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Abstract

We formulate the kinematic equations-of-motion of wheeled mobile robots incorporating con-
ventional, ornnidirectional. and ball wheels. While our approach parallels the kinematic modeling
of stationary manipulators, we extend the methodology to accommodate such special characteris-
tics of wheeled mobile robots as multiple closed-link chatns, hiyher-pair contact points between a
wheel and a surface, and uwnactuated and unsensed wheel degrees-of-freedom. We survey existing
whecled mobile robots to motivate our development. To comnmunicate the kinematic features of
wheeled mobile robots, we introduce a diagrammatic convention and nomenclature. We apply the
Sheth-Uicker convention to assign coordinate axes and develop a matriz coordinate transformation
algebra to derive the equations-of-motion. A wheel Jacobian matriz is formulated to relate the
motions of each wheel to the motions of the robot. We combine the individual wheel equations to
form the composite robot equation-of-motion. We calculate the sensed forward and actuated inverse
solutions and interpret the conditions which gnarantee their existence. We interpret the properties
of the compuosile robot equation to characterize the mobility of a wheeled mobile robot according
to the mobidity charecterization tree. Similarly, we apply dactuction and semsing characterization
trees to delincate the robot motions producible by the wheel actuators and discernable by the
wheel sensors, respectively. We apply our kinematic model to design, kinematics-based conirol,
dead-reckoning and wheel slip detection. To illustrate the development, we formulate and interpret

the kinematic equations-of-motion of six prototype whecled mobile robots.




1. Introduction

Over the past twenty years, as robotics has become a scientific discipline, rescarch and devel-
opment have concentrated on stationary robotic wanipulators[12, 43|, primarily because of their
industrial applications. Less effort has been directed to mobile robots. Although legged(58] and
treaded[37] locomotion has been studied, the overwhelining majority of the mobile robots which
have been built and evaluated utilize wheels for locomotion. Whecled mobile robots (WMRs)
are more cnergy cfficient than legged or treaded robots on hard, smooth surfaces[6,7]; and will
potentially be the first mobile robots to find widespread application in industry, because of the
hard, smonth plant floors in existing industrial environments. Wheeled transport vchicles, which
automatically follow paths marked by reflective tape, paint, or buried wire, have already found
application[20]. WMRs find application in space and undersea exploration, nuclear and explo-
sives handling, warchousing, security, agricultural machinery, military, education, mobility for the

disabled and personal robots.

The wheeled mobile robot literature documents investigations which have concentrated on the
application of mobile platforms to perform intelligent tasks [52], rather than on the devclopment
of methodologies for analyzing, designing, and controlling the mobility subsystem. Improved me-
chanical designs and mobility control systems will cnable the application of WMRs to tasks were
there are no warked paths and to autonomnous mobile robot operation. A kinematic methodology

is the first step towards achiceving these goals.

Iveu though the methodologies for modeling and controlling stationary manipulatoers are appli-
cable to WMRs, there arc inherent differences which cannot be addressed with these methodologies.
Examples include:

1.) WMRs contain multiple closed-link chains[53]; whereas stationary manipulators form closed-

link c¢hains only when in contact with stationary objects.

2.} The contact between a wheel and a planar surface is a higher-pair; whereas stationary ma-

nipulators contain only lower-pair joints{3,62,63].

3.) Only some of the degrees-of-freedom (DOYFs) of a wheel ona WMR are actuated; whereas

all of the DOFs of cach joint of a stationary manipulator are actuated.

4.) Only sowe of the DOFs of a wheel on a WMR have position or velocity sensors; whereas
all of the DOFs of cach joint of a stativoary manipulator have both pouition and velocity

8CUSOTS.

Wheeled mobile robot control requires o methodology for mwaodeling, analy=is and design which



parallels the technology of stationary manipulators.

Our objective is tlnis to modd the kinematics of WMRs. Kinematics is the study of the
geometry of motion. In the context of WMRs, we are interested in determining the motion of the
robot from the geometry of the constraints imposed by the motion of the wheels. Oar kinematic
analysis is based upon the assignment of coordinate axes within the robot and its environment,
and the application of (4x4) matrices to express transformations between coordinate systems.
Each step is defined precisely to lay a solid foundation for the dynamic modeling and feedback
control of WMRs. Dynamic models may then be applied to design dynamics-based controllers and
simulators. A kinematic methodology may dso be applied to design WMRs which satisfy such
mobility characteristics as three DOFs (i.e., two translations and a rotation in the plane).

Our kinematic analysis of WMRs parallels the development of kinematics for stationary ma
nipulators. A standard method for modeling the kinematics of stationary robotic manipulators
begins by applying the Denavit-Hartenberg convention[18] to assign coordinate axes to each of the
robot joints. Successive coordinate systems on the robot are related by (4x4) homogeneous trans-
formation A-matrices. The A-matrices are specified completely by four characteristic parameters
(two displacements and two rotations) between consecutive coordinate systems. Each A-matrix de-
scribes both the shape ami size of arobot link, and the translation (for a prismatic joint) or rotation
(for arotational joint) of the cissociated joint. We assign coordinate <ixes to the steering links and
wheels of a WMR, and apply the Shcth-"dicker conventioii[Gl] to define transformation matrices.
The Sheth-Uickcr convention separates the constant shape and size parameters from the variable
whedl joint parameters, and smplifies the matrix formulation. The Sheth-Uickcr convention alows
us to model the higher-pair relationship between each wheel on a WMR and the floor.

The position and orientation in base coordinates of the end-effector of a stationary manip-
ulator is found by cascading the A-matrices from the base link to the eud-cffcctor[5G]. Veocity
and acceleration relationships are found by differentiating the matrix positions[19]. Velocities of
the individual joints are related to tho velocities of the end-effector by the manipulator Jacobian
matrix[54j in tho forward solution. The inverse Jacobian matrix is applied in the? inverse solution to
calculate tho velocities of the joint vaiiables from the velocities of thv end-effector. Wo develop the
whedl Jaeobiau matrix to relate the velocities of each wheel on a WMR to the robot body veoci-
ties Since WAIRs are multiple closed-link chains, the forward and inverse solutions aro obtained
by solving simultaneously the kinematic equafcions-of-motion of al of the wheels.

In thia paper, we advance rite kinematic modeling of WMRs, from the motivation of the kine-
niAtic methodology through its development and applications. In Section 2, we survey kinematic
configuration;* (i.e., the native arrfin*meuts and types of wheels) of existing WMKs. These protu-




types illuminate the complexity of the kinematic problem. In Section 3, we deseribe the three wheels

(conventional, omnidirectional and ball wheels) utilized in all existing and foresceable WMRs.

In Secction 4, we develop our approach for modeling the kincinatics of WMRs. Coordinate sys-
tems are assigned to prescribed positions on the the robot. We introduce transformation matrices
to characterize the translations and rotations between coordinate systems. We develop a matrix
coordinate transformnation algebra to calculate the position. velocity, and acceleration relationships
between coordinate systems. We apply the axioms and corollaries of this algebra to transform
positions, velocities, and accelerations which are specified in one coordinate frame to another co-
ordinate frame, and develop the wheel Jacobian matrix to relate the motions of a wheel to the

motions of the robot. In Section 4.9, we outline our kinematic mecthodology for WMRs.

In Section 5, we form the composite robot equation-of-motion by adjoining the equations-of-
motion of all of the wheels. We then solve the composite robot equation. Specifically, we calculate
the actuated wheel velocities in terms of the robot velocities (the actuated inverse solution), and
the robot vclocities in terms of the sensed wheel velocities (the sensed forward solution). We
characterize a WMR by interpreting the propertics of the composite robot 'cquation. We present a
mobility characterization tree which specifies tests to be conducted on the comnposite robot equation
and displays the mobility characteristics of the WMR.. We also calcnlate the number of degrees-
of-freccdom of a WMR. The ability of the actuators to produce robot motion is determined by
the actuation characterization tree. Similarly, the sensing structure is specified by the sensing

characterization tree.

In Scction 6, we apply our kinematic modeling methodology to the design, dead-reckoning,
kinematics-based control, and wheel slip detection for WMRs. Just as we apply the mobility
characterization tree to delineate the mobility of a WMR, we may design a WMR to satisfy desired
mobility characteristics by proper choice of wheel type and placeinent. We calculate the current
robot position (i.e., dead-reckoning) by summing the robot velocities in real-timne. We introdnee a
kinematics-based WIMR feedback control system in which the actuated inverse and sensed foeward
solutions are integral components. Our development of the sencing characterization tree ilhuminates
a method of detecting the onset of wheel slip. We preseut our slip detection methed and describe
the proper positioning of the wheel sensors for implementation. We are continuing our study of

WMRs by applying our kinematic model to formulate dynamic models of WMRas.

In Scetion 7, we apply our kineinatic modeling methodology to six prototype WMRs, We
preseut the kinematic deseription, coordinate system assigninents, transformation matrices, wheel
Jacobian matrices, mwbility characteristics and the sensed forward and actnated inverse solutions

for each. From onr expericnce with these prototype examples, we draw practicnl conclisions abont




the applicability of three DOFs VH two DOFs and the utilization of redundant steerod-conventional
whrdg.

We «uu«narac (in Stvtion 8) our kinematic methodology and its implications, and outline (in
Section B) our plan* for amtiuwce research in dynamic modeling and feedback control. In Appendix
2, we compile our symbols.




2. Survey of Kinematic Configurations

In this section, we survey the kinematic configurations of existing WMRs. We are interested
in determining the types of wheels utilized and the relative placement of the wheels on WMRs.
Documentation of WMRs is scattered throughout the robotics, artificial intelligence, control en-
gineering, scientific, industrial, popular and hobbiest literature[8,16.23,38.60]. We cxamine docu-
mented WMRs to understand the requirements of a kinematic methodology for this class of mobile
robots. We then gencralize the kinematic model of these exemplary robots and define (in Section 4)
a WMR which specifies the range of mobile robots to which our methodology applies. Our survey

also provides a set of prototype WMRs for evaluating our kinematic methodology.

In Appendix 1, we introduce a nomenclature and a pictorial representation for describing
the kinematic structure of WMRs. The diagramming conventions provide a convenient tool for
describing and comparing kinematic structures of WMRs. We apply these rules to develop sym-
bolic diagramns and kinematic names for the WMRs presented in this survey and refer to these

representations as we describe cach WMR.

The most common kinematic arrangement of mobile robots dociimented in the literature has
two diamectrically epposed whecels (i.e., two parallel conventional wheels, one on cach side of the
robot). These robots also possess one or iwo castors for stability. Among the most widely known
examples are: Shakey([52], Newt[32] (in Figure 2.1), Jason[64], Hilare[24], Yamabiko[40,35], RO-
BART II[22]. and RB5X{44|. By mouuting the two driven wheels at an acute angle to the floor in

their Topo[27] robot (in Figure 2.1), the Androbot Company stabilized the robot without the use

of castors.
Shakey Newt Topo
Bicsun-Bicas-Whemor Bicas~Unicsun-Whemor Bicas -Whemor

Figure 2.1

Kinemnatic Represeitations of Shakey, Newé, and Topo
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Mobile robots which possess multiple non-steered. driven wheels whose axes are non-colinear
must rely on wheel slip if the robot is to navigate turns. Such is the case with the RDS Prowlcr[sg]
and the Terregator[60] (in Figurc 2.2), both of which usc six parallel, non-steered, conventional
wheels, three on cach side. Similarly, Gemini[28] (in Figure 2.2) utilizes two synchronously driven

wheels on cach side.

Terragator Gemini

Hexacas-Whemor Tetracas-Whemor

Figure 2.2

Kinematic Representations of Terregator and CGemini

The moechanically more complex, steered and driven conventional wheel is utilized on Nep-
tane 57 (in Figure 2.3), Hero-1{26] and Avatar[4]. These three robots have a tricycle wheel ar-
rangement; the front wheel is steered and driven, while the two rear wheels are at a fixed parallel

orientation and are undriven.

Neptune Rover
Q -
Bicun-Unicsan-Whemor Tricsas-Whemor

Figure 2.3

Kinematic Ropresentations of Neptune and Pluto
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The CMU Rover[48] (in Figure 2.3), also known as Pluto, has three steered and driven wheels.
The Stanford Cart[46] (in Figure 2.4) has two steered, undriven wheels in the front and two fixed,
driven wheels in the rear. The two front wheels are coupled by an Ackerman steering linkage.! Both
the front and back wheels of the JPL Rover[41] (in Figure 2.4) are coupled by Ackerman steering
linkages, and all four wheels are driven independently. Kludge[30] (in Figure 2.4) is an cxample of a
robot with complex functional dependencics between the wheels. This robot has three conventional
wheels that are both steered and driven. A chain and gear arrangement is used to equalize all drive
velocities and stecring angles (Synchro-Drive). To complicate further the arrangement, cach wheel
is mounted on an actuated link which can be pivoted towards or away from the eenter of the robot
for stability. Kludge’s successor K2A[30] embodies the synchro-drive mechanisim using conceniric
shafts instead of chains and does not have any actuated links. The Denning Sentry robot[70] also

utilizes a three-wheel synchronous drive and steer system.

Stanford Cart JPL Rover

Pseudo-Bicsan-Bican- Pseudo-Bicsas-Bicsas~ Pseudo-Tricsas-Whemor
Whemor Whemor

Figure 2.4
Kinematic Representations of the Stanford Cart, ihie JPL Rover, and Kludge

The hybrid spider drive[29] (in Figure 2.5) utilizes four conventional wheels, two on cither
side of the robot, ecach of which is mounted at the end of a three DOT leg linkage. The hybrid
locomotion vehicle[34] {in Figurc 2.5) utilizes six steered and driven conventional wheels, cach at

the end of an actuated vertical leg.

i An Ackerman steering lukage 480 approximatly ensnres the correct wherl angles to avolil wheel slip,

7



Hybrid Spider Drive Hybrid Locomotion Vehicle

Pseudo-Tetracsas-Whemor Pseudo-Hexacsas-Whemor

Figure 2.5

Kinematic Representations of the Hybrid Spider Drive
and the Hybrid Locomotion Vehicle

Equally obscure is the triangle wheel step climber[67]. which possesses fonr sets of three wheels
mounted at the vertices of equilateral triangles. When a wheel encounters a step, the triungle pivots

about its center and the robot reaches the top of the step by rolling on a different sct of wheels.

The recent application of omnidirectional wheels (in Section 3) has led to novel mobile kine-
matic configurations. Ommidirectional wheels have been used for powered wheelchairs (e.g., Omni
drive[29] and Wheclon[2]) and ambulatory drive platforms [69]. The later orients the ommidirec-
tional wheels at an acute angle to the floor for stability. Uranus[49] (in Figure 2.6) has a rectangular
wheel base with four omnidirectional wheels having rollers at 45° angles. The Unimation robot[14]
(in Figure 2.6) and Fetall[38] have triangular whecl bases and three omnidirectional wheels with

90° rollers.

Omnidirectional trcads[10, 11] operate as ommidirectional wheels with the rollers mounted
upon tank-like treads. A ball wheel (in Section 3) is the most manenverable wheel allowing three
DOF motionj47, 13, 39]. The first design of Jason|64] incorporated three ball wheel castors which
were later replaced by a single conventional castor. We are anaware of any other documented

applications of ball wheels on WMRs.
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Figure 2.6

Kinematic Representations of Uranus and.the Unimation Robot

Because of the variability in the numbers and types of wheels and actuating mechanisms,
formulating a kinematics methodology for WMRs requires analytically complex robot models. Since
the preponderance of existing and foreseeable WMRs have simpler kinematic configurations then
those on the periphery of WMRs (e.g., the hybrid spider drive), applying a general-purpose and
universal approach to model the kinematics of practical WMRs would be unduly cumbersome. To
reduce substantially the complexity of the kinematic model and associated calculations, we limit
our analysis to WMRs with zero or one steering links per wheel. The robots which do not satisfy
this constraint (e.g.. hybrid spider drive, hybrid locomotion vehicle, and Kludge) can be modeled
by extending our analytical approach on a case-by-case basis.

From this survey, we specify the requirements of a kinematic model of WMRs. A WMR model
must allow any number of wheels. The wheels can be mounted at any position and orientation
with respect to the robot body provided that each touches the surface of travel. This constraint
includes the ability to mount wheels at acute angle* to the surface. Tlie WMR can incorporate
any combination of conventional, omnidirectional or ball wheels. Even though each wheel can be
mounted at the end of an articulated linkage,, we will deal with zero or one steering link per wheel.
Finally, there may be coupling between wheels (e.g., two wheels may steer together as on the
Stanford Cart). With these observations, we define a WMR in Section 4 to develop a methodology
for kinematic modeling. In Section 3, wo detail Una operation of the three basic wheel types.



3. Wheel Types

Three wheel types are used in WMR designs: conventional, omnidirectional, and ball wheels.
In addition, conventional wheels are often mounted on a steering link to provide an additional
DOT. Schematic views of the three wheels are shown in Figure 3.1. The DOT's of each wheel are
indicated by the arrows in Figure 3.2. The kinématic relationships between the angular velocity of

the wheel and its linear velocity along the surface of travel are also compiled in the figure.

The conventional wheel having two DOT's is the simiplest to construct. It allows travel along a
surface in the dircction of the wheel orientation, and rotation about the point-of-contact between the
wheel and the floor. We note that the rotational DOT is slippage, since the point-of-contact is not
stationary with respect to the floor surface!. Even though we define the rotational slip as a DOF,
we do not consider slip transverse to the wheel orientation a DOF, because the magnitude of force
required for the transverse motion is much larger than that for rotational slip. The conventional

wheel is by far the most widely used wheel; automobiles, roller skates and bicycles utilize this wheel.

The omnidirectional wheel has three DOFs. One DOF is in the direction of the wheel orienta-
tion. The second DOF is provided by motion of rollers mounted around the periphery of the main
wheel. In priuciple, the roller axles can be mounted at any nonzero angle n with respect to the
wheel orientation. The ommidirectional wheels in Figures 3.1 and 3.3 lLave roller axle angles of 90°
[9,11,25], and 45°[36], respectively. The third DOF is rotational slip about the point-of-contact. It
is possible, but not common, to actuate the rollers of an omnidirectional wheel[29] with a complex
driving arrangement. When sketching WMRs having omnmnidirectional wheels, the rollers on the
underside of the wheel (i.c., those touching the surface of travel) are drawn and not the rollers

which are actually visable from a top view, to facilitate kinematic analysis.

