do not know how to examine diis law in full generality. However, restriction to a subclass of learning
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functions, ifthe subclassisrich enough, can shed some useful light on the issue, for the argument should hold
for thesubclassaswdlL

The complete definition of a mixture mode requires both the specification of a class of learning functions
and a scheme by which they are aggregated. A natural class of learning functions are the exponential
functions. They form arich enough class (a three parameter family of a, A and B). They also are asgood a
candidate as any for primitive learning functions. We can place sufficient regtriction on the means of
aggregation if we assume that performance consists of the serial execution of sub-tasks. This places us within
die class of additive systems, ie, where each component adds it contribution to the total performance’ The
result isthat T isaweighted sum of exponentials:

T-Ew+f | (37)

Figure 25 shows a plot in tog-log space of a forty term sum with weights (the Ws) and rates (the p's)
selected at random (0 < 1V, <SandO</i, < J). One gets areasonable approximation to astraight line over
much of therange, though it isa little wavy.

1 — 0 100 — 1000

Figure25: A Forty Term Additive Exponential Mixture (L og-L og Coor dinates).
Theweights (0 < W, < 5) and exponents (0 < p, < .1) were selected at random.

1Simp|eadditive combination is not the only way to put learning mechanisms together. Clayton Lewis (Note 2) explored the notion of
series-parallel combinations of exponential learning mechanisms. The results were unclear, sometimes looking log-log, sometimes
looking more like an exponential, sometimes wandering. He.arrived (Note 3) at the position that another source of constraint or
uniformity is needed.
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Mixtures of this type have one primary source of variation: the set of weights {3,}. The plausibility of
mixture models as a source for power laws can best be evaluated by determining the classes of functions that
are generated under reasonable assumptions for {W,}. If the result is always a power law, then mixture
models are strongly implicated. On the other hand, if any function can be generated with equal facility,
mixtures would be of little use as an explanation for the ubiquity of power laws.

Sums of exponentials do provide a sufficient ensemble of functions to compose (essentially) any function
desired. A convcnient way to see this is to go over to the continuous case:

T = [ Wae™ dn 39

On the one hand, this simply expresses the continuous analog of a sum of exponentials: the exponential for
every p is represented, each with its own weight, W(p). On the other hand, this will instantly be recognized
(at least by engineers and mathematicians) as the Laplace Transform of the function W (Churchill, 1972).
The significance of this is that we know that for any function T(X) there is a function W(p,)thatpmchmit.'
Thus, by choosing appropriate weights, any total learning function whatsoever can be obtained.

We can of course choose weights to make 7" a power law, as in Equation 4, with @ and B. Consuiting any
standard table of Laplace Transforms shows:

W) = (B/T(a))p - ' (39)
That is: ]
T(N)=BN %= f: (B/T(a)p - DesN gy ' (40)

The component exponentials correspond to learning at all rates, indefinitely fast (large p) to indefinitely
slow (small ). Since (1 - a) > 0, the weight ¥ becomes very small for fast learning and very large for slow
learning. Without a justification for this particular distribution of weights, it would seem implausible that
mixtures of learning components would always lcad to power laws.

However, we can turn the argument around and get a positive result. One distribution of weights for which
there is a natural justification is the rectangular, ie, all component processes have the same weight, at least
stochastically. This is especially true in the prescnt approximation, where a random distribution of weights
would be taken to be rectangular. As can be seen from Equations 39 and 40, this corresponds to (1 - a) = 0,
which yields a = 1. The resulting law is the hyperbolic.

It is beyond the bounds of this paper to inquire how closely random weighting functions can be
appmximatcd by the mean. Within our limits, it appcars that a mixture of exponcntials yields.a special case of
the power law, namcly the hyperbolic. Put together with the results of the data-fit analysis, which showed that

8Tlmstbcutnhematimﬂywcllbchavedinccm:inw:nstobcsn represented. but these are of no consequence in the present context.
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hyperbolics were a reasonable candidate descriptive curve, this adds up to a significant observation (it can
hardly bediginguished asa " result").

