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Abstract

We formulate the kinematic equations- of-motion of wheeled mobile robots incorporating con-

ventional, omnidirectional, and ball wheels. While our approach parallels the kinematic modeling

of stationary manipulators, we extend the methodology to accommodate such special characteris-

tics of wheeled mobile robot? as multiple closed-link chains, hiyher-pair contact points between a

wheel and a surfciec, and unactuated and unsensed wheel degrees-of-freedom. We survey existing

wheeled mobile robots to motivate our development. To communicate the kinematic features of

wheeled mobile robots, we introduce a diagrammatic convention and nomenclature. We apply the

Sheth-Uicker convention to assign coordinate axes and develop a matrix coordinate transformation

algebra to derive the equations-of-motion. A wheel Jacobian matrix is formulated to relate the

motions of each wheel to the motions of the robot. We combine the individual wheel equations to

form the composite robot equation-of'motion. We calculate the sensed forward and actuated inverse

solutions and interpret the conditions which guarantee their existence. We interpret the properties

of the composite robot equation to characterize the mobility of a wheeled mobile robot according

to the mobility characterization tret. Similarly, we apply actuation and sensing characterization

trees to delineate the robot motions producible by the wheel actuators and discemable by the

wheel sensors, respectively. We apply our kinematic model to design, kinematics-based control,

dead-reckoning and wheel slip detection. To illustrate the development, we formulate and interpret

the kinematic equations-of-motion of six prototype wheeled mobile robots.



1. Introduction

Over the past twenty years, as robotics has become a scientific discipline, research and devel-

opment have concentrated on stationary robotic manipulators [12, 43], primarily because of their

industrial applications. Less effort lias been directed to mobile robots. Although legged[58] and

treaded [37] locomotion has been studied, the overwhelming majority of the mobile robots which

have been built and evaluated utilize wheels for locomotion. Wheeled mobile robots (WMRs)

are more energy efficient than legged or treaded robots on hard, smooth surfaces[G,7]; and will

potentially be the first mobile robots to find widespread application in industry, because of the

hard, smooth plant floors in existing industrial environments. Wheeled transport vehicles, which

automatically follow paths marked by reflective tape, paint, or buried wire, have already found

application[20]. WMRs find application in space and undersea exploration, nuclear and explo-

sives handling, warehousing, security, agricultural machinery, niilitary, education, mobility for the

disabled aiid personal robots.

The wheeled mobile robot literature documents investigations which have concentrated on the

application of mobile platforms to perform intelligent tasks [52], rather than on the development

of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved me-

chanical designs and mobility control systems will enable the application of WMRs to tasks were

there are no marked paths and to autonomous mobile robot operation, A kinematic methodology

is the first step towards achieving these goals.

Even though the methodologies for modeling and controlling stationary manipulators are appli-

cable to WMRs. there are inherent differences which cannot be addressed with these methodologies.

Examples include:

1.) WMRs contain multiple closed-link chains[5Z]; whereas stationary manipulators form closed-

link chains only when in contact with stationary objects.

2.) The contact between a wheel and a planar surface is a higher-pair; whereas stationary ma-

nipulators contain only lower-pair joinU[3.G2,63].

3.) Only soinv of the degrees-of-fr<:edom (DOFH) of a wheel orra WMR are actuated; whereas

all of the DOFtf of each joint of a stationary manipulator are actuated.

4.) Only some of tlu* DOFs of a wheel on a WMR have position or velocity ^*nsors; whereas

all of the DOFs of each joint of ;i stationary manipulator Jtave both po/ition and velocity

sensors.

ed mobile fulfil control requires a mrtluxiolotfy for unhiding, analysis ami i



parallels the technology of stationary manipulators.

Our objective is tlnis to model the kinematics of WMRs. Kinematics is the study of the

geometry of motion. In the context of WMRs, we are interested in determining the motion of the

robot from the geometry of the constraints imposed by the motion of the wheels. Oar kinematic

analysis is based upon the assignment of coordinate axes within the robot and its environment,

and the application of (4x4) matrices to express transformations between coordinate systems.

Each step is defined precisely to lay a solid foundation for the dynamic modeling and feedback

control of WMRs. Dynamic models may then be applied to design dynamics-based controllers and

simulators. A kinematic methodology may also be applied to design WMRs which satisfy such

mobility characteristics as three DOFs (i.e., two translations and a rotation in the plane).

Our kinematic analysis of WMRs parallels the development of kinematics for stationary ma-

nipulators. A standard method for modeling the kinematics of stationary robotic manipulators

begins by applying the Denavit-Hartenberg convention[18] to assign coordinate axes to each of the

robot joints. Successive coordinate systems on the robot are related by (4x4) homogeneous trans-

formation A-matrices. The A-matrices are specified completely by four characteristic parameters

(two displacements and two rotations) between consecutive coordinate systems. Each A-matrix de-

scribes both the shape ami size of a robot link, and the translation (for a prismatic joint) or rotation

(for a rotational joint) of the cissociated joint. We assign coordinate <ixes to the steering links and

wheels of a WMR, and apply the Shcth-"dicker convcntioii[Gl] to define transformation matrices.

The Sheth-Uickcr convention separates the constant shape and size parameters from the variable

wheel joint parameters, and simplifies the matrix formulation. The Sheth-Uickcr convention allows

us to model the higher-pair relationship between each wheel on a WMR and the floor.

The position and orientation in base coordinates of the end-effector of a stationary manip-

ulator is found by cascading the A-matrices from the base link to the eud-cffcctor[5G]. Velocity

and acceleration relationships are found by differentiating the matrix positions[19]. Velocities of

the individual joints are related to tho velocities of the end-effector by the manipulator Jacobian

matrix[54j in tho forward solution. The inverse Jacobian matrix is applied in the? inverse solution to

calculate tho velocities of the joint vaiiables from the velocities of thv end-effector. Wo develop the

wheel Jaeobiau matrix to relate the velocities of each wheel on a WMR to the robot body veloci-

ties Since WAIRs are multiple closed-link chains, the forward and inverse solutions aro obtained

by solving simultaneously the kinematic equafcions-of-motion of all of the wheels.

In thia paper, we advance rite kinematic modeling of WMRs, from the motivation of the klne-

niAtic methodology through its development and applications. In Section 2, we survey kinematic

configuration;* (i.e., the na t ive arrfin^^meuts and types of wheels) of existing WMKs. These protu-



types illuminate the complexity of the kinematic problem. In Section 3, we describe the three wheels

(conventional, omnidirectional and ball wheels) utilized in all existing and foreseeable WMRs.

In Section 4, we develop our approach for modeling the kinematics of WMRs. Coordinate sys-

tems are assigned to proscribed positions on the the robot. We introduce transformation matrices

to characterize the translations and rotations between coordinate systems. We develop a matrix

coordinate transformation algebra to calculate the position, velocity, and acceleration relationships

between coordinate systems. We apply the axioms and corollaries of this algebra to transform

positions, velocities, and accelerations which are specified in one coordinate frame to another co-

ordinate frame, and develop the wheel Jacobian matrix to relate the motions of a wheel to the

motions of the robot. In Section 4.9, we outline our kinematic methodology for WMRs.

In Section 5, we form the composite robot equation-of-motion by adjoining the equations-of-

motion of all of the wheels. We then solve the composite robot equation. Specifically, we calculate

the actuated wheel velocities in terms of the robot velocities (the actuated inverse solution), and

the robot velocities in terms of the sensed wheel velocities (the sensed forward solution). We

characterize a WMR by interpreting the properties of the composite robot equation. We present a

mobility characterization tree which specifics tests to be conducted on the composite robot equation

and displays the mobility characteristics of the WMR. We also calculate the number of degrees-

of-freedom of a WMR. The ability of the actuators to produce robot motion is determined by

the actuation characterization tree. Similarly, the sensing structure is specified by the sousing

characterization tree.

In Section 6, we apply our kinematic modeling methodology to the design, dead-reckoning,

kinematics-based control, and wheel slip detection for WMRs. Just as we apply the mobility

characterization tree to delineate the mobility of a WMR, we may design a WMR to satisfy desired

mobility characteristics by proper choice of wheel type and placement. We calculate the current

robot position (i.e., dead-reckoning) by summing the robot volocities in real-time. We iriirodn.ee a

kinematics-based WMR feedback control system in which the actuated inverse and sensed forward

solutions are integral components. Our development of the sciutmj1: characterization tree illuminate?

a method of detecting the onset of wheel slip. We present our slip detection method and describe

the proper positioning of the wheel sensors for implementation. We are continuing our study of

WMRs by applying our kinematic model to formulaic dynamic models of WMRs.

In Section 7, wo Apply our kinematic modeling methodology ro six prototype WMRs. We

present the kinematic description, coordinate system assignments, transformation matrices, wheel

Jacobinu matrices, mobility characteristics and the sensed Forward and actuated inverse solutions

for each. Prciiii our experience with t h w prototype example, we drnw practical ron< lusion^ about



the applicability of three DOFs VH two DOFs and the utilization of redundant steerod-conventional

whrdg.

We «uu«narac (in Stvtion 8) our kinematic methodology and its implications, and outline (in

Section B) our plan* for amtiuwcel research in dynamic modeling and feedback control. In Appendix

2, we compile our symbols.



2. Survey of Kinemat ic Configurations

In this section, we survey the kinematic configurations of existing WMRs. We are interested

in determining the types of wheels utilized and the relative placement of the wheels on WMRs.

Documentation of WMRs is scattered throughout the robotics, artificial intelligence, control en-

gineering, scientific, industrial, popular and hobbiost litcrature[8,10.23,38,00]. We examine docu-

mented WMRs to understand the requirements of a kinematic methodology for this class of mobile

robots. We then generalize the kinematic model of those exemplary robots and define (in Section 4)

a WMR which specifies the range of mobile robots to which our methodology applies. Our survey

also provides a set of prototype WMRs for evaluating our kinematic methodology.

In Appendix 1, we introduce a nomenclature and a pictorial representation for describing

the kinematic structure of WMRs. The diagramming conventions provide a convenient tool for

describing and comparing kinematic structures of WMRs. We apply these rules to develop sym-

bolic diagrams and kinematic names for the WMRs presented in this survey and refer to these

representations as we describe each WMR.

The most common kinematic arrangement of mobile robots docinnented in the literature has

two diametrically opposed wheels (i.e., two parallel conventional wheels, one on each side of the

robot). These robots also possess one or two castors for stability. Among the most widely known

examples are: Shakcy[52]5 Newt[32j (in Figure 2.1), Jason[64], Hilare[24]J Yamabiko[40,35], RO-

BART II[22]. and RB5X[44]. By mounting the two driven wheels at an acute angle to the floor in

their Topo[27] robot (in Figure 2,1), the Androbot Company stabilized the robot without the use

of castors.

Shakey Newt Topo

Bicsun-Bicas-Whemor Bicas-Unicsun-V/hcmop Bicas -Whomor

figure 2.1

Kinematic RoprcneuLUions of Shakey, Nc\vfr, ami Topo



Mobile nilxrta which ptw#*s multiple non-steered, driven wheels whoso axes are non-colinear

niiwt rely on wheel slip if tho robot is to navigate turns. Such is the case witli the RDS Prowler[59]

and the TmegatorjflBj (in Figure 2.2), both of which use six parallel, non-steered, conventional

wheels, three on each side, Similarly, Gcmiiii[28j (in Figure 2.2) utilizes two synchronously driven

wheeb oo carli si«te.

Terragator Gemini

Hexacas^Whemor Tetracas-Whemop

Figure 2-2

Kinematic Representations of Tcrrcgator and Gemini

Tfee in<v])Hijkftlly m*»n» complex, steered and driven conventional wheel is utilized on Nep-

tnvd\i7l lit; Figure 2,*Ti* Hen>i[26] and Avatar(4]. These three robots have a tricycle wheel ar-

\%rnwnt: !lrs front wliwl i*» steered and driven, while the two rear wheels are at a fixed parallel

Rovep

Tpicsas-Whomop

3.3

&*t*tamttaMoiis nf Ncptiiue and Pluto

S



The CMU Rover[48] (in Figure 2.3), also known as Pluto, has three steered and driven wheels.

Tho Stanford Cart[4G] (in Figure 2.4) has two steered, undriven wheels in the front and two fixed,

driven wheels in the rear. The two front wheels are coupled by an Ackerinan steering linkage.1 Both

the front and back wheels of the JPL Rover[41] (in Figure 2.4) arc coupled by Ackerinan steering

linkages, and all four wheels are driven independently. Kludge[30] (in Figure 2.4) is an example of a

robot with complex functional dependencies between the wheels. This robot has three conventional

wheels that are both steered and driven. A chain and gear arrangement is used to equalize all drive

velocities and steering angles (Synchro-Drive). To complicate further tho arrangement, each wheel

is mounted on an actuated link which can be pivoted towards or away from the muter of the robot

for stability. Kludge:s successor K2A[30] embodies the synchro-drive mechanism using concentric

shafts instead of chains and does not have any actuated links. The Denning Sentry robot[70] also

utilizes a three-wheel synchronous drive and steer system.

Stanford Cart JPL Rover Kludge

Pseudo-Bicsan-Bican-
Whemor

Pseudo-Tri csas-Wh emo rPseudo-Bicsas-Bicsas-

Whemor

Figure 2.4

Kinemat ic Represen ta t ions of the Stanford Car t , the J P L Rover, and Kludge

The hybrid spider drivc[29] (in Figure 2.5) utilizes four conventional wheels, two on cither

side of the robot, each of which is mounted at the end of n throe DOF leg linkage. The hybrid

locomotion vehicle[34] (in Figure 2.5) utilizes six steered and driven conventional wheels, each at

the end of an actuated vertical leg.

\ n nt * i rh i f» «'»."nrM> Hn1 correct wh i r l auglr* to nv«isl .vhet*l i3ij>.



Hybrid Spider Drive Hybrid Locomotion Vehicle

Pseudo-Tetracsas-Whemor Pseudo-Hexacsas-Whemor

Figure 2.5

Kinematic Representations of the Hybrid Spider Drive
and the Hybrid Locomotion Vehicle

Equally obscure is the triangle wheel step climber[67], which possesses four sets of three wheels

mounted at the vertices of equilateral triangles. When a wheel encounters a step, the triangle pivots

about its center and the robot reaches the top of the step by rolling on a different set of wlieels.

The recent application of omnidirectional wheels (in Section 3) has led to novel mobile kine-

matic configurations. Oninidirectional wheels have been used for powered wheelchciirs (e.g.. Omni

drive(29j and Wheelon[2]) and ambulatory drive platforms [60]. The later orients the omnidirec-

tional wlieels at an acute angle to the floor for stability. Uranus[49] (in Figure 2.6) has a rectangular

wheel base with four omnidirectional wheels having rollers at 45° angles. The Uniniation robot[14]

(in Figure 2.G) and Fetal![38] have triangular wheel bases and three omnidirectional wheels with

90° rollers.

OiraiiclircHrtional trcads[lO, 11] operate as omnidirectional wlieela with the rollers mounted

upon tank-like treads. A ball whr*el (in Section 3) Is Hie most HKineuverable wheel allowing three

DOF uiotion[47, 13, 39], The first design of Jason[64] incorporate*! three ball whcx,\I cantors which

were later xvplaccd by a single conventional castor. We are annware of any othor documented

applications of ball wheels on WMRs.



Uranus Unimation Robot

Tetroas-Whemor Troas-Whemor

Figure 2.6

Kinematic Representations of Uranus and the Unimation Robot

Because of the variability in the numbers and types of wheels and actuating mechanisms,

formulating a kinematics methodology for WMRs requires analytically complex robot models. Since

the preponderance of existing and foreseeable WMRs have simpler kinematic configurations then

those on the periphery of WMRs (e.g., the hybrid spider drive), applying a general-purpose and

universal approach to model the kinematics of practical WMRs would be unduly cumbersome. To

reduce substantially the complexity of the kinematic model and associated calculations, we limit

our analysis to WMRs with zero or one steering links per wheel. The robots which do not satisfy

this constraint (e.g.. hybrid spider drive, hybrid locomotion vehicle, and Kludge) can be modeled

by extending our analytical approach on a case-by-case basis.

From this survey, we specify the requirements of a kinematic model of WMRs. A WMR model

must allow any number of wheels. The wheels can be mounted at any position and orientation

with respect to the robot body provided that each touches the surface of travel. This constraint

includes the ability to mount wheels at acute angle* to the surface. Tlie WMR can incorporate

any combination of conventional, omnidirectional or ball wheels. Even though each wheel can be

mounted at the end of an articulated linkage, we will deal with zero or one steering link per wheel.

Finally, there may be coupling between wheels (e.g., two wheels may steer together as on the

Stanford Cart). With these observations, we define a WMR in Section 4 to develop a methodology

for kinematic modeling. In Section 3, wo detail Una operation of the three basic wheel types.



3. Wheel Types

Three wheel types are used in WMR designs: conventional, omnidirectional, and ball wheels.

In addition, conventional wheels axe often mounted on a steering link to provide an additional

DOF. Schematic views of the three wheels are shown in Figure 3.1. The DOFs of each wheel are

indicated by the arrows in Figure 3.2. The kinematic relationships between the angular velocity of

the wheel and its linear velocity cilong the surface of triivel are also compiled in the figure.

The conventional wheel having two DOFs is the simplest to construct. It allows travel along a

surface in the direction of the wheel orientation, and rotation about the poiiit-of-contact between the

wheel and the floor* We note that the rotational DOF is slippage, since the point-of-contact is not

stationary with respect to the floor surface1. Even though we define the rotational slip as a DOF,

we do not consider slip transverse to the wheel orientation a DOF, because the magnitude of force

required for the transverse motion is much larger than that for rotational slip. The conventional

wheel is by f-fir the most widely used wheel; automobiles, roller skates and bicycles utilize this wheel.

The omnidirectional wheel has three DOFs. One DOF is in the direction of the wheel orienta-

tion. The second DOF is provided by motion of rollers mounted around the periphery of the main

wheel, In principle, the roller axles can be mounted at any noufcoro angle rj with respect to the

wheel orientation. The omnidirectional wheels in Figures 3.1 and 3.3 have roller axle ;mgles of 90°

[9,11,25], and 45°[36], respectively. The third DOF is rotational slip about the point-of-contact. It

is possible, but not common, to actuate the rollers of an omnidirectional wheel[29] with a complex

driving arrangement. When sketching WMIis having omnidirectional wheels, the rollers on the

underside of the wheel (i.e., those touching the surface of travel) are drawn and not the rollers

which are actually visablc from a top view, to facilitate kinematic analysis.

The most maueuvorablo wheel is a hall which possesses three DOFs without slip. Schemes have

been devised for actuating and sensing ball wheels[47], but we arc unaware of any existing implc-

xitcntat.ioTis. An omnidirectional wheel which is steered about its point-of-contact is kincmatically

equivalent to a ball wheel, and may be a practical design alternative.

ni*" I.i lulling timt'.'"? if tW poiutM-of-cfMitfirt of tin* two IHMHC ii tir** s^nt ioimry relative.* to
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4. Kinematic Modeling

4.1 Introduction

In this section, we apply and extend standard robotic nomenclature and methodology[54] to

model the kinematics of WMIts. The novel aspects are our treatment of the higher-pair joint

between each wheel and the floor, and the development of a transformation matrix algebra.

We begin (in Section 4.2) by defining a WMR and enumerating our modeling assumptions to

constrain the class of mobile robots to which our modeling methodology applies. To include all

existing and foreseeable WMRs, we would have to generalize our methodology and thereby com-

plicate the modeling of the overwhelming majority of WMRs. In Section 4.3, we assign coordinate

systems to the robot body, wheels and steering links to facilitate kinematic modeling. It is essen-

tial to define instantaneously coincident coordinate systems to model the higher-pair joints at the

point of contact between each wheel and the floor. In Section 4.4. we assign homogeneous (4 x 4)

transformation matrices to relate coordinate systems. We present (in Section 4.5) a matrix coor-

dinate transformation algebra to formulate the equations-of-motion of a WMR. All kinematics are

derived by straightforward application of the axioms and corollaries of the transformation algebra.

Position kinematics axe treated in Section 4.6. We demonstrate that transforming the coordinates

of a point between coordinate systems is equivalent to finding a path in a transformation graph.

Then, in Section 4.7, we formulate the velocity kinematics. The relationships between Lhe wheel

velocities and the robot velocities are linear. We thus develop a wheel Jacobian matrix to calculate

the vector of robot velocities from the vector of wheel velocities. Finally, in Section 4.8, we apply

our matrix coordinate transformation algebra to acceleration kinematics.

To summarize the development, we enumerate in Section 4.9 our kinematic modeling procedure.

In Section 5, we combine the equations-of-motion of all of the wheels to form the composite robot

equation. We then proceed to solve the composite robot equation and interpret the solutions.

4.2 Definitions And Assumptions

The Robot Institute of America defines a robot as n A programmable, multifunction manipulator

dtMtjncd to move material, parts, tools, or specialized denices through variable programmed motions

for the performance of a variety of tasks* [20]. Our survey of kinematic configurations in Section

2 antu-ipatos tho definition of a WMR, Kinematic models of WMRs are inherently different from

tlicw of stationary robotic maijipttlaton* and loj;;jed or treaded mobile robots. We thus introduce an

l tli fSiufioii nf a WMR to specify the range of robots to which the. kinematic methodology

ti*d in tin* paj>er applies.
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Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the
actuation of wheel assemblies mounted on the robot and in contact with the surface. A wheel
assembly is a device which provides or allows relative motion between its mount and a surface on
which it is intended to have a single point of rolling contact.

Each wheel (conventional, omnidirectional or ball wheel) and all links between the robot body
and the wheel constitute a wheel assembly. With the exception of the omnidirectional treaded
vehicle, the hybrid spider drive (when walking), the hybrid locomotion vehicle (when climbing)
and the triangle wheel step climber (when climbing steps), the mobile robots reviewed in Section
2 satisfy our definition of a WMR.

We introduce the following practical assumptions to make the modeling problem tractable.

Design Assumptions

1.) The WMR docs not contain flexible parts.
2.) There is zero or one steering link per wheel.
3.) All steering axes are perpendicular to the surface.

Operational Assumptions
4.) The WMR moves on a planar surface.
5.) The translational friction at the point of contact between a wheel and the surface is large

enough so that no translational slip may occur.
6.) The rotational friction at the point of contact between a wheel and the surface is small

enough so that rotational slip may occur.

We discuss our assumptions in turn. Assumption 1 states that the dynamics of such WMR

components as flexible suspension mechanisms and tiros are negligible. We make this assumption

to apply rigid body mechanics to kinematic modeling. We recognize that flexible structures may

play a significant role in the kinematic analysis of WMIls. A dynamic analysis to determine the
changes in kinematic structure duo to forces/torques acting on flexible components is required

to model these components. Such an analysis is appropriate for WMIls even though it lias not

conventionally been addressed for stationary open-link manipulators because WMIls an* inherently

closed-link mechanisms. Flexible components, that «vllow compliance in the multiple closed-link

chains of a WMR* lead to a ronsi&itcnt kinematic: model. Without compliant structure«, there

II



cannot be a consistent kinematic model for WMRs in the presence of surface irregularities, inexact

component dimensions and inexact control actuation[50]. A simultaneous kinematic and dynamic

analysis of WMRs is thus a natural continuation of our research.

We introduce Assumptions 2 and 3 to reduce the range of WMRs that our methodology must

address, by limiting the complexity of our kinematic model. WMRs which have more than one link

per wheel can be analyzed by our methodology if only one steering link is allowed to move. We

require that all non-steering links must be stationary, as if they are extensions of the robot body

or wheel mounts. By constraining the steering links to be perpendicular to the surface of travel in

Assumption 3. we reduce all motions to a plane. We thus constrain all component motions to a

rotation about the normal to the surface, and two translations in a plane parallel to the surface.

Assumption 4 neglects irregularities in the actual surface on which a WMR travels. Even

though this assumption restricts the range of practical applications, environments which do not

satisfy this assumption (e.g.. rough, bumpy or rocky surfaces) do not lend themselves to enorgy

efficient wheeled vehicle travel(7].