The most maneuverable wheel is a ball which possesses three DOFs without slip. Schemes have
been devised for actuating and scusing ball wheels[47], but we are unaware of any cxisting imple-
mentations. An ommidirectional wheel which is steered about its point-of-contact is kinematically

cquivalent to a ball wheel, and may be a practical design alternative.
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Figure 3.2

Wheel Equations-of-Motion
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4., Kinematic Modeling

4.1 Introduction

In this section, we apply and extend standard robotic nomenclature and methodology[54] to
model the kinematics of WMIts. The novel aspects are our treatment of the higher-pair joint
between each wheel and the floor, and the development of a transformation matrix algebra.

We begin (in Section 4.2) by defining a WMR and enumerating our modeling assumptions to
constrain the class of mohile robots to which our modeling methodology applies. To include all
existing and foreseeable WMRs, we would have to generalize our methodology and thereby com-
plicate the modeling of the overwhelming majority of WMRs. In Section 4.3, we assign coordinate
systems to the robot body, wheds and steering links to facilitate kinematic modeling. It is essen-
tial to define instantaneously coincident coordinate systems to model the higher-pair joints at the
point of contact between each whed and the floor. In Section 4.4. we assign homogeneous (4 x 4)
transformation matrices to relate coordinate systems. We present (in Section 4.5) a matrix coor-
dinate transformation algebra to formulate the equations-of-motion of a WMR. All kinematics are
derived by straightforward application of the axioms and corollaries of the transformation algebra.
Position kinematics axe treated in Section 4.6. We demonstrate that transforming the coordinates
of a point between coordinate systems is equivalent to finding a path in a transformation graph.
Then, in Section 4.7, we formulate the velocity kinematics. The relationships between Lhe wheel
velocities and the robot velocities are linear. We thus develop a wheel Jacobian matrix to calculate
the vector of robot velocities from the vector of wheel velocities. Finally, in Section 4.8, we apply
our matrix coordinate transformation algebra to acceleration kinematics.

To summarize the development, we enumeratein Section 4.9 our kinematic modeling procedure.
In Section 5, we combine the equations-of-motion of all of the wheels to form the composite robot
eguation. We then proceed to solve the composite robot equation and interpret the solutions.

4.2 Definitions And Assumptions

The Robot Institute of America defines arobot as" A programmable, multifunction manipulator
dtMtjncd to move material, parts, tools, or specialized denices through variable programmed motions
for the performance of a variety of tasks* [20]. Our survey of kinematic configurations in Section
2 antU-ipatos tho definition of a WMR, Kinematic models of WMRs are inherently different from
tlicw of stationary robotic maijipttlaton* and loj;;jed or treaded mobile robots. We thus introduce an
eperatiorzal tli fSUfioi nf a WMR to specify the range of robots to which the. kinematic methodology
presenti*d in tir* pg>e applies.
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Wheeled Mobile Robot - A robot capable of locomotion on a surface solely through the
actuation of whed assemblies mounted on the robot and in contact with the surface. A whedl
assembly is a device which provides or alows relative motion between its mount and a surface on
which it is intended to have a single point of rolling contact.

Each whed (conventional, omnidirectional or ball whedl) and al links between the robot body
and the whed constitute a whed assembly. With the exception of the omnidirectional treaded
vehicle, the hybrid spider drive (when walking), the hybrid locomotion vehicle (when climbing)
and the triangle whed step climber (when climbing steps), the mobile robots reviewed in Section
2 saisfy our definition of a WMR.

We introduce the following practical assumptions to make the modeling problem tractable.

Design Assumptions
1) The WMR docs not contain flexible parts.
2) Thereis zero or one steering link per whesl.
3.) All steering axes are perpendicular to the surface.

Operational Assumptions
4.) The WMR moves on a planar surface.
5.) The trandational friction at the point of contact between a wheel and the surface is large
enough so that no translational dip may occur.
6.) The rotational friction at the point of contact between a wheel and the surface is small
enough so that rotational dip may occur.

We discuss our assumptions in turn. Assumption 1 states that the dynamics of such WMR
components as flexible suspension mechanisms and tiros are negligible. We make this assumption
to apply rigid body mechanics to kinematic modeling. We recognize that flexible structures may
play a sgnificant role in the kinematic analysis of WMIIs. A dynamic analysis to determine the
changes in kinematic structure duo to forces/torques acting on flexible components is required
to modd these components. Such an analysis is appropriate for WMIIs even though it lias not
conventionally been addressed for stationary open-link manipulators because WMIIs a* inherently
closed-link mechanisms. Flexible components, that «lov compliance in the multiple closed-link
chains of a WMR* lead to a rons&itent kinematic: model.  Without compliant structure«, there



cannot be a consistent kinematic model for WMRs in the presence of surface irregularities, inexact
component dimensions and inexact control actuation[50]. A simultancous kinematic and dynamic

analysis of WMRs is thus a natural continuation of our research.

We introduce Assumptions 2 and 3 to reduce the range of WMRs that our methodology must
address, by limiting the complexity of our kinematic model. WMRs which have more than one link
per wheel can be analyzed by our methodology if only one steering link is allowed to move. We
require that all non-steering links must be stationary, as if they arc extensions of the robot body
or wheel monnts. By constraining the stecring links to be perpendicular to the surface of travel in
Assumption 3, we reduce all motions to a plane. We thus constrain all component motions to a

rotation about the normal to the surface, and two translations in a plane parallel to the surface.

Assumption 4 neglects irregularitics in the actual surface on which a WMR travels. Even
though this assumption restricts the range of practical applications, environments which do not
satisfy this assumption (e.g., rough, bumpy or rocky surfaces) do not lend themselves to energy

efficicut wheeled vehicle travel(7].

Assumption 5 cusures the applicability of the theoretical kinematic properties of a wheel in
rolling coutact[5, 62] for the two translational degrees-of-freedom. This assumption is realistic for
dry surfaces as demonstrated by the success of braking mechanisms on automobiles. Autoniobiles
also illustrate the practicality of Assumption 6. The wheels must rotate (i.c., slip) about their
points-of-contact to navigate a turn. Since WMRs also rely on rotational wheel slip, we include

Assumption 6.

4.3 Coordinate System Assignrnents
4.3.1 Sheth-Uicker Convention

Coordinate systew assigninent is the first step in the kinematic modeling of a stationary
manipulator[54]. Lower-pair mechanisms? (such as revolute and prismatic joints) function with two
surfaces in relative motion. In contrast, the wheels of a WMR arc higher-pairs which function ideally
by point contact. Because the A-Matrices which model manipulators depend upon the relative
position and orientation of two successive joints, the Denavit-Hartenberg convention[18] leads to
ambiguons assignments of coordinate transformation matrices in multiple closed-link chains[61]
which are inherent in WMRs. The ambiguity arises in deciding the joint ordering when there are

more than two joints on a single link.

1

Lomwer-pair mechanisms are paics of components whose relative motions are constrained by a common surface

contact: wherens bigher-pairs are constrained by point or line contact[5).
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We apply the Sheth-Uicker convention[61] to assign coordinate systcms and model cach wheel
as a planar pair at the point of contact. This convention allows the modecling of the higher-pair
wheel motion and eliminates ambiguities in coordinate transformation matrices. The planar pair
allows thrce DOTF's as shown in Figure 4.3.1 : X and Y translation, and rotation about the poiht-
of-contact. The Sheth-Uicker convention is ideal for modeling ball wheels; the angular velocities
of the wheel arc converted directly into traunslational velocities along the surface. The planar pair
motions must be constrained to include wheels which do not allow three DOFs. For example, the
coordinate systcm assigned at the point-of-contact of a conventional wheel is aligned with the y-axis
parallel to the wheel. The wheel model is completed by constraining the x-component of the wheel

velocity to zero to satisfy Assumption 5 (in Scction 4.2) and avoid translational slip.

[ Floor

Planar Pair Conventional Wheel

Figure 4.3.1

Planar Pair Model of a Wheel
4.3.2 WMR Coordinate Systems

We assign coordinate systems at both cnds of each Link of the WMR. The links of the closed-
link chain of a WMR are the floor, the robot body and the steering links. The jotnts are: a revolute
pair at each steering axis, a planar pair to model cach wheel, and a planar pair to model the robot
body. When the joint variables are zero, the coordinate systems of the two links which share the
joint coincide. We summarize our approach to the modeling of a WMR having N wheels with
the coordinate system assignments defined in Table 4.3.1 . Placement of the coordinate systemns
is illustrated in Fignre 4.3.2 for the pictorial view of a WMR. For a WMR with N whecels, we
assign 3N + 1 coordinate systems to the robot and one stationary reference frame, There are also
N + 1 instantancously coincident coordinate systems (described in Section 4.3.3) which need not

be assigned explicitly.
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Wheel 2

Robot Body

Hin-1)

Floor

Figure 4.3.2

Placement of Coordinate Systems on a WMR

The floor coordinate system F is stationary relative to the surface of travel and scrves as the
reference coordinate frame for robot motions. The robot coordinate system R is assigned to the
robot body so that the position of the WMR is the displacement from the foor coordinate system
to the robot coordinate system. The hip coordinate system H; is assigned at the point on the robot
body which intersccts the stecring axis of wheel 7. The steering coordinate system S; is assigned
at the same point along the steering axis of wheel ¢, but is fixed relative to the steering link. We
assign a comntact point coordinate system C; at the point-of-contact between each wheel and the
floor.

Coordinate system assignments are not unique. There is freedom to aszign the coordinate
systems at positions and orientations which lead to convenient structures of the kinematic model.
For example, adl of the hip coordinate systems may be assigned parallel te the robot coordinate
system resulting in sparse robot-lip transformation matrices and thus simplifying the model. Al-

ternatively, the x-axes of the hip coordinate systems can be aligned with the zero position of the
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steering joint position encoders so that the hip-steering transformation is expressed in terms of the
actual steering angle,
4.3.3 Instantaneously Coincident Coordinate Systems'

To introduce the concept of instantaneously coincident coordinate systems, we consider the
one-dimensional example of a beli rolling in a straight line on a flat surface. The position of the
ball is depicted by the point r in Figure 4.3.3.

Stationary

Ref er ence
Poi nt Bal |

= ()

=1

Figure 4.3.3

Ball in Motion Before Instantaneous Coincidence

The ball is moving right to left with velocity v, and acceleration a;. The stationary reference
point f lies in the path of the moving ball. At te? instant the ball (point r) and the reference (point
r coincide in Figure 4.S.4, we observe that: (1) The position of the ball relative to the reference
point 'p; is zero; and (2) The velocity 'v, and acceleration 'a, of the bal relative to the reference
point cre non-zero. We cdl the pointT an instantaneously coincident reference point for the moving
bal at the instant shown in Figure 4.3.4.

Stationary Conventional
Reference Reference
Point Point
[ 4
— -]
ball
Flgur** 4.3.4

Ball In Motion at Imttaxitmicous Coincidence

Wo continuously as/ij®i an histuil«'ii**<M*ly cohici«t’ti! reference point f during the motion
of tht* bull to £*n<Tdiz* uttr cj'sorvations for al tin**./. Tin* pnsiUon of fli"'-bhit whxVwt) h> itst
inst«iutaurouiijy ruincidrut ti"f*T<*iirr jjoiiif is zt*ro |Lt\, '/*,(f) ™" 0), air! thv velocity ain! ;w celerntion
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of the ball relative to its instantaneously coincident reference point are non-zero (i.e., 'v,(t) fi 0 and
¥aT[i) i=- 0). Inthe framework of instantaneously coincident reference points, we emphasize that we
cannot differentiate the position (velocity) cquation-of-motion to obtain the velocity (acceleration)
equatioii-of-motion.

The stationary reference point /in Figure 4.3.4 is a conventional reference point whose position
is fixed. Since both reference points / and I are stationary, the velocity (acceleration) of the ball
relative to the point / is equal to the velocity (acceleration) of the ball relative to the point f in this
one-dimensioual example. Consequently, it is not advantagous to introduce instantaneously coinci-
dent references in the one-dimensional example. The practical need for instantaneously coincident
coordinate systems arises in the multi-dimensional example as depicted in Figure 4.3.5.

Figure 4.3.5

Coordinate System R in Motion

The coordinate system R is moving in three-dimensions: X; Y, and 0. The coordinate sys-
tems R and F are stationary; R is an iiisfcaiLijuxmdy coincident coordinate system and F is a
conventional reference coordinate system. We make the analogous observations. The position of
ther moving coordinate system relativefroits instantaneously coincident coordinate system h zero
(i.c, APM A 0). The position of the moving coordinate system relative the conventional reference
coordinate system la iton-iscro (i.e, Fp~ A 0). Tin* iion-zcro velocity Ay, (nccdvmhhm “an) ut
the moving rcxirdiuate sytttom relativefro the intitnnrancously coinritient ctx>rdiiiato .system is not
equal to the velocity "Yy (accekrakhm Fnp} of tb” inoviiig cox>rdinate sy”cin relative to the coa-
velitiotin) rdetvnce roonlinatf" .system. Tlte vdcKiity (acrojenition) of the liiovin*; coortliimte torstem
relative to ike vonvtvwunY] ref<Tmc* rowliitate system F depvnd” npnn tK* position tuul orienta-
tiuji nf flur. moving "WHBTHWJv sy>1$ Zi - tri-tfivi* tn 'li* nfrnw* nn™nVinniv *y>iU*u\, The, metiexiion
ffw timignhaj itwtitnlhnt:ous!*j cttin* idunt eoorttinatv sttjJrmr % that i vrlhatses {aceclerndiona} of
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a rnulti'dimensional moving coordinate system can be computed or specified independently of the
position of the moving coordinate system. The instantaneously coincident coordinate system is a
conceptual tool which enables us to calculate the velocities and accelereitions of a moving coordinate
system relative to its instantaneous current position and orientation.

Table 4.3.1: Coordinate System Assignments

F Floor : Stationary reference coordinate system with the z-axis orthogona to the surface of
travel.

R Robot : Coordinate system which inoves with the WMR body, with the z-axis orthogonal to
the surface of travel.

Hi Hip (for i = 1,..., N) : Coordinate system which nioves with the WMR body, with the z-axis
coincident with the axis of steering joint i if there is one; coincident with the contact point
coordinate system d if there is no steering joint.

S Seering (for £ = 1,..., V) : Coordinate system which moves with steering link i, with the
z-axis coincident witja the z-axis of 11" and the origin coincident with the origin of H{.

Ci Contact Point (for i — I,...,iV) : Coordinate system which moves with steering link t, with
the origin at the point-of-contact between the wheel and the surface;, the y-axisis parallel to
the whed (if the whed has a preferred orientation; if not, the y-cixis is assigned arbitrarily)
and the x-y plane is tangent to the surface.

R Instantaneously Coincident Robot : Coordinate ~ysfern coincident with tho R coordinate
system and stationary relative to the F coordinate system.

Ci Instantaneously Coincident Contact Point (for i =" 1,..-, N) : Coordinate system coincident
with the Ci coordinate system and stationary rolntivc to the F coordinate system.
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TFor stationary serial link manipnlators, all joints are onc-dimensional lower-pairs: prismatic
joints allow Z motion and revolute joints allow 0 motion. In contrast, WMRs have three-dimensional
higher-pair wheel-to-floor and robot-to-floor joints allowing simultancous X, ¥ and 0 motions. We
assign an instantaneously coincident robot coordinate system R at the same position and orientation
in space as the robot coordinate systemn R. In Table 4.3.1, we define the instantancously coincident
robot coordinate system to be stationary relative to the Hoor coordinate system F. By design, the
position and orientation of the robot coordinate system 2 and the instantancously coincident robot
coordinate system R are identical, but (in general) the relative velocities and accelerations between
the two coordinate systems are non-zero. When the robot coordinate system moves relative to the
floor coordinate system, we assign a different instantancously coincident coordinate system for cach
time instant. The instantancously coincident robot coordinate system facilitates the specification of
robot velocities (accelerations) independently of the robot position. Similarly, the instantaneously
coincident contact point coordinate system C; (in Table 4.3.1) coincides with the contact point
coordinate system C; and is stationary relative to the floor coordinate system. Since the position
of the wheel contact point is not sensed, we require the instantancously coincident contact point

coordinate system to specify wheel velocities and accelerations.

4.4 Transformation Matrices

Homogencous (4 x 4) transformatiou matrices are defined to express the relative positions and
orientations of coordinate systems[54]. The homogeneous transformation matrix 4Tl transforms
the coordinates of the point Pr in coordinate frame B to its corresponding coordinates “r in the
coordinate frame A: i

Ar=411p Pr. {4.4.1)

We adopt the following notation. Scalar quantities are denoted Ly lower case letters {e.g., w).
Vectors are denoted by lower case boldlnce lotters {e.g., v). Matrices are denoted by npper case
boldface letters {c.g., ). Pre-superseripts denote roference coordinate systems. For example, 4r
is the vector r in the A courdinate frame. The pre-superscript may be omitted if the coordinate
fraune is transparent from the coutext. Post-subseripts are used to denote coordinate systems or
components of a veetor or matrix. For example, the transformation matrix 4 Mg defines the position
and orientation of coordinate system B relative to coorlinate frame A; and r, is the x-compouent

of the veetor o,

Veetors denoting points in xpace, sieh as e in (4.4.1). consist of theee cartesian covrdinates
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and a scale factor as the fourth clement:

Ar = Ary . (4.4.2)

We always use a scale factor of unity. Transformation matrices contain the (3 x 3) rotational matrix

(n o a),and the (3 x 1) translational vector p[54]:

Ny .0z A4z Pz

A — | "y Oy Gy Dy |.
Il = . 4.4.3
B n, 0 G, P (4.4.3)
0 0 0 1

The three vector components n, o, and a of the rotational matrix in (4.4.3) express the orientation
of the x, y, and z axes. respectively. of the B coordinate system relative to the A coordinate system
and arc thus orthonormal. The three components p., py, and p, of the translational vector p
express the displacement of the origin of the B coordinate systeni relative to the origin of the A

coordinate system along the x, y, and z axes of the A coordinate system, respectively.

The aforementioned propertics of a transformation matrix guarantee that its inverse always

has the special form:

n: n, n. —(p-n)
Apg-1_ ]9 oy oz —(p-o) 4)
M5 =\a. oy a. —(p-a) | - (44.4)
0 0 0 1

Before we define the transformation matrices between the coordinate systems of our WMR maodel,
we compile in Table 4.4.1 our nomenclature for rotational and translational displaceinents, velocities

and accelerations.