Real mixtures can only gtrive to approximate the distribution of exponentials that the use of rectangular
weightsimplies. They must fail short because there can only be a finite number of components. The initial
portion of Figure 25 is flattened because of the lack of terms in the mixture that decay quickly enough to
affect that portion. We redricted the fagest term to have a /t less than X but there must always be a
maximum p. Regions of the curve which are affected by only a few terms will look highly exponential,
leading to a roller coagter effect where two such regionsmeet (eg, for N in dieregion [10, 200] in Figure 25).
In legionswhere only oneterm isreevant, the curve isan exponential Thismugt always occur at least in die
tail of the curve, where only the dowest term in the mixtureisgtill active.

The amount of deviation within aregion of die curve is thus determined by die number of terms affecting
that region. Linearity over awide range requiresalarge number of termsin the mixture.

52. Stochastic Selection
The work in gochagic modelling generated a large range of models, wdl beyond what we can review.
However, afew of the modelsare particularly relevant to thiswork.

5.2.1. Grossman'smodd )

Twenty yearsago, Crossman (1959), in an effort dmilar in pirit to die present one, wrote apaper reviewing
much data on practice. He proposed a general model based on an improving process of sdecting methods
from afixed population of methods with fixed durations, {/,.}. Improvement occurs, because each method is
" selected according to a probability and these probabilities are adjusted on the basis of experience. Namely,
the change in probability is proportional to the difference between the mean time, T(N)g and the actual time
of the selected method, /,:

«Pi»-*<* -W» : (4

By assuming that the entire probability vector shiftsat each trial according to its expected adjusgment (ie, as
if all methods were tried each trial, each with frequency .\ the expected shift for the mean time can be
expressedas - '

T{N+) - T(N) - *Vai(iV) ' (42)
WhereVai(AO is die variance of the{/,.} on cycle N. In general, the time cour se cannot be calculated, without
knowing the actual digtribution of the t, for diefollowing, reationships hold for this model (Mj(N) is diejth
moment of die {/,.} on cycle N):

T(N) = My(V) (43)

Var(N) = M,(N) - (M (W)Y (44)

Mj(N+1) =(1+&M l(:V))M j(N) - ij‘_ l(N) (45)
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Thus, asN increases, higher moments of the initial distribution are needed to compute Vai{JV). Crossman
assumed a (somewhat arbitrary) example distribution and examined the resulting curve numerically. In log-
log space it plotted as a sgmoid with a large straight section, somewhat in the manner of Figure IS. He
concluded that it was a satisfactory form of model though clearly needing more development

Unfortunately, the model rests very heavily on the way it uses its expected value assumptions. Ascan be
seen from Equation 41, nothing preventsp, from moving outside die [0,1] interval, thereby violating the basic
property: of being a probability. Indeed, if the Hh method is selected often enough, it must move outside.
Crossman avoids the unavoidable by making die change redlly be p,Sp, the expected change. Even this
modification is not sufficient to guarantee that/? remainsin the range of [0,1]. If i sgreater than I/(/qax -
ttna) t~* ¥ * POBftte " *Pmm.to be less than -L  An additional assumption about the legal values of k
could of course be added to handle this problem.

We have expounded Grossman's model at some length, because it is not only die one existing atterhpt to
deal with the power law data, but it isoften referred to asa viable explanation of this law.

522* The Accumulator and Replacement models

Among the badc stochagtic teaming models two broad classes are often digtinguished, depending on
whether correct responses replace incorrect ones ~ called replacement models - or whether correct responses
are smply added to the total pool, thus gradually swamping out the incorrect ones — called accumulator
models. A presentation of these two modelsis given in Restleand Greeno (1970).

The replacement models yield exponential functions (when expressed in terms of rate of generation of
correct responses). It isworth taking a look at an accumulator mode, as it will provide another model that
yields die hyperbolic Restle and Greeno show that the proportion of correct responsesin the pool at trial N
(Pn) isgiven by (die interpretations of the other parametersare not important for our pur poses):

VI* + *othw & * *<tf-D (46)

Toget thisin termsof time, we can assume that the time to generate a response is inversay proportional to
therate of generation of correct response. Thus T(N) would be the inverse of Equation 46:

TTiV)-[I + ~A3V.D)[6+ MA-1)] ) (47)
With alittle rearrangement, this becomes:
TN) - [I/a] + [(a-6)/9% /(N +[b9a - ID (48)

Thisis the equation for a general hyperbolic*function, with A » I/a, B »(a-b)/8a\and E * b/Ba -L