Assumption f> ensures the applicability of the theoretical kinematic properties of a wheel in

rolling contact[5, G2] for the two translation^ degroes-of-frcedom. This assumption is realistic for

dry surfaces as demonstrated by the success of braking mechanisms on automobiles. Automobiles

also illustrate the practicality of Assumption 6. The wheels must rotate (i.e., slip) about their

points-of-contact to navigate a turn. Since WMRs also rely on rotational wheel slip, we include

Assumption 6.

4*3 Coordinate System Assignments

4.3.1 Sheth-Uicker Convention

Coordinate ay at em alignment is the first f̂cep in the kinematic modeling of a stationary

manipulfttor[54]. Lower-pair mechanisms1 (surhag rcvolutc and prismatic joints) function with two

surfaces in relative motion. In contrast, the wheels of a WMR are higher-pairs which function ideally

by point contact. Because the A-Mntru\'»s which model manipulators depend upon the relative

position and orientation of two succe&tivc joints, the Dcnavifc-fiartenbcrg cnnvention[18] leads to

ambiguous* alignments of coordinate traiLsfonnation matrices In multiple closed-link cliaiiis|6i]

which are inherent in WMR*. The ambiguity ariac* in deciding flu* joint ordering when there are

i* than two joints on a single link.

arc \>M£A %J * fnnr*^aeut^, whiw r«»!ativ*.* iutt*ittfi*t arv rontttrniutM by a

$ tin* troij-»t>Miij>''1 hy p»init or JJix1 cnntMtlft],

to



We apply the Sheth-Uicker convention[61] to assign coordinate systems and model each wheel
as a planar pair at the point of contact. This convention allows the modeling of the higher-pair
wheel motion and eliminates ambiguities in coordinate transformation matrices. The planar pair
allows three DOFs as shown in Figure 4.3.1 : X and Y translation, and rotation about the point-
of-contact. The Sheth-Uicker convention is ideal for modeling ball wheels; the angular velocities
of the wheel arc converted directly into translational velocities along the surface. The planar pair
motions must be constrained to include wheels which do not allow three DOFs. For example, the
coordinate system assigned at the point-of-contact of a conventional wheel is aligned with the y-axis
parallel to the wheel. The wheel model is completed by constraining the x-component of the wheel
velocity to zero to satisfy Assumption 5 (in Section 4.2) and avoid translational slip.

Planar Pair Conventional Wheel

Figure 4.3.1

Planar Pair Model of a Wheel
4.3.2 W M R Coordinate Systems

We assign coordinate systems at both ends of each link of the WMR. The links of the closed-

link chain of a WMR are the floor, the robot body and the steering links. The joints are; a revolute

pair at each steering axis, a planar pair to model each wheel, and a planar pair to model the robot

body. When the joint variables are zero, the coordinate systems of the two links which share the

joint coincide. We summarize our approach to the modeling of a WMR having N wheels with

the coordinate system assignments defined in Table 4.3.1 . Placement of the coordinate systems

is illustrated IP Figure 4.3,2 for the pictorial view of a WMR. For a WMR with N wheels, we

assign 3JV" + 1 coordinate systems to the robot and one stationary reference frame. Them are also

N -r I instantaneously coincident coordinate systems (dcwribwl in Section 4.3.11) whi**h need not

be assigned implicitly.
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Floor

Figure 4-3.2

Placement of Coordinate Systems on a W M R

The floor coordinate system F is stationary relative to the surface of travel and serves as the

reference coordinate frame for robot motions. The robot coordinate system R is assigned to the

robot body so that the position of the WMR is the displacement from the floor coordinate system

to the robot coordinate system. The hip coordinate system Hi IP assigned at the point on the robot

body which intersects the steering axis of wheel u The steering coordinate aystexn Si is assigned

at the same point along the steering axis of wheel i, but is fixed relative to the steering link. We

assign a contact point coordinate system d at the poixtt~of-c6Jitact between each wheel and the

floor*

Coordinate system assignments are not unique. There h freedom to assign the coordinate

systems at postilions and orientations which lead to convenient .structures* of the kinematic model.

For example, all of tlir hip coordinate systems nuiy be assignee I parallel fo tho robot, coonluuite

«yii€"in n^iilting in sparse* rtibot*hip fraiLsfoniiatiiwi inatrinv anil tlni* hiisiplifyiitj; the inoilr*!. Al-

t<Tiiativc*]yv tin* x-axrn of the hip coordixiatc ^y^tcnw ran lie ;i!i?f,]ir<l vith tin1 zero pmithm of the
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steering joint position encoders so that the hip-steering transformation is expressed in terms of the

actual steering angle,

4.3.3 Ins tan taneous ly Coincident Coord ina te Systems'

To introduce the concept of instantaneously coincident coordinate systems, we consider the

one-dimensional example of a belli rolling in a straight line on a flat surface. The position of the

ball is depicted by the point r in Figure 4.3.3.

Stationary
Reference
Point Ball

Figure 4.3.3

Ball in Motion Before Instantaneous Coincidence

The ball is moving right to left: with velocity vr and acceleration ar. The stationary reference

point f lies in the path of the moving ball. At the? instant the ball (point r) and the reference (point

r) coincide in Figure 4.S.4, we observe that: (1) The position of the ball relative to the reference

point fpr is zero; and (2) The velocity fvr and acceleration rar of the ball relative to the reference

point cire non-zero. We call the point r an instantaneously coincident reference point for the moving

ball at the instant shown in Figure 4.3.4.

Stationary Conventional
Reference Reference

Point Point

b a l l

FIgur** 4.3.4

Ball In M o t i o n at Imttaxitmicous Coincidence

Wo continuously as/ij^i an hist;uil«"ii**<M*ly cohici«lt4ti! reference point f during the motion

of tht* bull to £t*n<Tulizi* uttr cj'sorvations for all tin:** /. Tin* pnsiUon of flî v bhlt whxVwt) h> it's*

inst«iutaurouiijy ruincidrut t'i"f*T<*iirr jjoiiif is z,t*ro |Lt\, r/*,(/) '""• 0), air! thv velocity ain! ;w
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of the ball relative to its instantaneously coincident reference point are non-zero (i.e., rvr(t) fi 0 and
¥aT[i) i=- 0). In the framework of instantaneously coincident reference points, we emphasize that we

cannot differentiate the position (velocity) cquation-of-motion to obtain the velocity (acceleration)

equatioii-of-motion.

The stationary reference point / in Figure 4.3.4 is a conventional reference point whose position

is fixed. Since both reference points / and r are stationary, the velocity (acceleration) of the ball

relative to the point / is equal to the velocity (acceleration) of the ball relative to the point f in this

one-dimensioual example. Consequently, it is not advantagous to introduce instantaneously coinci-

dent references in the one-dimensional example. The practical need for instantaneously coincident

coordinate systems arises in the multi-dimensional example as depicted in Figure 4.3.5.

R, R

Figure 4.3.5

Coordinate System R in Mot ion

The coordinate system R is moving in three-dimensions: X7 Y, and 0. The coordinate sys-

tems R and F are stationary; R is an iiisfcaiiLijuxmsly coincident coordinate system and F is a

conventional reference coordinate system. We make the analogous observations. The position of

the* moving coordinate system relative fro its instantaneously coincident coordinate system h zero

(i.c, ^PM ^ 0). The position of the moving coordinate system relative the conventional reference

coordinate system la iton-iscro (i.e., F p ^ ^ 0). Tin* iion-zcro velocity ^yn (nccdvmhhm ^a^) ut

the moving rcxirdiuate sytttom relative fro the intitnnrancously coinritient ctx>rdiiiato .system is not

equal to the velocity FYM (accekrakhm Fnp} of tb^ inoviiig ccx>rdinate sy^cin relative to the coa-

veiitiotin) rdetvnce roonlinatf" system. Tlte vclcKiity (acrojenition) of the liiovin*; coortliimte tqrs

relative to ike vonvtvVum^] ref<Tmc:k rowliitate system F depvn4^ npnn t?K4 position tuul

tiuji nf flu* moving 'WHBTHWJv sy>l$ ?*i trl-tfivi* tn !li^ n f r n w * nn^nVinniv *y>iU*u\t The,

ffw timignhaj itwtitnlhnt:ous!*j cttin* idunt eoorttinatv sttjJrmr ?"/» that i!f?' vrl^a
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a rnulti'dimensional moving coordinate system can be computed or specified independently of the

position of the moving coordinate system. The instantaneously coincident coordinate system is a

conceptual tool which enables us to calculate the velocities and accelercitions of a moving coordinate

system relative to its instantaneous current position and orientation.

Table 4.3.1: Coordinate System Assignments

F Floor : Stationary reference coordinate system with the z-axis orthogonal to the surface of

travel.

R Robot : Coordinate system which inoves with the WMR body, with the z-axis orthogonal to

the surface of travel.

Hi Hip (for i = 1,..., N) : Coordinate system which nioves with the WMR body, with the z-axis

coincident with the axis of steering joint i if there is one; coincident with the contact point

coordinate system d if there is no steering joint.

Si Steering (for t = 1,..., JV) : Coordinate system which moves with steering link i, with the

z-axis coincident wit;a the z-axis of II^ and the origin coincident with the origin of H{.

Ci Contact Point (for i ~ l,...,iV) : Coordinate system which moves with steering link t, with

the origin at the point-of-contact between the wheel and the surface: the y-axis is parallel to

the wheel (if the wheel has a preferred orientation; if not, the y-cixis is assigned arbitrarily)

and the x-y plane is tangent to the surface.

R Instantaneously Coincident Robot : Coordinate ^ysfern coincident with tho R coordinate

system and stationary relative to the F coordinate system.

Ci Instantaneously Coincident Contact Point (for i =^ I...-, N) : Coordinate system coincident

with the Ci coordinate system and stationary rolntivc to the F coordinate system.
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For stationary serial link manipulators, all joints are one-dimensional lower-pairs: prismatic

joints allow Z motion and revolute joints allow 0 motion. In contrast, WMRs have three-dimensional

higher-pair wheel-to-floor and robot-to-floor joints allowing simultaneous X, Y and 0 motions. We

assign an instantaneously coincident robot coordinate system R at the same position and orientation

in space as the robot coordinate system R. In Table 4.3.1, we define the instantaneously coincident

robot coordinate system to be stationary relative to the floor coordinate system F. By design, the

position and orientation of the robot coordinate system R and the instantaneously coincident robot

coordinate system R are identical, but (in general) the relative velocities and accelerations between

the two coordinate systems arc non-zero. When the robot coordinate system moves relative to the

floor coordinate system, we assign a different instantaneously coincident coordinate system for each

time instant. The instantaneously coincident robot coordinate system facilitates the specification of

robot velocities (accelerations) independently of the robot position. Similarly, the instantaneously

coincident contact point coordinate system Ci (in Table 4.3.1) coincides with the contact point

coordinate system Ci and is stationary relative to the floor coordinate system. Since the position

of the wheel contact point is not sensed, we require the instantaneously coincident contact point

coordinate system to specify wheel velocities and accelerations.

4.4 Transformation Matrices

Homogeneous (4 x 4) transformation matrices arc defined to express the relative positions and

orientations of coordinate? systems[54]. The homogeneous transformation matrix ATljj transforms

the coordinates of the point Dr in coordinate frame D to its corresponding coordinates ' l r in the

coordinate frame A:

Ar = AnB
 B t . ( 4 . 4 . 1 )

We adopt flie following notation. Scalar quantities* are denoted by lower case letter* (e.g., w).

Victors .ire* denoted by lowercase boldface letters (e.g., r). Mniricvs an? denoted by tipper CJW

Ifoldfare letters (e.g., II), Pro-.siiper»rripl8 denote reference coordinate *iy$tcind. For example* At

k tlie victor r in the A coordinate frame. Tlie prosiijuTseripfc may he omitted if tho coordfaiAto

frame* k transparent from the context. Post-«uhsrripts arc1 used to denote coordinate nystem:* or

<*nnap<meitt> of n \i ctcwr or mat rix* For example, the tnmsforTU<tticiji matrix A Tip clrfitic^ the fw#if«a

ami iiricntation of ccxinliuaU* ny^teni D relative to coordinate fniiiie ;i; and rx i« tin* x-<-oi»j>ouc«t

#?f thv vert or r.

!ju*4 n^itH,^ h i >j»«irc.\ m\rh SLS Ar hi {*!.•!,I), c o n s i s t o f fhr?<» vartv-^vni •'«M;r*
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and a scale factor as the? fourth clement:

(4.4.2)

We always use a scale factor of unity. Transformation matrices contain the (3 x 3) rotational matrix
(n o a) , and the (3 x 1) translational vector p[54]:

nx ox ax p2

Tly Oy Uy Py

nz oz az pz

0 0 0 1

The three vector components n, o, and a of the rotational matrix in (4.4.3) express the orientation
of the x, y, and z axes, respectively, of the B coordinate system relative to the A coordinate system
and are thus orthonormal. The three components px , py , and p^ of the translational vector p
express the displacement of the origin of the B coordinate system relative to the origin of the A

coordinate system along the x, y, and 7, axes of the A coordinate system, respectively.

The aforementioned properties of a transformation matrix guarantee that its inverse always
has the special form:

(4.4.4)

Before we define the transformation matrices between the coordinate systems of otir WMR model,

we compile in Table 4.4.1 our nomenclature for rotational and transHtional displacements, velocities

and accelerations.

In general, any two coordinate systems A and U in our WMR model arc located at non-zero

x, y ;uul 7*-ciK>rdiii'itt*s relative to earl; other. The transformation matrix must therefore coiiinin

tho translations Afl$$£* ^dfty &ud A^Bs> We have a«sî nc*cl *ill coordinate sy^ttmitf with the z-axos

pcriM*u«lic!ifar *"o tlic surface of travel, so that all r̂ l*;itic>n^ lw»twcen coordinate ^y.^toins are about

the x-axis. A transfonr>;ition matrix in our \YMH model thus rin!>o«lu»> a rotation A0n abc*ui the

/-axis of coonlinatr r.y^U'iii A ami the tr.-uuJations Adu,m
 Ad/iy «"ici A(IB% alont? the resptvtive

nx

ox

ax

0

fly

Oy

av

0

nz

oz

as

0

- ( P -
- ( P -
- ( P -

1

n)
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coordinate axes:

fcosA0D ~~sinA0B 0 AdBx*
inA0B cosA0B 0 AdBy

0 0 1 AdBz

V 0 0 0 1

For zero rotational and translationa! displacements, the coordinate transformation matrix in (4.4.5)

reduces to the identity matrix.

In Section 4.6, we apply the inverse of the transformation matrix in (4.4.5) to calculate position

kinematics. By applying the inverse in (4.4.4) to the transformation matrix in (4.4.5), we obtain

cos A0D sin A9D 0 - AdBx cos A0B - AdDy sin A6B '

A .. i I - sin A0B cos A0B 0 AdBx sin A6B - AdBy cos A0B , rAAG\
Urr = I Q Q x _AdF | . (4.4.6)

0 0 0 1

In Section 4.7. we differentiate the transformation matrix in (4.4.5) componentwise to calculate

robot velocities:

( ,( 0B 0

AuB cos A0B -AuB sin A0D 0
0 0 0 0
0 0 0 0and in Section 4.8, we differentiate the transformation matrix in (4.4.7) componentwise to calculate

robot accelerations:

-AaB sin A0B - Aa.'| cos A ^ - ^ r v o cos ̂ fl/j -f- A a « | sin A0B 0
- A w | sin A0B -Aao sin ̂ Oj, - Aujj cos A03 0
0 0 0
0 0 0 0

, ITT - I A<*B£wA0B-'Aw2
DshiAOB ~AaDm\A0n - Au)%cosA03 0 - o ^ i / l l f l ,

n^ - I 0 0 o o • • {4jL8}



Table 4.4.1

Scalar Rotational and Translational Displacements

A0u : The rotational displacement about the z-axis of the A coordinate system between the x-axis

of the A coordinate system and the x-axis of the B coordinate system (counterclockwise by

convention).

A(1BJ : (for j <E [u:, y, z]) : The translational displacement along the j-axis of the A coordinate system

between the origin of the A coordinate system and the origin of the B coordinate system.

Scalar Rotational and Translational Velocities

A&B "• The rotational velocity A0B about the z-axis of the A coordinate system between the x-axis

of the A coordinate system and the x-axis of the 13 coordinate system.

AVBJ - (for j € [x,y]) : The translational velocity Ad&j along the j-axis of the A coordinate system

between the origin of the A coordinate system and the origin of the B coordinate system.

Since all motion is in the x-y plane, the z-component Adj3-. of the translation^*! velocity is

zero.

Scalar Rotational and Translatioual Accelerations

ACCB : The rotational acceleration A0B = A^B about the z-axis of tlie A coordinate system bei ween

the x-axis of the A coordinate system and the x-axis of the 13 coordinate

(for j € [x, y\) : The translational acceleration Ad^j r= DVA along the j'-axis of the A

coordinate system between the origin of the A coordinate system and ib<* origin of the B

coordinate system. Sinco all motion is parallel to the x-y plane, the z-componcnt AIIBZ <>f

the traiirilational acceleration is zero.
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The assignment of coordinate systems results in two types of transformation matrices between

coordinate systems: constant and variable. The transformation matrix between coordinate systems

fixed at two different positions on the same link is constant. Transformation matrices relating

the position and orientation of coordinate systems on different links include joint variables and

thus are variable. Constant and variable transformation matrices are denoted by A To and A $ u ,

respectively[Gl]. In Table 4.4.2. we compile the transformation matrices in our WMR model. The

constant transformation matrices arc the floor-robot transformation ( F T^) , the robot-hip transfor-

mation (^T//.), the steering-contact transformation (<<?t'Tcy) and tho floor-?;ontact transformation

(FT^j-). Since the instantaneously coincident coordinate systems R and C{ are stationary relative

to the floor coordinate system, all transformation matrices between the floor coordinate system

and the instantaneously coincident coordinate systems are constant. The variable transformation

matrices are the robot-robot transformation (R&R)7 the hip-steering transformation (Hi$Si) and

the contact-contact trailsfomiation (Ci<&cJ- The transformation matrix from a coordinate system

to its instantaneously coincident counterpart (or visa-versa) is variable because there is relative

motion. We compile the first and second time-derivatives of the variable transformation matrices

in Tables 4.4.3 and 4.4.4. respectively. The matrix derivatives involving instantaneously coincident

coordinate systems (i.e., R$R,
 C ^C;* R&R* and Ci&d) <aro formed by differentiating and simpli-

fying the elements of the tr<uisformation matrices R$n and Gi$c%i respectively, by substituting
ROJI = 0 and c%0d = 0. Because of the simplifying substitutions, the second time-derivative of

a transformation matrix involving an instantaneously coincident coordinate system cannot be ob-

tained by differentiating the first time-derivative. Time-derivatives of instantaneously coincident

coordinate systems arc calculated in Section 4.5 by applying matrix coordinate transformation

algebra. The time-derivatives of constant transformation matrices are zero.

Far wheels which do not have steering links, the hip and steering coordinate systems are as-

signed to coincide with the contact point coordinate system, so that the hip-steering and stcering-

cont&cr transformation matrices reduce to identity matrices and tuereby simplify llie taisuiug lone-

modeling.



Table 4.4.2 : Transformation Matrices of the WMR Model

Floor — Robot Transformation :

COS

0
0

— sm
cos

0
0

0
0
1
0

Robot — Robot Transformation

k0R -COS " l / R

0
0

0
0

0 RdR

0 ^d R

1 AdR

0 1 )

Robot — Hip Transformation : RTHi =
' cos 'Hi - sin

"•VfJi COS Rl

0 ' 0
0 0

Hip — Steering Transformation :

-sinH '0i,v 0 0 '
cosHi0Si 0 0

0 1 0
0 0 1.

Steering - Contact Transformation

— sin s«
cos St C

0
0

Contact - Contact Transformation : sin Ct Qd cos c'
0 0
0 0

0
0

1 /

Floor — Contact Transformation :

— sm
cos l

o
o

0
0

1
0 1 J
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Table 4.4.3 : Transformation Matrix Time-Derivatives

Robot — Robot :
R

0 - J
0 "vRx

UR

0
0

0
0
0

0
0
0

0
0

Hip — Steering :

-HiU}S. COS "'Os; 0 0"

-HiwSi sin H'0s, 0 0
0 0 0
0 0 0.

Contact — Contact :

0 - c

ft

0
0

0
0
0

0
0
0
0

c. vciV

0
0

Table 4.4.4 : Transformation Matrix Second Time-Derivatives

Robot — Robot :
0

v 0
0
0

0
0
0
0

0
0

Hip - Steering :

«.#« =
0
0

- aSt cos
- a^ siu ^ 0s[

o
o

« w J t siu "• 0Sx 0 0 ^

o o
o oy

Contact — Contact :
0
0

0
0

0 *
0 c-
0
0
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4.5 Matrix Coordinate Transformation Algebra

The kinematics of stationary manipulators are modeled by exploiting the properties of trans-

formation matrices [19]. We formalize the manipulation of transformation matrices in the presense

of instantaneously coincident coordinate systems by defining a matrix coordinate transformation al-

gebra. The algebra consists of a set of operands and a set of operations which may be applied to the

operands. The operands of matrix coordinate trans format ion algebra are transformation matrices

and their first and second time-derivatives (in Section 4.4). The operations are listed in Table 4.5.1

as seven axioms. In the table, A, U, and X are coordinate systems and FI denotes either a constant

T transformation matrix or a variable* # transformation matrix. Matrix coordinate transformation

algebra allows the direct calculation of the relative positions, velocities and accelerations of robot

coordinate systems (including instantaneously coincident coordinate systems).

Table 4.5-1 : Matrix Coordinate Transformation Algebra Axioms

Identity : AYlD = I for D =. A or D = A

Cascade : AUB = A*lx
 XTIB

Inversion : A TIB = DH^1

Zero - Velocity : AflB = 0 frjr B = A or II = T

Velocity : AT1B = AHX
 XUB + B

Zero - Acceleration : AflB = 0 for D = A or II = T

Acceleration : AflB = AIIx XTlB + 2 AIlx xflo H- AIIx

The identity axiom is self-evident since neither rotations nor translations are required to trans-

form From a coordinate system to itself or to itn instantaneously coincident coordinate system. The

cascade axiom specifics the order in which transformation matrices arc? multiplied: the coordinate

transformation matrix from tbo reference sy»t<Mn to the destination is the cascade of two coonli-

nM.0 transformation matriroij, tlu» first from the reference systc*Tu to an intermediate coordinate

,syrtteni, and the second from the intermediate coonlinatc styt-*«»m to the d<»stination. The inversion

axiom states ihat (lie au)rdiiiaU» tnm.^forinatu^n matrix fn»iu a reference coordinate systi*m to a

iU'.s»iji;iti:m c<*ordin«tt5(Mi >xn\i :\i is the inverse of th*" coordinau* transforTnatioTi matrix fn>m tho

ilf\4iHati(ni coordinate ^y:4<*iii tti iht* n^fen-uft" roordiitdtc? system.
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Just as the multiplication of transformation matrices is specified by the cascade axiom, time-

differentiation of transformation matrices is specified by the four velocity and acceleration axioms.

Specifically, we cannot differentiate both sides of a matrix transformation equation. For example,

if we were to differentiate both sides of the equation ATl^ = I, wo would obtain the incorrect result

that ATl j = 0 since the velocities between a coordinate system and its instantaneously coincident

counterpart arc (in general) non-zero. The zero-velocity axiom states that the relative velocities

between a coordinate system A and itself (D = A) or another coordinate system assigned to the

same link (II = T) are zero. This is because two coordinate systems assigned to the same link are

stationary relative to the link and each other. Similarly, the zero-acceleration axiom states that

the relative accelerations between a coordinate system A and itself (B = A) or another coordinate

system assigned to the same link (II = T) are zero. The velocity axiom specifies how the time-

derivative of a transformation matrix may be expressed in terms of the two cascaded transformation

matrices and their time-derivatives. Finally, the acceleration axiom specifics how the second time-

derivative of a transformation matrix may be expressed in terms of the two cascaded transformation

matrices and their first and second time-derivatives.

The matrix coordinate transformation axioms in Table 4.5.1 lead to the corollaries in Table

4.5.2 which we apply to the kinematic modeling of WMRs.