In general, any two coordinate svstems A and B in our WMR model are located at non-zero
x, ¥y and z-coordinates relative to each other. The transformation matrix must therefore contain
the translations Ad,;,, Ad py and Adp.. We have assigned all coordinate systems with the z-axes
perpendicular to the surface of travel, so that all rotations between coordinate systemns are about
the z-axis. A transformation metrix in onr WMR maodel thus embodies a rotation 40, abent the

z-axis of coordinate systein A and the translations Adyg,. Adyyy and Adps alony the respective




coordinate axes:

cost0p —-sinp 0 “Adp,

sintfp  cos4p 0 “Adp,
0 0 1 “dp,
0 0 0 1

ATlp = (4.4.5)

For zero rotational and translational displacements, the coordinate transformation matrix in (4.4.5)

reduces to the identity matrix.

In Scction 4.6, we apply the inverse of the transformation matrix in (4.4.5) to calculate position

kinematics. By applying the inverse in (4.4.4) to the transformation matrix in (4.4.5), we obtain

COos AUB sin AOB 0 __Ade [HoX] AOB - Aduy sin Aoa
i A A A in A A A
A1 _ | —sin?l0p cos?lp O dpzsin *0g — dpy cos 0p
0 0 0 1

In Section 4.7, we differentiate the transforination matrix i {4.4.5) componentwise to calculate

robot velocities:

»

_A _A

wBsinAOB UJDC()SAUB 0 VBz
. Ay s A0 _A sin 40 0 4
ATl = B SR P (44.7)
0 0 0 0

aud in Section 4.8, we differentiate the transformation matrix in (4.4.7) componentwise to calculate

robot accelerations:

A A

~#apsinp — *wicos A0y —“tapgcoslp + Awhsind0p 0 “Aaps)
AT Ao cosAlp — ”‘sz sin%p  —“tagsintfy — Aw% cos0y 0 Aap, |
Ilg = . (4.4.8)
0 0 0 0
] 0 Q 0
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Table 4.4.1

Scalar Rotational and Trandational Displacements

Au

. The rotational displacement about the z-axis of the A coordinate system between the x-axis

of the A coordinate system and the x-axis of the B coordinate system (counterclockwise by
convention).

ABJ : (forj <E [u,y, Z]) : Thetranslational displacement along thej-axis of the A coordinate system
between the origin of the A coordinate system and the origin of the B coordinate system.

Scalar Rotational and Trandationa Velocities

A&B "e The rotational velocity A0B about the z-axis of the A coordinate system between the x-axis
of the A coordinate system and the x-axis of the 13 coordinate system.

AvBJ -- (forj € [x,y]) : Thetranslational velocity Ad&j along the j-axis of the A coordinate system
between the origin of the A coordinate system and the origin of the B coordinate system.

Since all motion is in the x-y plane, the z-component “dj3-, of the translation™*! velocity is
zero.

Scalar Rotational and Trandatioual Accelerations

AccB : Therotational acceleration “0B = ~8 about the z-axis of tlie A coordinate system bei ween
the x-axis of the A coordinate system and the x-axis of the 13 coordinate systei.

ap; : (for j € [x,Y\) : The translational acceleration “dyj r= PVA along the j-axis of the A

coordinate system between the origin of the A coordinate system and ib<* origin of the B

coordinate system. Sinco all motion is parallel to the x-y plane, the z-componcnt Az <f
the traiirilational acceleration is zero.
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The assignment of coordinate systems results in two types of transformation matrices between
coordinate systems: constant and variable. The transformation matrix between coordinate systems
fixed at two different positions on the same link is constant. Transformation matrices relating
the position and orientation of coordinate systems on different links include joint variables and
thus are variable. Constant and variable transformation matrices are denoted by *To and *$u,
respectively[Gl]. In Table 4.4.2. we compile the transformation matrices in our WMR model. The
constant transformation matrices arc the floor=robot transformation ("T*), the robot-hip transfor-
mation (*T//.), the steering-contact transformation (“*Tcy) and tho floor-?;ontact transformation
(FT7j-). Since the instantaneously coincident coordinate systems R and C{ are stationary relative
to thé floor coordinate system, dl transformation matrices between the floor coordinate system
and the instantaneously coincident coordinate systems are constant. The variable transformation
matrices are the—robot-robot transformation (%&R); the hip-steering transformation (*'$9) and
the Tontact-contact trailsfomiation (F<&cJ The transformation matrix from a coordinate system
to its instantaneously coincident counterpart (or visa-versa) is variablé because there is relative
motion. We compile the first and second time-derivatives of the variable transformation matrices
in Tables 4.4.3 and 4.4.4. respectively. The matrix derivatives involving instantaneously coincident
coordinate systems (i.e., %R “"C;* "« and “&d) <* formed by differentiating and simpli-
fying the elements of the tr<uisformation matrices "$n and ®$cyi respectively, by substituting
RoJgl = 0 and ©*0d = 0. Because of the smplifying substitutions, the second time-derivative of
a transformation matrix involving an instantaneously coincident coordinate system cannot be ob-
tained by differentiating the first time-derivative. Time-derivatives of instantaneously coincident
coordinate systems arc calculated in Section 4.5 by applying matrix coordinate transformation
algebra. The time-derivatives of constant transformation matrices are zero.

Far wheds which do not have steering links, the hip and steering coordinate systems are as-
sgned to coincide with the contact point coordinate system, so that the hip-steering and stcering-
cont&cr transformation matrices reduce to identity matrices and ttiereby simplify llie taisuiug 16ne-
niatic modeling.
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Table 4.4.2 : Transformation Matrices of the WMR Model

cos FO?Z- — sin F()—ﬁ 0
sin F . F
_ . . sin“ 0% cos“0% O
Floor — Robot Transformation : Fro = R > "R
r 0 0 1
0 0 0
cos 303 — sin ROR 0
_ _ S R
Robot — Robot Transformation : iy, = smo Or coso Or 2
0 0 0
cos BOp,  —sinB0y, 0
gy 12 SR £4
Robot — Hip Transformation : Rey, = s 001‘!.- cos OOH" (1)
0 0 0
cos {195, —sin Higg,
‘ . . sin Higg, Higg,
Hip — Steering Transformation : Hes = s 0 & 08 0 S
0 0
cos Sifg, —sinSihg,
. . S: sin S0,  cos Silg,
Steering — Contact Transformation : ‘Te, = 0 ' 0 ‘
0 0
cos Ci0p, - sinCifg,
- p - C.' ~ . C.
Contact ~ Contect Transformation : G @g, = | s 0 Oc;  cos 0 Oc,
0 0
- cos ¥ 07 —sin F O 0O
= . sin Fo= 0sFh= 0
Floor — Contact Transformation : FT(:.- =™ 0 a, 0 ¢ X
0

0 0

D= C
=0 OO

O~ OO



Table 4.4.3 : Transformation Matrix Time-Derivatives

Robot — Robot

Hip — Steering :

Contact — Contact :

}_20 -—an 0 jI:sz
fg@ — wr 0 0 VRy
R 0 0 0 0
0 0 0 0
—H"ws‘.sinHWs‘. —H‘ws‘.cosH"osi 0 0
Hidpo = Hiyg, cosHifg, —Hiwg sinf0s, 0 0
5= 0 0 00
0 0 00
0 —-C"wci 0 ?"’vc‘.:
C'-('Ec,-r- C;wC' 0 0 ()‘”Cav
0 0 0 0
0 0 0 0

Robot — Robot :

Hip — Steering

~Hiqg sinBigg, —

“Rul —Fap 0 Fap,)
RiR - Bap —Rwﬁ 0 Rany

0 0 0 0

0 0 0 0

H.wg‘ cos Hifg, ~Hiag cos Higg, + H‘ﬁ)g. sin M0,

H

0
g = | Toscostls - Fufsinfos —Hag sinFis, - Hwd cox 05, 0
0 0 0
-Gl ~%ag 0 Cac.
% - C‘I __,(:" 2 o, .
Contact — Contact : [of B, = 36‘.- ﬂ“’c, g ‘:}C-.v
0 1) 0 0
28




4.5 Matrix Coordinate Transformation Algebra

The kinematics of stationary manipulators are modeled by exploiting the propertics of trans-
formation matrices[19]. We formalize the manipulation of transformation matrices in the presense
of instantancously coincident coordinate systems by defining a matriz coordinate transformation al-
gebra. The algebra consists of a set of operands and a set of operations which may be applied to the
opcrauds. The operands of matrix coordinate transformation algebra are transformation matrices
and their first and second time-derivatives (in Scction 4.4). The operations are listed in Table 4.5.1
as seven axioms. In the table, A. B, and X are coordinate systems and IT denotes either a constant
T transformation matrix or a variable ® transformation matrix. Matrix coordinate transformation
algebra allows the direct calculation of the relative positions, velocities and accelerations of robot

coordinate systems (including instantaucously coincident coordinate systems).

Table 4.5.1 : Matrix Coordinate Transformation Algebra Axioms

Identity : AMip=1 forB=Aor B=A4
Cascade : ATMlp = 4TI *TIp
Inversion : Aflp = anl
Zero — Velocity : ATI; =0 for B=AorII=T
Velocity : ATIp = ATIx XTI + “IIx XTIg
Zero — Acceleration : ATl =0 for B=AorII=T
Acceleration : ATlp = ATIx XTIp + 2 ATIx XTIy + ATy XTIp

The ideniity axiom is sclf-cvident since neither rotations nor translations are required to trans-
form from a coordinate system to itself or to its instantancously coincident coordinate system. The
cascade azioem specilies the ocder in which transformation atrices are wultiplied: the coordinate
transformation matrix from the reference system to the destination is the cascade of two coordi-
nate transformation matrices, the first from the reference systemn to an intermediate coordinate
system, and the second from the intermediate coordinate system to the destination. The innersion
ariom states (hat the coordinate transformation matrix from a reference coordinate system to a
destination coordination syvstenr is the inverse of the coordinate transformation matrix from the

destivation enordinate system to the reference coordinate system.
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Just as the multiplication of transformation matrices is specified by the cascade axiom, time-
differentiation of transformation matrices is specified by the four velocity and acceleration axioms.
Specifically, we cannot differentiate both sides of a matrix transformation equation. For example,
if we were to differentiate both sides of the equation AIII = I, we would obtain the incorrect result
that AI;II = 0 since the velocities between a coordinate system and its instantancously coincident
counterpart arc (in general) non-zero. The zero-velocity axiom states that the relative velocities
between a coordinate system A and itself (B = A) or another coordinate system assigned to the
same link (IT = T) are zero. This is because two coordinate systems assigned to the same link are
stationary rclative to the link and cach other. Similarly, the zero-acceleration axiom states that
the relative accelerations between a coordinate system A and itsclf (B = A) or another coordinate
system assigned to the same link (IT = T) are zero. The velocity axiom specifies how the time-
derivative of a transformation matrix may be expressed in terms of the two cascaded transformation
matrices and their time-derivatives. Finally, the acceleration axiom specifics how the second time-
derivative of a transformation matrix may be expressed in terms of the two cascaded transformation

matrices and their first and second time-derivatives.

The mnatrix ceordinate transformation axiomns in Table 4.5.1 lead to the corollaries in Table
4.5.2 which we apply to the kinematic modeling of WMRs.

Table 4.5.2 : Matrix Coordinate Transformation Algebra Corollaries

My = 4, = 4Np

Cascade Position : 4TI, = 4TI BIIc CTIp ... Y1z

Instantaneous Coincidence : A1Ip

Cascade Velocity : ATl = Allg BII, + “Mp BIlc My + ... + ATy Y1z
Cascade Acceleration : All; = Allg PIT 5 + ATlp Blig CTigz + ...+ Ay Y1y
+2 AXIp[BIL. CTz + PI0,; CHp Pily - ... + By Y1)
42 AT PI{TIp P +... + Tiy Yl
+ ... +2 40 XMy YT

We develop the instantancous coineidence corollery by applying the identity and easeade ax-
ioms.  The ipstantancons coincidence corollary stphfies tronsformation matrix expressdons by
eliminating the instananconsly coincident coordinate systems. The easeads posloa corollary cal-

culates the transfortation matnix from a reterence coordinate @ yatem to o Jectination coordinate

o)



system which may be kinematically separated from the reference system by a number of cascaded
intermediate coordinate systems. The cascade position corollary, which is derived by repeated
applications of the cascade axiomn, is the foundation of position kinematics (in Scction 4.6). The
cascade velocity corollary is derived by repeated applications of the velocity axiom and the cascade
axiom. The cascade acceleration corollary is derived by repeated applications of the cascade, ve-
locity and acceleration axioms. In Scctions 4.7 and 4.8, we apply the cascade velocity and cascade
acceleration corollaries to relate linear and angular velocities and accelerations between coordinate
systems. Throughout Section 4.7, we apply the axioms and corollaries of the matrix coordinate

transformation algebra to derive the wheel Jacobian matrix.

4.6 Position Kinematics

We apply the transformation matrices (in Section 4.4) and the matrix coordinate transforma-
tion algebra (in Scction 4.5) to calculate position kinematics. The practical position relationships
in WMR control require the calculation of the position of a point (e.g., r) relative to one coordinate
systeimn (e.g., A) from the position of the point relative to another coordinate system (c.g., Z). For
example, we calculate the position of the point mass relative to the floor coordinate system from

the position of the point mass in a steering link relative to the steering coordinate system.
We transform position vectors by applying the transformation matrix in (4.4.1):
Ar = 4115 ?r. (4.6.1)

When the transformation matrix 4TTz is not known directly, we apply the cascade position corollary

to calculate 4TIz from known transformation matrices:
ATl = “Ip °Ilc °Np ... Y115 . (4.6.2)

We apply transformation graphs to determine whether there is a complete set of known transtfor-
mation matrices which can be cascaded to create the desired A¥Iz. In Figure 4.6.1, we display a

transformation graph of a WMR with one steering link per wheel.

The origin of cach coordinate system is represented by a dot, and transformations between
coordinate systems are depicted by directed arrows. The transformation in the direction opposing
an arrow is calculated by applying the inversion axiom. Finding a cascade of transformations to
calculate a desired transformation matrix (e.g. ¥Ilg ) is thus cquivalent to finding a path from the
reference eoordinate system of the desired transformation (F) to the destination coordinate system
(81). The matrices to be cascaded are listed by traversing the path in order. Each tranzformation
in the path which is traversed from the tail to the head of an arrow i3 listed as the matrix itself,

while tran<formations traversed from the head to the tail are lated as the inverse of the matrix.
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Floor

Figure 4.6.1

Transformation Graph of a WMR

For enanple, the point mass in Figure 4.6.2 located
T" T T Gl omwd to it*

at position r» relative to the steerin -
jAition rcntivo to the floor coordinate system F uca

4
r = ’]‘[sl Str, (4
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Robot

Figure 4.6.2

Point Mass in the Steering Link

In this example, the reference coordinate system is the floor coordinate system F' and the
destination coordinate system is the stecering coordinate system S;. There are multiple paths
between any two coordinate systews in Figure 4.6.1 becavse WMRs are closed-link structures. In
practice, the number of feasible paths is reduced because some of the transforination matrices are

unknown. For example, we may seck to calculate the desired transformation matrix in (4.6.4) as:
Flls, =F@5 S ®c, ©'Ts, (4.6.5)

but the transformation matrix from the floor to the whecl contact point ¥ T, 18 typically unknown.

4.7 Velocity Kinematics
4.7.1 Introduction

We relate the velocities of the WMR by applyiny the matrix coordinate transformation algebra
axioms and the cascade velocity corollary. In Section 4.7.2, we calculate the velocity of a point
(e.g., r) relative to a coordinate system {e.g., A). when the position of the point is fixed relative to
another moving coordinate system (e.g., Z). This solution iz applicable to the dynamic modeling of
WMRs (in Section 9) for computing the velocity of a differential wmass element on the WMR relative
to the floor coordinate system. In Section 4.7.3, we apply this saice methodology to calenlate the
velocities of the robot relative to the instantancously coincident robot coordinate system when
the velocitivs of a wheel? are sensed. We introduce the wheel Jacobian matrix to caleulate the

robot velocity vector from the wheel velocity vector. We also calculate (in Section 4.7.4) the robot

2 The wheel velocitios are the steering velocity W, ., the wheel velocity about its axle (y,,,, the rotationnsl slip

velocity Way s, the roller velocition Wy (for omuidirectionsl wheelz) and the rovational velocity Wy (for ball wheels).




velocity vector relative to the floor coordinate system, when the robot velocity vector is sensed
relative to the instantaneously coincident robot coordinate system. In Section 6.3, we apply these
calculations to dead reckoning® for WMR control.

4.7.2 Point Velocities

We differentiate the point transformation in (4.6.1) with respect to time to compute the velocity
of the point r in the A coordinate system:

M=nZr . (47.1)

When the matrix *Tiz is not known di rectly, we apply the cascade velocity corollary to cacu-
late “Hz from knownfcransformationmatrices and known transformation matrix time-derivatives
according to:

ATIz A Ang Bn, + Anp BMIe Tz + ... + “ny 'h, 4.7.2)
For example, equation (4.6.3) relates the position r of a point mass in the steering coordinate

system S to its position in the floor coordinate system F. We calculate the velocity of the point
r relative to the floor coordinate system by differentiating (4.6.3):

'ro= Fflg S'r . (4.7.3)

Since the vector 5t is constant, its time-derivative is zero. We apply the cascade velocity corollary
and the WMt transformation graph to' obtain an expression for the unknown transformation matrix
derivative in (4.7.3): '

ftlg = '"TIIBHs, + T4 %85 ®lg, + Tlr Ty T®g, + FTly »<¥s, . (474)

W amplify (4.7.4) to rttpiire only known transformation matrices and known trAiisforniatm
matrix derivatives.

Flig, = "Ty Fag Rilg, + THig, Tés, nero - Vdmiity Axiom
= Fr-R@, Ry, Hipg Py R, Ry, Cascmk Corollary
= FTgKax i Higg o Prgp Ry, Higg, Identity Axiom
= PIip Ta, Bry, Hg, + FNIg BT Nits, Inxtanantcoun Coincidence

(4.7.5)

3 Dend reshoning is the reitime calenlotion of the WMHE jUrGilon la Foer cont vn=iifitn - wheel ecmeor
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In (4.7.5), the robot velocity (in B@ ) is calculated in the sensed forward solution (in Section 5.7),
the steering position (in #®g.) and velocity (in H"i‘s‘.) are scnsed, the tobot position (in FI1g)
is calculated by dead reckoning (in Section 6.3), and the robot-to-hip transformation (®Tpg,) is
specified by design. The right-hand side of (4.7.5) is thus known. We then substitute (4.7.5) into

(4.7.3) to calculate the velocity of the point mass r relative to the floor coordinate system.