PAGE 38

S3. Exhaustion of Exponential Learning

The notion of exhaustion comes from examining Equation 11. A power law islike an exponential in which
the exponent (a) docs not remain constant over trials In fact, a decreases as I/N. An exhaustion model
would postulate that this decrease stems from the diminishment of some necessary portion of the learning
process. Many different exhaustion models can be developed according to what is being diminished. We
have concentrated our efforts on one variety of exhaustion model; what we call die chunking model of
learning. Before weexamineit in detail, it is ussful to look briefly at the range of possible exhaustion models.
In thedécriptionsthat follow it isassumed that the learner uses some method for the performance of the task
on which heisworking. Learning conssts of finding and incor por ating improvements to the current method.

« | mprovementsharder tofind(Search exliaustion): I|mprovements may not alwaysberight at hand.
It would then be necessary to search for improvements that can be made in the method being
used. Each time oneis found, it would result in the time (T) decreasing by some constant factor
(a\just asin exponential learning. Asimprovements are found and applied, the space of unused
improvements becomes sparser, decreasing the rate at which new improvements can be found.
The effectiverateof learning would thus be dowed.

* Less timefor improvement (Time exhaustion): If learning is exponential in time (rather than in
trials), then asthetrialsget shorter, thereislesstime for improvement on each trial  From Section
3 J weknow that an exponential in timeyieldsa hyperbadlicin trials.

One long standing view is that learning conssts of trandorming a ddiberate, conscious and
resource limited process into an automatic, unconscious and resource independent one. One
image of this in mechanism is that learning consists of a tranformation from a serial to a paralld
processing gructure. The amount of processing required remains constant Only the elapsed time
until completion decreases. Exhaugtion occursiifit is assumed that learning is proportional to the
amount of time available (7) — the usual exponential assumption. Asthe amount of process that
ispacked into afixed time dice increases, the amount of learning per unit of process would haveto
decrease. A smpleversion of thismodd that we have developed yidldsthe hyperboalic.

# I mprovementslesseffective (Effectivenessexhaustion): |mprovementsused later in lear ning, may
proveto beless effective than the same improvements used earlier.

* |mprovements less applicable (Applicability exhaustion): Improvements may vary from being
general purpose to being highly specialized General purpose improvements are aways
applicable, while special purpose ones may only be applicable under highly constrained
conditions. In order to fully specify a mode of this type, an assumption must be made as to the
order in which die improvements are incorporated into the method. If they are used in order of
decreasing applicability, then learning would dow down even if the improvements are equal in
effectiveness (when they are applicable): The theory we present below isa verson of thiscase.

5A The Chunking Theory Of Learning
We take as central to our modd a theme which has been a maingay of information processng psychology
since Miller'sfamous 196 paper.

The Chunking Hypothesis: A human acquires and organizes knowledge of die environment by
forming and storing expressions, called chunks, which arc sructured collections of the chunks
exigting at the time of learning.
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This brief satement glosses over things not central to our purpose, eg: (1) the nature of the primitive
dnmiks; (2) the internal representation of chunks as collections of symbolsfor chunks, rather than the chunks
themsdves, and (3) diginctions, if any, between perceptual chunks, internal-processing diunks and motor
chunks. Other aspects, such asthe size and composition of diunks, require further specification.

Condder SeibeFs tak (Seibd, 1963), to make matters concrete. There are ten lights L, _ L, which
define perceptual events of a light being off (-) or on (+). Originally, the only chunks available are die
individual lightsand the states of offand on. |f we define die notion of the jpalj of achunk asthe number of
primitive dementsthat it contains, then these are diunks with a span of one. Clearly they are built up from
gill more primitive features, relations etc, but they can be taken as die primitives from the point of view of
SeibeFstak. Gradually, with learning, diunkswin form: firs diunkssuch as (L x +X whidi we might also
write as L£ then diunkssuch as(Ij Lp, or (L[ L"); then till higher chunks such as (Ly(L~3 L™\ and so
on. The chunks need not just be of perceived lights; they could be of responses (R% Rp (the + meaning to
press the button), or even of mixed character, (L; flp or ((I.,* Lp (R* Up). Thesediunksareof increadng
span; eg, thegpan of the last mentioned chunk, ((L" L")(I%* R™M\is eight of the primitive diunks such as Lt
+, Lg, etc Chunksthushold information about die patterns in the environment and in the subject's relation
to the environment '

The chunking assumption only defines a unit of sructure and declares it central. To create a learning
system, we must tie down how this structure couples ©(1) the perfonnaox of the tasfc (2) the structure of the
task environment and (3) die process of lear ning new information about the task environment. These lead to
three corresponding general assumptions:

* Performance Assumption: The performance program of the sysem iscoded in terms of high-leve
chunks, with the timeto processachunk being lessthan the timeto processits congtituent chunks.