Table 4.5.2 : Matr ix Coordinate Transformation Algebra Corollaries

Instantaneous Coincidence : *^Ilj3 = AHg = ^IT^ = AHB

Cascade Position : ATtz = ATlB
 B I I C °TlD . . . YHZ

Cascade Velocity : Hlz = ^flB
 BTlz + AHB

 Bflc °UZ + ... + ATIY
 YT1Z

Cascade Acceleration : ^flz = ^flB
 BUZ + A n B

 Bflc °Tlz + . . . + AUY
 Y^z

+ 2 AfiD[Bnc cnz 4- nntJ
 chD

 Dnz +... + BnY

+ 2 AnD
 Bwa'fTtD

 Dnz J- . . . + cnY i

+ ... +2 Anx
 x

We «!ovelop the iiiMantanvottx coincidence anoJlmy by Appl

iJ?. Tf̂ *a hi^taiitiUtcous roiijri<l<*mv corollary ^iuip-!ifi^s tnnt^

vYnahmthvr
f tlu% in>"nmm^nn^ly i'nlnvhlvnt r/K»r*!5ij;ii< *^ys!(4in-s, T

tli«* idou t i iy and f*w*iii«* ax-

a^ioTi m a t r i x cxj»rc*^ "M*:I< l y

to *i



system which may bo kinematically separated from the reference system by a number of cascaded

intermediate coordinate systems. The cascade position corollary, which is derived by repeated

applications of the cascade axiom, is the foundation of position kinematics (in Section 4.6). The

cascade velocity corollary is derived by repeated applications of the velocity axiom and the cascade

axiom. The cascade acceleration corollary is derived by repeated applications of the cascade, ve-

locity and acceleration axioms. In Sections 4.7 and 4.8, we apply the cascade velocity and cascade

acceleration corollaries to relate linear and angular velocities and accelerations between coordinate

systems. Throughout Section 4.7, we apply the axioms and corollaries of the matrix coordinate

transformation algebra to derive the wheel Jacobian matrix.

4.6 Posi t ion Kinemat ics

We apply the transformation matrices (in Section 4.4) and the matrix coordinate transforma-

tion algebra (in Section 4.5) to calculate position kinematics. The practical position relationships

in WMR control require the calculation of the position of a point (e.g., r) relative to one coordinate

system (e.g., A) from the position of the point relative to another coordinate system (e.g., Z). For

example, we calculate the position of the point mass relative to the floor coordinate system from

the position of the point mass in a steering link relative to the steering coordinate system.

We transform position vectors by applying the transformation matrix in (4.4.1):

A r = ATlz
 ZT . (4.6.1)

When the transformation matrix AUz is not known directly, we apply the cascade position corollary

to calculate AUz from known transformation matrices:

Anz = AnB
 Dnc

 GnD ... Ynz . (4.6.2)

We apply transformation graphs to determine whether there is a complete sot of knmvn transfor-

mation matrices which can be cascaded to create the desired AUz- In Figure 4.G.I, we display a

transformation graph of a WMR with one steering link per wheel.

The origin of each coordinate system Is represented by a dot, and transformations beUvccn

coordinate systems are depicted by directed arrows. The transformation in the direction opposing

an arrow is calculated by applying the inversion axiom. Finding a cascade* of transformations to

calculate a desired transformation matrix (e«g. |c f l ^ ) is tlnw e<iuivak*nt to finding a path from th*»

reference coordinate system of tin* desired transformation (P) to the destination coordinate system

(S{)> The matrices to be cascaded an* listed by traversing tin* path in crdtr. Each trr*ii.4Wfitatioii

in the path which i> traversed from the tail to the brad of ;»n MWW i;* listed :^ the matrix itself,

while transformation-; traversed from the N*ad Jo Ilir tail are Ihrdvd ;%$ the i*mT>'<* «>f thr matrix.
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Figure 4.6.1

Transformation Graph of a WMR

•« t r w ^trw^omwd to it* j^ition rclntivo to thc floor coordinate system F uco
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Point

Robot

Figure 4.6.2

Point Mass in the Steering Link

In this example, the reference coordinate system is the floor coordinate system F and the

destination coordinate system is the steering coordinate system Si. There are multiple paths

between any two coordinate systems in Figure I.G.I because WMRs arc closed-link structures. In

practice, the number of feasible paths is reduced because sonic of ihc transformation matrices are

unknown. For example, we may seek to calculate the desired transformation matrix in (4.G.4) as:

=^ / ' $ C l
c ' T S l (4.6.5)

but the transformation matrix from the floor to the wheel contact point ^ T ^ is typically unknown.

4.7 Velocity Kinematics

4.7.1 Introduction

We relate the velocities of the WMIt by applying the matrix coordinate transformation algebra

axioms and the cascade velocity corollary. In Section 4.7.2, we calculate the velocity of a point;

(e.g.. r) relative to a coordinate system (e.g., A), when tlio position of the point is fixed relative to

another moving coordinate system (e.g.. Z). This solution is applicable to the dynamic modeling of

WMRs (in Section 9) for computing the velocity of a differential ttuiss f*leinent on the WMR relative

to the floor coordinate system. In Section 4.7.3, w^ apply this same methodology to calculate the

velocities of the robot relative to the im:t.nnt:«iticoitoly coincident robot coordiaaie system when

the velocities of a wlitvl2 are sensed. We introcluro the wheel Jucobiaii matrix to calculate the

robot velocity vector from the wheel wiocity vector. We ako calculate (in Sort ion 4.7.4) the robot

"2

T h e w h o r l v«'l«»cittt'H n rc t h e n t w i h i j i v e l o c i t y WX l - ; , t l u w1h**r! vt-loc$*y n)x»i<t i t s nxh* fuJ^x1* *^*<1 r o t a t Umnl »Kj

v e l o c i t y WW ? < 1 t h e r o l l e r v«'I«rjik*w U)Wr C^"'r '>?'»ui i '«irffctj^:i4i1 v:h^flt) >m«l t h e r»»tutii>»iil v«*3«>eity Wn?^ (for b a l l wlaeelM}



velocity vector relative to the floor coordinate system, when the robot velocity vector is sensed

relative to the instantaneously coincident robot coordinate system. In Section 6.3. we apply these

calculations to dead reckoning3 for WMR control.

4.7.2 Point Velocities

We differentiate the point transformation in (4.6.1) with respect to time to compute the velocity

of the point r in the A coordinate system:

Ar=Ahz2r . (4.7.1)

When the matrix ATlz is not known directly, we apply the cascade velocity corollary to calcu-

late AHz from known fcransformation matrices and known transformation matrix time-derivatives

according to:

^ AnB
 Bnz + AnD

AnY
 Yhz (4.7.2)

For example, equation (4.6.3) relates the position r of a point mass in the steering coordinate

system Si to its position in the floor coordinate system F. We calculate the velocity of the point

r relative to the floor coordinate system by differentiating (4.6.3):

'r = FflSt
 s 'r . (4.7.3)

Since the vector Sxr is constant, its time-derivative is zero. We apply the cascade velocity corollary

and the WMIt transformation graph to' obtain an expression for the unknown transformation matrix

derivative in (4.7.3):

FtlSl = ' T J J FTlR
 nTHl TlHl » « * 5 , . (4.7.4)

W*> simplify (4.7.4) to rttpiire only known transformation matrices and known trAiisforniatum

matrix derivatives.

= F T S K 4 * rtrr, H,

•f

+ B T f f | ^ # s t

^ero - Vdm'ity Axiom

h SffS Cascmk Corollary

Identity Axiom

Inxtanantcoun Coincidence

WMHt ju^uilon la ''Vn>iifj tn
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In (4.7.5), the robot velocity (in **&R) is calculated in the sensed forward solution (in Section 5.7),
the steering position (in Hi$§i) a i l (l velocity (in ^'^s^) are sensed, the robot position (in FTlji)
is calculated by dead reckoning (in Section C.3), and the robot-to-hip transformation ( ^ T H J is
specified by design. The right-hand side of (4.7.5) is thus known. We then substitute (4.7.5) into
(4.7,3) to calculate the velocity of the point mass r relative to the floor coordinate system.

4.7-3 Wheel Jacobian Matrix

We formulate the? equatioiis-of-motion to model the velocities of the robot in terms of the
velocities of a wheel. We begin our development by applying the cascade velocity corollary to write
the matrix equation (4.7.6) with the unknown dependent variables (i.e., robot velocities, R*&R) on
the left-hand side, and the independent variables (i.e., the wheel i velocities, Hi$Si &&& Ci®d) °n

the right-hand side:

(4.7.6)
SiT~l "'V*1 *T7/ .

The transformation graph of Figure 4.6.1 is utilized to determine? the order in which to cascade the
transformation matrices; the inversion axiom is applied when an arrow in the transformation graph
is traversed from head-to-tail and the zero-velocity axiom is applied to eliminate the matrices
which multiply the derivatives of constant T matrices. Since the position of the wheel contact
point relative to the floor is typically unknown, we apply the cascade position corollary to write an
alternative expression for the floor-contact transformation matrix:

Fr*c< = Fr?Tt " • * *T H , " ' * * SiTCi ^'#3^ • (4 7.7)

We siibstitutc (4.7.7) into (4.7.6) to obtain:

SiTCi ^ # 0 / ^ » c s"*c! Ht*s- K ^ |

We apply tlie identity axioiu to simplify (4.7.8).

lh * s . 1V-, -*v, *c! ** T « ! ( 4 7 0 )

n T w , " • # , . ''••i'.s
I BT,iJ
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We next apply Tables 4.4.2 and 4.4.3 to write the transformation matrices and the transfor-

mation matrix derivatives and multiply the result to obtain:

RUR

0

^ o

~JiUR
0
0
0

: 0
0
0
0

"vRx
RVRy

0
0

:<wc. 0 cyc.
 RdCiy + c^ya,« cos R0Ct - ^ v C i „ sin R0Ci \

0 0 -CiuJci
ndc,x + CivciXsinR0Oi+

c<vCiyCOsR0c
0
0 J

0
0

0
Hius
0
0

0
0

H

1

r;ws
0
0
0

0
0

0
0
0
0

Hi0JSi
RdHiX

0
0

(4.7.10)

To simplify the notation hi (4.7.10), we have made the following substitutions:

SidCiVcoS(
R0Hi + *

(4.7.11)

Upon equating the dements in (4.7.10), we obtain the robot velocities:

coS
R0Ct -
R cosR0Ci

0 - 1
V ">o»Si J

= .Tt- 4 , (4.7.12)

where i-i..,Ni% the wluvl index, RpR ia the vr-ctor of robot velocities in the robot frame, j , is

J1«J psMitlo-J.-uohiaii matrix for wheel i, and 4j is the pwmlo-velwity vector for wheel *'. We define

«he number of wheel wriahlra (»f wheel i to be «;,. The physical velwity vector q, of ) ypieal wh<i!s

cl«wv not contain the four compmuut velocities in (4.7.12). Typi.vtl w!ici-L« ptw* f.-.ver than fimr

mheel vari.-ihl.y ;»«1 th«.- f« v/er thnn four ch-Mt̂ nfn in lh«> vi'lu»,ity vnior Furth.-nitoiv. >ii»ce dl

3>!iy.-kal winv] ntutiow an- r«. fat inns about physical wh.el axe«. the wlu-el veWity ve» !.,r n
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the angular velocities of the wheels rather than the linear velocities of the point of contact along

the surface of travel. We relate the (4 X 1) pseudo-velocity vector to the [w{ x 1) physical velocity

vector qt by the (4 X W{) wheel matrix W^:

4 = Wi qt . (4.7.13)

We substitute (4.7.13) into (4.7.12) to calculate the robot velocities from the wheel velocity vector:

* P R = Jx Wt- <ii = J; q* . (4.7.14)

The product J^ = (Jx- W t) is the (3 X Wi) wheel Jacobian matrix of wheel i. The rank of

the wheel Jacobian matrix indicates the number of DOFs of the wheel. A wheel having fewer

DOFs than wheel variables is redundant. The Jacobian matrix of a rcchmdant wheel has dependent

columns. We thus formulate the following computational method to determine whether a wheel is

non-redundant:

I
Non-Redundant Wheel Criterion

d€t{3f3i\ # 0 (4.7.15)

Only three different wheels have been utilized in the WMR designs of Section 2: non-steered

conventional wheels, steered conventional wheels and omnidirectional wheels. The wheel Jacobian

matrices for these wheels and the ball wheel are detailed in Appendix 3. We utilize (4.7.14) in

Section 5 to develop the inverse and forward solutions. In Section G, we apply the matrices in

Appendix 3 to calculate the inverse and forward solutions of specific WMRs.

4.7.4 Transforming Robot Velocities

We equate the components in matrix equation (-1.7.2) to compute* the trantilational Av%Xl and
At>zy &nd rotational AUJ% velocities4 of the coordinate system Z relative to coordinate system A.

We apply this methodology to the practical problem of transforiain^ velocities of tho robot from

robot coordinates R to floor coordinates F. We n$<*nnc that the iit*.»r-robot transformation matrix
FTR {i.e., tlie position ami orientation of the robot relative to the floor} ami the matrix R*H*£i (i,eM

the velocities of the robot relative to its current position mid orient at Ion) are known. The velocities

our coonHitafc



to be calculated (i.e, the velocities of the robot relative to the floor) are the components of the

matrix FTLJI, We apply the cascade velocity corollary (in Section 4.5) and the WMR transformation

graph (in Section 4.6) to write the matrix equation

FhR = FT^R^R + FTn*$n (4.7.15)

in terms of known matrices. To simplify (4.7.15), we apply the zero-velocity axiom and the instan-

taneous coincidence corollary:

h = FTR
 R$R (4.7.16)

We expand each matrix into scalar components: the matrix derivative FHR according to

(4.4.7). the transformation matrix FTR according to (4.4.5), and the transformation matrix deriva-

tive R<&JZ according to Table 4.4.3. Upon multiplying, we obtain:

- Fojji sin F0R -FU)R cos F0R 0 FvRx
FUJJI cos FOJI — F(JJR sin F0R 0 FVRy

0 0 0 0
0 0 0 0

cos

9R -Ih>JRcosF0R 0 RvRxcosF0R -^vEysinF0R
F0R -RuR sin F0R 0 *vRx sin F0R + ^vRy cos F0R

0 0 0 0
0 0 0 0

(4.7.17)

We obtain the angular velocity of the robot FuR from elements (1,1) <uul (2,1) and read the trans-

lational velocities FvRx sad FvRv directly from elements (1,4) and (2,4) of (4.7.17), respectively.

Wo find that:

'FvRl \ ( (
Pit = | FVRV = sinF0n co»F0R 0 nvn* = V ^ {4.7.18)

j ) \ )

(4.7J8), we observe Hiat the aii^iliir velocity of tlie ruln>t Is fquoi in both

Vihvrviw I ho traji>l«4tlcii»al vdcrilitv* in the floor coordinate franip ;ire dc])oi!cli»nt upon f̂ee

oric*Sitatioii* The matrix V i» the* (3 x 3) motion matrix which <IejK*mJs* upon tl«» roh*t

^pu* In Srctioii 6.3, wr apply tliv )inotion inaliix to *h»ail-rn*lioiii»i:; for
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4,8 Accelerat ion Kinemat ics

We calculate the accelerations of the WMIi by applying the cascade acceleration corollary.

Since the development parallels that of the velocity kinematics in Section 4.7, we omit the compu-

tational details and concentrate on interpreting the results. We cannot formulate the acceleration

equations-of-motioii by differentiating the results of Section 4.7, because differentiation of both

sides of a transformation matrix equation is not an allowable operation in our matrix coordinate

transformation algebra. This is in contrast to the acceleration kinematics of mechanisms contain-

ing only lower-pairs (e.g.. stationary manipulators) which are formulated by differentiating velocity

kinematics.

The acceleration of the point r fixed relative to the moving coordinate system Z is transformed

to the A coordinate frame according to:

Af = r . (4.8.1)

We apply the cascade acceleration corollary to calculate the second time-derivative of the transfor-

mation matrix

By applying the cascade acceleration corollary, the component accelerations of the robot (R

Rcijiv and Raji) are related to the wheel accelerations (H%asiZ
 Cxadx, C%a>c%y», and Ciacix) as the

cascade velocity corollary, in Section 4.7.3, relates the robot velocities to the wheel velocities. In

the notation of (4.7.11), the robot accelerations are:

- sin R0Ci

QOSR0C\
0

i J (4.8.2)

The robot accelerations in (4.8.2) are composed of three* components: the .^//-accelerations

{^ftCtT* c>*«frt|/»
 CiCiax < îJ Ii%^&%)\ tlie ccnlripetalaccelerations (Ctuj% and l f*w|J having squared

velocities; and the Coriolis accelerations (c^tJc\ W%t^5») having prcHlncts of different vt*loc:itieai.

robot «ccel«»rations from robot coonliiKitof to lloor coordinate** hi analogous to

i1!^ roiwil vele<"itie^ (ia Serf ion f.7.*l). \V<* IhuJ tlial I lit* rol*ot ;tcr«iUTa*ic*n« are trans-

f»)rme«l from iu flu* Hoor cot>ulinat4k IV*iiue 1/ niof riirin V th.it the



velocities in (4.7.18):

FaRx\ fcosF0R -sinF0R 0* _
Fi>R = | Fanv J = [ sinF0R cosF0R 0 | | RaRy | = V *pR . (4.8.3)

0 0

The acceleration equations-of-motion are not solved in practice* because accurate acceleration mea-

surements are difficult to obtain.

4.9 Summary

We have formulated a systematic procedure for modeling the position, velocity and acceleration

kinematics of a WMR. In this section, we outline a step-by-stcp enumeration of the methodology

to facilitate engineering applications.

1.) Make a sketch of the WMR. Sliow the relative positioning of the wheels and the

steering links. The sketch need not be to scale. A top and a side view are typically sufficient.

2.) Assign the coordinate systems. The robot, hip, steering, contact point and floor

coordinate systems are assigned according to the conventions introduced in Table 4.3.1.

3.) Develop the (4x4) coordinate t ransformation matr ices . The robot-hip, hip-steering,

and steering-contact transformation matrices arc written according to Table 4.4.1.

4.) Formulate the position equations-of-motion. The relative positions and orienta-

tions of two coordinate systems are determined by applying the cascade position corollary. The

transformation graph of Figure 4,6.1 is utilized to determine the order hi which to cascade the

matrices.

5.) Formulate tlie velocity eqiiations-of-mofcion. The equations relating velocities arc

formulated by applying the cascade velocity corollary. The wheel Jacobiait matrix, which relate

wheel velocities to robot velocities, may be written directly by Mibdtitutiug components of the

transformation mat rides into the symbolic wheel Jarobian iitatrkies compiled in Appemlix 3,

6.) Formulate the acceleration equations-of-rnotion. Tlio equations mating nm?k?r«v

lions arc* formulated by applying Hie cascade acceleration

The ncn-"MhintUint whrd criterion in f 1.7.15) Ls a ttv,t «JJ tin* J.i*'o!>J«iii matrix to *h't*'Vnir

1S,H a> numy DOI*- as w1u*c«l vari.*Mfrf. \V«» applj thw i riti»r"-'M» in Sivii'»M r» t^ rerv
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disadvantages of redundant wheels. A kinematic model; i.e., the position, velocity and acceleration
cquations-of-motion, may be applied to the dynamic modeling, design and control of a WMR. In
these applications, the equations-of-motioii arc solved to compute unknown variables from constant
and sensed variables. In Section 5, we compute the inverse and forward solutions by utilizing the
wheel Jacobiaii matrix (introduced in Section 4.7.3) as the foundation.
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5. The Composite Robot Equation

5.1 Introduct ion

We combine the kinematic eqnations-of-niotion of all of the wheels on a WMR to form the

composite robot equation. We then investigate solutions of the composite robot equation and their

properties and implications for WMR locomotion. Our investigation illuminates WMR mobility

(in Section 5.4), actuation (in Sections 5.5 and 5,6) and sensing (in Sections 5.7 and 5.8).

In Section 5.2, we formulate the composite robot equation and in Section 5.3 we discuss the

conditions for its solution. We apply the results of Section 5.3 to develop a mobility character-

ization tree in Section 5.4 which allows us to interpret the solubility conditions in terms of the

mobility characteristics of the WMR. The mobility characterization tree indicates whether the

mobility structure i? determined, over deter mined or undetermined, and associates specific mobility

characteristics with each possibility. For example, we may apply the mobility characterization tree

to determine whether a WMR allows three DOF motion, and if it does not, the tree indicates the

motion constraints.

We proceed to solve the composite robot equation by addressing two classical kinematic mod-

eling problems: the actuated inverse solution (in Section 5.5) and the sensed forward solution (in

Section 5.7). The actuated inverse solution computes the actuated wheel velocities from the robot

velocities. For WMR control, we solve only for the velocities of the actuated wheel variables. The

solution for all of the wheel velocities h a special case which uxzxy be obtained by assuming that all

of the wheel variables are actuated.

The actuated inverse solution does not guarantee that the specified robot velocities will be

attained when the actuated wheel variables are driven to the calculated velocities. We investigate

the pos&Ible robot motions when the actuated wh<*d variables attain the velocities computed by

the actuated inverse solution in Section 5.C. We* develop an actuation characterization tret, anal-

ogous to the mobility characterization tree, which allow* us to determine the actuation structure

{determined, overdotormined or undetermined) of a WMR. The actuation characterization tret? is

applicable for WMR design to avoid ovcrdctenmned actuation (which may cvmso actuator conflict)

and undetermined actuation (which allows the WMR uncontrollable DOPa). From awr analysis,

we arc4 able to determine whether the* actuated W1JUK*I variable are sufficient lor produauft all of

the motions allowed by the mobility structure.

The sensed forward HolUion in KcTfloo 5.7 cwnppUv ihv rnhoi velocity from the JHVUHI! wfav]

veI<*'ifM*' and por-'itiojut. Since a WMR o>ii>;^w of eUwd S-r^'t^afk '•li.-iins. it \* not tt\\K\u tl to

si* ail of the wlifi! |M>J4IIOIIK ;*nd wl«*citie;4. and in practi*** it k diiiicult to do MK
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In Section 5.8, we develop a sensing characterization tree which allows us to determine the

character (undetermined, determined or overdetormined) of the WMR sensing. We thus are able

to determine whether the sensed wheel variables are sufficient for discerning all of the motions

allowed by the mobility structure. Finally, in Section 5.9, we summarize our development.

5.2 Formula t ion of the Composi te R o b o t Equa t ion

In Section 4.7.3, we developed the wheel Jacobian matrix J2 by applying velocity kinematics

to compute the robot velocity vector p from the wheel velocity vector q t:

P == / o r i = l , . . . , J V , (5.2.1)

where i is the wheel index, N is the total number of wheels, p is the vector of robot velocities, Jt-

is the (3 x Wi) Jacobian matrix for wheel i, W{ is the number of variables for wheel i, and qt- is the

(w{ x 1) vector of wheel velocities.

The ZN wheel equations in (5.2.1) must be solved simultaneously to characterize the WMR

motion. We combine the wheel equations to form the composite robot equation:

f l l ^

p =

0 . . . 0 \

0 . . . 0

(5.2.2)

or

A o p = B o q (5.2.3)

where the I;, for i = 1 , . . . , JV, are (3 X 3) identity matrices. AQ is a (ZN x 3) matrix, Bo is a

(3iV x ix?) block diagonal matrix, w = wi + w*z + . . . + W& is the total munber of wheel variables

and q is the composite wheel velocity vector.

Having formulated the matrix equation in (5,2.3) to model the robot motion, we proceed to

investigate the solution for the robot velocity vector p in Section 5.3 and it** implications for WMR

locomotion in Section 5,4.

5.3 Solut ion of Ax = By .

We characterize WMR mobility (in Section 5,4). actuation (in Section 5.f>) and ^eiining (in

Section 5.8) by ex;»aiming thf properties of Hie solution,-? of the cc»mpo/jti* Y**\nrt cs<|naticui in (S.2.3),

W<» extt»iul OH* .stamlard criterlaflfi] for the sysltnujs of linear alj;«*!>rjiic tiqnntions Ax r: h, where A



is an (m x n) matrix, x is a [n x 1) vector and b is a (rn x 1) vector, to the solution of the systems

of linear algebraic equations

Ax = By , (5.3.1)

where B is an (m xp) matrix and y is a (p X 1) vector. Since the composite robot equation (5.2.3)

has the form of (5.3.1), solutions of (5.3.1) are directly applicable to the solution of the composite

robot equation.