4.7.3 Wheel Jacobian Matrix

We formulate the cquations-of-motion to model the velocitics of the robot in terms of the
velocities of a wheel. We begin our development by applying the cascade velocity corollary to write
the matrix cquation (4.7.6) with the unknown dependent variables (i.e., robot velocities, Eg Rr) on
the left-hand side, and the independent variables (i.e., the wheel ¢ velocities, H: & s; and Cs ‘i?c;) on

the right-hand side:

RYI, = FTT-;} FTE‘_ C.dg, SiT(—:il H‘-Qgil RT;;:
(4.7.6)

Fm=1 Fm_ Cig . Sim=—1 [, g -1 Rm—1
+ Ty "Tg, @ VT T Rs TTy,

The transformation graph of Figurc 4.6.1 is utilized to determine the order in which to cascade the
transformation matrices; the inversion axiom is applicd when an arvow in the transformation graph
is traversed from head-to-tail and the zero-velocity axiom is applied to eliminate the matrices
which multiply the derivatives of constant T matrices. Since the position of the wheel contact
point relative to the floor is typically unknown, we apply the cascade position corollary to write an

alternative expression for the floor-contact transformation matrix:
F F R R H, S; C,3-1 ,
T_G_-.' ="Tg "2r "Ty, s, T T, ‘I;C.- . (4.7.7)

We substitute (4.7.7) into (4.7.6) to obtain:

e _ T Reps Hog, . Simp . Cagy 1 Cogp . Sim—1 Hig—1 Rmp—1
RHR = @R R'I‘H, @3. G‘TC.‘ @C‘- cs wci TC( ‘QS,' TH;‘

= . (4.7.8)
+ Rép BTy M@ Hid! Frpl.
We apply the identity axicm to simplify (4.7.8).
'ﬁﬂu — "T;;‘ H, B, s’l’fr. e, B “"’I‘,}“ Hw};‘;;l RT;{;I (07.9)

R H, roo b Rep-1t
+ BTy, g g, Ty,
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We next apply Tables 4.4.2 and 4.4.3 to write the transformnation matrices and the transfor-

mation matrix derivatives and multiply the result to obtain:

_0 _ﬁwR 0 EUR:
Ryp 0 0 RUR,,
0 0 0 0
0 0 0 0
0 -G wg, 0 E"wc' Ricy + C. ve,z cos oo, — [ ve,y sin Bog,
- Ciwg, 0 0 -%uwe,Pde,z + Civg,. sin Roe, + @ ve,y cos Blg,
0 0 0 0
0 0 0 0
(4.7.10)
0 H"UJs'. 0 - uIs‘.RdHW
" —Hiyg, 0 0 HuwgRdy,
0 0 0 0
0 0 0 0

To simplify the notation in {4.7.10), we have made the following substitutions:
Rou, + Hios, + 50¢, = Pog,
Sidg,zcos(P0y, + Hi0s,) — Side,y sin(R0y, + Fils,) + RBdy,. = Rdo,s  (4.7.11)

&dcir Sin‘(RQH‘. + H‘QSi) + side CO’S(RQH" + H“a&) + R‘dﬂw = R‘dcnl

Upon equating the clements in (4.7.10), we obtain the robot velocities:

2 RB in B Fi4 Rd \ C’ivcix
- h_mzx ces “Oc, —sin "¢, de,y —Tdmgy ) Tegen L.
pr= | Mupy | = sin Roe, cos®oe, -Rde,. Pdp,. | = Cyl =1 q, (4.7.12)
Ror \ 0 0 1 -1 we,
] H‘wq.
O

where ¢ = 1... N is the wheel index, Ei)n is the vector of robot velocitics in the Fobot frame, J; is
the pseudo-Jacobian matrix for wheel 7, and §; is the pseudo-velocity vector for wheel i We define
the number of wheel variables of wheel £ to be w;. The physical velocity vector §; of typical wheels
doex not contain the four component velocities in (4.7.12). Typical wheels posses fewer thau fonr
wheel variables and thur fower than four olements i e velocity vector  Furthermore, sinee all

physical wheel motions are rofations about physical wheel axes, the wheel veloeity vector contains

36



the angular velocities of the wheels rather than the linear velocities of the point of contact along
the surface of travel. We relate the (4 x 1) psceudo-velocity vector to the (w; x 1) physical velocity

vector q; by the (4 X w;) wheel matrix W:
q = W;a . (4.7.13)

We substitute (4.7.13) into (4.7.12) to calculate the robot velocities from the wheel velocity vector:

Bpp = L Wi 4w = I a . (4.7.14)

The product J; = (j., W,) is the (3 X w;) wheel Jacobian matrix of wheel i. The rank of
the wheel Jacobian matrix indicates the number of DOFs of the wheel. A wheel having fewer
DOF's than wheel variables is redundant. The Jacobian matrix of a redundant wheel has dependent
columns. We thus formulate the following computational method to determine whether a wheel is

non-redundant:

Non-Redundant Wheel Criterion

det[3T3;] # 0 (4.7.15)

Ouly three different wheels have been utilized in the WMR designs of Section 2: non-steered
conventional wheels, steered conventional wheels and omnidirectional wheels. The wheel Jacobian
matrices for these wheels and the ball wheel are detailed in Appendix 3. We utilize (4.7.14) in
Section 5 to develop the inverse and forward solutions. In Section 6, we apply the matrices in

Appendix 3 to calculate the inverse and forward solutions of specitic WMRs.

~ 4.7.4 Transforming Robot Velocities

We equate the componceuts in matrix cquation (4.7.2) to compute the translational 4vg,, and
sz,, and rotational 4wz velocities* of the coordinate system Z rcelative to coordinate system A.
We apply this methodology to the practical problemn of transforining velocities of the robot from
Fobot coordinateg B to floor coordinates F. We assume that the Hoor-robot transformation matrix
FTp (i.e., the position and orientation of the robot relative to the Hoor) and the matrix B®p (i.c.,

the velocities of the robot relative to its surrent position and orientation) are known. The velocities

4 There are no teauslationnl velocities along the z-axis or wugular velocitics nhwout the x and y-nxes becanse of

our ceordinate system assiyninents.

]
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to be calculated (i.e, the velocities of the robot relative to the floor) are the components of the
matrix "TLJI, We apply the cascade velocity corollary (in Section 4.5) and the WMR transformation
graph (in Section 4.6) to write the matrix equation

Fhe = FTA"R g + FTR*$n (4.7.15)

in terms of known matrices. To smplify (4.7.15), we apply the zero-velocity axiom and the instan-
taneous coincidence corollary:

Fhnp = FTq R8s (4.7.16)

We expand each matrix into scalar components. the matrix derivative FHR according to
(4.4.7), the transformation matrix T according to (4.4.5), and the transformation matrix deriva-
tive f<&.Jz accordi ng to Table 4.4.3. Upon multiplying, we obtain:

(-Fojji sin For -"URcos™0r 0 Fug

Fullcosoll —FRsSN"0k 0 FVR
0 0 0
0 0 0 0
~BypanfOR  -'h>Jwcos0r O RVRCOS Ok~ -"g,sin"0g
= EWR cos FOR 'RUR sn FOR 0 *VQ( sn FOR + /\VRy 005 FOR . (4717)
0 0 0 0
0 0 0 0

We obtain the angular velocity of the robot fug from elements (1,1) <wd (2,1) and read the trans-
lational velocities Fvg, sad Fvg, directly from elements (1,4) and (2,4) of (4.7.17), respectively.
Wo find that:

) v\ (coeFap —Hﬂpﬂa 0\ (i vR:\ _.
PRit= | vr, ) = \sinFOn co» OR i =V A

4.7.18
0 X {4718

Ju (4.7J8), we observe Hiat the aiiniliir velocity of tlie ruln>t Is fquoi in both cverdinate
frawws; Vihvrviw | ho trgi>kdtidi»d vdcrilitv* in the floor coordinate franip ;ire dd])aildi»nt upon fee
robot oric*Statioi* The matrix V i» the® (3 x 3) motion matrix which <gk*m¥ upon tl«> roh%t
position “pu*. In Srctioii 6.3, wr apply tliv )inotion inaliix to *h»ail-r*liciiii:; for WMIts.
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4.8 Acceleration Kinematics

We calculate the accclerations of the WMR by applying the cascade acceleration corollary.
Since the development parallels that of the velocity kincmatics in Scction 4.7, we omit the compu-
tational details and concentrate on interpreting the results. We cannot formulate the acccleration
cquations-of-motion by differentiating the results of Section 4.7, because differentiation of both
sides of a transformation matrix equation is not an allowable operation in our matrix coordinate
transformation algebra. This is in contrast to the acceleration kinematics of mechanisins contain-

ing only lower-pairs (e.g., stationary manipulators) which are formulated by differentiating velocity

kinematics.

The acccleration of the point r fixed relative to the moving coordinate system Z is transformed

to the A coordinate frame according to:
AF = ATl Zr. (4.8.1)

We apply the cascade acceleration corollary to calculate the second time-derivative of the transfor-

mation matrix AII.

By applying the cascade acceleration corollary, the comiponcent accelerations of the robot (Ra Rz
Rap, and Fap) are related to the wheel accelerations (Fras,, ©ac,z, Cac,y, and Fac,z) as the
cascade velocity corollary, in Scction 4.7.3, relates the robot velocities to the wheel velocities. In

the notation of (4.7.11), the robot accclerations are:

ci
—— . 1 aCi
{ Pap, cos 0o, —sinfOg, Rdg, -Fdu, O
R iR R R R Ciac
Ary | = 1 0(;l cos OC‘. - dcl.g; d H;z | roR Y
- - e,
Rap 0 0 1 1 1, at:;‘.
: (4.8.2)
) C:, .2
Rdﬂ;z Rd!‘hs \ _“C we,
+ Rdﬁiv Rdﬁm 11 -2 G‘w(;‘. H"ws',
0 0 H, w&

The robot accelerations in {4.8.2) are composed of three components: the self-accelerations
(Coag,«, Cac,y, Cac, aud Fiag,); the centripetal accelerations ( “‘wg‘.‘ and #:w? ) having squared

velocities; and the Coriolis accelerations (“rwe, Miwg, ) having products of different velocities.

Transformuing robot aceclerations from Fobot coordinates to floor coordinates is analogous to
transforming robot velecities (ia Section .74}, We find that the robot accelerations are trans-

formed from the robot Lo the floor coordinate frinue Ly the motion matrix 'V othat transforms the
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velocitios in (4.7.18):

Fone cosF0p —sinfop 0 Eam _
Ff)R = FaRy = sin FDR cos F0R 0 RaRy =V RpR . (4.8.3)
Fap 0 0 1 Ryp

The acceleration equations-of-motion are not solved in practice because accurate acceleration mea-

surements are difficult to obtain.

4.9 Summary

We have formulated a systematic procedure for modeling the position, velocity and acceleration
kincmatics of a WMR. In this section, we outline a step-by-step enumeration of the methodology

to facilitate engiucering applications.

1.) Make a sketch of the WMR. Show the relative positioning of the wheels and the

stecring links. The sketch need not be to scale. A top and a side view are typically sufficient.

2.) Assign the coordinate systems. The robot, hip, steering, contact point and floor

coordinate systems are assigned according to the conventions introduced in Table 4.3.1.

3.} Develop the (4x4) coordinate transformation matrices. ‘The robot-hip, hip-steering,

and steering-contact transformation matrices arc written according to Table 4.4.1.

4.) Formulate the position equations-of-motion. The relative positions and orienta-
tions of two coordinate systems are determined by applying the cascade position corollary. The
transfarmation graph of Figure 4.6.1 is utilized to determine the order in which to cascade the

matrices.

5.) Formulate the velocity equations-of-motion. The cquations relating velocitics are
formulated by applying the cascade velocity corollary. The wheel Jacobian matrix, which relates
wheel velocities Lo robot velocities, may be written directly by substituting components of the

transformation matricies into the symbolic wheel Jacobian matricies compiled in Appendix 3.

6.) Formulate the acceleration equations-of-otion. The cquations reiating accelera-

tions are formulated by applying the cascade acceleration eorollary.

The non-redundant wheel crit-riom in (1.7.15) is a test on the Jacobian matrix to determine

- . . . . . o it —
whether 4 wheel has as ruany DO as wheel variabiles. We apply this criterion in Seciion B to revead
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disadvantages of redundant wheels. A kinematic modd; i.e.,, the position, velocity and acceleration
cquations-of-motion, may be applied to the dynamic modeling, design and control of a WMR. In
these applications, the equations-of-motioii arc solved to compute unknown variables from constant
and sensed variables. In Section 5, we compute the inverse and forward solutions by utilizing the
whed Jacobiaii matrix (introduced in Section 4.7.3) as the foundation.
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5. The Composite Robot Equation

5.1 Introduction

We combine the kinematic egnations-of-niotion of all of the wheels on a WMR to form the
composite robot equation. We then investigate solutions of the composite robot equation and their
properties and implications for WMR locomotion. Our investigation illuminates WMR mobility
(in Section 5.4), actuation (in Sections 5.5 and 5,6) and sensing (in Sections 5.7 and 5.8).

In Section 5.2, we formulate the composite robot equation and in Section 5.3 we discuss the
conditions for its solution. We apply the results of Section 5.3 to develop a mobility character-
ization tree in Section 54 which allows us to interpret the solubility conditions in terms of the
mobility characteristics of the WMR. The mobility characterization tree indicates whether the
‘mobility structure i? determined, over deter mined or undetermi ned, and associates specific mobility
characteristics with each possibility. For example, we may apply the mobility characterization tree
to determine whether a WMR dlows three DOF motion, and if it does not, the tree indicates the
motion constraints.

We proceed to solve the composite robot equation by addressing two classical kinematic mod-
eling problems; the actuated inverse solution (in Section 5.5) and the sensed forward solution (in
Section 5.7). The actuated inverse solution computes the actuated wheel velocities from the robot
velocities. For WMR control, we solve only for the velocities of the actuated wheel variables. The
solution for all of the whed velocities h a special case which uxzxy be obtained by assuming that al
of the wheel variables are actuated.

The actuated inverse solution does not guarantee that the specified robot velocities will be
attained when the actuated whed variables are driven to the calculated velocities. We investigate
the pos&lble robot motions when the actuated wh<*d variables attain the velocities computed by
the actuated inverse solution in Section 5C. W& develop an actuation characterization tret, anal-
ogous to the mohility characterization tree, which allow* us to determine the actuation structure
{determined, overdotormined or undetermined) of a WMR. The actuation characterization tret? is
applicable for WMR design to avoid ovcrdctennined actuation (which may cvmso actuator conflict)
and undetermined actuation (which alows the WMR uncontrollable DOPa). From awr analysis,
we ac’ able to determine whether thet actuated wilx+ variable are sufficient for produaiift all of
the motions allowed by the mobility structure.

The sensedforward HolUion in KcTfloo 5.7 cwnppUv ihv rnhoi velocity from the HvuHll wfav]
ve<*ifM*' and por-itiojut. Since a WMR 0>ii3;\" of eUwd Srithafk ‘eli-iins. it \* not tt\K\utl to
sng* al of the wlifi! M>aiolk ;*nd wik¢dtied. and in practi***-. it k diiiicult to do MK
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In Section 5.8, we develop a sensing characterization tree which allows us to determine the
character (undetermined, determined or overdetormined) of the WMR sensing. We thus.are able
to determine whether the sensed wheel variables are sufficient for discerning all of the motions
alowed by the mobility structure. Finally, in Section 5.9, we summarize our development.

5.2 Formulation of the Composite Robot Equation

In Section 4.7.3, we developed the wheel Jacobian matrix J, by applying velocity kinematics
to compute the robot velocity vector p from the wheel velocity vector ¢:

p= Jidq: lori=I,...,dV , (5.2.1)

where i is the wheel index, N is the total number of wheels, p is the vector of robot velocities, J-
is the (3 x WI) Jacobian matrix for wheel i, W{ is the number of variables for wheel i, and ¢- is the
(W{ x 1) vector of wheel velocities.

The ZN wheel equations in (5.2.1) must be solved simultaneously to characterize the WMR
motion. We combine the wheel equations to form the composite robot equation:

| I A Jl 0 ca O (‘11
Iz 4z
P = 0 Ja . (5.2.2)
: Lot el D :
In 0 ... 0 In a~
or
AP = Bol (5.2.3)

where the I;, for i = 1,...,, are (3 X 3) identity matrices., AQ is a (ZN x 3) matrix, B, is a
(3V x iX) block diagonal matrix, w =wi + w¥z + ... + W& is the total munber of wheel variables
and ¢ is the composite wheel velocity vector.

Having formulated the matrix equation in (5,2.3) to model the robot motion, we proceed to
investigate the solution for the robot velocity vector p in Section 5.3 and it* implications for WMR
locomotion in Section 5,4.

5.3 Solution of Ax = By.

We characterize WMR mobility (in Section 5,4). actuation (in Section 5f) and “dining (in
Section 5.8) by ex;»aiming thf properties of Hie solution,-?-of the compoljti* Y**\nrt c<jnaticui in (S.2.3),
W extt»iul OH* .stamlard criterlaflfi] for the sydtnujs of linear dj;«*!>fjiic tignntions Ax r: h, where A
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is an (m X n) matrix, x is a (n X 1) vector and b is a (m x 1) vector, to the solution of the systems

of lincar algebraic equations

Ax = By, (5.3.1)

where B is an (m X p) matrix and y is a (p X 1) vector. Since the composite robot equation (5.2.3)
has the form of (5.3.1), solutions of (5.3.1) are directly applicable to the solution of the composite

robot cquation.

We apply the method of least-squares[15] to compute the vector x for overdetermined (i.e.,
having fower variables than independent equations) and determined (i.e., having the same number

of variables as independent equations) systems of linear algebraic cquations:
x=(AT A)"'ATBy. (5.3.2)

The necessary condition for applying the least-squares solution in (5.3.2) is that rank(A) =n. There
is no unique solution for undetermined systems (i.e., systems having fewer indepceudent cquations

than independent variables).

The residual error of the least-squares method is:
Ax-By=[A(ATA)'AT-1By=A(A)By. (5.3.3)

We define the Delta matrix function A(e) for expository convicnience as:

-1 for U = null

A(U):{ vl ) (5.3.4)
Uyt u) u' -1 Otherwise

where the argument U is a {¢ X d) malrix of rauk d.