* Task Structure Assumption: The probability of recurrence of an environmental pattern decreases
asthepattern sze increases.

» Learning Assumption: Chunks are learned at a constant time rate on average from the relevant
patternsof gimuli and responses that occur in die specific environments experienced.

On performance: If having diunks does not permit the sysem to perform more quickly, then one major
reason for ther existence vanishes (though there might be other reasons). How high-level aggregate chunks
enter into performance iorograms is actually somewhat problematical. For ingtance, computers gain. no
performance advantage from the subroutine hierérchy (an example of multi-level chunking); it is completely
unwound down to the lowest level machine operations on every execution.

In SaibeFstask the performance program can be rdated directly to the ch'unksthat exist IfonI&/ the lowest
diunksareavailable, then it might take the processing of five chunks for each light:
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(L, +)R, +)

I.1 + Rl + _

Thetop diunk isdierulederived from die ingructionsfor general lights(L,) and responses (R J; it isused
to interpret each of die four primitive chunks of information about the task, one after die other’. If, on die
odier hand, more complete chunks are available, such as (L, +). then this part can be done in asingle step,
and so on for more aggregate chunks. Aggregation, of course, takes place not just within a light, but across
lights. Thus, alowest level performance program would take something like 5 steps per light times 10 lights -
SO gteps. At theother extreme, the highest level program would take only asingle step, using many mammoth
chunks, such asthe one below of gpan 40, to cover all die cases. :

(LT RDCL; RP(LIRD) (LIRD(LIRD) (LRI WL RPUL; R)WL;RYUL N ”Y W) (49)

Most programs would be composed of chunks of some intermediate span. Our example chunks have used
gimulus adjacency and stimulus-response connection as the principles on which to chunk. Lots of others arc
possible, e&, symmetry of position. likewise, wrong connectionsarc possibleaswell ascorrect ones.

On thestructure ofthe task environment: Task environments can be thought of as being composed from a
sat of dements which can vary with respect to attributes, locations, relationsto other dements, etc Seibd's
tak isagood example of such a task environment once chunking has reached beyond die most primitive levd
(dielights, on, oft etc). Observethat (thinking only about the lights) thereisa set of dements (the ten lights)
each of which has an attribute for the gate of the light (on or off). On each trial the subject is exposed to a
single concrete environment out of the ensembl e of concr ete environmentsthat makeup die task environment.
A subject in SdbefFs experiment would see the ten lights in one particular state on each trial. The trial
sequence provides the sample of concr ete environments actually experienced.

Figure 26 shows afour light version of Seibd's task environment. At the left are the primitive chunks; the
fights, which can be ether on or oft Proceeding towards die right yields higher level chunks made by
combining lower levd ones. At die far right arc the top-level chunks. Each top-levd chunk spans one
concr ete environment (consisting of each light in one particular sate). The bold lines outline one concrete
environment out of die ensemble that makes up the tak environment One important point to nodec is that
the branchiness of the task environment (increasing towards the right) isin the opposite direction from that of
the treefor asingle concrete environment (increasing towards the l&ft). Asthe chunksincrease in span, there
arc moreof diem in die task environment, but fewer in any one concr ete environment.

Task environments such as Scibcfs present the learner with a combinatorial number of possible patterns.
There arc only two patterns of one light (on and off), but four patterns of two lights, eight patterns of three
lights, and so on, up to 1024 patterns of ten lights. Inherently, many more possibilities for patterns of
dements exig than for the eements themsdves. Correspondingly, there are many more possibilities for
chunks that encode larger patterns dian smaller ones. |f each of the elements can take on any of b different
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Attheleft arc two

chunks far each light (for chc on and o//states)

and at theright arc the top-level chunks.