We apply the method of least-squares[15] to compute the vector x for overdetermined (i.e.,

having fewer variables than independent equations) and determined (i.e., having the same number

of variables as independent equations) systems of linear algebraic equations:

x = ( A T A ) " 1 A T B y . (5.3.2)

The necessary condition for applying the least-squares solution in (5.3.2) is that rank(A) = n. There

is no unique solution for undetermined systems (i.e., systems having fewer independent equations

than independent variables).

The residual error of the least-squares method is:

Ax - By = [A(A r A) ~*AT - I ] B y = A ( A ) B y . (5,3 ,3}

We define the Delta matrix function A(«) for expository convienience as:

f - I for V = null
A(U) = I „ . (5.3.4)

[u(UTU) UT-I Otherwise

where tiit* argument U is a (c X d) matrix of rank d.

To characterize WMR motion, we must determine whether the least-squares error in (5,3.3) is

zero for all y. To do m% we may apply either of the following o^juivalent tests:

A(A) B =s 0 (5-3.5}

or

[A;B] - r«ufc[Aj -

If cilliiT tivt (5.3,5) tw (5.3,6) is sa&flwl, tb<» lr«ist^quan*s error h zero for all y. Thr firrt t«^t

iti (5.3.5) h nppannt from the ^pivi^ion tor lh«* !i»;t^t'^quan*s error in (S.3.3). The 5iT»«itl t«M m

(trK3>G) hf;il,i*s lhat if fin* column* uf Uu» nuilrix D \iv lii th<» vrrfur ; j»;uv rMaiii!*1*! by th«' #*i"^u» ;̂j
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of the matrix A, then the vector By must also lie in the vector space spanned by the columns of
A for all y. The vector By can then be expressed as a linear combination of the columns of A
by proper choice (via the least-squares solution) of x. Similarly, we may determine whether the
least-squares error is zero for a specific y by applying either of the following two equivalent tests:

A(A) By = 0 , (5.3.7)

or
ranfc[A;By] = rank[A] . (5.3.8)

We depict in Figure 5.3.1 a tree illustrating the nature of all possible solutions for the vector x
of the system of linear algebraic equations in (5.3.1). The tree branches (directed arrows) indicate
tests on the matrices A, B and y and are numbered for future reference. The leaves (boxes) indicate
the corresponding properties of the solution.

As depicted in Figure 5.3.1, the system of linear algebraic equations in (5.3.1) may be deter-
mined, overdetermined or undetermined. The top branches, (0) and (1), determine whether the
least-squares solution is applicable by testing the rank of the matrix A. If the rank of A is n
(branch (0)), the least-squares solution is applicable and there is a unique solution for some y. If
the rank of A is less than n (branch (1)), the least-squaros solution is not applicable indicating that
the system is undetermined and there is no unique solution for any y. An undetermined system,
has more unknowns than independent equations.

A determined system is one in which the number of independent equations (less than or equal
to m) equals the number of unknowns (n). The least-squares error is zero for all y and thus tests
(5.3.3) and (5.3.4) apply at branch (00).

An overdetermined system is one in which the number of independent equations is greater
than the number of unknowns. The least-squares error of an. overdetenninod system is thus non-

zero for some y (branch (01))- Tests (5.3.7) and (5.3.8) arc* applied at branch (010) to determine

whether the least-squares error is %ero for a specific y. If so, the? system is consistent and there is

a unique solution. If the least;-squares error is* non-asero for a specific y (branch (011)), the system

is inconsistent and there is no exact solution.

In Section 5.4, we apply the solution tree in Figure 5.3.1 to the composite robot equation in

(5.2.3) and discuses the implications for WMR mobility ohar«*u:terijEation.



Ax • By
Modeling Fquation

rank[ A ] - m rank[ A ] < m

Unique Solution
for Some y

Least-Squares Solution

Applicable

rank[A ; B ] = rank[ A]
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or
A(A)By= 0

(010)

\ rank[A JBy] > rank[A]
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undor which tlic- forward solution may bo computed. In Figure 5.4.1, we apply the solution tree in

Figure 5.3.1 to the composite robot equation in (5.2,3).

AoP « Boq
Composite Robot Equation

rank[A0] = 3
Always True

rank[A0] < 3
Never true

( i )

Unique Solution
for Some q

Least-Squares Solution
Applicable

rank[A0: Bo

(00)

rank[A0» Bo

yz
Determined

Unique Solution
for Al l q

Only One

Overdetermined
Unique Solution
for Some q

More Than One Wheel
ClosefJ-1 ink Chains

Undetermined
No Unique Solution

Hot Possible

rank[Ao: Bo q ] = 3

(010)

rank[Ao". 80 q

Oil)

Consistent
Unique Solution

No Wheel Slip

Inconsistent
Wo Solution

Wheel SI1p Occurs

Figure 5,4.1

The Solution Tree for the Robot Velocity Vector p



By inspection of (5.2.2), we observe that the rank of the (3iV x 3) matrix Ao is 3 and thus

branch (0) always applies. Since branch (1) does not apply, the solution cannot be undetermined;

and hence the robot motion is completely specified by the motion of the wheels. From the structure

of the matrices Ao and Bo in (5.2.2), we observe that the rank of the augmented matrix [Ao, Bo] is

greater than 3 when there is more than one wheel. A WMR with one wheel is determined (branch

(00)), and a WMR with more than one wheel is overdotermined (branch (01)). The ovurdetennined

nature of WMRs having more than one wheel is a consequence of the closed-link kinematic structure

of a WMR. As indicated in Figure 5.4.1, the composite robot equation in (5.2.3) will be consistent

(and have a solution at branch (010)) or inconsistent (and have no solution at branch (011))

depending upon the wheel velocity vector q. Our no-slip assumption (in Section 4.2) ensures that

the motions of the wheels and the robot are consistent and that there is thus an exact solution.

We depict in Figure 5.4.1 the solution of the robot velocity vector p from the complete wheel

velocity vector q. In practice, the wheel velocity vector must be measured by sensors. It is difficult

to souse some of the wheel velocities, such as the rotational wheel rfip. Since a WMR with more

than one wheel has closed-link chains, it is not necessary to sense all of tho wheel velocities to

calculate the robot velocity because many of the sensor motions arc dependent. In Sections 5.7

and 5.8, v/e investigate the solution of the robot velocity vector from the sensed wheel velocities.

Although the nature of the forward solution of the composite robot equation provides us with

little physical insight, we gain significant understanding of WMR motion by investigating the nature

of the inverse solution. For WMR control it is not necessary to compute all of the wheel variables

in the inverse solution since they are not all actuated. Because of the closed-link chains, moreover

not all of the wheel variables must be actuated. In Section 5.5, we compute the actuated inverse

solution for the actuated wheel variables. In the remainder of this section, we focus on the complete

inverse solution to gain physical insight into WMR mobility characteristics.

We investigate the inverse solution by interchanging the role* of the right and left-Jinntl sides

of the composite robot equation in (5.2,3) and applying tlie solution free in Figure 5.3.1. Thereby,

B m Ao, q awl p in (5.2.5) play the rokw of A. B, x and y in (5.3.1), respectively. The solution tree

for the inverse Kolmioxi, subsequently referred to as the mobility characterization int^ is depicted

in Figure 5.4.2 , The branch Uvts indicated within curly brackets "{*} r arc simplified tests which

apply If there are no coupling*? between wheels.
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(H010)/

Cons istent
Unique Solution

Motion Dependencies Satisfied

Bobot Motion p Possible

Inverse Least-Squares Error - 0

\ Zi(Bo) Ao p ̂  0

\ {Z\( Ji ) p ̂  0 for some i }

\ fMOll)

Inconsistent
No Solution

Motion Dependencies Wot Satisfied!

Robot Motion p Not Possible

Inverse I «M*".t-Squ*re$ Error > 0 |

Figure 5.4.2

The Mobil i ty Charac te r iza t ion Tree

The liivrrsp SOIUHCHI can ho dctcnuinod, uudotorniiiunl or ovonl<s-iTininc*cl dcpcndii^ upon tbo
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Jacobiaii matrix J t against the number of wheel variables Wi for all wheels i = 1 , . . . , N. The rank

of the (3 x Wi) wheel Jacobiaii matrix J t is Wi if tlie determinant of the matrix [Jf Ji] is non-zero

as indicated by the non-redundant wheel criterion in (4.7.15). We refer to branch test (MO) as the

soluble motion criterion because it determines whether the composite robot equation can be solved.

Soluble Motion Cri ter ion

rank[BQ]=w (5.4,1)

Soluble Motion Criterion With No Wheel Couplings

jJil^O for t = l , . . . , JV

If the determinant of the matrix [Jf 3i] is zero, the associated whoel is redundant. A WMR

having redundant wheels and no wheel couplings is undetermined. We cannot compute the inverse

solution for a WMR with redundant wheels. Since the inverse solution is utilized in WMIi control

(in Section 6.4)} we suggest that undetermined mobility structures (i.e.. redundant wheels) be

avoided.

WMRs without redundant wheels allow sonic robot motions since there is a unique solution

to the system of linear algebraic equations in (5.2.3) for sonic p . Branches (MOO) and (MOl) test

the* rank of the augmented matrix [Bg; Ao] against the rank of Bo. From their structure in (5.2,2),

the ranks of these two matrices are equal when all of the wheel Jacobiaii matrices are (3 X 3) and

rank 3 (i.e., all of the wheels are non-redundant and possctjn three DOFs). The mobility structure

of a WMR u therefore determined if the test at branch (MOO) succeeds. A dtfcrxnindl st nurture

hm A unique wilutiou for all p; i.e., for any desired three dimensional robot velocity vector p there

is a wheel velocity vector q which is consistent with the motion. We thus conclude: The kinematic

dcaigri of a WMR aliuws three DOF motion if and only if nil of the whed* possess three

Thia requirement is expressed computationally in the three DOF motion criterion in (5.4*2
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Three

rank [BQ

Three DOF Motion

det[3f JT] ^ 0

DOF Motion Criterion

= w and A (Bo) AQ = 0

Criterion With No Wheel

and W{ = 3 for i = 1,...

Couplings

,N

(5.4•2)

If branch (MO) succeeds and the WMR does not possess three DOFs, the solution is overde-

termined (branch (M01)), The robot does not allow some motions because some of the robot

DOFs are dependent. For example, a WMR with a non-steered conventional wheel which satisfies

branch (MO) must have an ovcrdetcrrnincd mobility structure because no motions perpendicular to

the wheel orientation may occur without slip. Branches (MO.10) and (MO 11) indicate the possible

robot motions p without slip. If the least-squares error is zero, the solution is consistent, and the

motion may occur. We thus determine the kinematic constraints on the robot motion by equating

the least-squares error to zero in (5.4 3). By examining the structure of the error in (5.4.3), we find

an equivalent computationally simpler test in (5.4.3) when there are no couplings between wheels.

K inema t i c Mot ion Contrainta

A(Bo) Aop = 0 (5.4.3)

Kinematic Motion Constraints With N«> Wheel Couplings

») p - 0 /or i = i , , M f

We may thus determine tlie kinematic motion constraints for a WMR without redundant

wheels or wheel rouplin*^ by considering each wheel independently.

The augmented matrix [A(T$o) Ao) hniirah1^ whether the WMU pos^vsevs thru* DOF;* at

bnuii-h {MOO] c*r fewer iliaii three DOF;̂  n* b r j^ l i jMOl). \Vh>>\\ th* re a,-.- few«-r than tl*'ee
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the number of independent columns of the matrix [A(Bo) Ao] specifies the number of dependent'

robot DOFs. The number of DOFs of a WMR having no redundant wheels is:

Number of WMR DOFs

DOFs = 3 - ranfc[A(B0) Ao] . (5.4.4)

The test at branch (MO) determines whether the complete inverse solution for all of the wheel

variables can bo calculated by the least-squares solution. In Section 5.5, we apply the least-squares

solution to calculate the actuated inverse solution for the actuated wheel variables. Although the

actuated inverse solution may exist for some robot velocities p for which the complete inverse

solution does not, it is not practical to apply such an actuated inverse solution because the desired

robot velocities are constrained by the unactuatcd wheel variables. We thus utilize the soluble

uiotiop criterion in (5.4.1) to indicate when the actuated inverse solution in Section 5.5 is practically

applicable.

5.5 Actuated Inverse Solution

We calculate the actuated inverse solution by solving for the actuated wheel velocities in

(5.2*3). Because of the closed-link chains in WMIts, we need not actuate all of the* wheel variables.

To separate the actuated and unactuated wheel variables, we partition the wheel equation in (5.2.1)

into two components:

P = Jis«k* + 3t«<Jk*« • (5,5-i)

Tiie "V subscript« dnmle the actuated components and the v\f subscript $ denote the utiaciiiated

ronJiHiUout;*, \\V l i t «, denote t}st* number of a c t u a t r d variables , and u t d en o t e t h e n u m l x T of

^iiiaff »s«if̂ tl varinliit'^ for whrcl I {IA% , at •^nl ~- tr ), We6 c!»*fni«' tisc* total u u n i b r r of a c t u a t e d wheel

vari,»Mr-: to IH» n •• ti\ -;* «> - * . . . » ^s «»»*! ^^* to ta l n n m ^ T uf nntwtn^tcA whcA van;«bl<»s to bo

n -* it] '• H2 4- ., , •• u^, \\rv f'»Jij;l»S!tt' Hie* p a n i t i u i i r d W I U T I ''qtiatiuii'" In {5.5.1) to i v v n t c t he



composite robot equation in (5.2.2) as

P =

/ J l a 0

0 J2o

V o ... >Na

Jlu 0

0 J2 u

0

0 \

(5.5.2)

or

AQP = Bopqp . (5,5.3)

The (ZN x w) matrix Bop and the (to X 1) vector qp are the partitioned counterparts of the
matrix B<j and the vector q in (5.2.2). The soluble motion criterion in (5.4.1) indicates under what
conditions the least-squares solution maybe practically applii.nl to compute the inverse solution (i.e*.
ranfc[B()] = w). We henceforth assume that the least-squaros solution is applicable and that all
matrix inverses encountered in its application are computable. We apply the least-squares solution
in (5.3.2) to calculate the vector of wheel variables from the robot velocity vector:

<lp = Ao p . (5.5.4)

] iIn Appendix 4, we compute the vector of actuated wheel velocities qa = [q^ ... q]^a] in (5.5.2)
as:

ha =

Actuated Inverse Solution

[JLAtJauJJaaf^J.AtJau)
p = J«p . (5.5.5)

E a c h (at X '}) block row of t h e m a t r i x »»n flic r i ^h t -h ; au l /nlc of {."* ri.f:). co r rospr iu l in^ to t he

ntiul vcl<x'iti<%s q a M involves only t h e Jaci>l>i.\)i m a i r i x <>f wlicc^l !. T h r inverse* solntiuti for <
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wheel is thus independent of the kinematic equations of all of the (N - 1) other wheels. When

wheel % is non-redundant with three DOFs and all three wheel variables arc actuated, each block

row of (5.5.5) simplifies to

q i a M J ^ P - (5.5.6)

We may therefore assume that all of the wheel variables of all of the non-redundant wheels having

three DOFs are actuated, apply the inverse Jacobian matrix in (5.5.6) to calculate the wheel veloc-

ities, and extract the actuated velocities for robot control. This approach requires approximately

one-tenth of the arithmetic operations required for the direct application of (5.5.5).

5.6 Robot Actuation Characteristics

A WMR control engineering application of the actuated inverse solution (in Section 5.5) is to

command the velocities of the actuated wheel variables to their calculated values. We investigate the

characteristics of the robot motion when the actuated wheel velocities attain the values computed

by the actuated inverse solution. We relate the robot velocity vector to the ncUiatcd wheel velocities

by eliminating the unactuatcd wheel velocities from the composite robot equation in (5.2.2). Under

the no-slip assumption, the unactuatcd wheel velocities will be consistent and comply to the robot

motion. We compute the unactuated wheel velocities from the robot velocities in the actuated

inverse solution in (5,5.5) by interchanging the roles of the actuated ("a" subscripts) and unactuatcd

f i f subscripts) variables:

.(5.6.1)

The* conditions guaranteeing the computabiiity of the unactuated and actuated inverse solu-

tions are identical and L\CQ indicated in the soluble motion criterion in (5.4.1) . Wo substitute (5.6.1)

into the partitioned composite robot equation in (5,5.2) to obtain:

[ T a ) ]
- J,3i[J|uA(J2a)J2u]-

Vl - W;J£

/ J l a 0 . . .

0 J 2 a '••

0 . . . 0

0

0

0
Lw<x J

Qa (5.6.2)

(5.G.3)



The robot actuation equation in (5.6.3) has the form of (5.3.1) with Aa , B a , p, and qu playing

the roles of A, B, x, and y, respectively. We apply the solution tree in Figure 5.3.1 to (5.6.3) and

obtain the actuation characterization tree in Figure 5.6.1.

The actuation characterization tree, in analogy with the mobility characterization tree, indi-

cates the properties of the actuation structure of a WMIt. The branch tests are developed from the

solution tree in Figure 5.3.1. We concentrate on the implications of the solutions.

The system of linear algebraic equations in (5.6.3) representing the actuation structure of the

WMIi maybe determined, undetermined or overdetermiiied. If branch (Al) succeeds, the actuation

structure is undetermined and there is no unique solution for the robot motion p. Since we cannot

calculate the robot motion, it is unpredictable, and some robot DOFs arc uncontrollable. We

suggest that undetermined actuation structures be avoided.

If branch (AO) succeeds, we are assured that all robot DOFs are actuated. Specifically, all

robot motions allowed by the mobility structure can be produced by the actuators. Consequently,

we refer to branch test (AO) as the adequate actuation criterion:

Adequate Actuation Criterion

de*(AjAa) ^ 0 (5.6.4)

If the actuation structure is overdctcrmined (branch' (A01)), some of the actuator motions

are dependent. If the dependent actuator motions are consistent (at branch (A010)) robot, motion

is produced, otherwise (at branch (AOil)) wheel slip occurs. Any mechanical couplings between

actuated wlieel variables must satisfy the actuator dependencies to allow robot motion; we therefore

refer to branch test (A010) cts the actuator coupling criterion:

Actuator Coupling Criterion
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If the dependent actuator motioim art* not ronsi.^tcnt (branch (AOJl)), whrol slip nmst occur

Iwfan^t* th<* lcvii't-squarcs i t r o r ^ noii-7i ro Sinre a ron'ral ty^tvtn ratinot guar.intrv ZCTO actuator
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at*»il invrrst* Miliitioii. In the [WMWV nf tlu^tf tnu*kin;j; < riors. Hi*1 actuator coupHaj^ c:rit<i*icni is
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not satisfied and the system of linear algebraic equations in (5.G.3) becomes inconsistent with no

solution. We refer to this situation as actuator conflict because the forces and torques produced

by the inconsistent actuator motions generate stress forces and torques within the WMR structure

causing wheel slip instead of generating robot motion. A determined actuation structure (when

branch (A00) succeeds) is robust in the sense that actuator conflict cannot occur in the presense

of actuator tracking errors. The actuator motions are independent and ail possible actuated wheel

velocity vectors map into unique robot velocity vectors. Branch test (A00) is thus referred to as

the robust actuation criterion:

Robust Actuation Criterion

A(Aa) Ba = 0 (5.6.6)

Because of actuator conflict, we suggest that ovcrdcterniinod actuation structures be avoided.

We recommend actuator arrangements leading to a robust (determined) actuation structure. In

Sections 5.7 and 5.8, we turn our attention to the sensed forward solution and relate the sensed

wheel variables to the robot motion.

5.7 Sensed Forward Solution

The sensed forward solution calculates the robot velocity vector p in (5.2.3) from the sensed

wheel positions and velocities qa and q^. The development of the sensed forward solution parallels

the actuated inverse solution in Section 5.5. The first step is to separate the sensed and not-sensed

wheel velocities and write (5.2.1) as:

p = 3iJli» + JinAin • (5.7.1)

The subscripts ns" and "ir* denote the sensed and not-sensed quantities, respectively. The numbers

of sensed and not-sensed variables of wheel i are st- and n ,̂ respectively (i.eM £̂- + n{ = W{). We

assume that both the position and velocity of a sensed wheel variable are available. We combine

the wheel equations in (5.7.1) for i = I , . . . , N to form the partitioned robot sending equation, with

all of the unknown robot and wheel positions and velocities on the left-hand aide:

I2 0

IN 0

0 0 \

0 - J i V 7 ,

f P \ u 0 0 \

\ f)

(5.7.2)
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or

A n p n = (5.7.3)

We define the total number of sensed wheel velocities to be s• = sx + . . . + SJV and the total

number of not-sensed wheel variables to be n = nx + . . . + n^. Thereby, A n is (3JV x [3 -f n]), p n

is ([3 + n] x t), Bfl is (3JV x vs) and qa is (5 x 1). We apply the least-squares solution in (5.3.2)

to calculate the vector of robot and not-sensed wheel velocities p n from the sensed wheel velocity

vector qa:

C'AZBAS • (5.7-4)

In Section 5.8, we develop the adequate sensing criterion in (5.8.4) which indicates the con-

ditions under which the sensed forward solution in (5.7.5) is applicable. In the remainder of this

section, we assume that the sensed forward solution applies and that all matrix inverses, such as

(A£An)~ in (5.7.4), are computable.

In contrast to the actuated inverse solution, the least-squares forward solution need not produce

a zero error because of sensor noise and wheel slippage. In the presensc of these error sources, we

cannot calculate the exact velocity of the robot. Our least-squares solution does provide an optimal

solution by minimizing the sum of the squared errors in the velocity components. Our least-squares

forward solution may thus be applied practically to dead-reckoning for a WMR in the presence of

sensor noise and wheel slippage.

In Appendix 5, we solve (5.7.4) for the robot velocities p . We find that

p = [A(JIn) J1- A(J2n) +

Sensed Forward Solution

or

. . . A(JW n)

(5.7.5)

A wlwvl without MMIMMI variables docs not contribute any columns A(Jm)3{a to (5.7.5). Fur-

Ot«*ni»orr. If fliiw iii«lia|K*n<!init wb'M*! varial*k^ arc not sensed, t\u% im\\r\x A(Jt-n) is zrro. We inay

thus elhniiiate i\w kin^nwitir t»<ju;itionr*t;f-motion of any wlie^l wlitcli has Hirt*o not-svnsrd DOPa
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in the calculation of the soused forward solution. We? note that the Jacobian matrix of a steered
wheel depends upon the steering angle. Therefore, if any wheel variables of a steered wheel are
sensed, the steering angle must also be sensed so that J^n and J ta are computable. Since the matrix
[A(Jin) -j- A(J2n) + ... + A(Jjvn)] is (3 x 3), solving the system of linear algebraic equations in
(5.7.5) for the robot velocities p is not a computational burden.

5.8 Robot Sensing Characteristics

The relationship between the sensed wheel variables and the robot motion is the dual of the
relationship between the actuated wheel variables and the robot motion. Our development thus
parallels the discussion in Section 5.6 on actuation characteristics. We begin by rewriting the
composite robot equation in (5.2.2) to relate the robot velocity vector to the sensed wheel velocity
vector. We express the not-sensed wheel velocities in terms of the robot velocities by applying the
actuated inverse solution in (5.5.5) with the not-sensed ("n" subscripts) and sensed ("s" subscripts)
wheel velocities playing the roles of the actuated ("a? subscripts) and unactuated ("u" subscripts)
wheel velocities, respectively:

1 - 1 .

(5.8.1)

The inverse solution is applicable for any WMR satisfying the soluble motion criterion in
(5.4.1). We partition the sensed and not-sensed wheel velocities in the composite robot equation
in (5.2.2) and substitute (5.8.1) for the not-sensed wheel velocities to obtain:

/ •*•

V l -
P =

0 . . .