To characterize WMR motion, we must determine whether the least-squares error in {5.3.3) is
zero for all y. To do so, we may apply cither of the following cquivalent tests:

A(A)B=0 (5.35)

rank{A; B] = rank[A] . {5.3.6)

If cither test (5.3.5) or (5.3.6) is satisfied, the least-sqnares error is zero for all y. The first test
in (5.3.5) is apparent from the expression for the least-agquares error in (5.3.3). The second test in
{5.3.6) slates that if the columus of the matrix B lic in the veetar space svanned by the columas
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of the matrix A, then the vector By must aso lie in the vector space spanned by the columns of
A for dl y. The vector By can then be expressed as a linear combination of the columns of A
by proper choice (via the least-squares solution) of x. Similarly, we may determine whether the
least-squares error is zero for a specific y by applying either of the following two equivalent tests:

A(A) By =0 , (53.7)

or
ranfc[A;By] = rank[A] . (5.3.8)

We depict in Figure 5.3.1 atree illustrating the nature of al possible solutions for the vector x
of the system of linear algebraic equations in (5.3.1). The tree branches (directed arrows) indicate
tests on the matrices A, B and y and are numbered for future reference. The leaves (boxes) indicate
the corresponding properties of the solution.

As depicted in Figure 5.3.1, the system of linear algebraic equations in (5.3.1) may be deter-
mined, overdetermined or undetermined. The top branches, (0) and (1), determine whether the
least-squares solution is applicable by testing the rank of the matrix A. If the rank of A isn
(branch (0)), the least-squares solution is applicable and there is a unique solution for somey. If
therank of A is less than n (branch (1)), the least-squaros solution is not applicable indicating that
the system is undetermined and there is no unique solution for any y. An undetermined system,
has more unknowns than independent equations.

A determined system is one in which the number of independent equations (less than or equal
to m) equas the number of unknowns (n). The least-squares error is zero for dl y and thus tests
(5.3.3) and (5.3.4) apply at branch (00).

An overdetermined system is one in which the number of independent equations is greater
than the number of unknowns. The least-squares error of an. overdetenninod system is thus non-
zero for some y (branch (01))- Tests (5.3.7) and (5.3.8) ac applied at branch (010) to determine
whether the least-squares error is %ao for a specific y. If so, the? system is consistent and there is
aunique solution. If the least;-squares error i non-asero for a specific y (branch (011)), the system
Is inconsistent and there is no exact solution.

In Section 5.4, we apply the solution tree in Figure 5.3.1 to the composite robot equation in
(5.2.3) and discuses the implications for WMR mobility ohar«* u:terijEation.
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Ax = By

Modeling Fquation

rank[A] = m rank[ AJ< m

(0)
\

Unique Solution
for Some y

Least-Sqyuares Soiution
Applicable

rank[A:B ] = rank[A] rank[A: B ]
or > rank[ A]
- or
SR B =0 AN(A) B= 0
(00) 01)
Va N/
Detormined Overdstarmined Undetarminad
Unique Solution Unique Soiution . Mo Unique Soluticn
tor A11 y for Some ¥y
least-Squares Solution
Least-Squares Error = 0 Not Applicable

rank[A By ] = rank[ A] rank[A sBy] > rank[ A]

or or
A\(A)By= 0 A(A)By# 0
(010) 011)
Consistent Inconsistent

Unigque Solution

Least-Squares Error = O

Mo Solution

teasr-Sguares Error > 0

Figure 5.3.1

The Solution Tree for the Vector x in (5.3.4)

5.4 Robot Mobility Characteristics

The composite robot cquation in (5.2.3) has the form of the system of linear algebraie equations

in Figure 5.3.1. in which A,. B,. p aad q play the roles of A, R, x and y. respectively. Shwe

the robot veloeity vector poplay . the role of the dependent variable we investizate the conditions
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under which the forward solution may be computed. In Figure 5.4.1, we apply the solution tree in

Fignre 5.3.1 to the composite robot cquation in (5.2.3).

A,p = Boq

Composite Robot Equation

rank[A;] = 3

Always True

rank[A,]< 3

Never true

(0)

Unique Soluqion
for Some q

Least-Squares Solution
Applicable

rank[ A, B,] =3 rank[Aqs: Bo] > 3

(C0) (01)
N/ Y
Determined Overdsterminad Uuqetermﬂned.
Unique Solution Unique Solution No Unique Solution

for A11 ¢

Only One Wheel

for Some ¢
More Than One Wheel
Closed-1ink Chains

tiot Possible

rank[A.: B,q] = 3 rank[A,i Boq] > 3

(010) (011)

Inconsistent
Mo Soluticn

Consistent
Unique Solution

Mo Wheel Slip Wheel S1ip Occurs

Figure 5.4.1

The Solution Tree for the Robot Velocity Vector p
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By inspection of (5.2.2), we observe that the rank of the (3N x 3) matrix A, is 3 and thus
branch (0) always applics. Since branch (1) does not apply, the solution cannot be undetermined;
and hence the robot motion is completely specified by the motion of the wheels. Trom the structure
of the matrices A, and B, in (5.2.2), we observe that the rank of the augmented matrix [A,, B,) is
greater than 3 when there is more than one wheel. A WMR with one wheel is determined (branch
(00)), and a WMR with more than one wheel is overdetermined {(branch (01)). The overdetermined
nature of WMRs having more than one wheel is a consequence of the closed-link kincmatic structure
of a WMR. As indicated in Tigure 5.4.1, the composite robot equation in (5.2.3) will be consistent
{and have a solution at branch (010)) or inconmsistent (and have no solution at branch (011))
depending upon the wheel velocity vector q. Our no-slip assumption (in Section 4.2) ensures that

the motions of the whecls and the robot are consistent and that there is thus an exact solution.

We depict in Figure 5.4.1 the solution of the robot velocity vector p from the complete wheel
velocity vector . In practice, the wheel velocity vector must be measured by sensors. It is difficult
to sense some of the whecl velocities, such as the rotational wheel ¢lip. Since a WMR. with more
than one wheel has closed-link chains, it is not necessary to sensc all of the wheel velocities to
calculate the robot velocity because many of the sensor motions are dependent. In Sections 5.7

and 5.8, we investigate the solution of the robot velocity vector from the sensed wheel velocities.

Although the nature of the forward solution of the composite robot cquation provides us with
little physical insight, we gain significant understanding of WMR motion by investigating the nature
of the inverse solution. For WMR control it is not necessary to compute all of the wheel variables
in the inverse solution since they are not all actuated. Because of the closed-link chains, moreover
not all of the wheel variables must be actuated. In Scction 5.5, we compute the actuated inverse
solution for the actuated wheel variables. In the remainder of this section, we focus on the complete

inverse solution to gain physical insight into WMR mobility characteristics.

We investigate the inverse solution by interchanging the roles of the right and left-hand sides
of the composite robot equation in {5.2.3) and applying the solution tree in Figure 5.3.1. Thereby,
B,, A,, gand p in (5.2.3) play the roles of A, B, x and y in {5.3.1), respectively. The solution tree
for the inverse solution, subsequently referred to as the mobility characterization {ree, is depicted
in Figure 5.4.2 . The branch tests indicated within curly brackets ”{e}" arc simplitied tests which
apply if there are no couplings between wheels.
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Boq = Aop

Composite Rohbot Equation

) rank[Bo] = w
{det(JdiJd;) = 0 for i=1,...,N }

Soluble Motion Criterion

(MO)\

rank[B,] < w
{det(JIJi) = 0 for some i}

Unique Solution
for Some
Moticon Equations are Soluble
Tnverse Solution Applicable
{No Wheels Have Redundant DOFs}

I\(B,) A, = 0 A\(By) Ay # 0

{wy= 3 for i=1,...,,N } {wi< 3 for some i}
Three NDOF Criterion

(Mo0 (M01)
[

N\ N
Determined Overdetsrminsd Undeterminad
Unique Solution Unique Solution No Uniaque Solution
. . Some Wheels ltave Redundant DOFs a4
for A11 p for Some »p Inverse and Forward Solutions,
3-DOF Mobility Fewer Than 3-DOF Mobility and Actuation and Seasing Trees
Inverse lLeast-Squares Error = 0 Some Robot DOFs Dependent Not Applicable.

AN(Bo) Ao p # 0
{ON(J3:) p = 0 for some 1}
MO11)

AN(Bo) Ao F.’ =0
{L(31) p = 0 for i=1,...,N}

Kinematic Motion Constraints (MOlO)

Inconsistent

No Solution

IMotion Dependencies Not Satisfied
Robot Motion ) Not Possible

{ Inverse teast-Squares Error > 0 |

Consistent
Unique Solution
Motion Dependencies Satisfied
Robot Motion ) Possible
Inverse lLeast-Squares Error = O

Figure 5.4.2
The Mobility Characterization Tree

The inverse solution can be determined, undetermined or overdesermined depending upon the
kinematics (i.e., B, and A,). The top branches test the rank of the (3N x w) matrix By agaiuost
the total munber of wheel varinbles w,  Since the rank of By is the sum of the ranks of all of

the wheel Jocobian uatrices when there are no wheel couplings, we test the rank of cach wheel
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Jacobian matrix J; against the number of wheel variables w; for all wheels ¢ = 1,..., N. The rank
of the (3 x w;) wheel Jacobian matrix J; is w; if the determinant of the matrix [JTJ;] is non-zero
as indicated by the non-redundant wheel criterion in (4.7.15). We refer to branch test (MO) as the

soluble motion criterion because it determines whether the composite robot equation can be solved.

Soluble Motion Criterion

rank(Bg] = w (5.4.1)

Soluble Motion Criterion With No Wheel Couplings

det{JTI) #0 for i=1,...,N

If the determinant of the matrix [JTJ;] is zcro, the associated wheel is redundant. A WMR
having redundant wheels and no wheel couplings is undetermined. We cannot compute the inverse
solution for a WMR. with redundant wheels. Since the inverse solution is utilized in WMR control
(in Scction 6.4), we suggest that undetermined inobility structures (i.e., redundant wheels) be

avoided.

WMRs without redundant wheels allow some robot motions since there is a unique solution
to the system of lincar algebraic equations in (5.2.3) for some p. Branches (M00) and (MO1) test
the rank of the augmented matrix [Bg; Ao} against the rank of By. From their structure in (5.2.2),
the ranks of these two matrices are equal when all of the wheel Jacobian matrices are (3 x 3} and
rank 3 (i.c., all of the wheels are non-redundant and possess three DOFs). The mobility structure
of a WMR is therefore determined if the test at branch (M09} succceds. A determined structure
has a unique solution for all p; i.c., for any desired three dimensional robot velocity vector p there
is a wheel velocity vector q which is consistent with the motion. We thus conclude: The kinematic
design of a WMR allows three DOF motion if and only tf all of the wheels possess three DOFs.

This requiremnent is expressed computationally in the three DOF motion crilerion in (5.4.2).
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Three DOF Motion Criterion

rank(Bo]l =w and A(By) Ag=0 (5.4.2)

Three DOF Motion Criterion With No Wheel Couplings

det[JTI,)#0 and w; =3 for i=1,...,N

If branch (M0) succeeds and the WMR does not possess three DOT's, the solution is overde-
termined (branch (MO01)). The robot does not allow some motions becanse some of the robot
DOFT's are dependent. For example, a WMR with a non-stecred conventional wheel which satisfies
branch (MO0) must have an overdetermined mobility structure because no motions perpendicular to
the wheel orientation may occur without slip. Branches (M010) and (MO011) indicate the possible
robot motions p without slip. If the least-squares error is zcro, the solution is consistent, and the
motion may occur. We thus determine the kincematic constraints on the robot motion by equating
the least-squares error to zero in (5.4 3). By cxamining the structure of the error in (5.4.3), we find

an equivalent computationally simpler test in (5.4.3) when there are no couplings between wheels.

Kinematic Motion Contraints

A(Bo) Agp =0 (5.4.3)

Kinematic Motion Constraints With No Wheel Couplings

AJ)p=0 for i=1,...,N

We may thus determine the kinematic motion constraints for a WMR without redundant

wheels or wheel couplings by conzidering cach wheel indepeudently.

The augmented matrix [A (Do) Aol indicates whether the WAMR posiesses theee DOFs at
brauch (M00) or fewer than three DOFs at bricch (MOL). When there ace fewer than three DOFy,




the number of independent columns of the matrix [A(Bo) A,] specifies the number of dependent’
robot. DOFs. The number of DOFs of a WMR having no redundant wheels is:

Number of WMR DOFs

DOFs = 3 - ranfc[A(Bo) Aol . (5.4.4)

The test at branch (MO) determines whether the complete inverse solution for all of the wheel
variables can bo calculated by the least-squares solution. In Section 5.5, we apply the least-squares
solution to calculate the actuated inverse solution for the actuated whed variables. Although the
actuated inverse solution may exist for some robot velocities p for which the complete inverse
solution does not, it is not practical to apply such an actuated inverse solution because the desired
robot velocities are constrained by the unactuatcd whed variables. We thus utilize the soluble
uiotiop criterion in (5.4.1) to indicate when the actuated inverse solution in Section 5.5 is practically
applicable.

5.5 Actuated Inverse Solution

We calculate the actuated inverse solution by solving for the actuated wheel velocities in
(5.2¢3). Because of the closed-link chainsin WM Its, we need not actuate all of the® wheel variables.
To separate the actuated and unactuated wheel variables, we partition the wheel equation in (5.2.1)
into two components:

P = Jisck* + 3kt o (5,5-)

Tiie "V subscript« dnmle the actuated components and the \f subscript $ denote the utiaciiiated
rondiHiUout;*, \\V lit «; denote t}&* number of actuatrd variables, and u; denote the numlIxT of
Aiiaff »=dfMl varinliit'® for whrcl I'{I'A%. , & Iy = tr)), We® d*fni< tist total uunibrr of actuated wheel
vari,sMr=t to IH» n—ee H\ & & -*...» s «»! M total nnm~T uf nntwtncA whcA vanj«bl<»s to bo

no=* it] v H2 4- ., 4 oo ", \Wv.f5Jj»3tt Hier panitiviird WIUTIL "gtiatiuii™ In {5.5.1) to ivvntc the
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composite robot equation in (5.2.2) as

(élla\
qga
I Ja 0 ... 0 Ju O ... O :
I = 0 ch) 0 J2u dNa (552)
P= ‘ . 0 0 (:ll'.n ’ ..
In O ... 0 Jya 0 ... 0 Jy,J | I
\an/
or

AQP=BoyY, . ' (5,5.3)

The (ZN x w) matrix Bo, and the (to X 1) vector g, are the partitioned counterparts of the
matrix Bg and the vector gin (5.2.2). The soluble motion criterion in (5.4.1) indicates under what
conditions the least-squares solution maybe practically gpplii.nl to compute the inverse solution (i.e*,
ranfcB)] = w). We henceforth assume that the least-squaros solution is applicable and that all
matrix inverses encountered in its application are computable. We apply the least-squares solution
in (5.3.2) to caculate the vector of whed variables from the robot velocity vector:

Zp = (BipBop) ' B, Agp . (5.5.4)

In Appendix 4, we compute the vector of actuated whed velocities'g, = [g" ... q]"a]]T in (55.2)
as.

Actuated Inverse Solution

N\
[JLAtJauJJ{flaf J.AtJau) 0= J<p . (55.5)

Each (a- X }) block row of the matrix »»n flic ri*ht-h;aul /nlc of {* ri.f:). corrospriulin® to the

actuntiul vel<xiti<®s qay involves only the Jaci>I>i.\)i mairix <f wliccl ! Thr inverse* solntiuti for <*ach

53




wheel is thus independent of the kinematic equations of all of the (N — 1) other wheels. When
wheel 1 is non-redundant with three DOFs and all three wheel variables are actuated, cach block
row of (5.5.5) simplifies to
dia = (J71)B - (5.5.6)
We may therefore assume that all of the wheel variables of all of the non-redundant wheels having
three DOT's are actuated, apply the inverse Jacobian matrix in (5.5.6) to calculate the wheel veloc-
ities, and extract the actuated velocities for robot control. This approach requires approximately

one-tenth of the arithmetic operations required for the direct application of (5.5.5).

5.6 Robot Actuation Characteristics

A WMR control enginecring application of the actuated inverse solution (in Section 5.5) is to
command the velocitics of the actuated wheel variables to their calculated values. We investigate the
characteristics of the robot motion when the actuated wheel velocities attain the values computed
by the actuated inverse solution. We relate the robot velocity vector to the actuated wheel velocities
by eliminating the unactuated wheel velocities from the composite robot cquation in (5.2.2). Under
the no-slip assumption, the unactuated wheel velocities will be consistent and comply to the robot
motion. We compnte the unactuated wheel velocities from the robot vclocities in the actuated

inverse solution in (5.5.5) by interchanging the roles of the actuated ("a™ subscripts) and nnactuated

("u” subscripts) variables:

[T,A(3, )Jlul"‘quA(J J)

P7.A(3: 32"] 91,832 p. (5.6.1)

-1
[th‘fu (JNa JNu] JNuA(JNa)

The conditions gnarantecing the computability of the unactuated and actuated inverse solu-
tions are identical and ace indicated in the soluble motion criterion in (5.4.1) . We substitute {5.6.1)

into the partitioned composite robot equation in (5.5.2) to obtain:

I- J],,_{JTNA(Jh;)Jlu]‘—1J'{‘uA‘(J1ﬂ) Jia 0 0
I-J0u[30.A(T2a)002.] 115, A(T20) | 0 Jo. .0
: p=1 =4 da > (5.6.2)
N . : . . 0
1 Inu[3%, ANa)Ind 3%, A(Tx) 0 0 Im
or
A"f) = Buﬁu - (503)
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The robot actuation equation in (5.6.3) has the form of (5.3.1) with A,, Ba, p, and g, playing
the roles of A, B, x, and y, respectively. We apply the solution tree in Figure 5.3.1 to (5.6.3) and
obtain the actuation characterization tree in Figure 5.6.1.

The actuation characterization tree, in analogy with the mobility characterization tree, indi-
cates the properties of the actuation structure of a WMIt. The branch tests are developed from the
solution tree in Figure 5.3.1. We concentrate on the implications of the solutions.

The system of linear algebraic equations in (5.6.3) representing the actuation structure of the
WMIi maybe determined, undetermined or overdetermiiied. If branch (Al) succeeds, the actuation
structure is undetermined and there is no unique solution for the robot motion p. Since we cannot
calculate the robot motion, it is unpredictable, and some robot DOFs arc uncontrollable. We

suggest that undetermined actuation structures be avoided.