6. Scibcl's Task Environment for Four Lights.

primitive
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values (the bmnchiness of the task environment), then for every set of s elements there would be b° possible
patterns. Different tak environments will have condraints that limit what new combinations can in fact
occur; not al eements are or can be chunked with each other. The basc combinatorial nature of mos task )
environments, combined with these congtraints, will determine what Can be called die cardinality of die task
environment, namely, die number of patterns that can actually occur of each different span. This canlinality
(whether exponential, power law, etc.) will have a great deal to do with theform of die final learning curve.

The task structureassumption follows directly from this structure of die task environment. Thereare more
of the larger patterns, but each one appearsin fewer concrete environments. Indeed, at the top-most level, die
entire concrete environment at a trial can be encoded in a single chunk, asin Example 49 above. Chunks of
diistype appear in only one concr ete environment each, whereasa chunk that only containsa d@ngle light and
its state would appear in many concrete environments. The multiplicity of patterns (chunks) depends on
there being an entire ensemble of possible concrete environments. In any particular concrete environment
only asmall number of the possible chunks occur.

On learning by experience: This assumption garts from the view that die human is a time-independent
processing mechanism. It processes information the same way one hour asthe next, oneday asdienext - asa
function of stored knowledge and learned procedures, but not of time per se. In short, there is no built-in
higorical clock. Thus, there exists a basic congtant rate of chunk acquisition (with respect to time, not trials).
Thissame view underliesthe appeal of die total time hypothesis of verbal learning (Cooper & Pantle, 1967).

Not all chunkslearned need be relevant to the task at hand. The assumption that learning is by experience
saysthe subject is picking up reevant chunks while performing in a concrete environment Thisis consonant
with theories that have learning occuring automatically from the chunks that are built in working memory
(invalving both die stimuli and the subject's own responses). When the subject is attending to the task,
working memory isfull of task related chunks, and relevant learning occurs.

In our example, given L, and + perceived by the subject, the chunk (I, +) could be built, but not die
chunk (1 ,-). Also, it would take die same length of time to build die firg-level chunk as to build (((Lx +)
(*14)) ((E2 ") (*2 "~ xventhatme OUALLOL chyng (L, +) (/71 +)) and ((L2 -) (R; -)) were available

" inthesubject (ie, had already been learned) and werebang perceived in the environment

These three assumptions, though still general,.provide a bass on which speciﬁé learning models can be
built In this paper we only present the smplest form of this mode so that die basc mechanisms can be
dearly seen. Various limiting conditionsand the like may appear alittlestrained in this smple version.
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54.1. A simple version
For the theory to be specific, we need to determine T as a function of V. One way to do this is to define the
differential learning law, dT/dN. Corresponding to the previous assumptions, we introduce the following
variables:
C = The total number of chunks learned at any time.
s = The span to which the subject has chunked.
In terms of these variables, we can compose d7"/dN as follows:
dT/dN = (dT/ds) (ds/dC) (dC/dN) ' (50)

The first term, d7"/ds, expresses how performance time (7)) changes with the chunk span. In a simple form
of our performance assumption, the time to perform the task will simply be proportional to the number of
high-level chunks it takes to describe the task (at the time of the performance). Let P be the number of
chunks involved in the performance initially (and take the unit of time to be the time to process one chunk, so
as to avoid an arbitrary constant). Then, if chunking has proceeded to a span of s, each top-level chunk spans
s initial chunks. Thus, the number of top-level chunks that are required to span the performance is P/s and
we get for the performance time: '

T=P/s ' (1)

dT/ds = -P/s* = -T/P (52)
If this holds for unlimited values of s, it implies that P is infinitely divisible and that 7" can be driven to zero.
We will just accept such simplifications for the purposes of this model. Given this simplification however, we
cannot expect (o0 find an asymptote parameter (A) in this version.