V o ... o

0

0

0

> J

(5.8.2)

or
Aap = Bflq., . (5.8.3)

The robot sensing equation in (5.8.3) has the form of (5.3.1) with Aa, B3 , p, and C\t playing

the roles of A, B. x. <n«l y, rrsprctivcly. W>' apply Iho solution tree of Figure 5.3.1 to the robot

sensing equation in (5.8.3) to obtain the? .•wnsiny chaructfrizat''i>n tree in Figure 5.8.1.



The solution of the robot velocity p from the sensed wheel velocities qa may be determined,

undetermined or overdetcrmiiicd, depending on the matrices A, and Bfl. In parallel with WMR

actuation, undetermined systems are undesirable because one or more DOFs of the robot motion

cannot be discerned from the sensed wheel velocities. Both determined and ovordctennined sensing

structures allow a unique solution for consistent sensor motions qa. Branch (SO) thus provides

the adequate sensing criteria in (5.8.4) which specifics whether all WMR motions allowed by the

mobility structure are discernable through sensor measurements:

Adequate Sensing Criterion

drf(AfA,) # 0 (5.8,4)

The adequate sensing criterion also specifies the conditions under which the sensed forward

solution in (5.7.5) is applicable.

Determined sensing structures provide sufficient information for discerning the robot motion.

Overdctermined sensing structures become inconsistent in the presence of sensor noise, which is

analogous to the impact of actuator tracking errors on overdctermined actuation .structures. Our

forward solution in (5.7.5) anticipates the overdetermined nature of the sensor measurements and

provides the least-squares solution. In the case of actuation, an overdetermined actuator structure

causes undesirable actuator conflict. In contrast, redundant (and even inconsistent) information is

desirable for the least-squares solution of the robot velocity from sensed wheel velocities. Redundant

information in the least-squares solution reduces the effects of sensor noise on the solution of the

robot velocity. Overdctcnniiicd sensing structures are thereby robust and branch test (SOI) is

referred to as the robust sensing criterion:

Robust Sensing Criterion

A(Aa) Ba £ 0 (5.8.5)
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In Section 6.5, we detect wheel slip by applying the fact that the system of linear algebraic

equations in (5.8.3) of a robust sensing structure becomes inconsistent in the presence of wheel slip.

5.9 Conclusions

We have combind the equations-of-motion of each wheel on a WMR to formulate and solve the

composite robot equation. The actuated inverse solution in (5.5.5) computes the actuated wheel

velocities from the robot velocity vector and is applicable when the soluble motion criterion in

(5.4.1) is satisfied. We have shown that the actuated inverse solution is calculated independently

for each wheel on a WMR. For wheels which possess three DOFs, the actuated inverse solution

is calculated directly by applying the inverse wheel Jacohian matrix. The actuated velocities are

then extracted for robot control applications.

The sensed forward solution in (5.7.5) is the least-squares solution of the robot velocities in

terms of the sensed wheel velocities and is applicable when the adequate sensing criterion in (5.8.4)

is satisfied. The least-squares forward solution, winch minimizes the sum of the squared errors in

the velocity components, is the optimal solution of the robot velocities in the presense of sensor

noise and wheel slippage. We have found that the sensed forward solution may be simplified by

eliminating the cquations-of-motion of wheels having three not-sensed DOFs because they do not

affect the solution. If any variables of a steered wheel are sensed, the steering angle must also be

sensed.

We have discussed the nature of solutions of the composite robot equation and their implica-

tions for robot mobility (in Section 5.4). actuation (in Section 5.G) and sensing (in Section 5.8).

We have developed the mobility characterization tree in Figure 5.4.2 to characterize the motion

properties of a WMR. The implications of the mobility characterization tree* are summarized by

tin* following Ir.si^hts. If the soluble motion criterion in (5.4.1) is satisfied, the actuated inverse

solution, Actuation and sensing trees, ami the WMR DOF calculation in (5.4.4) arc applicable.

T!it3 tkrw DOF motion triUrioi} in (5.4.2) indicates whether tin- WMR kinematic structure* allows

thr*»» DOF inc4i«§!L If the knicmalic stm\»;ce do<^ nnl allow three POP motion, the kinematic

:n;?!it>u amfifraijif.H are computed accortlih:; to (5.4.3). The tmtubcr of WMll DOFs an* calculated
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from (5.4.4).

The implications of the actuation characterization tree in Figure 5.6,1 are summarized by three

criteria. The adequate actuation criterion in (5.6.4) indicates whether the number and placement

of the actuators is adequate for producing all motions allowed by the mobility structure. If the

adequate actuation criterion is not satisfied, some robot DOFs are uncontrollable. The robust

actuation criterion in (5.6.6) determines whether the actuation structure is robust; i.e., actuator

conflict cannot occur in the prcscnse of actuator tracking errors. If the actuation structure is

adequate but not robust, some actuator motions are dependent. The actuator coupling criterion

in (5.6.5) calculates those actuator dependencies which must be satisfied to avoid actuator conflict

and forced wheel slip.

The sensing characterization tree in Figure 5.8.1 indicates properties of the sensing structure

of a WMR. The adequate sensing criterion in (5.8.4) indicates whether the number and placement

of the wheel sensors is adequate for discerning all robot motions allowed by the mobility structure.

The robust sensing criterion in (5.8.5) indicates whether the sensing structure is such that the

calculation of the robot position from wheel sensor measurements is minimally sensative to wheel

slip and sensor noise. The wheel slip criterion in (5.8.6) provides a computational algorithm for

detecting wheel slip in robust sensing structures.

In Section 65 we address the question of three versus two DOFs. the design of VVMRs to satisfy

kinematic mobility characteristics, and control engineering applications of WMR kinematics. Then,

in Section 7, we apply the kinematic modeling of Section 4 and the actuated inverse and sensed

forward solutions to prototype WMRs.



6. Applications

6.1 Introduction

WMR kinematics play-fundamental roles in design, dynamic modeling, and control. In this

section, we illustrate four practical applications of our kinematic methodology: design, dead reck-

oning, kinematic feedback control and wheel slip detection. We are continuing our study of WMRs

by applying our kinematic methodology to the dynamic modeling of WMRs (in Section 9). In

Section 6.2, we apply the composite robot equation-of-motion in Section 5 to the design of WMRs.

We explain how WMRs can be designed to satisfy such desirable mobility characteristics as two

and three DOFs, and the ability to actuate and sense the DOFs. Dead-reckoning is presented in

Section 6.3; the robot velocity calculated from wheel sensor measurements is integrated to calculate

the robot position in real-time. We highlight a kinematics-based WMR control system (in Section

6.4) by applying the actuated inverse solution in the feedforward path and dead reckoning in the

feedback path to reduce the error between the actual robot position and the desired robot posi-

tion. Knowledge of the robot dynamics will improve control system performance. We apply the

kinematic eqiiations-of-riiotion to delect wheel slip in Section 6.5. When a WMR detects the onset

of wheel slip, the current robot position is corrected by utilizing slower absolute locating methods

(such as computer vision) before continuing motion. The feedback control system can thus track

desired trajectories more accurately by continually ensuring an accurate estimate of robot position.

Finally, in Section 6.6, we summarize the four applications.

6-2 Design

Just as studying the composite robot equation enables the determination of such mobility char-

acteristics as the number of DOFs, we may design a WMR to possess desirable mobility character-

istics. Desirable mobility characteristics which die determinable from an analysis of the composite

robot equation are two or three DOFs, and the ability to actuate and sense the motion robustly.

By robust we mean that the robot motion is insensitive to actuator tracking errors and that the

calculation of the robot position from sensor meatmromc?uts is insensitive to sensor noise and wheel

slippage, Designing a WMR to satisfy the desired mobility, actuation and sensing characteristics

b<?forc construction facilitates the subsequent control system design.

A gcwral-purpo^e WMR hau the ability to move along an X-Y path with an orientation

trajectory 0, Tl*o WMR frhu*s is capable of rout rolled motion hi the three dimensions x, •//, and

0 at all times, or equivalently possesses three* DOFs. Thu« mobility tiiaractorLstic is sometimes

rrfrrr**'! to a> onumlirrrtionaiityjl]. For ;; WMR to operate successfully wiih ihreo DOFs, it imitft

cmhfitly the important rhfirarteriotks tubulate*! in Table 0.2,1 and cli^tiis^rd below. Fits!., it must
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allow three DOF motion, A WMR which possesses three DOFs satisfies the three DOF motion

criterion in (5.4.1). An omnidirectional WMR design must thus consist of ball, omnidirectional

or non-redundant conventional wheels to allow three DOF motion. A casfcercd backrest used by

mechanics for working underneath automobiles has this characteristic.

Table 6.2.1: Design Criteria for

Three DOF Motion:

Adequate Actuation :

Robust Actuation :

Adequate Sensing :

Robust Sensing :

det[KlA

a = Z

det[Af A

3 > 3

an Omnidirectional (3

••£ 0 and Wi — Z for

a ] # 0

.]/o

DOF) WMR

i = l,...,N

Second, all three of the robot DOFs must be actuated to produce motion in three DOFs, The

placement of wheels and actuators in the WMR design must be chosen to satisfy the adequate

actuation criterion in (5.6.4). We require that the actuator structure satisfy the robust actuation

criterion in (5.6.6) to avoid actuator conflict. The robust actuation criterion states that there

be exactly three actuated wheel variables for the special case of three DOF motion. If there are

more than three actuators, their motions must be dependent because robot motion occurs in three

dimensions. If there are fewer than three actuators, some robot motions are not actuated and thus

not controllable. The design should thus include only three actuators to ensure robust coutroL

Tluj UiihiicttLon robot (in Section 7.2) has three actuated omnidirectional wheels (Troas-

whemor) and is an example of a WMR having a robust achintfon structure. Uranus (in Section 7.4)

has four actuated omnidirectional wheels (Tctroas-whcmor) and is not robust because the actuator

motions are dependent. In Section 7.4.5r we examine; an alternate design of Uranus having a robust

actuation structure. Our study of Unuius provides a technique for redesigning adequate actuation

structures to be robust,

The third requirement for an omnidirectional WMR is that a control system (e.g., the kinematic

feedback control system in Section 6.4) communicates signals to the actuators so that the WMR

follows a specified (rr, y, 0) hwjedoty. An omnidirectional WMR which calculates its present

position from wheel shaft encoder measurements ami controls !h<* actuators to reduce the error
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between the desired robot position and the actual robot position possesses this characteristic. To

calculate the robot position from wheel shaft encoder measurements, the wheel sensors must be

positioned so that the robot motion may be discerned in three DOFs. To discern any robot motion,

the sensing structure must satisfy the adequate sensing criterion in (5.8.4). We require a robust

sensing arrangement (i.e., the WMIt design should include more than three wheel sensors) to allow

robust calculation of the robot position from wheel sensor measurements.

A WMR which docs not allow three DOF motion has singularities in its workspace. At a

singularity, the WMR cannot attain motion along one or moi'e dimensions (i.e., re, y, or 0). We

may determine the kinematic motion constraints of a WMR allowing fewer than three DOFs by

computing (5.4.3). Once a WMR design possesses the desired mobility characteristics, we apply

the actuation and sensing criteria in Sections 5.6 and 5.8 to verify that the actuation and sensing

structures are adequate or robust.

A WMR with two DOFs allows locomotion along any X — Y path and thus has wide applicabil-

ity for parts and materials transport. Topo[27], Newt (in Section 8.3), and Shakey[52] each possess

two DOFs utilizing two diametrically opposed conventional drive wheels. Those bicas-poiyesun-

whemors also have 0,1, and 2 casters, respectively, for stability. Wo show in Section 7.3 that a

design utilizing two diametrically opposed drive wheels is appealing hocanse ot its mechanical and

modeling simplicity. Because of the practical advantages of two diametrically opposed drive wheels,

we recommend the application of bicas-polycsun structures for all tasks requiring fewer than three

DOFs. This guideline simplifies the design process for the majority of parts and materials transport

applications.

6.3 Dead Reckoning

Dead reckoning is the real-time calculation of the WMIl position from wheel sensor moo sure-

merits. The current robot position is utilized by closed-loop robot control systems, performance

monitoring processes and high-level robot planning processes. The least-squares sensed forward

solution in (5,7.5) is the exact solution for the robot velocities under tlio tuwslip pssumplion, if

the wheel sensing structure is adequate*. The adequate sensing criterion is a prerequisite*for imple-

menting tliree dimensional dead reckoning. To determine the robot position in real-time, the robot

velocity is integrated over each sampling period. Since the dead reckoning calculation is erroneous

whou wheel slip occurs, an alternate* method of determining the robot position (e.g., computer

vision) must be applied to correct the position calculation before dead reckoning is continued. In

Section 0,5, we propose a method to detect the onset of wheel ttlip.

TIu* integration be^in* when the robot h at »*est or has a st«n;*ed initial velocity rpni^). The
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initial robot position FY>R(D) is either specified or sensed. We assume that the robot motion

is adeqiuitely modeled by piecewise constant accelerations1 since the robot is being actuated by

constant force/torqne generators in each sampling period (the same sampling period as the dead

reckoning process). The robot velocity RJ>R in the sampling period from time t = (n — 1)T to time

t = nT is

Hn(t) = ***[(» - 1)21 + *MnT) " ^n[(n - 1)T] (t - [(» - 1)T]) , (0:3.1)

whore the robot velocity RpR(nT) at each sampling instant is calculated by the sensed forward

solution in (5.7.5). We transform the robot velocity to the floor coordinate system by applying the

velocity transformation in (4.7.18):

FPR(t) = V[(n - l)T) Rpn(t) • (6.3-2)

We use the angular position of the robot at the sampling instant t = (n — 1)T to calculate the

motion matrix V[(n — 1)T] since the current angular robot position at time t is unknown. We

calculate the robot position at the current sampling instant t — nT by integrating the velocity over

the sampling period and adding the result to the robot position at sampling instant t — (n — 1)T:

nT

/

nT
FpR{t)dt . (6.3.3)

,n~JL)T

By subtituting (G.3.1) and (6.3.2) into the integral in (6.3.3), we express the present robot position

in terms of the position at the last sampling instant and the robot velocity at the present and last

sampling instants:

Dead Reckoning Update Calculation

T
| V[(« -

The computnt ion.il load for dtvul rockoiiint; is thus the <"ilculn.tiou of tho frnwd forward solution

in (5.7.5).

W*» apply thia mir'inuptioii «*« im cxaxii2>le. F«>r a ^prcltic WMll. it uiny IHJ nr*r*»t»'i»ry *o ;itIH'M- !iii;li«^r-or«

xuuilcl^ of tlit, velocity trajectory.
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6.4 Kinematics-Based Feedback Control

The documented WMR control systems arc kinematically bascd[33, 17]; i.e., they do not

incorporate a dynamic model of the robot motion. A reference robot trajectory is provided by an

independent process (the trajectory planner) and the task of the control systcin is to produce signals

to the wheel actuators so that the WMR tracks the reference trajectory. This is accomplished

by wheel level or robot level control (in analogy with joint space or cartesian space control of

manipulators [12, 68]).

For wheel level control, the reference robot trajectory is applied to generate trajectories for

each wheel actuator by calculating the actuated inverse solution. Each wheel actuator is then

servoed independently to its calculated trajectory. Each wheel controller may utilize wheel sensors

for feedback and a dynamic model of the wheel operating independently, but docs not compensate

for coupling forces between wheels[50].

Robot level control which utilizes feedback at the robot level is more desirable than wheel level

control. A kinematics-barfed robot level control system is diagramed in Figure 6.4.1. Directed

arrows indicate the flow of information. The number of scalar variables represented by each arrow

is indicated within the body of the arrow. The computer control algorithm to bo executed at each

sampling instant T is enumerated in Table 6.4.1 and the sequence of steps is indicated in Figure

6.4.1. At time nT, we sense the wheel variables qrt(nT) and q,,(nT) and the desired robot position

vector FPd{™T) hi Step 1 of Table 6.4.1 . The ( « x l ) sensor gain vector ka scales the sensor signals.

In Step 2, we apply the soused forward solution in (5.7.5) to compute the robot velocity Rpn(nT).

We apply the dead reckoning update in (6.3.4) in Step 3 to compute the robot position Fpji{nT).

We compare the reference robot position FP(I(TIT) with the actual robot position FPR[TIT) (in Step

4) to calculate the robot position error Feji(nT). The position error is multiplied by the (3 X 3)

feedforward gain vector k/ and is then transformed to the robot coordinate frame by applying the

inverse1 motion matrix V l{nT) in Step 5. Under the assumption that the robot tracking error

remains, small, the robut position error Reji h treated as the differential displacement RSp]t. This

robot differential displacement is transformed into actuator displacements Sq^ (as velocities are

transformed) by applying the actuated inverse solution in Step 6:

*<!* = J« *Spn - (6.4.1)

In Stop 0, we also multiply the* computed actuator reference velocities qa by the (a x 1) actuator

gain vector k#1. The actuator gain voct or is the ratio of the actuator set-points to the steady-

state* art ii at or velontits under nominal operating eofjelitioiiis and must he determined empirically.

Tin* (3 X 1} feedforward -/jitn k/ U ;;!*''> adjusted experimentally to provide a fa.^ robot tracking

uŝ * without exce.Nsive robot overshwt or oscillations about the reference trajectory. In Step
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7, the resulting actuator sot-points arc then communicated to the actuator hardware.
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Kinematics-Based WMR Control System

Table 6.4.1: Kinematics-Based WMR Control Algorithm

1.) Sample q,(nT), 4t(nT) and Fpd{nT)

2.) Compute and Store *i>n[nT) = A:aJ3qa(n

3.) Compute and Store FpR{nT) = Fpn{{n - l)Tj + f V[(n - l)Tj{^pi£[(n « 1)T] +

4.) Compute nT) - F
PR(nT)

5.) Compute AeR[nT) = k/V

6.) Compute qa(nT) « kaJ*Acn(nT)

7.) Conioiuiiicatc* the (\>inputc<l Sot-Voiiits qa(n7'1 to the Actuators

fiO



Over the past twenty years, manipulator control systems have improved progressively; from

independent joint-space control[55], to kinematics-based cartesian-space control[68], to dynamics-

based cartesian-space feedback control[42], to robust dynamics-based feedback control[65] and adap-

tive control algorithms[21]. We anticipate that future WMR control systems will also incorporate

kinematic and dynamic models. Present WMR control system designs are independent wheel level

controllers. Future WMIt control systems will improve performance once a kinematic methodology

(such as our present paper) and dynamic models (outlined in Section 9) become available.

6.5 Wheel Slip Detection

In Section 5.7, we computed the WMR velocity vector from the wheel sensor measurements

(i.e., the sensed forward solution), and in Section 5.8 we discussed the characteristics of the solution.

We can discern all WMR motions if the adequate sensing criterion is satisfied. If the sensing

structure is adequate but not robust, the equations-of-motion will be consistent irrespective of the

prescuso of wheel slip and the error in the least-squares forward solution will be zero. In contrast,

for a robust sensing structure (i.e., a sensing structure satisfying the robust sensing criterion), the

kinematic cquations-of-tnotion are inconsistent in the presence of wheel slip. The error in the least-

squares forward solution is then greater than zero. We therefore propose to detect the occurrence

of wheel slippage for a WMR having a robust sensing structure by calculating the error in the least-

squares solution. In the improbable case that all wheels on a WMR slip simultaneously in such a

manner that the equations-of-inotion remain consistent, our method will fail to detect the wheel

slip.

In practice, sensor noise can also cause the kinematic equations-of-motion to become incon-

sistent, but we expect that the least-squares error due to sensor noise will bo small in comparison

with the error cruised by wheel slippage. Instead of testing the least-squares error against zero,

we propose to compare it with an error threshold et set by the worst case sensor noise error. If

the least-squares error in the forward solution exceeds the threshold, we conclude that, wheel slip

has occurred. When a WMR detects that wheel slip has occurred, it should resort, to absolute

methods of determining its position (e.g., computer vision, ultrasonic ranging sensors, and laser

range finder*?) before continuing the dead-reckoning calculations. Since current locating methods

are computationally slow relative to the robot motion, the WMR should halt motion until its dead

reckoning calculations are updated by tlie absolute locating method.

Calculation of the SHMIŜ I forward solution in (5.7.5) is the first step in determining the least-

n*£* error. The calculated robot velocity vector npn is substituted for the actual rol#ol velocity

vector in the rol*ol mixing equation (5.8.3). Tin* Imsi-squaies error vector c Is calculated by
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subtracting the right-hand side of (5.8.3) from tho loft-hand side:

e = A, Ri>R - Ba q, . (6.5.1)

We calculate and compare the norm of the least-squares error [eTe] with the scalar threshold

e\. If the norm of the least-squares error exceeds the threshold, we conclude that wheel slip has

occurred:

Detection of Wheel Slip

B > e\ , wheel slip'has occurred . (6.5.2)

We note that (6.5.2) is, in principle, equivalent to the wheel slip criterion in (5.8.6) and has

the added advantage that the sensed forward solution in (5.7.5) is computed as an intermediate

result. The sensed forward solution may then be applied to dead-reckoning and WMR control.

6,6 Summary

We have applied our kinematic methodology to the design, dead reckoning, kinematics-based

feedback control and wheel slip detection for WMIts. By proper choice of the wheel type and

placement, and the actuator and sensor placement, we may design two and three DOF WMRs.

Specifically, we must satisfy the criteria in Table 6.2.1 to achieve a robust omnidirectional WMR

design. For two DOFs, a WMR design having two diametrically opposed drive wheels, bicas-

polycsuii-wheraor (e.g., as on the WMRs Newt, Shakoy, and Topo), has both mechanical and

modeling advantages over other designs. Dead reckoning is the real-time integration of the robot

velocity to obtain the; robot position. The robot velocity is first calculated by applying the sensed

forward solution. We integrate the robot velocity by the update* algorithm in (6.3.4) which is

a linear function of tho robot position and velocity. Current, WMR control systems incorporate

wheel level algorithms. We have introduced a kinematics-based robot level algorithm which relies

on dead reckoning for feedback, and the actuated inverse eoluHon to calculate actuator inputs as

feedforward control signals. Future WMR control systems will exhibit, enhanced performance by

incorporating dynamic models and absolute position feedback. As our final application, we have

proposed to detect \vh*sel slippage in robust son îii** structures by calculating iho least-squares error

in the sensed forward ;:olution. If the error exceed a threshold which can bv ;ittrilmtori to wheel

sensor noise, we conclude that who««l slip has occurred. By iK'tretin*; the oiisH of wheel slippage,
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and correcting the calculated robot position with an absolute locating device, the WMR will follow

planned trajectories more accurately.

We are also applying our kinematic inctliodology to the dynamic modeling of WMRs (in Section

9). By analogy with manipulator dynamic modeling, our kinematic methodology will serve as the

foundation upon which to formulate the dynamic models. In contrast to manipulator dynamics,

we must resolve the special problems of closed-link chains and higher-pair joints.

We note that the composite robot equation in (5.2.2) and tho actuated inverse and sensed

forward solutions in (5.5.5) and (5.7.5) are essential components of these applications. In Section 7,

we apply our kinematic methodology to specific WMRs. For each WMR, we calculate the actuated

inverse and sensed forward solutions, where applicable, and characterize their mobility, actuation

and sensing structures.
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7. Examples

7.1 Introduction

We illustrate the kinematic modeling of six WMRs: the Unimation robot, Newt, Uranus,
Neptune, Pluto, and the Stanford cart. For each WMR, we provide four kinematic descriptions: a
written description, a top and side view sketch, the symbolic diagram and the kinematic name. We
assign the coordinate systems to create the coordinate transformation matrices. We then form the
wheel Jacobian matrices by substituting elements of the coordinate transformation matrices into
the symbolic wheel Jacobian matrices in Appendix 3. We determine the nature of the mobility,
actuation and sensing structures to gain insight into the mobility characteristics of the WMR. We
compute the actuated wheel velocities from the robot velocity vector (i.e., actuated inverse solution)

and the least-squares robot velocity vector from the sensed wheel velocities and positions (i.e.,
sensed forward solution) when the mobility analysis indicates that these solutions are applicable.
We complete each example with remarks on its kinematic structure and its suitability for particular
tasks.

7.2 Unimation Robot
7.2.1 Kinematic Description

The Unimation robot[14] illustrated in Figure 7.2.1 utilizes three symmetrically positioned
omnidirectional wheels with rollers at 90°. A motor actuates each wheel and tlic velocity of each
wheel is measured by shaft encoders. The rollers are neither actuated nor sensed. The coordinate
system assignments and pertinent robot dimensions are shown in the figure.