If branch (AO) succeeds, we are assured that al robot DOFs are actuated. Specificdly, all
robot motions alowed by the mobility structure can be produced by the actuators. Consequently,
we refer to branch test (AO) as the adequate actuation criterion:

Adequate Actuation Criterion

de*(AjA)) ~ 0 (5.6.4)

If the actuation structure is overdctcrmined (branch’' (AO1)), some of the actuator motions
are dependent. If the dependent actuator motions are consistent (at branch (A010)) robot, motion
is produced, otherwise (at branch (AOil)) whed dlip occurs. Any mechanica couplings between
actuated wlied variables must satisfy the actuator dependencies to dlow robot motion; we therefore
refer to branch test (A010) as the actuator coupling criterion:

Actuator Coupling Criterion

A{A,) B, 4. =0 (5.6.5)

¥
T




rank[ Ay =3
(det (ATA) * 0}

Adequate Actuation Criterion

(AO

Aap - Ba-qa

Robot Actuation Equation

rank[A,] < 3

Uni que Sol utjon
for Some qQ,

Adequate Actuation
AH Robot fOFs Actuated

A(A) Ba=0

Robust Actuation Criterion

(ACO

ROBUST. ACTUATI.ON

ZI (A;) Ba = 8

{AQ)

N/

{det(AT,AL) =

0}

N/

Det er m ned
Uni que Sol ution
for Al (g

Actuator Conflict Impossible

A] t Actuator Motions Trtdupunderii

Overdeterini nad
Uni que Sol utj on
for Some q,

Actuator Conflict Possible
Sone Artuatcr Nctiions Dependent

Undet ermi nad
Uo Unique Solution

I nadequrtte Actuation
Sone Robot DOFs Unact uat ed

IN(A) ByGa= 0 /

Actuator Coupling Criterion

A(A:) B, (o= ©

(A010) A011)

[ nconsi st ent
No Sol ution

_ Consi st ent
Uni que Sol ution

Actuator Confi let
Causi ng Whoel Slip

Ho Actuator Conflict

Figure 5.6-1

The Actuation Characterization IVce
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not satisfied and the system of lincar algebraic equations in (5.6.3) becomes inconsistent with no
solution. We refer to this situation as actuator conflict because the forces and torques produced
by the inconsistent actuator motions generate stress forces and torques within the WMR structure
causing wheel slip instcad of gencrating robot motion. A determined actuation structure (when
branch (A00) succeeds) is robust in the sense that actuator conflict cannot occur in the presense
of actuator tracking crrors. The actuator motions are independent and all possible actuated wheel
velocity vectors map into unique robot velocity vectors. Branch test (A00) is thus referred to as

the robust actuation criterion:

Robust Actuation Criterion

A(A,) B, =0 (5.6.6)

Because of actuator conflict, we snggest that overdetermined actuation structures be avoided.
We recommend actuator arrangements leading to a robust (determined) actuation structure. In
Sections 5.7 and 5.8, we turn our attention to the sensed forward solution and relate the sensed

wheel variables to the robot motion.

5.7 Sensed Forward Solution

The sensed forward solution calculates the robot velocity vector p in (5.2.3) from the sensed
wheel positions and velocities q, anud ¢,. The development of the sensed forward solution parallels
the actuated inverse solution in Section 5.5. The first step is to separate the sensed and not-sensed
wheel velocities and write (5.2.1) as:

P = Jis@ia + JinQin - (5.7.1)
The subscripts *s” and "n” denote the sensed and not-sensed quantities. respectively. The numbers
of sensed and not-sensed variables of wheel ¢ are s; and n;, respectively (ic., s +n; = w;). We
assuine that both the position and velocity of a scused wheel variable are available. We combine
the wheel equations in (5.7.1) for i = 1,..., N to form the partitioned robot sensing cquation, with

all of the unknown robot and wheel positions and velocitics on the left-hand side:

I; -Jin 0 0 ‘:lr: Jia ] 0 ! Qs

—-Ja '.' M ! "" Y '.’ N 1 (.2_, .
1‘2 (.) J"" : (an == b Jg, ' 1. (572)
: : 0 ; : BRI | R /
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or
Anl.)n = Ba(.la . (5.7.3)

We define the total number of sensed wheel velocitics to he s = 81 + ... + sn and the total
number of not-sensed wheel variables to be n = ny + ...+ ny. Thereby, A, is (3N X [3+n]), Pa
is ((3+n] x1),Byis (3N x 8) and q, is (s x 1). We apply the least-squares solution in (5.3.2)
to calculate the vector of robot and not-sensed wheel velocities p,, from the sensed wheel velocity
vector G,

p. = (ATA,) 'ATB,q, . (5.7.4)

In Section 5.8, we develop the adequate sensing criterion in (5.8.4) which indicates the con-
ditions under which the sensed forward solution in (5.7.5) is applicable. In the remainder of this
section, we assume that the secnsed forward solution applies and that all matrix inverses, such as
(ATA,) ' in (5.7.4), are computable.

In contrast to the actuated inverse solution, the least-squares forward solution necd not produce
a zero error because of sensor noise and wheel slippage. In the presense of these crror sources, we
cannot calculate the exact velocity of the robot. Our least-squares sohition does provide au optimal
solution by minimizing the sum of the squared errors in the velocity components. Qur least-squares
forward solution may thus be applied practically to dead-reckoning for a WMR in the presense of

sensor noise and wheel slippage.

In Appendix 5, we solve (5.7.4) for the robot velocities p. We find that

Sensed Forward Solution

p=[AJW) FAQ2) +. .+ AN AT AJ2a)T2e -0 ATNa)Tns)ds
or
p=1.4,. (5.7.5)

A wheel without sensed variables does not contribute any colunms A(J,,,)J;, to (5.7.5). Fur-
thermore, if three independent wheel variables are not sensed. the matvix A(J;,) is zero. We may

thus climinate the kinematic eqnations-of-motion of any wheel which has three not-sensed DOTFs
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in the calculation of the scnsed forward solution. We note that the Jacobian matrix of a steered
wheel depends upon the steering angle. Therefore, if any wheel variables of a steered wheel are
sensed, the steering angle must also be sensed so that J;, and J;, are computable. Since the matrix
[A(J1n) + A(J2n) + ... + A(Inn)] is (3 x 3), solving the system of lincar algebraic equations in

(5.7.5) for the robot velocities p is not a computational burden.

5.8 Robot Sensing Characteristics

The relationship between the sensed wheel variables and the robot motion is the dual of the
relationship between the actuated wheel variables and the robot motion. Our development thus
parallels the discussion in Section 5.6 on actuation characteristics. We begin by rewriting the
composite robot equation in (5.2.2) to relate the robot velocity vector to the sensed wheel velocity

vector. We cxpress the not-sensed wheel velocities in terms of the robot velocitics by applying the

n_n N LN

actuated inverse solution in (5.5.5) with the not-sensed ("n” subscripts) and sensed (7s” subscripts)
wheel velocitics playing the roles of the actuated ("a” subscripts) and unactuated ("u” subscripts)

wheel velocities, respectively:

[Jln Ila)Jln] o T A(Jl )
J‘ J L] J 2l ﬂA J 3 .
an = [J2n A (J20) 2.] A (J2,) 5 (5.5.1)

(52 A Tnn)Inn) TG, AT wn)

The inverse solution is applicable for any WMR satisfying the soluble motion criterion in
(5.4.1). We partition the sensed and not-sensed wheel velocities in the composite robot equation

in (5.2.2) and substitute (5.8.1) for the not-sensed wheel velocities to obtain:

I-- Jl" (J ) } ln.A(Jla) Jls 0 O 0
I- J2rz{ (J ) 1_1.]2"A(J,,) 0 T, 0 )
: p=| . 7 &,  (582)
: ] . ‘e . 0
I- JN"[‘]J\'nA(JN")JNﬂ]- ngnA(JNﬂ) 0 v 0 JIVa
or
Asp = Bota - (5.8.3)

The robot sensing equation in (5.8.3) has the form of (5.3.1) with A,, B,, p, and q, playing
the roles of A, B, x. and y, respectively. We apply the solution tree of Figure 5.3.1 to the robot

sensing equation in (5.8 oblain the sensiny churacierizat©on tree in Figure 5.8. 1.
sensing equation in (5.8.3) to obt tl iny ol ierizalton tree in Figure 5.8.1

r
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The solution of the robot velocity p from the sensed wheel velocities §, may be determined,
undetermined or overdetermined, depending on the matrices A, and B,. In parallel with WMR
actuation, undetermined systems are undesirable because one or more DOFT's of the robot motion
cannot be discerned from the sensed wheel velocitics. Both determined and overdetermined sensing

Vstructures allow a unique solution for consistent sensor motions q,. DBranch (S0) thus provides
the adequate sensing criteria in (5.8.4) which specifies whether all WMR motions allowed by the

mobility structure are discernable through scnsor measurcments:

Adequate Sensing Criterion

det(ATA,) #0 (5.8.4)

The adequate sensing criterion also specifies the conditions under which the sensed forward

solution in (5.7.5) is applicable.

Determined sensing structures provide suflicient informeation for discerning the robot motion.
Overdetermined sensing structures become inconsistent in the presence of sensor mnoise, which is
analogous to the impact of actuator tracking crrors on overdetermined actuation structures. Our
forward solution in (5.7.5) anticipates the overdetermined nature of the sensor measurements and
provides the least-squares solution. In the case of actuation, an overdetermined actuator structure
causes undesirable actuator conflict. In contrast, redundant (and even inconsistent) information is
desirable for the least-squares solution of the robot velocity from sensed wheel velocities. Redundant
information in the least-squarcs solution reduces the cffects of sensor noise on the solution of the
robot velocity. Overdetermined sensing structures are thereby robust and branch test (S01) is

referred to as the robust sensing criterion:

Robust Sensing Criterion

A(A,) B, #0 (5.8.5)
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Wheel Slip Criterion

A(A,) B,g, #0 (5.8.8)

In Section 6.5, we detect wheal slip by applying the fact that the system of linecar algebraic

cquations in (5.8.3) of a robust scnsing structure becomes inconsistent in the presence of wheel slip.

5.9 Conclusions

We have combind the equations-of-motion of each wheel on a WMR to formulate and solve the
composite robot cquation. The actuated inverse solution in (5.5.5) computes the actuated wheel
velocities from the robot velocity vector and is applicable when the soluble motion criterion in
(5.4.1) is satisfied. We have shown that the actuated inverse solution is calculated independently
for cach wheel on a WMR. For wheels which possess three DOFs, the acinated inverse solution
is calculated directly by applying the inverse wheel Jacobian matrix. The actuated velocities are

then extracted for robot control applications.

The sensed forward solution in (5.7.5) is the least-squares solution of the robot velocities in
terms of the sensed wheel velocities and is applicable when the adequate sensing criterion in (5.8.4)
is satisfied. The least-squares forward solution, which minimizes the sum of the squared crrors in
the velocity components, is the optimal solution of the robot velocities in the presense of sensor
noisc and wheel slippage. We have found that the sensed forward solution may be simplified by
climinating the cquations-of-motion of wheels having three not-sensed DOFs because they do not
affect the solution. If any variables of o steered wheel are sensed, the steering angle must also be

sensed.

We have discussed the nature of solutions of the composite robot equation and their implica-
tions for robot mobility (in Section 5.4), actuation {(in Section 5.6) and sensing (in Scction 5.8).
We have developed the mobility characterization tree in Figure 5.4.2 to characterize the motion
propertics of a WMR. The implications of the wmobility characterization tree are suunmerized by
the following insights. If the seluble motion criterion in {5.4.1) is satisficd, the actuated inverse
solution, actuation and sensing trees, and the WMR DOF caleulation in (5.4.4) are applicable.
The three DOF motion criterion in (5.4.2) indicates whether the WMR kineinatic structure allows
three DOF motion. If the kinematic strucoice does noi allow three DOF notion, the Frematie

motion constraints are computed accordiug to (5.4.3). The mwunber of WAMR DOFs are calculated
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from (5.4.4).

The implications of the actuation characterization tree in Figure 5.6,1 are summarized by three
criteria. The adequate actuation criterion in (5.6.4) indicates whether the number and placement
of the actuators is adequate for producing all motions allowed by the mobility structure. If the
adequate actuation criterion is not satisfied, some robot DOFs are uncontrollable. The robust
actuation criterion in (5.6.6) determines whether the actuation structure is robust; i.e., actuator
conflict cannot occur in the prcscnse of actuator tracking errors. |If the actuation structure is
adequate but not robust, some actuator motions are dependent. The actuator coupling criterion
in (5.6.5) calculates those actuator dependencies which must be satisfied to avoid actuator conflict
and forced wheel dlip.

The sensing characterization tree in Figure 5.8.1 indicates properties of the sensing structure
of a WMR. The adequate sensing criterion in (5.8.4) indicates whether the number and placement
of the wheel sensors is adequate for discerning all robot motions allowed by the mobility structure.
The robust sensing criterion in (5.8.5) indicates whether the sensing structure is such that the
calculation of the robot position from wheel sensor measurements is minimally sensative to wheel
dip and sensor noise. The wheel dlip criterion in (5.8.6) provides a computational algorithm for
detecting wheel dlip in robust sensing structures.

In Section 65 we address the question of three versus two DOFs, the design of VVMRs to satisfy
kinematic mobility characteristics, and control engineering applications of WMR kinematics. Then,
in Section 7, we apply the kinematic modeling of Section 4 and the actuated inverse and sensed
forward solutions to prototype WMRs.
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6. Applications

6.1 Introduction

WMR kinematics play-fundamental roles in design, dynamic modeling, and control. In this
section, we illustrate four practical applications of our kinematic methodology: design, dead reck-
oning, kinematic feedback control and wheel dip detection. We are continuing our study of WMRs
by applying our kinematic methodology to the dynamic modeling of WMRs (in Section 9). In
Section 6.2, we apply the composite robot equation-of-motion in Section 5 to the design of WMRs.
We explain how WMRs can be designed to satisfy such desirable mobility characteristics as two
and three DOFs, and the ability to actuate and sense the DOFs. Dead-reckoning is presented in
Section 6.3; the robot velocity calculated from wheel sensor measurements is integrated to calculate
the robot position in real-time. We highlight a kinematics-based WMR control system (in Section
6.4) by applying the actuated inverse solution in the feedforward path and dead reckoning in the
feedback path to reduce the error between the actual robot position and the desired robot posi-
tion. Knowledge of the robot dynamics will improve control system performance. We apply the
kinematic eqgiiations-of-riiotion to delect wheel dlip in Section 6.5. When a WMR detects the onset
of whed dlip, the current robot position is corrected by utilizing dower absolute locating methods
(such as computer vision) before continuing motion. The feedback control system can thus track
desired trajectories more accurately by continually ensuring an accurate estimate of robot position.
Finally, in Section 6.6, we summarize the four applications.

6-2 Design

Just as studying the composite robot equation enables the determination of such mobility char-
acteristics as the number of DOFs, we may design a WMR to possess desirable mobility character-
istics. Desirable mobility characteristics which die determinable from an analysis of the composite
robot equation are two or three DOFs, and the ability to actuate and sense the motion robustly.
By robust we mean that the robot motion is insensitive to actuator tracking errors and that the
calculation of the robot position from sensor mestmromc?uts is insensitive to sensor noise and whee
dippage, Designing a WMR to satisfy the desired mobility, actuation and sensing characteristics
b<#arc construction facilitates the subsequent control system design.

A gcwral-purpo®e WMR hau the ability to move along an X-Y path with an orientation
trajectory 0, TI*o WMRfrhu*sis capable of routrolled motion hi the three dimensions x, ¢, and
0 at dl times, or equivalently possesses three* DOFs. Thik mobility tiiaractorLstic is sometimes
rifrir**'l to @> onumilirrrtionaiityjl]. For ;; WMR to operate successfully wiih ihreo DOFs, it imitft
cmhfitly the important rhfirarteriotks tubulate*! in Table 0.2,1 and clitiis’rd below. Fits!., it must
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allow three DOF motion. A WMR which possesses three DOT's satisfies the three DOT motion
criterion in (5.4.1). An ommidirectional WMR design must thus consist of ball, omnidirectional
or non-redundant conventional wheels to allow three DOT motion. A castered backrest used by

mechanics for working underneath automobiles has this characteristic.

Table 6.2.1: Design Criteria for an Omnidirectional (3 DOF) WMR

Three DOF Motion: del[J7J,]£0 and w; =3 for i=1,..,N
Adequate Actuation: det[ATA.]#0

Robust Actuation: a=3

Adequate Sensing: det[ATA,]#0

Robust Sensing: s>3

Sccond, all three of the robot DOFs must be actuated to produce motion in three DOFs. The
placement of wheels and actuators in the WMR design must be chosen to satisfy the adequate
actuation criterion in (5.6.4). We require that the actuator structure satisfy the robust actuation
criterion in (5.6.6) to avoid actuator conflict. The robust actuation criterion states that there
be exactly three actuated wheel variables for the special case of three DOTF motion. If there are
more than three actuators, their motions must be dependent because robot motion occurs in three
dimensions. If there are fewer than three actuators, some robot motions are not actuated and thus

not controllable. The design should thus include only three actuators to cnsure robust control.

The Uniwation robot (in Section 7.2) has three actuated omaidivectional wheels {Troas-
whemor) and is an example of a WMR having a robust actuation strueture. Uranus (in Section 7.4)
has four actuated omnidirectional wheels (Tetroas-whemor) and is not robust because the actuator
motions are dependent. In Section 7.4.5, we examine an alternate design of Uranus haviug a robust
actuation structure. Our study of Uranus provides a technique for redesigning adequate actuation

structures to be robust.

The third requirement for an omnidirectional WMR is that a control system (e.g., the kincmatic
fcedback control system in Section 6.4) commaunicates signals to the actuators so that the WMR
follows a specilied (z, y, 0) trajectory.  An omnidirectional WMR which calculates its present

position from wheel shalt encoder measurements and coatrols the actuators to reduce the error




between the desired robot position and the actual robot position possesses this characteristic. To
calculate the robot position from whed shaft encoder measurements, the wheel sensors must be
positioned so that the robot motion may be discerned in three DOFs. To discern any robot motion,
the sensing structure must satisfy the adequate sensing criterion in (5.8.4). We require a robust
sensing arrangement (i.e., the WMIt design should include more than three wheel sensors) to adlow
robust calculation of the robot position from wheel sensor measurements.

A WMR which docs not dlow three DOF motion has singularities in its workspace. At a
singularity, the WMR cannot attain motion along one or moi'e dimensions (i.e.,, re y, or 0). We
may determine the kinematic motion constraints of a WMR alowing fewer than three DOFs by
computing (5.4.3). Once a WMR design possesses the desired mobility characteristics, we apply
the actuation and sensing criteria in Sections 5.6 and 5.8 to verify that the actuation and sensing
structures are adequate or robust.