The second term of Equation 50, ds/dC, expresses how fast the span of the chunks increases as the subject
accumulates more chunks. It depends on how many chunks of each span are needed to describe the task
environment. According to the assumption about the structure of the task environment, new chunks will be
formed to encompass larger patterns in the environment. If a chunk covers a pattern of some set of elements,
then it will be relevant to connect it with a certain number of additional elements in the environment to form
the next higher level of chunk. We will postpone until later the quantification of this process. For now we
can just taik in terms of C, (s), the number of chunks needed to cover all patterns of s elements or less in the
task environment. :

We nced to relate Cm(s) to C(N), the number of chunks that the subject has at a given trial. By the nature
of how chunks are lcamed, low-level chunks must be acquired before higher-level chunks. That is, chunks
are learned from the bottom up. If C chunks have been learned, they will constitute a pyramid up from the
bottom. By making the further simplifying assumption that the pyramid is acquired layer by layer (ic. if the
subject has lcamed C chunks, thesc will consist of all the chunks provided by the environment from the




PAGE 44

dementary chunksup to somespan), wecan equate C and C*.° Henceweget:

C.Cte (53)
dC/ds~Cjis\  Writing C"(s) for dCJ"/ds for darity (54
ds/dC-VC'Ns) . (55)

Hie final term of Equation 50 follows directly from the assumptions on learning; that the number of
chunkslearned per unit timeisacongant, say X chunks:

dC/dt-X . (56)
Therefore by Equation 22, which relatestimeto trials
dC/dN - (dC/di) (di/dN) - XT (57)
Wenow have assembled all the components of Equation 50:
dT/dN - (-T%P) QJCJis)) (XT) - (58)
==MP (T3/ C () (59

Wecan see in what sense thisis an exhaustion model.  The subject continues to learn at a congtant rate and
chunks remain equally potent in terms of what they do to the performance programs in which they occur.
However, the chance that achunk will be used becomes increasngly rare. It becomesrarer, actually, because
of the increased span of the chunk, which makes it ever more specialized, thus occurring in ever fewer
environments. However, this turnsout to be correlated with time, because general (ie, low-level) chunks are
lear ned first and specialized chunksare learned later.

SAJL A combinatorial task environment '

To complete die definition of the chunking model it will be necessary to be more specific about CJ*sX die
cardinality of the tak environment, which expresses how fagt the number of patterns increase as their span
increases. One possbility isto gart from the basic combinatorial sructure described under the task sructure
assumption. Supposethere are M eementsin the task environment, each with b possible values. We need to
know how many chunks of gpan 5 it takes to cover thetask environment One way to dothisisto partition the
task environment into M/s groups of s dements. It will take b® chunks of span s to cover each group, so
(M/s)b® chunks to cover die whole task environment We thus get:

C (=2, M/ _ (60)

This summation docs not have a dosed form solution. We can however derive C'Jis) directly from the
summation in the same manner that di/dN isobtained in Equation 22.

9

We axe gl‘ossing over three complicationsto this picture: (1) M dements can be covered by chunks of span s in a number of ways,
depending on how the M dements arc partitioned into groups of size s (2) M demons can be covered by a number of different chunks
ofspan M that vary in internal structure: and (}) many patterns in the environment arc totally irrcle\ant to performance on ihc task
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Cj s) = (M/5)6* = (M/s)eP< whereO = log(b) _ (61)
Subgtituting Cj*s) into Equation 59 we get: .

dT/dN - -QJPM) f*se+® (62)
We can diminate 5 by noticing that s - P/T (from Equation Sl):

dT/dN - -(VAQT2 en'/" | (63)
By suitablerearrangement and integration, thefinal form of the teaming curve isobtained: X

r*£77dT - -(A/A/) dN (64)

‘i ST Tar = <M [ ' (65)
(PF)~*eP"™- (X/AIXiV+£). where £ comes from the integration constant (66)
7 - BP/og(NBP/ M) + og(N+E)}] (67)

Though thisisnot a power law, it does resemble one when plotted in tog-log coor dinates. Figure 27 shows
such alearning curve with parametersof 6-2, P-50, X -1, A/-20, and £-10. Thereason for this linearity can
best be seen by looking at dT/dN. Subgtituting for 1/7* in the exponent of Equation 63 yields:

dT/dNm-KfiPrAiN+EftT? _ (68)

»{a/(N+E))T, whaea-T/fiP (69)

The function thus behaves like a power law with adowly decreasing a. In log-log space the decreasing a is
difficult to distinguish fr omtheprwifindf of anasymptote.