7.2.2 Coordinate Transformation Matrices

We write the coordinate transformation matrices in Table 4.4.2 from Figaro 7.2.1:

' 0 - 1 0 0
\

= I

.0 0 0

1/2 0
5 0 -«o/2 ! H 2 # _ * _
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-\/3/2
-1/2

0
0

1/2
-\/3/2

0
0

0
0
1
0

-v3Jo/
-IJ2
-h
1

Unimation Robot

(Troas-whemor)

90"

fltse z-ax©s i r t out of tite pig®)

Top

wheel radius a R
roller radius * r

Side View

Figure 7.2.1

Coordinate System AHsignrncnta for the Urifcuiiiou Robot
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7.2.3 Wheel Jacobian Matrices

Wo substitute the elements of the transformation matrices, the wheel and roller radii, and the

roller angles* into the symbolic Jacobian matrix for omnidirectional wheels in (A3.4.2) to write the

matrix wheel equations:

fvRx\ (-R 0 la\ fwwix}
p = VRy = 0 r 0 ooWir = J i q i (7.2.1)

= J2q2 (7.2,2)= l V R y =

R/2 -v/3r/2 -la / 2
p ^ [ VRy j = ( -y/3R/2 - r / 2 y/Zla/2 j | w«3r ) = J3q3 (7.2.3)

0 0

7.2.4 Mobility Characteristics

To characterize the robot mobility, we note that the soluble motion criterion is satisfied.

Therefore, none* of the wheels has redundant DOFs and the actuated inverse solution is applicable.

Since the three DOF motion criterion is also satisfied, the Unimation robot allows 3-DOF motion.

We calculate the adequate actuation criterion det[A^ A(l) = 271^/4 as the first step in charac-

terizing the actuation structure. Since the determinant is nonzero, all robot motions are producablc

by the motions of the actuators. The value of A(Aa) B a is zero which indicates that the robust

actuation criterion is al«o satisfied. The actuator inotiotu; are independent and no actuator con-

flict can occur. Since the* adequate sensing criterion is satisfied but the robust sensing criterion is

not, the tuning structure is adequate but not robust. Alt1 hough the sensing structure allows three

DOFs to be discerned by applying the sensed forward solution, wheel slip cannot be detected by

the method of Section G.5.

7.2*5 Actuated Inverse Solution

Since the soluble motion criterion is witisfied, the actuated Inverse solution h computable. The

actuated inverse solution in (5.5.5) applied directly:
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resulting in

'w«,isy z - i o ia\ fvRx\
* W = 1 / ^ 1/2 \/3/2 Ja V*v . (7.2.4)

wrJ V1/2 -v^/2 la] \UR]

7.2.6 Sensed Forward Solution

Since the adequate sensing criterion is satisfied, the sensed forward solution is computable.

We apply the least-squares sensed forward solution in (5.7.5):

i. A(J2 n)J2 a A(J3n)J3<(] ( q2a

and obtain

1/3 1/3
= R 1 0 l /v /3 - l / > / 3 1 I *)„,« | . (7.2.5)

1.2.7 Remarks

The Unimation robot is a general-purpose three DOF WMR. It allows three DOF motion, has

adequate actuation to produce three DOF motion, and has adequate Sensing to discern three DOF

motion. The actuated inverse and sensed forward solutions are computable in real-time, enabling

accurate closed-loop control. The low ground clearance, which only allows locomotion on smooth,

level surfaces is a disadvantage of the design. The mechanical complexity of the omnidirectional

wheels iiicrontfos the cost and difficulty of fabrication. It is difficult: to construct perfectly round

omnidirectional wheels when the rollers are at 90c because of the. discontinuities between rollers.

An improved wheel design allowing circular omnidirectional wheel profiles has been implemented

for Uranus (in Section 7.4). We have noted that the sensing structure does not «»11<JW wheel alip

detection by the method of Section 6.5. Although the wheel variables which are not-sensed are

difficult to instrument, an additional instrumented caster can be added to the design to provide

practical robust srtuing and wheel slip detection.

Thrcv DOF locomotion i* not necessary for parts aud materials transport. A transport WMR

may oj*erah* with two "DOFs. The tlinv DOF locomotion is aclvintaj'jeoiLs v/hen utilized with

;m m*)>t*;«nl inaw?J*i)lutor. Tln» njohility of the WTMR (tihr»i*ros and oxt«'iul.- the workspace of the

m«vimiil»'*S}i% (\)iLsec|!iriitIj, a inaiiipu!aior having fewer thnn îx DOl'V i!it>untf«l on tin? WMR

76

J



has an unlimited workspace and can accomplish the tasks of a stationary manipulator having six
DOFs.

7.3 Newt

7.3.1 Kinematic Description

Newt[32] is a WMR having two diametrically opposed drive wheels and a free-wheeling castor,
as shown in Figure 7.3.1. Both drive wheels are actuated and sensed, while the castor is neither
actuated nor sensed.

Newt

(Bicas-unicsun-whemor)

(Castor shown parallel to Floor y-ax1s)

(The x-axes are out of the page)

(The 7-axes are out of the page)

y

Top View Sida View

Figure 7.3.1

Coordinate System Atwij;mucnts for Newt
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7.3.2 Coordinate Transformation Matrices

The coordinate transformation matrices for Newt are:

1. 0 0 la \
0 1 0 0
0 0 1 -I,

.0 0 0 \ )

1 0 0 -la

0 1 0 0
0 0 1 - I .

.0 0 0 1

' * s , = 9 = I

R

1 0 0 0
0 1 0 -h
0 0 1 -{I,-U)

.0 0 0 1
0
0

0
0

1 0 0 0
s > T . _ I 0 1 0 -le

1 C l "0 0 1 - / d

.0 0 0 1

7.3.3 Wheel Jacobian Matrices

The radii of wheels one and two axe identical: Ri = i?2 = R, and the radius of wheel three

ia Rz — r . By applying the Jacobian matrix for non-steered conventional wheels in (A3.2.2), we

write the matrix equations for drive wheels one and two:

(7.3.1)

(7.3.2)

by applying Hu» Jacobkia iuatrix ft^r a t-tct-n^l mny* ;»li*m'il whr<*l in (A3.3.2), we
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write the matrix equation for wheel three:

VRX\ f~RsinOs3 -lecoa0Sz -lb lb

p = | VRV = RcosOs3 -lcsin0s3 0 ) | wW3Z | = J 3 q3 . (7.3.3)
URM) V 0 1 - 1

7.3.4 Mobility Characteristics

The soluble motion criterion is satisfied, indicating that the actuated inverse solution is appli-

cable and none of the wheels is redundant. Since W{ = 2 for wheels one and two, the three DOF

motion criterion is not satisfied. The robot has fewer than three DOFs; i.e., some robot DOFs are

dependent. The matrix product [A(Bo) AQ] has rank one, and according to the expression for

the number of WMR DOFs in (5.4.1), Newt has two DOFs. The kinematic motion constraints for

wheels one and two simplify to VRX = 0. Wheel three imposes no constraints on the robot motion.

The WMR thus allows independent motion in two DOFs: Y and 0.

We determine the actuation structure by first calculating tho adequate actuation criterion

det[A^Aa} = 82*. This indicates that all robot DOFs are actuated (i.e., all robot motions in the

Y and 0 directions may be produced by the actuators)* Wo find further that the robust actuation

criterion A(Aa) B a = 0 is satisfied. All actuator motions are independent, providing robust

two DOF actuation. The sensing structure is adequate but not robust because the sensed wheel

variables and the actuated ones are identical. Even though the sensing structure is not robust, the

sensed forward solution is applicable.

7.3.5 Actuated Inverse Solution

Although the actuated inverse solution is applicable, only robot motions for which the trans-

latioixal velocity VJIX is zero are possible. This means that the actuated inverse solution will be the

exact solution if the X-coiuponent of the robot, velocity ia chosen to be zero. If the X-comporietit

of the robot velocity is non-zero,, the actuated inverse solution will be computable, but it will be

erroneous. The result m this case will be tho optimal set of actuated wheel volo'*Uic\s which loin-

hnizes the Irast-squarea error between the desired robot velocity and the resulting robot velocity.

We apply tho actuated inverse4 solution in (5.5.5):

[ q - . N , ) " { j j ?; A { J 2 u } J 2 ( ) ; ' J L A ( J 2 I , } J p



and obtain

7.3.6 Sensed Forward Solution

Since the sensing structure is adequate, the sensed forward solution in (5.7.5) is applicable:

1 [A(J ln)J l3 A(J2u)J23]

and hence

VRy | = R/{2la) (7.3,5)

The JT-componcnt of the robot velocity is zero independent of the sensor measurements. The

y-component of the robot velocity is proportional to the sum of the wheel velocities, and the

0-componeut is proportional to the difference of the wheel velocities.

7.3.7 Remarks

Newt is a general-purpose robot for tasks requiring only two-dimensional motion. Any path in

a plane can be traced by a WMIt gtos&essing two DGFB* SI.IKT the vast majority of existing WMRs

are applied for transporting parts, materials, and tools from one point to another along a path,

Newt lias wide applicability. Tin* simple mechanical design is advantageous over omnidirectional

borausc it requires fewer parts and has reduced c(H>fc» A robust sending structure may bt)

by .̂ cttHlng the wti«*l aiwl fleering vt4ocitie« of the* caster. Au important feature of this

Is that tlw* dcad-rockoning Integration calrulatioiis for the angular position of the robot are

not requira!. If no wheel slip incurs, the angular robot position can bo calculated at any time nT

to

The ta?unu*\ to

of * tta{ttT) ;\» thvy uould if Ilir ilrat!

(7.3.C)

sor noi;:e do not tivcumwhAo in the

r^mtioii in (G.3.*l) we^e n^

Si



From our analysis, we conclude that Newt has two DOFs in tho Y and 0 directions. If the

robot coordinate system is assigned at any point along the robot F-axis except zero, the two DOFs

will be X and Y'. If the robot coordinate system is rotated 90°, the two DOFs will be X and 0.

Finally, if the robot coordinate system is assigned to an arbitrary position not on the X or Y axes,

the two DOFs cannot be specified by two of the three components X, Y', and 0. We conclude

that the number of DOFs of a robot is independent of the assignment of coordinate axes, but the

allowable directions of motion depend upon the placement of the robot coordinate system.

7.4 Uranus

7.4.1 Kinematic Description

Uranus[49] has the kinematic structure of the Wheelon wheelchair [2]: four omnidirectional

wheels with rollers at 45° angles to the wheels. The coordinate system assignments and robot

dimensions are shown in Figure 7.4.1.

7.4.2 Coordinate Transformation Matrices

Since there are no steering links, the coordinate transformation matrices for Uranus are:

1 0 0 la

0 1 0 lb

0 0 1 -lc

.0 0 0 1

1 0 0 - / „ •
0 1 0 lb

0 0 1 - ^
.0 0 0 1

iT,T — I ° 1 ° '*> I « » * _ - **Tn -
"3 ~ " 0 0 1 -le ' 5 j ~ ° 2 ~

1 0 0 - / a \
0 J 0 - Z 6

0 0 1 -le

.0 0 0 1 )
o o i - i ( -•>:> "' * ' T c * - I

1 0 0 ln

0 1 0 --fj
0 0 1 ~le

.0 0 0 1



Uranus

(Tetroas-whemor)

(The z-axes are out of the page)

Top View

c4 ct
(The x-axes are out of the page)

Side View

Figure 7,4.

Coordinate System Assignments for Uranus

7.4*3 Wheel Jacobian Matrices

The radius alignments are iZj = Rj = R$ = R& = 72, and r± = r-i = r$ = r4 = r, and the

roller angled are rji =?= 173 = —45°, and ^ = ?̂4 = 45°. Tho Jarobian matrix for onniidircjctional

wliw*k in (AS*4.2) allows IIB to write the cquation-of-motiou for each wheel;

-ry-1/2 ~la

0 1
(7.4.1)



p = | VR I = I R -ry/2/2 la J | uwir 1 = J 2 q 3 (7.4.2)
LJRJ \0 0 1

'vRx\ /O -7
p = I vRy \ = \ R -ry/2/2 la | [ uWar | = J3qs (7.4.3)

O ry/2/2 - /
V | = J 4 q 4 (7.4.4) .

7.4.4 Mobility Character is t ics

Since the soluble motion criterion is satisfied, the actuated inverse solution is applicable and

none of the wheels has redundant DOFs. Furthermore, the three DOF criterion in satisfied and the

motion structure is capable of three DOF motion.

The adequate actuation criterion yields: det[A^Aa] = 64(la + l^)2. The actuators are thus

able to provide motion in all three DOFs. Wo find that the robust actuation criterion is not

satisfied. The actuation structure is thus not robust and actuator conflict may occur. The sensed

and actuated wheel variables are identical so that the sensing structure is robust which allows the

detection of wheel slip by the method of Section 6.5. The sensed forward solution is therefore

applicable.

7.4.5 Alternat ive Designs

Uranus is a convenient WMR with which to develop an understanding of the differences between

inadequate, adequate and robust actuation (sriisiiig) structures, and the need for a kinematic

analysis hi the design of a WMR. We have shown that Unintis has an adequate but not a robust

actuation structure which provides motion in all three DOFs, but allows actuator conliict. Jn Figure

7.4.2? we consider ;i slightly different WMR design*

The WMR. in Figure 7.4.2 in identical to Uranus except*, the the? wheels on the right and left

hand sides of the WMlt have been interchanged and the distances la and Z& are equal. The wheels

are actuated (sensed) a*s with Ur;>au>\ Upon modeling this WMR and characterizing it,e actuation

(sensing) structure, we find \lu\f it is inatlrquuie (i.e., dtd\A^Aa] r= 0) . The problem is that the

angular rotation of the WMR \< mn com^niuied by the motions of the actuators (sensors). We

obwive in Fi*;uiV 7.-1.2 tl'M the robot* rnv iif,- y^nm about its renter even if the* wheel actuatora are

locked to <>n< position l>c?i'au>c ilir rollers :uv fti e to turn.



(The z-axes are out of tbe page)

Figure 7.4.2

Uranus with an Inadequate Actuation Structure

We realize that the non-robust nature of Uranus' actuation structure allows actuator conflict.

We now imagine how Uranus might be altered to avoid actuator conflict. Since we are interested

in a practical symmetric alternative, we eliminate the possibility of simply removing one of the

actuators. We must ensure that the actuator coupling criterion in (5.6.5) is satisfied. The rank one

actuator coupling criterion for Uranus reduces to the scalar equation:

w« = 0 . (7.4.5)

Only three of the four actuator motions are independent. Our solution in Figure 7.4.3a y to con-

strain mechanically the wheel motions with gearing between wheels to ensure that the dependencies

in (7*4.5) and thus the actuator coupling criterion in satisfied.

We utilize differential gearing and reversing gearing. A differential gearbox is designed so that

the output shaft rotates at a rate equal to the difference of the two input shafts. A reversing

gearbox is designed so that the output shaft rotatot* at a rate equal and opposite to the input shaft.

In Fignw* 7.4.3b, we add three symmetrically placed motors for actuation. The actuation structure

of 7.3,3b is robust. We write the composite rob**t oqiuitiou-of-moiion in terms of the motor shaft

rotaliom (instead of tho wheel axlr rotations), and apply the rohtut actuation criterion to verify

tli** dtsi&u. Bveu fUoii|;li the ctmiplexiity c;f this iH\nvni inp.y prohibit prnctu*;>] itn|>^Mn(*ntali*)n, the

iirt* iiiiiy hv applir4 to \hv «l<'si«;n of any WMR.
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1
8

cThl I
Uranus with Gearing to Insure

Actuator Dependencies

0 = Differential gearing

H = Reversing gearing

M = Motor

Figure 7.4.3a

Uranus with Determined Actuation

Figure 7.4.3b

Converting Uranus into a Robust Actuation Structure

7.4.6 Actuated Inverse Solution

Since the mobility structure of Uranus allows three DOFs, the actuated inverse solution in
(5.5.5) is exact for all robot motion**. The actuated inverse solution is:

R
'W4X -

— I
i

~.i
i

i
i
i
i

ia -
-la
-L
I -

-h
-k

(7.4.6)

The artu.-itt (1 invev-o solution in (7.4.G) in.v,1 he ohtainoil by «pi.-i:-mMn£ th.->.' :i!l \vl»'««l variables .ire

actu.'dnl. aj>plyhi}; the inverse: •••Jutioii ii. (5.5.0) :m<I extract'.;]^ only (ho artuat••>! wlu'<*l v-Tiablos.
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This alternate approach is less computationally intensive because the inverse solution for each wheel

simplifies to inverting each of the Jacobian matrices.

7.4.7 Sensed Forward Solution

We apply the least-squares sensed forward solution in (5.7.5) to obtain:

(7.4.7)

7-4.8 Remarks

Uranus is a general-purpose three DOF WMR, with the kinematic capabilities of the Uiiimation

robot. The actuation structure is adequate and the sensing structure is robust as compared with

Uuiuiatimrs robust actuation and adequate sensing. Uranus has more ground clearance because

of the arrangement of the wheels. Ako, the wheel profiles are exact circles because the rollers are

at 45fJ angles avoiding the discontinuity oi" wheels with 90° rollers. To utilize practically rhe three

BOP capabilities of this nibot, we envision the 5imultaiicous operation of an onboard manipulator.

7.5 Neptune

7.5.1 Kinematic Description

Neptune Jiii*" a triryrli^lik*1 kinemnfit* structure* 4'»s il<*picte<l in Figure1 7.5.1. The front* whorl

w ^tee-red iilxm* ilrf r< ntet. ;;n<l both thi* ^J^eniij; »n;d frlu* wheel relations an* ruiiiatecl. Tlie two

^rieutation wlierl:* an* neitlwr afttutf4 nor hciu'til.

SO



Neptune

(Bicun-unicsan-whemor)

sk

T T - *

(The z-axes are out of ttte page)

Top View

radius » R
radius * R

(The x-axes are out of the page)

(Front wheel shown aliigned with the ^

Side View

Figure 7.5,1

Coordinate System Assignments for Neptune

7.5*2 Coordinate Transformation Matrices

The coordinate transformation matrices arc:

1
0
0
0

0
1
0
0

0
0
1
0

0
k

Id -
1

cos 0gt

win Os,
0
(}

- s i n 0s,

()
0

0
0
1
0

0
0
0
1
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s = = 1

1 0 0 la

0 0 1 - / e

. 0 0 0 1

•1 0 0 -Zn

0 0 1
. 0 0 0 1

7*5.3 Wheel Jacobian Matrices

The wheel radius assignments arc i?i = R2 = R$ = R. WO use the Jacobian matrix for a

steered conventional wheel in (A3.3.2) to write the equation for wheel one:

-Rsin0Sl h -h\ (uWlX
P = 1 ' vnv 1 = I R c o s 0 S l 0 0 ) 1 u W i 2 I = J i q x ( 7 . 5 . 1 )

The matrix equations for wheels two and tliree are specified by (A3.2.2):

p = \vny

*} (0 0 \ , v
y = \R -la]( "»»* = J 3 q 3 (7.5.2)

fvnA [0 Q\ ,
P = f% = \R la\(

 UJ>* ) = J3 q3 (7.5.3)

7.5.4 Mobility Chnractcristics

Tin* Hitlnble motion rriterion is not satisfied because wbcel one is redmiclant. OOunins '

three of ili«* Jan>lfutn matrix an* linearly tlepenelmt «'»n<l thus the as.uuuatrtl wheel variables (the

stf*erin^ velorily u/^j- and the WIMH'1 rat;ili:i?ui! di\t wUwiiy wW|;j) are r?*linuiaiit. The «w

hivei>e ^iliiti^iii L< not apiiliralile for Ncjiitnie. We 1'utnot «h t<*nniiu* th# actuation and
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structures because the foundations of the actuation and sensing characterization trees, tho robot

actuation and sensing equations in (5.6.3) and (5.8.3), utilize the inverse solution. Furthermore,

we cannot determine the number of DOFs by applying (5.4.4) because tho matrix A(B()) is not

computable.

7.5.5 Remarks

Neptune was consfructcd to provide a mobile platform for vision research and for that purpose

the design is sufficient. From a control engineer's point-of-view, the design is undesirable because

the actuated inverse and sensed forward solutions cannot be calculated. The redundant wheel

disallows these calculations. We suggest two practical design alternatives which allow the mobility

and computational simplicity of Newt but require few changes to Neptune. First, wheel one can be

made non-redundant by offsetting its center from the steering axis. Secondly, the front wheel can

be offset as in the first alternative, and the steering and drive motors can be moved from wheel one

to drive wheels two and three producing a structure kinematic ally identical to Newt.

7.6 Rover

7.6.1 Kinematic Description

As illustrated in Figure 7.6.1, the Itovor consists of three conventional steered wheels sym-

metrically arranged about the center of the robot body. The steering and drive of each wheel

is actuated and sensed. Actuator conflict producing shaky robot motion[50], encountered while

developing a controller for Rover, fostered our modeling of WMRa.

7.6.2 Coordinate Transformation Matrices

To simplify the coordinate transformation matrices, we have assigned all hip coordinate sys-

tems parallel tii the robot coordinate system and all steering coordinate systems parallel to their

respective contact point coordinate systems:

1 0 0
o i o L
o o l u-.

.0 0 0 1

_
Sl ~

0
0

- sin 0Sl 0 0'
cos 0sl 0 0

0 1 0
0 0 1.

1 0 0 -
0 1 0 - / a / 2
0 0 i l,i - lc

J) 0 0 1

_ -<»»0s,
0
0
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' cos 0$.s - sin 0s3 0
_ n 0 sz cos 0ss 0 0

' S 3 = I 0 0 1 0
0 0 0 1.

'Tct =

7,6.3 Wheel Jacobian Matrices

The radius assignments are Ri = i?2 = -K3 = R- The wheel equations arc written by applying

the Jacobian matrix for steered conventional wheels in (A3.3.2):

—R sin 0$x I a — J& sin 0$ ,
RcosO$l hco$0Sl 0 | ( w W l , j (7.6.1)

0 1

p = | t?jfy J = J Kcos^Sa hcos^53 + y/Zlaj2 —\/Zla/2 I J a;.^* } (7.C.2)
us2

(7.6.3)

7.6*4 Mobility Characteristics

The soluble motion criterion is not satisfied because the wheels an; redundant. Consequently,

the inverse solution is not applicable, the actuation and sensing structures cannot be determined

atid the setiml forward solution cannot, be calculated, A dynamic force aaalysb IH required to

compute the wheel and robot motions rfnee we cannot determine when wliĉ c1! rotational *»lip will

occur by kinematic calcuJaHniu^ aloiw, Liki*wî t\ th'» numlx'r t»f D()^^ ^.'unt^t b<* <lctcnnined from

(5,1,1).
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Rover

(Tricsas-whemor)

(The z-axes are out of the page)

Top View Side View

Figure 7.6.1

Coordinate System Assignments for Rover

7.6.5 Remarks

We conclude from this example that kinematic modeling of a WMR must bo addressed in

the design stage. Rover can be redesigned to operate as an omnidirectional WMR by construct-

ing the steering links so that the wheels are non-redundant. Since there are six actuatora, the

redesigned actuation structure will not be robust ami will allow actuator conflict. The Denning

Sentry robot(70] replicates the kinematic structure of Rover, with the exception that all three

wheels are mechanically steered and driven in unison. The Denni:i;; WMR avoids actuator conflict

by utilizing only two actuators awl mechanically coupling the niuvl motions, bu* in so doint; it

sacrifices oumidirectiouaHty.



7-7 Stanford Cart
7.7.1 Kinematic Description

The Stanford Cart has the kinematic structure of an automobile, two front wheels with coupled

steering angles and two parallel non-steered back wheels, as shown in Figure 7.7.1. The rotations

of wheels three and four and the coupled steering for wheels one and two are actuated.