A WMR with two DOFs dlows locomation along any X —Y path and thus has wide applicabil-
ity for parts and materials transport. Topo[27], Newt (in Section 8.3), and Shakey[52] each possess
two DOFs utilizing two diametrically opposed conventional drive wheels. Those bicas-poiyesun-
whemors aso have 0,1, and 2 casters, respectively, for stability. Wo show in Section 7.3 that a
design utilizing two diametrically opposed drive whedls is appealing hocanse ot its mechanical and
modeling simplicity. Because of the practical advantages of two diametrically opposed drive whedls,
we recommend the application of bicas-polycsun structures for all tasks requiring fewer than three
DOFs. This guideline simplifies the design process for the majority of parts and materials transport
applications.

6.3 Dead Reckoning

Dead reckoning is the real-time calculation of the WMII position from wheel sensor moo.sure-
merits. The current robot position is utilized by closed-loop robot control systems, performance
monitoring processes and high-level robot planning processes. The least-squares sensed forward
solution in (5,7.5) is the exact solution for the robot velocities under tlio tuwdip pssumplion, if
the whed sensing structure is adequate*. The adequate sensing criterion is a prerequisite*for imple-
menting tliree dimensional dead reckoning. To determine the robot position in real-time, the robot
velocity is integrated over each sampling period. Since the dead reckoning calculation is erroneous
whou whed dip occurs, an dternate* method of determining the robot position (e.g., computer
vision) must be applied to correct the position calculation before dead reckoning is continued. In
Section 0,5, we propose a method to detect the onset of whed ttlip.

TIw integration betin* when the robot h at et or has a d«w*ed initial. velocity "pni?). The
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initial robot position Fpr(0) is either specified or sensed. We assume that the robot motion
is adequately modeled by piccewise constant accelerations! since the robot is being actuated by
constant force/torque gencrators in each sampling period (the same sampling period as the dead
reckoning process). The robot velocity Rip in the sampling period from: time t = (n—1)T to time

t=nT is

Bpr(nT) — Rpr[(n - 1)T]
T

fpr(t) = Bprln - 1)T] + (¢t - [(n — 1)T]) (6:3.1)

where the robot velocity R pr(nT) at each sampling instant is calculated by the scnsed forward
solution in (5.7.5). We transforin the robot velocity to the floor coordinate system by applying the

velocity transformation in (4.7.18):
Ppr(t) = V(n - 1)T] Bpr(t) . (6.3.2)

We use the angular position of the robot at the sampling instant ¢ = (n -- 1)T to calculate the
motion matrix V|[(n — 1)7T] since the current angular robot position at time ¢ is unknown. We
calculate the robot position at the current sampling instant ¢ == nT by integrating the velocity over

the sampling period and adding the result to the robot position at sawmpling instant ¢t = (n — 1)T"

nT
Fpr(nT) = Fprln—-1)T] + i) For(t)dt . (6.2.3)
n—1)T

By subtituting (6.3.1) and (6.3.2) into the integral in (6.3.3), we express the present robot position
in terms of the position at the last sampling instant and the robot velocity at the present and last

sampling instants:

Dead Reckoning Update Calculation

Fpr(nT) = Tpg((n - V)T] + %V{(ﬂ— 1)T] {Rl"!zi(ﬂ - 1)T] + Rfm("T)} (6.3.4)

The computational load for dead reckoning is thus the calculation of the seused forward solution

in (5.7.5).

1 we apply this assuaption ss an example. For a specitic WMR. it wmay be necessary to atilize higher-ozder

models of the velocity trajectory.
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6.4 Kinematics-Based Feedback Control

The documented WMR control systems are kinematically based[33, 17); i.c., they do not
incorporate a dynamic modcl of the robot motion. A reference robot trajectory is provided by an
independent process (the trajectory planner) and the task of the control system is to produce signals
to the wheel actuators so that the WMR tracks the reference trajectory. This is accomplished
by wheel level or robot level control (in analogy with joint space or cartesian spaceAcontrol of

manipulators [12, 68]).

For wheel level control, the reference robot trajectory is applied to gencrate trajectories for
each wheel actuator by calculating the actuated inverse solution. Each wheel actuator is then
servoed independently to its calculated trajectory. Each wheel controller may utilize wheel scnsors
for feedback and a dynamic model of the wheel operating independently, but does not compensate

for coupling forces between wheels[50].

Robot level control which utilizes feedback at the robot level is more desirable than wheel level
control. A kinematics-based robot level control system is diagramed in Tigure 6.4.1. Directed
arrows indicate the flow of information. The number of scalar variables represented by cach arrow
is indicated within the body of the arrow. The computer control algorithm to he executed at cach
sampling instant T is cnumecrated in Table 6.4.1 and the sequence of steps is indicated in Figure
6.4.1. At time nT, we scnsc the wheel variables q, (nT) and q,(n7") and the desired robot position
vector Fpy(nT) in Step 1 of Table 6.4.1 . The (3 x 1) sensor gain vector k, scales the sensor signals.
In Step 2, we apply the sensed forward solution in (5.7.5) to compute the robot velocity Rf) r(nT).
We apply the dead reckoning update in (6.3.4) in Step 3 to compute the robot position Fpgr(nT).
We compare the reference robot position Fpg(nT) with the actual robot position Fpp(nT) (in Step
4) to calculate the robot position error Feg(nT). The position error is multiplied by the (3 x 3)
feedforward gain vector ky and is then transformed to the fobot coordinate frame by applying the
inverse motion matrix V. *(nT) in Step 5. Under the assumption that the robot tracking error
remaius small, the robot position error Rey, is treated as the differential displacement R§p - This
robot differential displacement is transformed into actuator displacements 8q, (as velocities are

transformed) by applying the actuated inverse solution in Step 6:
6q, =3, Répy, . (6.4.1)

In Step 6, we also multiply the computed actnator reference velocities q, by the (a x 1) actuator
gain vector k,. The actuator gain vector is the ratio of the actuator set-points to the steady-
state actuator veloeitics under nominal operating conditions and must he determined empirically,
The (3 x 1) feedforward zain Ky is also adjusted experimentally to provide a fast robot tracking

response without excessive robot overshoot or oscillations about the refercuee trajectory. In Step
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7, the resulting actuator set-points are then communicated to the actuator hardware.
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Kinematics-Based WMR Control System

©

1.) Sample q,(nT), §,(nT) and Fpu(nT)

2.) Compute and Store fzf)n(nT) = kyJ,q,(nT)

3.) Compute and Store Fpr(n?) = Ppgl(n — 1)T]+ FViin = )T){"pr{(n - 1)T]+ #pr(nT)}
4.) Compute Fer(nT) = Fpu(nT) - Fpr(nT)

5.) Compute Rep(nT) =k;V (nT)Fep(nT)

6.) Compute qu(nT) = kaJ‘,ch(nT)

7.) Communicate the Computed Set-Poivts g, (n7") to the Actuators

Table 6.4.1: Kinematics-Based WMR Control Algorithm
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Over the past twenty years, manipulator control systems have improved progressively; from
independent joint-space control[55], to kinematics-based cartesian-space control[68], to dynamics-
based cartesian-space feedback control[42], to robust dynamics-based feedback control[65] and adap-
tive control algorithmg[21]. We anticipate that future WMR control systems will aso incorporate
kinematic and dynamic models. Present WMR control system designs are independent wheel level
controllers. Future WMIt control systems will improve performance once a kinematic methodol ogy
(such as our present paper) and dynamic models (outlined in Section 9) become available.

6.5 Wheel Slip Detection

In Section 5.7, we computed the WMR velocity vector from the wheel sensor measurements
(i.e., the sensed forward solution), and in Section 5.8 we discussed the characteristics of the solution.
We can discern all WMR motions if the adequate sensing criterion is satisfied. If the sensing
structure is adequate but not robust, the eguations-of-motion will be consistent irrespective of the
prescuso of wheel dip and the error in the least-squares forward solution will be zero. In contrast,
for a robust sensing structure (i.e., a sensing structure satisfying the robust sensing criterion), the
kinematic cquations-of-tnotion are inconsistent in the presence of whed dlip. The error in the least-
squares forward solution is then greater than zero. We therefore propose to detect the occurrence
of wheel dippage for a WMR having a robust sensing structure by calculating the error in the least-
sguares solution. In the improbable case that all wheels on a WMR dlip simultaneously in such a
manner that the eguations-of-inotion remain consistent, our method will fail to detect the wheedl
slip.

In practice, sensor noise can dso cause the kinematic equations-of-motion to become incon-
sistent, but we expect that the least-squares error due to sensor noise will bo small in comparison
with the error cruised by whed dippage. Instead of testing the least-squares error against zero,
we propose to compare it with an error threshold e set by the worst case sensor noise error. If
the least-squares error in the forward solution exceeds the threshold,, we conclude that, whed dip
has occurred. When a WMR detects that wheel dip has occurred, it should resort, to absolute
methods of determining its position (e.g., computer vision, ultrasonic ranging sensors, and laser
rangefinder* ?) before continuing the dead-reckoning calculations. Since current locating methods
are computationally dow relative to the robot motion, the WMR should halt motion until its dead
reckoning calculations are updated by tlie absolute locating method.

Calculation of the sHwisy forward solution in (5.7.5) is the first step in determining the least-
squang error. The calculated robot velocity vector "pn is substituted for the actual rol#ol. velocity
vector in the ro*ol mixing equation (5.8.3). Tin* Imsi-squaies error vector ¢ Is calculated by
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subtracting the right-hand side of (5.8.3) from the left-hand side:

e = A, Bpp ~ B, 4, . (6.5.1)

We calculate and compare the norm of the least-squares error [eTe] with the scalar threshold

e, If the norm of the least-squares error exceeds the threshold, we conclude that wheel slip has

occurred:

Detection of Wheel Slip

If efe > €2, wheel slip has occurred . (6.5.2
t

We note that (6.5.2) is, in principle, equivalent to the wheel slip criterion in (5.8.6) and has
the added advantage that the sensed forward solution in (5.7.5) is computed as an intermediate

result. The sensed forward solution may then Le applied to dead-reckoning and WMR. control.

6.6 Summary

We have applied our kinematic methodology to the design, dead reckoning, kinematics-based
feedback control and wheel slip detection for WMRs. By proper choice of the wheel type and
placement, and the actuator and sensor placement, we may design two and three DOF WMRs.
Specifically, we must satisfy the criteria in Table 6.2.1 to achicve a robust omnidirectional WMR
design. Tor two DOFs, a WMR design having two diametrically opposed drive wheels, bicas-
polycsun-whemor (c.g., as on the WMRs Newt, Shakey, and Topo), has both mechanical and
modeling advantages over other designs. Dead reckoning is the real-time integration of the robot
velocity to obtain the robot position. The robot velocity is first calculated by applying the sensed
forward solution. We integrate the robot velocity by the update algorithm in (6.3.4) which is
a linear function of the robot position and velocity. Currcut WMR control systems incorporate
wheel level algorithms. We have introduced a kinematics-based robot level algorithm which relies
on dead reckoning for feedback, and the actuated inverse solution to caleulate actuator inputs as
feedforward control signals. Future WMR control systems will exhibit enhanced performance by
incorporating dynamic models and absolute position feedback. As our final application, we have
proposed to detect wheel slippage in robust sensing structure: by calenlating the least-squares error
in the sensed forward polution, If the error excecds a threshold which can be attributed to wheel

sensor noise, we conclude that wheel ¢lip has oecurred. By detecting the ouset of wheel slippage,
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and correcting the calculated robot position with an absolute locating device, the WMR will follow

planned trajectories more accurately.

We are also applying our kinematic methodology to the dynamic modeling of WMRs (in Section
9). By analogy with manipulator dynamic modeling, our kinematic mcthodology will serve as the
foundation upon which to formulate the dynamic models. In contrast to manipulator dynamics,

we must resolve the special problems of closed-link chains and higher-pair joints.

We note that the composite robot equation in (5.2.2) and the actuated inverse and sensed
forward solutions in (5.5.5) and (5.7.5) are essential components of these applications. In Section 7,
we apply our kinematic methodology to specific WMRs. For cach WMR, we calculate the actuated
inverse and scused forward solutions, where applicable, and characterize their mobility, actuation

and sensing structures.




7. Examples

7.1 Introduction

We illustrate the kinematic modeling of sx WMRs. the Unimation robot, Newt, Uranus,
Neptune, Pluto, and the Stanford cart. For each WMR, we provide four kinematic descriptions. a
written description, atop and sde view sketch, the symbolic diagram and the kinematic name. We
assign the coordinate systems to create the coordinate transformation matrices. We then form the
wheel Jacobian matrices by substituting elements of the coordinate transformation matrices into
the symbolic whed Jacobian matrices in Appendix 3. We determine the nature of the mobility,
actuation and sensing structures to gain insight into the mobility characteristics of the WMR. We
compute the actuated whed velocities from the robot velocity vector (i.e., actuated inverse solution)
and the least-squares robot velocity vector from the sensed whed veocities and positions (i.e,
sensed forward solution) when the mobility analysis indicates that these solutions are applicable.
We complete each example with remarks on its kinematic structure and its suitability for particular
tasks.

7.2 Unimation Robot
7.2.1 Kinematic Description

The Unimation robot[14] illustrated in Figure 7.2.1 utilizes three symmetrically positioned
omnidirectional whedls with rollers at 90°. A motor actuates each whed and tlic velocity of each
whed is measured by shaft encoders. The rollers are neither actuated nor sensed. The coordinate
system assignments and pertinent robot dimensions are shown in the figure.

7.2.2 Coordinate Transformation Matrices

We write the coordinate transformation matrices in Table 4.4.2 from Figaro 7.2.1:

"0-10 (O
R _ 1 0 0 Ig H, - 1
T =106 o0 1 —:,,J @5, = TC‘_I
1 =
0O 0 O

V3/2 12 0 3, /2N
r o -1/2 VE2 0 -«f2 )
Tm=1 9 "9 1 -
0 0 o 1
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-\V32 12 0 -v33./?
RTH3 = _1(42 _\/3/2 (:)L 'I_\E]Z Haq‘sa = 33']:'(3's =1I.
0 0 0 1
Uni mation Robot
( Tr oas- whenor)
P "31 - 90|‘ zt
Qe )) R o,
wheel radius * R
roller radius * r
1h
| O
v ¥
fltse z-ax©s irt out of tite pig®) * “a y Cz x
Top View Side View
Figure 7.2.1
Coordinate System AHsgnrnenta for the Urifcuiiiou Robot
74




7.2.3 Whecel Jacobian Matrices

We substitute the elements of the transformation matrices, the wheel and roller radii, and the
roller angles:into the symbolic Jacobian matrix for omuidirectional wheels in (A3.4.2) to write the

matrix wheel equations:

VR - 0 la Wy, x
p=|vn | = 0 r O Ww.r | =J1 (7.2.1)
wn 0 0 1 W, =
YRz R/2  V3rj2  —1,)2 Wapy z
p=|vr, | = VBR/2 -r/2 —V32l./2 Wayr | = J2q2 (7.2.2)
wr 0 0 1 Wayg z
VR R/2 —\/3r/2  —1,/2 Wapsz
p=|wvg | =|-V3R/2 -r/2 V3.2 Waogr | = J3ds (7.2.3)
wr 0 0 1 Wiy 2

7.2.4 Mobility Characteristics

To characterize the robot mnobility, we note thiat the soluble motion criterion is satisfied.
Therefore, none of the wheels has redundant DOFs and the actuated inverse solutiou is applicable.

Since the three DOF motion criterion is also satisfied, the Unimation robot allows 3-DOF motion.

We calculate the adequate actuation criterion det[ATA,] = 2712 /4 as the first step in charac-
terizing the actuation structure, Since the determinant is nonzero, all robot motions are producable
by the motions of the actuators. The value of A(A,) B, is zero which indicates that the robust
actuation criterion is also satisfied. The actuator motious are independent and no actuator con-
Hict can occur. Siuce the adeynate sensing criterion is satisfied but the robust sensing criterion is
not, the sensing siructure is adequate but not robunst. Although the sensing structure allows three
DOFs to be discerned by applying the sensed forward solution, wheel slip cannot be detected by

the method of Scction 6.5.

7.2.5 Actuanted Inverse Solution

Since the soluble motion eriterion is satisfied, the actuated inverse solution is computable. The

actuated inverse selution in (5.5.5) applics directly:

. g 1 .
( Qi ) T A(T) 0] [.x{‘,,.fz(Jm;
Gra | = | BT A3 ) 2] TN A(T2) | P,
e T A ] I AT

75




resulting in

Wy, -1 0 la VRz
wupz | =1/R| L/2 VB2 I, vy | - (7.2.4)
Wy z 1/2 —-vV3/2 1. WR :

7.2.6 Sensed Forward Solution

Since the adequate sensing criterion is satisfied, the sensed forward solution is computable.

We apply the least-squares sensed forward solution in (5.7.5):

qu
f)z[A(Jln)+A(J2n)+A(JSn)]—I[A(Jln)Jla A(JZn)J2a A(J:}n)JSe] élZa
('133
and obtain
VR -2/3 1/3 1/3 W,z
vgy | =R 0 V3 =1/V3 | | Wape | - (7.2.5)
wr 1B3l) 1/GL) 1/(3l) ) \ wawe

7.2.7 Remarks

The Unimation robot is a general-purpose three DOF WMR. It allows threc DOF motion, has
adequate actuation to producc three DOF motion, and has adequate sensing to discern three DOF
motion. The actuated inverse and sensed forward solutions are computable in real-time, cnabling
accurate closed-loop control. The low ground clearance, which only allows locomotion on smooth,
level surfaces is a disadvantage of the design. The mechanical complexity of the omnidirectional
wheels increases the cost and difficulty of fabrication. It is difficult to comstruct perfectly round
omuidirectional wheels when the rollers are at 90° because of the discoutinuities between rollers.
An improved wheel design allowing cirenlar omnidirectional wheel profiles hias been implemented
for Urauus (in Section 7.4). We have noted that the sensing structure does not allow wheel slip
detectiou by the method of Section 6.5. Although the wheel variables which are not-sensed are
difticult to instrument, an additional instrumented caster can be added to the design to provide

practical robust scusing and wheel slip detection.