& /00D,

: o—e T=usNT
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Figure27: TheLearning CurveTa the Chunking Model
in a Combinatorial Task tnvironment (L og-L og Coor dinates).
The parameter valuesare b -1 P »50. X - L M « 20, and E - 10.
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5L43. The power law chunking mode!

Ingtantiations of the chunking model can be generated for various types of task environment that a learner
may have to deal with. There is no space here to examine possible tak environments systematically. An
alternative is to determine what type of tak environment leads the chunking model to predict power law
learning. From Equation 8 we know that one form for the differential of a power law is:

dT/dN - -aB-"* T'+ 12 . (70)
Combining thiswith Equation 59 yields:
-aB™V2 T +V2 - (X/PXrVC(*)) . 71)
Wewant CJis\ sofirgt solvingfor C'JLs):
CjLs)-(kB"¥/Pa)T'-* _ (72)
- (XB~/Pa) (P/sf - Y2 | (73)
~(XBYap! Vajg)g/a.t ’ (74)
Now we can get CJis) by integrating Cjis) with respect to s.
C )=BYe pl-Vasq_q) /a2 (75)

Though it is somewhat obscured by the complex initial constant, this is a power law in s. Power law
learning thus implies a power law environment. An important, and indeed pleasing, feature of the chunking
model is this connection between the sructure of the task environment and the teaming behavior of the
subject Thericher the task environment - ie, die ensemble of environments with which the subject must
potentially cope - die more difficult his learning. '

S4 A Relation to existing work on chuhking .

An important aspect of the chunking model of learning is the amount of power it gets by making
connection with a wide body of existing psychological work. For example, the pervasiveness of the
phenomenon of chunking amply accounts for the ubiquity of log-log learning. We have been able to develop
the primary assumptions of the model from this work without the necessity of pulling an arbitrary " natural’
learning curve out of the air.

Much’of the existing work cm chunking has fbcussed on showing that chunks are the structures of memory
and operate in behavior in various ways (Bower & Winzenz, 1969, Johnson, 1972). It is consonant with the
present model, but does not make interesting contact with it. However, the work on chess perception
(DeGroot, 1965, Chase & Simon, 1973) bears directly on the present model The basc phenomenon
investigated there was the differential short term memory for meaningful chess positions with expertness.
Novices are able to recall only a few pieces of a complex middle game position after a five second exposure,
while magters can recall most of the pieces.

A well articulated theory has evolved to explain this sriking phenomenon. The theory is an elaboration of
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the basic assumptions about chunking. The magter has acquired an immense memory for chess postions,
organized as a collection of chunks. His ability for immediate perception and short term memory of chess
positions depends directly on how many chunks are used to encode a position. Egtimates of the number of
chunks available to the mager are of the order of 50,000, based on extrapolation of a smulation program
(Simon & Gilmartin, 1973) Oat fitsnoviceand expert level players. By implication, master playersmust spend
an mmense amount of time with the game, in order to acquire the large number of chunks, this seemsto be
wcD supported by higtorical data.

The chunking mode of learning presented here for die power law is essentially the same as the chess
per ception modd. The present model has been eaborated quantitatively for learning data, whereas the chess
perception data had the products of learning to work with. The explanation for why the number of
perceptual chess chunks is so large lies in die combinatorial complexity of chess posifions High level chess
chunks encode lar ge subpattems of pieces on the board; they are the necessary means for rapid perception.
But the actual configurations to which they apply do not show up often. Thus to gain coverage of the
population of chess positions requires acquisition of immense numbers of high-level chunks. Thisis precisdy
the notion of environmental exhaustion that is the key mechanism of the present model.

One would expect from this that the time course of chess skill would also follow the'power law, if one
would take dietrouble tomeasureil Indeed, the dataon the Stair game of solitaire in Figure 10 can betaken
asareasonable analogue of the chess game.
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6. CONCLUSON

If wemay, let us start this conclusion by recounting our personal odyssey in this ressarch. We started out, -
smply enough, intrigued by a great quantitative regularity that seemed to be of immense importance (and of
consequence for an applied quantitative psychology), well knowri, yet seemingly ignored in cognitive
psychology. We saw die law as tied to <kill, hence rdevant to die modern work in automatization. The
commitment to write this paper wasthe goad to seriousresearch. When we started, our theoretical sance was
neutral - wejust wanted to find out what the law could tel us. Through the fall of 1979, in seairching for
explanations, we became convinced that plausible subgtantive theories of power laws were hard to find,
though it seemed reatively easy to abtain an exponent of -1, ie, hyperbolics. In November, discovering the