Stanford Cart

(Pseudo-bicsan-bican-whemor)

(r-axes trn out of the

Top View

(x-ftxes are out of tit* page)

Side View

Figure 7.7.1

Coordinate: Syntcin A8t*if;acmciits for the Stanfortl Cart
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7.7.2 Coordinate Transformation Matrices

The coordinate systems assigned in Figure 7.7.1 load to the following coordinate transforniatioii
matrices:

1 0 0 le\
_ 0 I 0 la

J i l " ' 0 0 1 0
0 0 0 1 J

Jirp
_

cos 0s, -sin#Si 0 0
cosfls, 0 0

0 0 1 0
0 0 0 1.

1 0 0 -/„•
„ i o i o ia

H> ' 0 0 1 0
. 0 0 0 1

Ha * s a =

'cos^s. -sinflSa 0 0'
cos 0s, 0 0

0 0 1 0
0 0 0 1.

s i TC l =

1 0 0 0
0 1 0 0
0 0 1 -ld

.0 0 0 1

I 0 0 /B

° X ° "/

0 0 1 -l
o o o

r = 1

= 1

7.7.3 Wheel Jacobian Matrices

The equations-of-motion for wheels one a n d t w o arc wr i t t en by applying tlu» Jacobian matr ix

for steered conventional wheels in (A3.3.2), a n d for wheels th ree and four by applying the Jacob ian

matr ix for non-steered convent ional wheels in (A3.2.2):

vHv

f-R*u\0Sl la

= Itcn»0st l
V ° x (7.7.1)

I) I
(7.7.2)
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(7.7.3)

(7.7.4)

7.7.4 Mobiliiy Characteristics

We assume1 that the steering angles are equal; i.e.. #s2 = 0si = 0$. and consequently ws7 =

OJSI = UJ$. We substitute these equalities into the wheel Jacobian matrices in (7.7.1) and (7.7.2) to

form the composite robot equation in (5.2.2):
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(7.7.5)

Because of the coupling between wheels one and two, the applicable soluble motion criterion

tc\sf- h rank\J\^ = w. We observe in (7.7.5) that the r.ink of the (12 x 0) matrix B.̂  is eight, but

there are nine wheel variables (i.e., w = 9). Accordingly, the mobility structure of the Stanford

cart is riot soluble and the inverae and forward solutions arc not applicable.

7*7.5 Remarks

The Stanford Carl i» kinoxnatically similar to an automobile. Even though automobiles operate

satisfactorily for transportation, we cannot aati?.fnrtorily iuoclc4 (he motion of the Stanford cart

using only kinematic characteristics. We conclude that a dynamic analysis h required to model its

motion.

itt IMU) »ii A ^ ^ ^ f u u m tfterriujt Itufc M;C !4&! b«»tw«*ru tb* twin fzoxtt W I H T I S , Tb«» Ark«Tnt«iii llti

tljc» o c t ' i a i w r c*itt|>lijig critcfi«*i l*y |>r*ivliliiig tin? vartfi i win «•! u»j*i< J tt* nvoi t l whvel f l ip .



7.8 Conclusions

The six examples presented in this section demonstrate that our kinematic modeling method-
ology in Section 4 and the solutions in Section 5 establish the foundation for developing and
solving the kinematic cquations-of-motion of a WMR. Furthermore, we illustrate that writing the
equatioii8-of-moi.ion for complex kinematic structures, such as Rover, is not practical without a
systematic framework. The examples show that formulating the equationa-of-motiou for a WMR
is a straightforward procedure which does not require insight into the operation of the robot.

We note that the actuated inverse and sensed forward solutions are applicable to WMRs which
I satisfy the soluble motion criterion (the Unimation robot, Newt and Uranus). The WMRs which
| have redundant wheels (Neptune, Rover, and the Stanford Cart) do not satisfy the soluble motion
,| criterion and the actuated inverse and sensed forward solutions, are not applicable. Without these
! calculations, the control of WMRs having redundant wheels is inferior. We conclude that kinematic

modeling of a WMR, must be undertaken in the design stage (Section 6.2). Since kinematic modeling
is critical for WMR control, the design of the wheels and the positioning of the wheels, actuators
and sensors must ensure that all of the modeling calculations are computationally feasible.

These six examples exhibit noteworthy features. If the wheel variables which are actuated
and the wheel variables which are sensed are identical, than either che actuation or the sensing
structure can l>e robust, but not both. For example, the actuation structure of the Unimation
robot is robust and the sensing structure is not: whereas, the sensing structure of Uranus is robust
but the actuation structure is not. Since we desire both robust actuation and robust sensing, we
should not limit our WMR designs by sensing only the wheel variables that are actuated2. When
wheel level feedback control is implemented, the actuated wheel variables must be sensed to provide
local feedback. For the preferred robot level control, we provide robust sensing and actuation. By
sensing and actuating different wheel variables, we also reduce the mechanical complexity of Hie
hardware. We note further th.it wheel slip is more likely to occur with actuated wheel variables
than unactuated one** because* the actuated variables «u*o force/torque sources. Thus tike effects of
wheel slip on the calculation of the robot position from wheel sensor measurements are reduced hy

sensing unactuatcvl wheel variables.

The only WMRs wltkii allow three DOFs motion arc the ones which consist exclusively of

wheels with three DOFs (the Uiilmation Robot and Uranus). A WMR having non-steered conven-

tional or redundant conventional wheels may be mechanically tvwior to construct but cannot allow

three DOFs motion. We suggest that «hree DOF motion can be practically utilized when the WMR

ty

H brucili l '^tt w«>tor» a r e uti! ' /i '*» <\t\ ac*a«i2iror.*H* i-iu'li tvct^iatml wh"i ' l v a r i a b l e su^ftt1 W Mrii^rnl t o on«ilil*'

coiiuii>itttti<>n*
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has an onboard manipulator. The mobility of the WMR extends the workspace of the manipulator.

When the WMR is for transportation of parts, materials or tools from place to place, only two

DOFs arc necessary. The mechanically simplest design to provide two DOFs is two diametrically

opposed non-steered conventional wheels, as on Newt. Drive motors may coupled directly to the

wheel axles. One or two additional castors are needed for stability. This design also embodies

simple and easily calculated sensed forward and actuated inverse solutions.

The application of our methodology to exemplary WMRs completes our study of WMR kine-

matics. In Section 8. we summarize our development and provide concluding remarks.
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8. Conclusions

We have developed and illustrated a methodology for the kinematic modeling of WMRs. We
have found that the established kinematic modeling methodology for stationary manipulators is not
applicable to WMRs because of the higher pair wheel-to-floor joints, the multiple closed-link chains
formed by multiple wheels, and the unactuatcd and unsenscd wheel variables. Our development
spans the kinematic analysis of WMRs, including:

• A survey of existing WMRs (in Section 2);
• Modeling of ball, omnidirectional, and conventional wheels (in Section 3);
• Assignment of coordinate systems (in Section 4.3) ;
• Formulation of the transformation matrices (in Section 4.4);
• Formulation of the kinematic equations-of-rnotion (in Sections 4.6, 4.7, and 4.8);
• Solutions of the kinematic equations-of-motion (in Section 5);

• Characterization of WMIt mobility (in Section 5);
• Applications to design, control, dead-reckoning, and slip detection (in Section 6);
• Kinematic modeling of six cxamplary WMRs (in Section 7): and
• Naming and diagramming of WMR kinematic structures (in Appendix 1).

In this concluding section, we summarize our development and highlight the significant results
and implications.

We begin modeling a WMR by sketching the mechanical structure. We assign one robot

coordinate system, and a ftzp, steering, and contact coordinate system for each wheel (in Section
4.3). We apply the Sheth-Uicker convention to coordinate system assignment and transformation
matrix calculation because it allows the modeling of the higher-pair wheel contact-point motion and
provides unambiguous transformation matrix labeling for the multiple closed-link chains formed by
the wheels.

I We model each wheel (conventional, stecrcd-conventional. omnidirectional or ball wheel) as a

% planar-pair which allows three DOFs: X-trauslation, Y-translation, ami 0-rofcation. A conventional

| wheel attains Y-trauslational motion by rolling contact. The translation in the X direction and the

| 0 rotation about the point-of-contact occur when the wheel slips. We model the rotational slip as

I a wluvl DOF because relatively small forces are required; furthermore, tin* majority of all WMR.s

\ rely on this DOF. We do not consider the X-traiislatlonal wheel slip a DOF because relatively large

' forces are necessary. Omnidirectional wheels also rely on rotational wheel slip but ball \vhoc\ta do

not.

By inspection of the sketch, we write the robot-to-hip, hi|>-!o-sieerinj!; and stoeriu!;-to contact
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transformation matrices for each wheel in the format of Table 4.4.2. Under the assumption of no

wheel slip, the wheel rotations define the motion of the wheel contact-point coordinate system with

respect to a stationary coordinate system at the same position and orientation on the floor. The

coordinate system fixed with respect to the floor is important because we reference the velocities of

the wheel contact-point to this instantaneously coincident coordinate system. The rotational veloc-

ity of a wheel about its axle is thus proportional to the trail si ational velocity of the contact point

coordinate system with respect to the instantaneously coincident wheel contact-point coordinate

system. Similarly, there is an instantaneously coincident robot coordinate system to reference the

velocities of the robot coordinate system. We assign instantaneously coincident coordinate systems

because of the higher-pair wheel contact points.

For each wheel we develop a Jacobian matrix (in Section 4.7.3) to specify the robot velocities (in

the instantaneously coincident robot coordinate system: RVRX, RVJIV, RWR) as linear combinations

of the wheel velocities (e.g., the steering velocity, the rotational velocity about the wheel axle, the

rotational slip velocity, and the roller velocities for omnidirectional wheels). We write the Jacobian

matrix for a wheel by substituting elements of the coordinate transformation matrices, wheel and

roller radii and roller orientation angles into the symbolic Jacobian matrices of Appendix 3. For a

steered wheel, the Jacobian matrix depends explicitly on the steering angle.

Our study has illuminated the following important wheel properties. A (3 X W{) Jacobian

matrix J* is associated with a wheel having Wi wheel variables. If the Jacobian matrix has rank

t£/*? it satisfies the non-redundant wheel criterion in (4.7.15), the wheel has Wi DOFs and all wheel

variables are independent. If the rank of the Jacobian matrix is less than wt-, the wheel is redundant

having fewer than W{ DOFs, and some of the wheel variables are dependent. Specifically, any

conventional wheel which is steered about an axis that intersects the wheel contact-point, or is

oriented perpendicularly to the line from the steering axis to the contact-point, is redundant. We

have noted disadvantages of redundant wheels (without wheel couplings). The actuated inverse and

sensed forward solutions do not apply. We cannot characterize the actuation and sensing structure

of WMIts with redundant wheels because the actuation and sensing charactcrization trees are

developed by applying the actuated inverse solution. We also cannot determine the number of

DOFs of a WMIt with mhmdant wheels (ami no wheel couplings) because the DOFs calculation in

(5*4.4) h not computable. Since the actuated inverse* solution is not applicable, we cannot control

such a WMR by calculating the* actuator velocities from the desired robot velocities. Steering

the WMR by calculating the steering angle of a redundant wheel is an ad-hoc approach z-mco a

steering angle cannot he controlled instantaneously. We point-out that some exiting WMRs having

rwluiulnnt SUHTWI-COII volitional wheels (<\j*., Neptune and the Stanford Cart) an* controlled in this

manner with soxm* Murvm, Since our .survey and examples show that WMRs havr Ixvn



with redundant wheels, we infer that the implications of redundant wheels were not previously

well-understood.

I
j We form the composite robot equation (in Section 5.2) by adjoining the equations-of-motion
j of all of the wheels. Linear positional couplings between wheel variables (e.g., steering angles or
i

I wheel axle angles) can be incorporated into the model by making the appropriate substitutions in

the composite robot equation, as demonstrated in Section 7.7.4 for the Stanford cart. We solve

I the composite robot equation and interpret properties of the solutions to illuminate the mobility

i characteristics of the robot.
i
I
i The composite robot equation may have zero, one, or an infinite number of solutions cor-

responding to three WMIt mobility characterizations: overdetermined, determined, and undeter-

j mined, respectively. The mobility characterization tree (in Figure 5.4.2) allows us to determine

the mobility characteristics of a WMR by indicating tests to be conducted on the composite robot

equation. The implications of the mobility characterization tree are summarized by the following.

If the soluble motion criterion in (5.4.1) is satisfied, the actuated inverse solution, actuation and

sensing trees and the WMR DOF calculation in (5.4.4) arc applicable. The three DOF motion

criterion in (5.4.2) indicates whether the WMR kinematic structure allows three DOF motion. If

the kinematic structure does not allow three DOF motion, the kinematic motion constraints are

computed in (5.4.3). The number of WMR DOFs arc calculated from (5.4.4).

It is both impractical and unnecessary to actuate and sense every wheel variable on a WMR

because of the multiple-closed link chains. A subset of the wheel variables is thus actuated, and

a subset (not necessarily the same subset) is sensed. Even though a specific WMR may allow

three DOF motion, we must be sure that the wheel actuators can actuate all three DOFs, and

that the sensors can discern three DOFs. We apply the actuation and sensing characterization

trees (in Figures 5.6.1 and 5,8.1, respectively) to provide the answers. The implications of the

actuation characterization tree are summarized by the following three criteria. The adeqauaie

actuation criterion in (£>.6.4) indicates whether the number and placement of the actuators is

adequate for producing all motions allowed by the mobility structure. If the adequate actuation

criterion is not satisfied, iSome robot DOFs are uncontrollable. The robust actuation criterion in

(5.6.6) determines whether the actuation structure is robust; i.e.. actuator conflict cannot occur

in tho presense of actuator tracking errors. If the actuation structure is adequate but not robust,

some actuator mo lions are dependent. The actuator coupling criterion in (5.6.5) uitliculcs the

actuator depciidcncios which must be satisfied to avoid actuator conflict and forced wheel slip. The

implications of the sensing characterization free are sunmiiTizod by tho following Hirer criteria*

The* adequate sensing criterion in (5.8,4) indicates wboth<*r tho number and placement of the wheel

sensors in adeqiialc for dteconiinjj all robot motions allowed hy tho mobility structure*. Tho robust
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sensing criterion in (5.8.5) indicates whether the sensing structure is robust; i.e., wheel slip and

sensor noise produce minimal effects on the calculation of the robot position from wheel sensor

measurements. The wheel slip criterion in (5.8.6) provides a computational method of detecting

wheel slip in robust sensing structures.

We calculate two solutions of the composite robot equation: the actuated inverse and sensed

forward solutions. In the actuated inverse solution in (5.5.5), we calculate the actuated wheel

velocities from the desired robot velocities. The actuated inverse solution is applicable for WMRs

satisfying the soluble motion criterion. In the sensed forward solution in (5.7.5), we calculate the

robot velocities from the sensed wheel velocities. The adequate sensing criterion indicates whether

the forward solution is applicable for a specific WMR. The composite robot equation in (5.2.2) need

not be formed, if there are no wheel couplings, because the actuated inverse and sensed forward

solutions and the mobility, actuation, and sensing characterization trees are expressed in terms

of the wheel Jacobian matrices. The computations required for the actuated inverse and sensed

forward solutions are additions, multiplications and the solution of (at most) three linear algebraic

equations.

We apply our kinematic methodology to the design, kinematics-based feedback control, dead-

reckoning and wheel slip detection of WMlls. Our kinematic methodology provides valuable insights

into these areas. Just as the mobility characterization tree allows us to determine the motion

characteristics of an existing WMR, we may utilize the tree to design WMRs to possess such

desired characteristics as two or three DOFs. We may design a WMR with any specified workspace

(i.e., set of allowable motions) by proper choice and placement of the wheels. We have listed the

design criteria for a robust omnidirectional WMR in Tables 6.2.1 . We model two three-DOF

WMRs as examples: the Uttixnation robot (troas-wheruor in Section 7.2) and Uranus (tetroas-

whemor in Section 7.4). We suggest that three DOF WMRs are applicable for UHC with an on-board

xtjauipulator. The mobility of the basic extends the workspace of the manipulator. The majority

of practical applications (i.cM parti?, tools, and materials transport') require only two DOFs. We

conclude that a WMR having two diametrically opposed driven wheels (bicas-|x>lycsim-whcxnor) is

ideal for this application because of the simplicity of iU mechanical design and kinematic model.

The actuation characterization tree may he applied to design a WMR to have a robust actuation

structure., thus avoiding actuator conflict, as ?!iown for Uranus in Section 7.4/1. Similarly, the

chiurartmxation tree may bo applied to design a WMR with a robnat sousing structure to

the advera? %itvct» of wheel «lip on the calculation of the WMR position. We have noted

that the s»ot of turtuattnl wheel variables and sensed wheel variables cannot coincide If both robust

actuation anil robust *HMi#i]i<; arc? desired.

Tbe tV\v WMR roiitrol yysleuia which have been dorumen'ed cur wheel level control nyn-
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tems[17,33], without using a dynamic model of the WMR. The documented designs are tailored to
the specific WMR being controlled. We detailed a kinematics-based robot level control system (in
Section 6.4) for WMIts for which the sensed forward and actuated inverse solutions are applicable.
Dead reckoning is the real time calculation of the robot position from wheel sensor measurements.
We develop a dead reckoning update calculation in Section 6.4 by integrating the robot velocity
computed by the sensed forward solution.

We have uncovered three methods of dealing with wheel slip: design the actuation structure
to avoid slip, design the sensing structure to detect slip, and minimize the errors in the calculated
robot position due to .slip. We model (in Section 3) rotational wheel slip for both conventional and
omnidirectional wheels because many WMR designs rely on this DOF. We wish to avoid, detect or
minimize the adverse effects of the unmodeled translational wheel slip. One approach to eliminating
wheel slip is to actuate all of the wheels, such as with the four-wheel drive on an automobile. Since
this can lead to actuator conflict, we must design wheel couplings to ensure that the actuator
coupling criterion is satisfied, as with Uranus (in Section 7.4.4). This solution does not guarantee
zero wheel slip, but if slip does occur, all wheels must slip in unison which is unlikely. We have
noted that a robust sensing structure allows us to detect wheel slip. We thus design the sensing
structure to satisfy the robust sensing criterion and wheel slip is detected by the method of Section
6.5. In this way, we are able to detect the onset of wheel slip and notify the robot processor that
an absolute method of robot positioning (e.g., robot vision) should be applied before continuing.
This method will also fail in the unlikely case that all wheels slip in unison. The least-squares
sensed forward solution (in Section 5.7) is less sensitive to wheel slippage if the sensing structure
is designed to be robust. If wheel slip does occur, and no absolute positioning method is available,
the adverse effects can be reduced by applying the least-squares sensed forward solution.

Even though our study is tailored to WMRs, our methodology may be applied to the kinematic
modeling of other mechanisms, such as legged or treaded vehicles. The analysis of mechanisms
having highor-pnir joints, multiple closed-link chains or unactuatcd and unsolved joint variables
may benefit from our methodology. In particular, our matrix coordinate transformation algebra (in
Section 4.5) may be applied to the transformation matrices expressing the relationships between
lower and high-pair joints. Our WMR diagramming and naming conventions (in Appendix I) may
be extended to legged oiobile robots (LMRs) and treaded mobile robots (TMRs).

In Section 9, we discuss our continuing research. We are extending our study of WMRs to

include the dynamic modeling of WMRs.
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9. Continuing Research

Kinematic modeling of WMRs is the first step towards designing feedback control systems. We

are continuing our study by applying our kinematic model to formulate the dynamic cquations-of-

motion of WMRs. In analogy with the past thirty-year study of stationary manipulators, we realize

that our kinematic methodology is the foundation for the dynamic modeling of WMRs. As with

stationary manipulators, our coordinate system assignments are reference systems for defining the

masses and inertias of the robot components. The forces/torques produced by actuators and by

motions of the robot components may be transformed from one coordinate system to another by

applying our coordinate transformation matrices. Our kinematic calculations of positions, velocities

and accelerations can be applied to calculate the dynamic forces and torques produced by the

motion of the robot components. For example, the recursive Newton-Euler manipulator dynamics

formulation[31] applies kinematics to propagate positions, velocities and accelerations from the

robot base to the end-effector. The forces/torques are then calculated from the end-effector to the

base.

We are applying, to the extent practicable, existing dynamic formulations of stationary ma-

nipulators [31] to WMR dynamics modeling. We are extending the existing formulations to ac-

commodate the special characteristics of WMRs, such as multiple closed-link chains, higher-pair

whecl-to-fioor joints and unactuated and unsenscd wheel DOFs. Once the kinematic and dynamic

models are completed, we will focus on WMR control. Our research is paralleled by the physical

construction of Uranus (in Section 7.4). When we establish the foundation for WMR control, we

will implement our designs on Uranus to verify the development and evaluate its performance.

We have provided an extensive methodology for kinematic modeling of WMRs, and we conclude

by pointing out practical extensions to our work. We have developed the actuated inverse and

sensed forward velocity solutions (i.e., the solutions for the actuated wheel velocities from the

robot velocities and the robot velocities from the sensed wheel velocities). We are utilizing pulse-

width modulation to control the actuators of Uranus. The actuators can be modeled by linear

transfer functions from puke-width to motor velocity[51); the pulse-width acts as the velocity

reference nignal and the actuated inverse velocity solution can be applied to calculate these reference

velocities. When motor control is accomplished by controlling the motor current, as is the case

with many stationary manipulators, the motor torque and current arc proportional. Since the

motor current acts as an acceleration reference signal, the actuated inverse acceleration solution h

required. Since there are no commercially-available rotational ttccclmmietors, we utilise available

rotational position and velocity sensors for wheel feedback. The sensed forward velority solution is

thus appropriate for computing the robot' velocities for feedback control and dead reckoning. When

rotational aeceltTometern are developed, the sensed forwurd urade ration flotation will be
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applied.

We have advocated the application of kinematic modeling to the design of WMRs for subse-

quent; feedback control. Since present designs are based upon experience with non-robotic mech-

anisms (e.g., automobiles and tricycles) and ad-hoc methods, we expect that kinematic modeling

prior to construction will improve future WMR designs. In Section 6.2, we addressed the design of

WMRs. A systematic procedure for designing WMRs to obtain specified mobility characteristics is

thus a promising area for research.

Stationary manipulators are open-link chains for most operations. When the end-effector comes

in contact with an object (e.g., when picking-up an object and placing a peg in a hole), the structure

becomes a closed-link chain and actuator conflict may occur. Compliance has been introduced in

the operation and construction of stationary manipulators to reduce actuator conflict. Similarly,

introducing compliance in either the mechanical design or control system of a WMR to eliminate

actuator conflict iu overdetormincd actuation structures has practical applications.
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1. Appendix 1: A Nomenclature and Symbolic Representation of WMRs

1.1 Introduction

In this appendix, we introduce a nomenclature and a symbolic representation for describing

the essential kinematic structure of WMRs. We define essential kinematic information as the min-

imal information required to solve symbolically the kinematic equations-of-motion. For example,

the presonse of a steering link is considered essential kinematic information because an equation

which relates the velocity of a steered wheel to the velocity of the robot body must depend upon

the steering angle. In contrast, the distance between two wheels is not essential kinematic informa-

tion because knowing the numerical value of the distance does not help to formulate the symbolic

equations-of-motion. The nomenclature provides a convenient literal and verbal representation of

t-he essential kinematic information. The symbolic representation displays pictorially the essential

kinematic relations between the robot body, wheels and steering links using mnemonic symbols.

Our desire to compare the kinematic characteristics of WMRs of differing structures has led to

these representations. Without simple, straightforward and informative descriptions of the kine-

matic structure of a WMR, comparisons between robots become confusing and awkward. The

conventional pictorial representations arc morhniiical drawings in which characteristics unessential

for kinematic analysis complicate understanding. Similarly, the conventional literal descriptions of

WMR kinematics arc through lengthy verbal explanations. Our symbolic and literal representa-

tions of WMRs characterize the essential kinematic structure of a WMR through simple diagrams

or names.

Our symbolic (naming) representation has been devised to be easily drawn (written or spoken)

and interpreted, while providing the following information:

• The number of wheels;

o The iypr of each wheel;

• The steered wheels;

• The relative positioning of the wheels;

• The actuated HOFs of each wheel; and

• The sciitfcd DOFs of each wheel.