“chunking model (by looking for forms of exhaustion, in fact), we became convinced that it was the right
theory (at leas AN did), and that lack of good alternative theories helped to make the case. The chunking
model also implied that the power law was not redtricted to perceptual-motor skills, but should apply much
moregenerally. Thisled to our demongtration experiment on Stair, which showed a genuine problem solving
tak to be log-log linear. At the same time, in conversations with John Anderson, additional data emerged
from thework of hisgroup (Figures7 and 9) that bolstered this.

This picture seemed reasonably satisfactory, though the existence of log-log linear industrial learning curves
(Figure 12) nagged a bit, as did the persistence of some of our colleagues in believing in the argument of
mixtures. However, as we proceeded to write the paper, additional work kept emerging from the literature,
including especially the work by Mazur and Hagtie (1978), that raised subgtantial doubts that the power law
was the right empirical description of the data. The resulting investigation has brought us to the present

paper.

The picture that emerges is somewhat complex, though we believe at the moment that this complexity isin
the phenomena, and not just in our heads as a reflection of only a momentary under standing. We summarize
. thispicturebelow, garting with the data and progressng through theoretical consider ations.

L The empirical curves do not fit the exponential family. Their tails are genuinely dower than
exponential learning and this shape deviation docs not disappear with variation of asymptote.

2. The data do satisfactorily fit the family of generalized power functions (which includes the
hyperbolic subfamily). There is little, shape variance remaining in the existing data to justify
looking for other empirical families.

In particular, there is no reason to treat apparent sysiematic deviations, such as occur
in Snoddy's or SelbeFs data in log-log space (Figures 1, 6), as due to special causes,
digtinct from their description as a generalized power -function.

3. The data does not fit the smple power law (ie, without asymptote or variable garting point).
There are systematic shape deviations in log-log space (the space that linearizes the smple power
law), which disappear completely under thegeneral power law.

4. We were unable to confirm cither whether the data (1) fits within the hyperbolic subfamily or (2)
actually requires the general power family. Thisis so despite the multitude of existing data sets.
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somewith extremely lengthy data series (some of it as extensive as any data in psychology).

5. Themajor phenomenon isthe ubiquity of the learning data, ic. itscommon description by asingle
family of empirical curves. We extended the scope to all types of cognitive behavior, not just
per ceptual-motor skill.

However, we redricted our view to performance time as die measure of performance,
though learning curves measured on other criterion also yield smilar curves. Also, we
redricted our view to dear stuations of individual learning, though some social (ie,
indudtrial) sStuations yield amilar curves. Our redriction was dictated purey by the
mometitary need to bound the research effort.

6. Psychological modelsthat yield the power law with arbitrary rate (a) are difficult to find. (Postive
asymptotes and arbitrary gdarting points are, of course, immediately plausible, indeed,
unavoidable)

7. Modées that yield the hyperbolic law arise easly and naturally from many sources - smple
accumulation assumptions, parallelism, mixtures of exponentials, etc.

8. The various models are not mutually exclusive, but provide an array of sources of the power law.
Several hyperbolic mechanisms could co-exist in the same learner. Independent of these, if the
humans team by creating and foring chunks, as there is evidence they do, then the
environmental-exhaustion effect would also operate to produce power-law learning, independent
ofwhether there were other effectssuch as mixing to produce hyperbolic learning curves.

9. A maintainable option is that the entire phenomenon is due to exponential component learning
yielding an effective hyperbolic law through mixing.

This would cover not only the data dealt with here, but probably also the data with
other criteriaand thedata from industrial processes.

F|0wever, die exponential learning of the component learners remains unaccounted
or.

10. The chunking model provides a theory of the phenomena that offers qualitatively satisfactory
explanationsfor the magjor phenomena.

However, some of die phenomena, such as the indugrial processes, probably need to
beassigned to mixing. Paramony freaks probably will not likethis.

The theory is pleasantly consistent with the existing general theory of information
processing, and avoids making any a priori assumptions.

Though power laws are not predicted for all task environments, die learning curvesdo
dosdy approximate power laws.
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