Our symbolic representation ran bo augmented to include functional dependencies between

wheels mid define flit* distance and angles between components (although these characteristics aro

not considered essential kinematic information). Although functional dependencies* arc needed for

.-ymbolic solutions*, it is dillknh fa incorporate arbitrary fiutctioMal relations irto our representa-

tions. Our di'lij?llii«! of essential kiue:tj;»t!<' iuforiii.itiou ij ch'̂ jert he<\u»:<" a\\r ultimate objective

is (he rout/ol td \VMll,<, roi*. etjiienfjy, iufoniKitioa mpiir^! for tlw- fnrwa/«i an-l invc r̂n'1 l-:iti«*iii«*itic
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calculations is directly applicable to WMR control. For this reason, we specify the DOFs of each

wheel which are actuated and sensed. The motion of an imactuated (non-sensed) DOF may con-

strain the motion of the robot, whereas the motion of an actuated (soused) DOF may be calculated

symbolically from the motion of the robot body. Understanding these representations can

most easily be accomplished by scanning the rules delineated in Sections A1.2 and

A1.3 and then following the examples in Section A1.4. The reader can then refer back to

the rules for a more detailed understanding.

1.2 Symbolic Representation Rules

The rules for generating and interpreting WMR diagrams follow.

1.) A WMR is depicted by a large circle.

2.) Each wheel appears as a small circle within the WMR circle.

3.) Each steering cixis is portrayed as circle smaller than the associated wheel; a steering link

is drawn cis a line segment from the steering axis to the respective wheel. If the steering

axis intersects the center of the respective wheel, it is depicted as a small circle within and

concentric to the wheel circle, and a steering link is not required.

4.) The relative positions of the wheel circles (for non-steered wheels) and steering axes (for

steered wheels) correspond to the relative positions of the wheels and steering axes on the

robot.

5.) The DOFs of a wheel are indicated by line segments and arcs within the wheel circle drawn

in the directions of the Iranslalional and rotational DOFs. ic^H-eli vely. The rotational slip

DOF of a wheel is implied and no arc is drawn. A conventional wheel has ono radial line

segment in the direction of travel from the wheel center to the wheel circle. Similarly, an

omnidirectional wheel has two radial line segments*, and a ball wheel has two radial line

segments mid ail arc (one quarter of a circle) drawn within the wheel circle.

6.) The actuated DOFs of each wheel are drawn with ais arrowhead appended to the line indi-

cating the DOF.

7.) The sen^tl DOFs of ivirh wheel arc* drawn with a "T"1 appended So Hie line imlu-tmjj tho

DOF. A DOF, which u hotli nrhiahnl and «M»."<I, i>« IIHHIVJOI by a vhuvd arrow (i.t\, the

combination of a ""P and an arrow).
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*8.) (Optional) Functional dependencies between DOFs within or between wheels may be indi-

cated by dashed lines. Dashed lines may also be used to indicate that a component of a

WMR cannot be described adequately by our representation.

1.3 Nomenclature Rules

Our nomenclature expresses the identical information as the symbolic representation in Section

A1.2. For compactness, we limit the amount of positiorml, actuation and sensing information in

the name of the WMR. The rules for creating and interpreting WMR names follow.

1.) The name of the kinematic structure of a wheeled mobile robot ends with the suffix -whemor.

This suffix may be omitted when it is understood that the name is of a WMR.

2.) Sets of one or more wheels of the same functional type arc indicated by syllables separated

by hyphens.

3.) Two or more* wheels of a WMR are of the same functional type if they are of the same basic

type (i.e., conventional, omnidirectional- or ball); are all steered or all not-steered; are all

actuated and sensed similarly; and axe all placed symmetrically with respect to either the

center of the robot, a line through the robot center (the major axis), or a line perpendicular

to the major axis (the minor axis).

4.) The syllables are ordered from the beginning to the end of the iuune according to the following

precedence characteristics which are listed from the most to the least important:

Symmetry with respect to the robot center;

Symmetry with respect to the major axis;

Symmetry with respect to the minor axis;

Number of wheels;

Steered wheels;

Ball wheels;

0ranidinrtiotial wheels;

Conventional wheels;

Actuated wheels; and

Sensed wheels.

For example, all wheel sets vdnrli are symmetric with respect to the robot renter appear

first; awl if there is* more than tmr v/Iteel >c\ which b symmetric with respect to tlu» robot

renter, »he set Ih'ivin^ the* W«;t\t numlsH' <»f wh^'* (if thnv is \u,t a tir) b ]H<MI jin4 *fii flic*
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5.) Each syllabic representing a set of wheels consists of:

i.) One of the prefixes "tint", n hi\ " tri\ " tetrav , "penta", "hexdP, "hepta",

"odd?, " ennedP, ndeca", or "poly" to indicate the number of wheels in

the set;

ii.) Followed by one of the letters " c*\ "o", " 6", or "vf to indicate that they

are either conventional, omnidirectional, ball or an unspecified type of

wheel. For an omnidirectional wheel, the final vowel of the prefix is

dropped before adding ^ o" to make the name pronounceable;

iii.) Followed by "5", if the wheels are steered;

iv.) Followed by either an "a" or "V to indicate that the wheels are actuated

or unactuated, respectively. A wheel having more than one DOF and/or

a steering axis is considered actuated if the steering cingle or any of the

DOFs is actuated;

v.) Followed by cither an "3" or "n3 to indicate that the wheels are sensed or

not-sensed, respectively. A wheel having more them one DOF and/or a

steering axis is considered sensed if the steering angle or any of the DOFs

is sensed.

6.) A kinematic structure of a WMR, which cannot be named adequately according to these

rules, is named by prefixing the name which most closely indicates the structure with

pseudo-.

A class of kinematic structures which may consist of a large nuinbex- of specific instances of

WMRs is specified by the poly prefix. For example, a pohjeas-whemor refers to the cfciss of WMIts

which have only conventional non-steered wheels arranged symmetrically with respect to the robot

center or its major axis. Similarly a class of WMRs which has a number of wheels whose type is

not specified is called polywas-whemor. Also, if the actuation and sensing characteristics are not

important for the discussion, the actuation and sensing labels may be omitted, m in pv!yw-whcmor*

Admittedly, our nomenclature has disadvantages. Names cnvitrd by tlicse rules may not be easily

pronounceable. There is not a 0110-to-ono relationship between WMRs and the names created

by our nomenclature. There an* examples of WMRs wliidt have several lr^al nnmos {<*.&., wheel

sots can always !x» divided into multiple sHs, each having f rwr wluols). Furlhonnoro, it h not
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always possible to determine the symmetry of a WMR from its name (e.g., a hexac-ivhemor may bo

symmetric with respect to the robot center or the major axis). These disadvantages arc the result

of our attempt to assign compact names. Most ambiguities in the nomenclature can be eliminated

by assuming the practical alternative. For example, a tric-whc.mor must be symmetric with respect

to the x'obot center and not the major axis, because it would be more practical I o name the latter

a hic-iinic-whemor.

1.4 E x a m p l e s

In Section 2. we illustrate the kinematic diagram and name of fourteen WMRs. The pre-

dominant WMR kinematic structure documented in the literature has two parallel conventional

wheels, one on each side of the robot (thus, the syllable hicas). These robots also possess one or

two castors for stability. Among the most widely known examples are Shakey[4o] and Newt[33], (in

Figure 2.1). Shakey has two free-wheeling castors for stability [bicsun), whereas Newt utilizes only

one (uiricsun). By mounting the two driven wheelb at an acute angle to the floor in their Topo[22]

robot (in luguro 2 J ) , the Androlvot Company stabilized the robot without the use of castors. Even

though the acutf.1 angle uf the wheels cannot be /vpresented in either the symbolic representation

or the name, we ran infer that i:he \> heels* must bo angled Tor siaLilii.y by ascuming the niost, prac-

tical realisation. Mobile: luhofs which poisons multiple uon-steoivd. driven vvJuvls whose axe-tf arc

non-coliziear must rely on wheel slip if the robot is lo navigate turns. Such is iho case with the

Terrc.gator[C5] (in Figure 2.2) which uses six parallel, iton-stcexcd. conventional wheels, three on

either side (hexacas). The mechanically more complex, steered and driven conventional wheel is

utilized on Noptune[5G] (in Figure 2.3), which has a tricycle, wheel arrangement; the front wheel is

steered and driven (u7iie$a$)7 while the two rear wheels are at a fixed parallel orientation and arc

mirlriven (bicun). The CMU Rover[48] (in Figure 2.«5) has three steered and driven wheels (tricsas).

The Stanford Cart[4f>] (in Figure 2.4) has two s tored, mulriven wheels in the front (hicxan)

and two fixed, driven wheel-; in the back {Mean). The two steered wheels are coupled so as to be

oriental in the mime direction, OUTS the pscudo prrfh;. The JPL Rover[42j (in Fi«;uiv 2.4} is similar

to the Stanford Cart except" that both the front and back wheel jwuri* have coupled Peering pseudo*

hia§an-hit:ma~wlwnwr. Khi<lge[3t)J (in Figure 2,4) lias complex functional ilepeh'tencies HeHveen

the wh«̂ ,*ls* Tiib rol>ot Ita,< three coiiv<*iif.i«>iial wlir^k that are both steered ami driven, as on the

OMIT Itowr, In adtiitiim. it chain and f/*nt sijcran^mvnt is used to equalize all drive velocities and

steering an^lrd. To cuiiifilirafe further dir arran/i*uiont, each wheel I- inofintc-d on an actuated link

which t'ttii !MS pivotcul towunlj* or away front the rc»ul«T af the rohut h> adjust ils stability p roper ty

(pMudo-tru'ju**). DavJu**l linos are n^tnt in thv tyuih'iiv r«*pr<*setstiiiion f>f KIn*l^r ft) indinilc* the

fiiiirtiiinal ils*p«*iu1«*iirift? In't'vren /liv riii»» an^K^. ;»n*l V-!M el rwi ??;tii-u:, .-ip'l tlie i?«'il4!ify t<> rep»*< (̂ijt

I hi* pivotiul link Tlir It VÎ I'M! ^piiltT <l?;v; lUl) (in Fii;nn- 2S,j unlf/f.^ finr nmvi i»»i'*u'J wherlw, two



on either side of the robot, each of which is mounted at the end of a three DOF log linkage

(pseudo-tetracsas). The hybrid locomotion vehide[35] (in Figure 2.5) utilizes six steered and driven

conventional wheels, each at the end of an actuated vertical leg (pseudo-hexacsas). Uranus[49] (in

Figure 2.6) utilizes four omnidirectional wheels positioned at the corners of a rectangle (tetroas).

The Uniination Robot[15] (in Figure 2.6) possesses three DOFs using only three actuators and

three omnidirectional wheels (troas). The most maneuver able wheel is a belli which is actuated so

as to possess three DOFs[47] (unibas).

We note that our representations can bo extended to other clasps of mobile robots. For

example. Logged Mobile Robots (LMRs) can be denoted by the suflix lernor, and Treaded Mobile

Robots (TMRs) may be denoted by the suffix tremor.



2. Appendix 2: Symbol Tables

Scalars
Scalar

Uwx

Wwz

Uaz

Vx

VV

R
r

V
N

%
Wi

ai

m

m
w
a
n
3

n
t

T

n

Page
12
12
12
12
12
12
12
12
12
12
12
17

[_ 36
36
52
52
57
57
43
52
52
58
58
67
67
67

Definition
angular velocity of the wheel about the x-axis through its center
angular velocity of the wheel about the y-axis through its center
angular velocity of the wheel about the* z-axis through its center
angular veocity of the steering link about its axis
angular velocity of rollers about their axes
linear velocity along the x-axis
linear velocity along the y-axis
anguhir velocity about the z-axi»
wheel radius
roller radius
roller angle
number of wheels
wheel index
number of wheel variables of wheel i
number of actuated wheel variables of wheel i
number of unactiiatcd wheel variables of wheel t
number of sensed wheel variables of wheel i
number of not-sensed wheel variables of wheel i
total number of wheel variables
total number of actuated wheel variables
total number of unactuated wheel variables
total number of sensed wheel variables
total number of not-sensed wheel variables
continuous time variable
sampling period
discrete time index
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Vectors
Vector

P
Pd
Pn

q
qu

q«
q»
q t

q;
q i a

qtu

q «
qin

qP

*Pn
<5qa

e

k /
K
k.,

Paso
36
68
58
43
53
54
57
37
36
52
52
58
58
53
68
68
72
68
68
68
GS

Dimension
( 3 x i )
(3x1)

({3 + n}xl)
(wx 1)
(a x 1)
( u x l )
[* x 1)

{Wi X 1)

(4x1 )
K- x 1)
(Ui X 1)

(«.• x 1)
(ni x 1)
(w X 1)
(3x1 )
(a x 1)

(3JV X 1)
( 3 x 1 )
( 3 x l )
(„ x 1)
(ax- X 1)

Definition
robot position vector
desired robot position vector
coiiibiiid robot and not-sensed wheel position vector
wheel position vector
actuated wheel position vector
uriactuated wheel position vector
son sod wheel position vector
physic<il wheel position vector of wheel i
pseudo-wheel position vector of wheel i
actuated position vector of wheel i
unactuated position vector of wheel i
sensed position vector of wheel %
not-sensed position vector of wheel i
partitioned wheel position vector
differential robot displacement vector
differential actuator displacement vector
least-squares error vector
robot position error vector
control system feedforward gain vector
actuator gain vector
sensor gain vector

Matr ices
Matrix

Jx
Jx

JIM

J i ,
Jin

u
A(U)

J a

wtV
A o

Bo

Bop
A o

B u

B,
A..

Page

36
37
52
52
57
57
44
44
53
58
37
38
43
43
53
54
54
58
58
GO

Dimension
(3x4 )
(3 x wi)
(3 x ai)
(3 x u{)
(3 x si)
(3 x m)
(c x d)
(c x c)
{a x3)
(3 x s)

(4 x wi)
(3 x 3)

(3// x 3)

D<.»finition
pseudo-,]acobian matrix of wheel i
Jacobian matrix of wheel i
actuated Jacobian matrix of wheel i
unactuatod Jacobian matrix of wheel i
sensed Jacobian matrix of wheel i
not-sensed Jacobian matrix of wheel i
an <irbiliary matrix
delta function
actuated inverse Jacobian matrix
sensed forward Jacobiau matrix
wheel matrix of wheel i
motion matrix
left hand side of composite robot equation

(3iV x w) j righthaud side of I'ompositp robot equation
{:\N x w)
ISN x 3)
(3AT x a)

(SiVx {3 + n})
(3A* x ^)
(?>N x 3)

ri&hthaud Mtle of partitioned composite robot, equation
lef'rhaiKl side* of robot actuation equation
right hand side of roiu;t actuation et]uation
left hand i-ide of the partitioned robot tensing equaHon
ri^hthancl &uU* of robot sensing csc|siation
lerthanil ,̂ i«le c>f robot H'ii;;'ui:; equation
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3, Appendix 3: Wheel Jacobian Matrices

3.1 Introduction

In this appendix, we develop the wheel Jacobian matrices for conventional wheels, steered

conventional wheels, omnidirectional wheels and ball wheels. The wheel Jacobian matrix (as intro-

duced in Section 4.7.3) relates the velocities of the WMR to the velocities of the wheel. The wheel

Jacobian matrix is the product of the pseudo-Jacobian niatrix J^ and the wheel matrix Wt-:

The pseudo-Jacobian matrix relates the wheel pseudo-velocities to the robot velocities, as

described in Section 4.7:

'cmR0Ci -anR0Ci
 RdCiV -RdHiy

i — | 3111 VCi c o s vCi ~ aCiX all;x I • (AO.1.4)
0 0 1 - 1

The wheel niatrix in (4.7.13) relates the pseudo-velocities to the actual wheel velocities. The

wheel eqtiations-of-inotion in Figure 3.2 are applied to construct the wheel matrices. The pseudo-

velocities ^Vdx, Civdy and Ci(jtJct are the velocities vx, vy* and UJZ in Figure 3.1. The actual

wheel velocities are the angular velocities of the wheel and rollers a;Wija:, ojWiy, u)WiZi and w^r about

their respective axes. With these observations, the wheel matrix for each wheel is written directly

from the wheel equations-of-inotion in Figure 3.2. The wheel Jacobian matrix is then formed by

multiplying the pseudo-Jacobian matrix in (A3.1.2) by the wheel matrix. We consider each of the

aforementioned wheels in turn*

3.2 Conventional Non-Steered Wheel

The conventional non-steered wheel has two DOFs; motion in the direction of the wheel

orientation, and rotations! slip about the point of contact, corresponding to fche two wheel pseudo-

velocities C|vc,f? *̂*d C*OJC%7 respectively. The actual wheel velocities are the angular velocity of

the wheel about its axle ww,z and the angular velocity of the rotational slip ur«iS. These velocities

are relaiecl i>y the (4 X 2) wheel matrix W,- in {A3.2.1).

0 0\

R 0 (**,.,*} w

,0 oy
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The wheel -matrix is multiplied by the pseudo-Jacobian matrix in (A3.1.2) to form the (3 X 2)

Jacobian matrix:

Conventional Non-Steered Wheel Jacobian Matrix

Ri cos R0Ci -RdCiX

0 1
(43.2.2)

This wheel is termed degenerate because the Jacobicin is non-square and thus non-invertible.
Even though a robot velocity vector can be calculated from a wheel velocity vector, it is not always
possible to compute a wheel velocity vector from a robot velocity vector. The degenerate nature of
the kinematic equations-of-motion of the non-steered conventional wheel precludes its application
to throe DOF WMRs.

3.3 Conventional Steered Wheel

The conventioaiil steered wheel hiis an additional DOF provided by the steering joint corre-
sponding to the pseudo-velocity Hi<jJSi- The actual steering velocity oo^^ (in Figure 3.2) is equal to
the steering pseudo-velocity. The (4 X 3) wheel matrix and the (3 x 3) wheel Jacobian matrix are,
respectively:

m =

and

Conventional Steered Wheel Jacobian Matrix
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The Jacobian matrix is iiivertible if its determinant is nonzero; i.e., if

det{Ji) = Ri [s*dCiy cos Si0Ci - SidCiX sin Si0Ci) ^ 0 . (A3.3.3)

The determinant is zero and the conventional steered wheel is redundant if the steering axis inter-

cepts the wheel point of contact (i.e., if SidciX = Sidciy = 0) or if the wheel is oriented perpendicular

to the steering link (i.e., if Cid$.y = S|" detain5* 0<?< - SidciV cos Si0Ct = 0).

3.4 Omnidirectional Wheel

The omnidirectional wheel possesses three DOFs without a steering joint. The DOFs are

motion in the direction of the wheel orientation, motion in the direction of the roller orientation

and rotational slip, which correspond respectively to the actual wheel velocities u)WiX, ojWir, and

ujWiZ. The psoudo-velocities qt are linear combinations of the actual velocities qt*:

0 r sin?/ 0
R ~r COST] 0

0 0 1
0 0 0

(.43.4.1)

The wheel Jacobian matrix is:

Wheel Jacobian Matr ix

sin n&Gi ^ sin (n0Ci

0 0
(A3.4.2)

The dotoriiiinant of the ouuiidircctioiutl wheel Jacobian matrix is — jRirt-sin7/£, and conse-

quently the Jacobian matrix is iiivertible whenever the rollers are not aligned with the wheel (i.e.,

wllOTK»V«T Tji £ 0),

3.5 Ball Wheel

Tli<* ball \V1HH»1 po ŝeKrcn tlirw DOFs o( n>tation zilxntk the throo nor/nnl nx<%s pr^itionocl at

the wheel renter. The wlseel matrix relating the artiuil wheel velocities wl|S^:. u;w%v ami u)lihZ to the
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pseudo-velocities is:

q; =

R 0 0 •
0 R 0
0 0 1
0 0 0.

= W ; q< (A3.5.1)

The wheel Jacobian matrix is:

Ball Wheel Jacobian Matrix

Since the determinant of the ball wheel Jacobian matrix is Rf, it is invertible for all non-zero

wheel radii.

In Section 7, the wheel Jacobian matrices developed in this appendix are applied to obtain the

kinematic cquations-of-motions of specific WMIis.
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4. Appendix 4: Actuated Inverse Solution Matrix Calculations

In this appendix, we detail the matrix manipulations leading to the actuated inverse solution
in Section 5.5 . We solve the composite partitioned robot equation in (5.5.3)

M i a \

p =

0 . . . 0 0 \

V 0 . . . 0

to calculate tiie actuated wlicel velocities qa in the least-squares solution in (5.5.4):

(A4.2)

We begin by forming the matrix product:

0

0

0

r'fu
J

o

0
0

0

0 J|,J

0
"n3iu 0

o J£,J

0

0

Da a

To iiivrrf (B^Bop). we have written iho matrix in hhn-k form with four comptwut^ <*

c*c» a blcH-k diagonal matrix. Wo let tJu? b!t,vk matrix X k* tixo inv«T^e of thv matrix i» (A4*3).

J22



To compute the block components of the matrix inverse? in terms of the block components of the

matrix in (A4.3), we apply the fact that the inverse of a matrix times the matrix itself is the identity

matrix; i.e.,

12
VX21

Daa Dau\ _ / I 0\ (A4.4)

Since we seek only the upper (actuated) components of the wheel velocity vector qa in (A4.1), we
calculate only the two components in the top row of the block matrix inverse. We thus seperate
the solution of the actuated wheel velocities

qa = ( X u X12 )

from the solution of the unactuated ones. We expand (A4.4) to obtain

and

From (A4.6) and (A4.7), we find

and

where

^

> - i

- 1

V 0
- 10 (3lM3Nu) J

(A4.5)

(A4.6)

U4.7)

(A4.8)

(A4.9)

(A4.10)

The matrix Xn in (A4.9) is

^-[Jf.A(Ju)J,.]
0

0

-1 0

0 -
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The matrix X 1 2 in (A4.8) is

X12 =

Ax 0

0 A2

0 . . .

where,

A, = [j£ A(Jiu)Jt-a]
- l .

0 \

. - l

(i44.12)

(A4.13)

We substitute (A4.12) and (A4.ll) into (A4.5) to obtain the actuated wheel velocity vector

) JNa]

(A4.14)

•luation (A4.14) is the least-squares solution for the actuated wheel velocity vector. We note

his solution is applicable only when the matrix in (A4.3) is invertible. The conditions under

.1 this solution i3 applicable arc specified by the soluble motion criterion in (5.4.1).
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5. Appendix 5: Sensed Forward Solution Matrix Calculations

In this appendix, we detail the matrix manipulations leading to the least-squares sensed forward
solution. We solve the partitioned robot sensing equation in (5.7.2)

An [ r =

' II "Jin

la 0

IN 0

. 0 . . . 0 \

0 . . . 0

0 \

j /

= B.

(A5.1)

to calculate the robot velocities p in the least-squares solution in (5.7.4):

We begin by forming the matrix product

Nl - J t n - J 2 n

(A5.3)

(Nl T
\TT D

where JV is the number of whecb and I is the (3 x 3) identity matrix. We let the block matrix X
be the inverse of the symmetric matrix (A^An) in (A5.3). Since the inverse of a matrix times thc
matrix is the identity matrix,

Nl T
) • ( ! ! )

(ASA)
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We use the top block row of the matrix inverse to seperate the robot velocity vector p froin the

non-sensed wheel velocity vector qfo :

From (A5.4), we obtain

XuJVH-X1 2T r =

and

from which

and

The inverse of the block diagonal matrix D is:

X12 = -

- 10

o

We expand the block elements in (A5.8) and (A5.9) to obtain

(A5.5)

(A5.6)

(A5.7)

(A5.8)

(A5.9)

(A5.1Q)

(A5.Il)

where

* Jfn -XU = [Nl - Jm(JLJm) Jfn

= - [ A(J l a) + A(J2n) + . . .

(A5.12)

Finally, we substitute (A5.ll) and (A5.12) into (A5.5) to obtain the lcasl-squares solution Tor

the robot velocity vector:

^ = [A(J I n ) + A ( J 2 » ) + . . . + AfJ^ n ) j - 1 [A{J i n )J u A(J 2 n )J 2 , . . . A(J. V n Rv.]4. • (A5.13)

In Section 5.8, we develop the iwlcqujatc sensing criterion which ensure the invertebility of the

matrix (A^A,,) in (A5.3) and thereby the applicability of the leiiat-squares M;iih(tl forward solution

in (A5.13).
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