Three DOTF locomotion is not necessary for parts and materials transport. A transport WMR
may operate with two DOFs. The three DOF locowotion is advantageous when utilized with
an enboard maninalator. The mobility of the WMR cnhinnees and extends the workspace of the

manipulator. Couseguently, a manipnlator having fewer than six DOVs ounted on the WMR
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has an unlimited workspace and can accomplish the tasks of a stationary maunipulator having six

DOFs. |

7.3 Newt

7.3.1 Kinematic Description

Newt[32] is a WMR having two diametrically opposed drive wheels and a free-wheeling castor,
as shown in Figure 7.3.1. Both drive wheels are actuated and sensed, while the castor is neither

actuated nor sensed.

Newt

(Bicas-unicsun-whemor) : b

(Castor shown parallel to Flour y-axis)

(The x-axes are out of the page)
(The z-axes are out of the page)

R >y AN

radius = R

radius = r iy __t{__>y O ’ T

Side View

Top View

Figure 7.3.1

Coordinate Systein Assipynments for Newt
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7.3.2 Coordinate Transformation Matrices

The coordinate transformation matrices for Newt arc:

L0o0 I
010 0
"Tm=19 01 has, =5Tg, =1
00 0 1
100 =l
010 0 -
Tm=1g ¢ 1 - M5, =9 Tg, =1
000 1
1 0 0 0 cosflyg, —sinfg, 0 O
0 1 0 -1 sin 0 cos 0 0 0
R _— b Hj — Sa 33
Taa =10 0 1 —(le—1) Bs, = 0 0 10
000 1 0 0 01
100
Sm_ _ 10 10
Tes=19 0 1
000

7.3.3 Wheel Jacobian Matrices

The radii of wheels one and two are identical: Ry = Ry, = R, and the radius of whecl three
is B3 = r . By applying the Jacobian matrix for non-steered conventional wheels in (A3.2.2), we

write the matrix eguations for drive wheels one and two:

| (""‘*"’) =31 (7.3.1)

wwlz

(w‘"”) = Jady (7.3.2) .

Wy z )

Similarly, by applying the Jacobian matrix for a steered conveational wheel in (A3.3.2), we

78




write the matrix equation for wheel three:

YRz —Rsin 033 —lc cos 033 - lb lb Wwaz
P=|vry | = Rcosfg, —l.sinlg, 0 Wawsz | = Js ds . (7.3.3)
WRz 0 1 -1 ws,

7.3.4 Mobility Characteristics

The soluble motion criterion is satisfied, indicating that the actuated inverse selution is appli-
cable and none of the wheels is redundant. Since w; = 2 for wheels one and two, the three DOF
motion criterion is not satisfied. The robot has fewer than threce DOFs; i.c., some robot DOF's are
dependent. The matrix product [A(Bg) Ap] has rank one, and according to the expression for
the number of WMR DOF's in (5.4.1), Newt has two DOFs. The kincmatic motion constraints for
wheels onc and two simplify to vp: = 0. Wheel three imposes no coustraints on the robot motion.
The WMR thus allows independent motion in two DOFs: ¥ and 0.

We determine the actuation structure by fivst calculating the adequate actuation criterion
det[AT A,] = 812, This indicates that all robot DOFs are actuated (i.c., all robot motions in the
Y and 0 dircctions may be produced by the actuators). We find further that the robust actuation
criterion A(A,) Bs = 0 is satisfied. All actuator motions are indcpendent, providing robust
two DOF actuation. The sensing structure is adequate but not robust because the scnsed wheel
variables and the actuated ones are identical. Even though the sensing structure is nof robust, the

scnsed forward solution is applicable.

7.3.5 Actuated Inverse Solution

Although the actuated inverse solution is applicable, only robot mnotions for which the trans-
lational velocity vy is zero are possible. This means that the actuated inverse solntion will be the
exact solution if the X-compouent of the robot velocity is chosen to be zero. If the X-component
of the robot velecity is non-zero, the actnated inverse solution will be computable, but it will he
erroncous. The result in this case will be the optimal sct of actuated wheel velocities which 1oin-
imizes the least-squares error between the desired robot velocity and the resulting robot velocity.

We apply the actuated inverse solution in (5.5.5):

(fu..') - (fJ'{t.A(JW)Jms ’3'{.,:&(3“3) o
feu LA I A
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and obtain

I

. YRz
W,z 1/0 1 |,
<ww,> E(o ! —1a> omy | - (7.3.4)

7.3.6 Sensed Forward Solution

Since the sensing structure is adequate, the sensed forward solution in (5.7.5) is applicable:

b= [AW1n) + Aldzn) + Alsn] ! (AT AT2)32] (3) ,

28

and hence

YRz 0 0 w
vRV = R/(ZIa) la la (w-w;z) . (735)
WR 1 -1 wiz

The X-component of the robot velocity is zcro independent of the sensor measurements. The
Y -component of the robot velocity is proportional to the sum of the wheel velocitics, and the

O-component is proportional to the difference of the wheel velocities.

7.3.7 Remarks

Newt is a general-purpose robot for tasks requiring only two-dimensional motion. Any path in
a plane can be traced by a WMR possessing two DOFs. Sinee the vast majority of existing WMRs
are applied for transporting parts, materials, and tools from one point to another along a path,
Newt has wide applicability. The simple mechanical design is advantageous over omnidirectional
designs because it requires fewer parts and has reduced cost. A robust sensing structure may be
obtained by sensing the wheel and steering velocities of the castor. Au important feature of this
design is that the dead-reckoning integration calculations for the angular position of the robot are
not required. If no wheel slip occurs, the angular robot position can be calculated at any time nT'
according to
Fop(nT) =

SR

[0, 2(nT) = 0,,:(nT)] + Tor(0). (7.3.6)

The computational ervors due to fnite precision limits and sensor noise do not accumulate in the

calenlation of F0,(nT) as they would i the dead reckoning integration in (6.3.4) were required.
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Trom our analysis, we conclude that Newt has two DOTF's in the Y and 0 directions. If the
robot coordinate system is assigned at any point along the robot Y-axis except zero, the two DOF's
will be X and Y. If the robot coordinate system is rotated 90°, the two DOFs will be X and 6.
Tinally, if the robot coordinate systemn is assigned to an arbitrary position not on the X or Y axes,
the two DOFs cannot be specified by two of the three components X, Y, and 0. We conclude
that the number of DOFs of a robot is independent of the assignment of coordinate axes, but the

allowable directions of motion depend upon the placement of the robot coordinate systen.

7.4 Uranus

7.4.1 Kinematic Description

Uranus[49] has the kinematic structure of the Wheclon wheelchair {2]: four omnidirectional
wheels with rollers at 45° angles to the wheels. The coordinate system assignments and robot

dimensions arc shown in Figure 7.4.1.

7.4.2 Coordinate Transformation Matrices

Since there are no steering links, the coordinate transformation matrices for Uranus are:

100 I
010 !
"Tm=1y o 1 —Z,\ M@, = 51Tq =1
000 1
100 -
010 1
RTHa = 0 0 1 _3‘. | H"I’sl = S’Tc,_, =1
000 1
100 -l
01 0 -l
Tm==19 0 1 —zf | Tds, = T, =1
000 1
L oo I
010 - ;
n _ b Hig,. — Samp .
Toe=10 0 1 - i Teo =1
000 1
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Figure 7,41

Coordinate System Assignments for Uranus

7.4*3 Wheel Jacobian Matrices

Theradius alignments are iz = R = RF=R& = 72 andr+ =r-i =r$ =r4 = r, and the
roller angled are rji 2 13 = —45°, and » = "% = 45°. Tho Jarobian matrix for onniidircjctional
wliw*k in (AS*4.2) dlows IIB to write the cquation-of-motiou for each wheel;

Vs 0 “-r\/?-/z 15 Wy, o
palmy | =R ryd2 L} | wee | =31
wp 0 0 1 Wen, 3

a2

(7.4.0)




Y Rs 0 rv2/2 |, W,z
p=|vr, | =R -rv2/2 L, Wayr | = J2da (7.4.2)

WR 0 0 1 Wapyz

VR 0 -rv2/2 -1 Wapgz
p=lovm | =R -rV2/2 L Wuwsr | = Jsds (7.4.3)

\ WR 0 0 1 Wuwyz

YRz 0 rV2/2 -l Wz
p=|ovn | =| R -rV2/2 -l Ww,r | = Jada (7.4.4) .

wr 0 0 1 wuuz

7.4.4 Mobility Characteristics

Since the soluble motion criterion is satisficd, the actuated inverse solution is applicable and
none of the wheels has redundant DOFs. Furthermore, the three DOTF criterion is satisfied and the

inotion structure is capable of three DOF motion.

The adequate actnation criterion yicelds: det[ATA,] = 64(l, + ;)%. The actuators are thus
able to provide moticn in all thrce DOFs. We find that the rebust actuation criterion is not
satisfied. The actuation structure is thus not robust and actuator conflict may occur. The sensed
and actuated wheel variables arc identical so that the sensing structure is robust which allows the
detection of wheel slip by the method of Section 6.5. The sensed forward solution is therefore

applicable.

7.4.5 Alternative Designs

Uranus is a convenient WMR with which to develop an understanding of the differences between
imadequate, adequate and rebust actuation {sensing) structures, and the neced for a kinematic
analysis in the design of a WMR. We have shown that Uranus has an adequate but not a robust
actuation striicture which provides motion in all three DOFs, but allows actuator conlilict. In Figure

7.4.2, we consider a slightly dilferent WMR design.

The WMR. in Tigure 7.4.2 is identical to Uranus except the the wheels on the right and left
hand sides of the WMR have been interchanged and the distances I, and [y are equal. The wheels
are actuated (sensed) as with Uranus. Upon modeling this WMR and characterizing its actuation
(sensing) structure, we find that it is inadequate (i.c., det|ATA,] = 0) . The problem is that the
angular rotation of the WMR is noi constriined by the motions of the actuators (sensors). We
obzeive in Figure 7.1.2 that the robot cap 1 spnn about its center even if the wheel actuators are

locked to one position because the vollers are fece Lo turn.
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Figure 7.4.2
Uranus with an Inadequate Actuation Structure

We redlize that the non-robust nature of Uranus' actuation structure alows actuator conflict.
We now imagine how Uranus might be altered to avoid actuator conflict. Since we are interested
in a practical symmetric alternative, we diminate the posshbility of smply removing one of the
actuators. We must ensure that the actuator coupling criterion in (5.6.5) is satisfied. The rank one
actuator coupling criterion for Uranus reduces to the scdar equation:

Wit = + Wayr — Wags — Wigex = 0. (745)

Only three of the four actuator motions are independent. Our solution in Figure 7.4.3ay to con-
strain mechanically the wheel motions with gearing between wheels to ensure that the dependencies
in (7*4.5) and thus the actuator coupling criterion in satisfied.

We utilize differential gearing and reversing gearing. A differential gearbox is designed so that
the output shaft rotates at a rate equal to the difference of the two input shafts. A reversing
gearbox is designed so that the output shaft rotatot* at arate equal and opposite to the input shaft.
In Fgnw* 7.4.3b, we add three symmetrically placed motors for actuation. The actuation structure
of 7.3,3b is robust. We write the composite rdd**t ogiuitiou-of-moiion in terms of the motor shaft
rotaliom (instead of tho whed axlr rotations), and apply the rohtut actuation criterion to veify
ti** dts&u. Bveu fUaiilli the ctmiplexiity ¢f this iH\nvni inpy prohibit pratu*;>] itn>*Mn(*ntdi*)n, the
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Converting Uranus into a Robust Actuation Structure

7.4.86 Actuated Inverse Solution

Since the wmobility structure of Uranus allows three DOFs, the actuated inverse solution in

(5.5.5) 18 exact for all robot motious. The actuated inverse solution is:

Wuyz -1 1 la + lb VR

Weaz | _ L1 1 =la—1l )
Wwyz | BRI -1 U =la—1 ';Rv (7.4.6)
Wap,z 1 1 I+ U n

The actuated inverse solution in (7.4.6) may be obtained by assmming that all wheel variables are

actuated. applying the inverse solution in {5.5.6) and extractiing only the actuated wheel variables.
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This alternate approach is less computationally intensive because the inverse solution for each whedl
simplifies to inverting each of the Jacobian matrices.

7.4.7 Sensed Forward Solution

We apply the least-squares sensed forward solution in (5.7.5) to obtain:

Rz R —(latl) (a+l) —(atb) (a+b) {20
YAy | = 3 11 (la+le) (lat+l) (a+l) (la+db) H2® (7.4.7)
wn ( a+t b) 1 -1 -1 1 wwsz

7-4.8 Remarks

Uranus is ageneral-purpose three DOF WMR, with the kinematic capabilities of the Uiiimation
robot. The actuation structure is adequate and the sensing structure is robust as compared with
Uuiuiatimrs robust actuation and adequate sensing. Uranus has more ground clearance because
of the arrangement of the wheels. Ako, the whed profiles are exact circles because the rollers are
a 457 angles avoiding the discontinuity d" wheels with 90° rollers. To utilize practically rhe three
BOP capabilities of this nibot, we envison the Simultaiicous operation of an onboard manipulator.

75 Neptune
7.5.1 Kinematic Description

Neptune Ji*! a triryrli*lik** kinemnfit* structure* ps il<*pided in Figure' 7.5.1. The front* whorl
W Meered iilxm*. ilrf r< ntet, ;nd both thi* AX*eniij; »ndfriu* whed relations an* ruiiiatecl. Tlie two
fixed-“rieutation wlierl:* an* neitlwr afttutf4 nor hciu'til.
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Coordinate System Assignments for Neptune

752 Coordinate Transformation Matrices

The coordinate transformation matrices arc:

100 0
Pp, =10 10 K
*T 10 01 a4
000 1

cos0g -sin0s, O

Hy R win Os, o8 0-'"1 0
R 0 1

0 0 0
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1 00 0
sim |0 L 0O O
‘Too=|g ¢ 1 -1
0 0 0 1
10 0 |,
0 10 O
Tm=1lo0 1 - M@, - STc, =1
.0001
.1 O O 'Za
010 0
RTHsz 00 1 -, H’¢33233T03=I
0001

7*5.3 Wheel Jacobian Matrices

The whedl radius assignments arc i7 = R2 = R$ = R WO use the Jacobian matrix for a
steered conventional whed in (A3.3.2) to write the equation for whed one:

{UR,\ {-RSiﬂOs h 'h\, ,(UWX\
P=1'"ww 1 =1 RcosOg 0 0) 1 uyip I =17Jidqy (7.5.1)
\wr/ \ 0 1 17\ )

The matrix equations for wheels two and tliree are specified by (A3.2.2):

{vg*} (O o\ , V,
P = Wy} = \R -J( "» Vo J3q3 (75.2)
.wR

fwnA [0 Q\ , .
P=1 f, I = \R T\ ) =J;50; (753)

7.5.4 Mobility Chnractcristics

Tin* Hitinble motion rriterion isnot satisfied because whcel one is redmiclant. OOunins two
three of ilir Jan>Ifutn matrix an* linearly tlepenelmt «yd thus the as.uuuatrtl wheel variables (the
gf*erin® velorily u/j- and the wivHL rat;ilizi?ui! di\t wUwily wyj) are r?*linuiaiit. The avtuated
hivei>e Miliitinii L< not apiiliralile for Ncjiitnie. We 1'utnot «h t<*nniiu* th# actuation and rensing
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structures because the foundations of the actuation and scnsing characterization trees, the robot
actuation and sensing cquations in (5.6.3) and (5.8.3), utilize the inverse solution. Furthermore,
we cannot determine the number of DOT's by applying (5.4.4) because the matrix A(By) is not

computable.

7.5.5 Remarks

Neptune was consiructed to provide a mobile platform for vision rescarch and for that purpose
the design is sufficient. From a control cngincer’s point-of-view, the design is undesirable becanse
the actuated inverse and sensed forward solutions cannot be calculated. The redundant wheel
disallows these calculations. We suggest two practical design alternatives which allow the mobility
and computational simplicity of Newt but require few changes to Neptune. First, wheel one can be
made non-redundant by offsetting its center from the steering axis. Secondly, the front wheel can
be offsct as in the first alternative, and the steering and drive motors can be moved from wheel one

to drive wheels two and three producing a structure kinematically identical to Newt.

7.6 Rover

7.6.1 Kinematic Description

As illustrated in Figure 7.6.1, the Rover consists of three conventional steered wheels sym-
metrically arranged about the center of the robot body. The steering and drive of each wheel
is actuated and sensed. Actuator counflict producing shaky robot motion[50], encountered while

devcloping a controller for Rover, fostered our modeling of WMRs.

7.6.2 Coordinate Transformation Matrices

To simplify the coordinate transformation matrices, we have assigned all hip coordinate sys-
tems parailel to the robot coordinate system aud all steering coordinate systens parallel to their

respective contact point coordinate systemns:

1 00 0 coslg, -—sinls, 0 0
0 10 l sin0g cos @ 0 0
R — a H; A S S
Tm =10 01 t4-1.] ® s 0 o 10
0 0 0 1 0 0 01
1 0 0 ~3l./2 cosfg, —rinls, 0 0
Ry _ |0 1 0 —l)2 Hag  _ | sinfs, cosls, 0 0
Tm=t9 01 -1 Ps, = 0 0 10
0 0 0 1 . 0 0 0 1
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10 0 V3la/2 cosOs, —sinfls, 0 0
0 1 0 =l,/2 H. sinflg, cosfg, 0 0
R — a 3 — ] 3
Twa=1o 0 1 -1, s 0 0 10
000 1 0 0 01
L 00 -l
010 0
T, =9 T, =T, = |, o | ~lg
0 00 1

7.6.3 Wheel Jacobian Matrices

The radius assignments are By = Ry = R3 = R. The wheel cquations are written by applying

the Jaccbian matrix for steered conventional wheels in (A3.3.2):

VR —Rsinlg, 1, —lysinds, =, W,z
p={uvny | = Rcoslg, lpcosOg, 0 Wapy 2 (7.6.1)
wr 0 1 -1 wg,
VRe —Rsinﬂs, -—lb sin 03, - la/2 Iu/2 Waygz
p=1|vmry | =| Rcosls, Ilycosls,+ V3la/2 —\/ﬁza/z Wagz | (7.6.2)
wWr 0 1 -1 ws,
vz \ —Rsinfs, -lysinOs, -1,/2  1./2 \ [ W,z
p=|vRy | == Rcosls, Ilycosty, -+ V3l /2 V312 , | Wa, = (7.6.3)
wp 0 1 -1 ws,

7.6.4 Mobility Characteristics

The soluble motion criterion is not satisfied because the wheels are redundant. Conscquently,
the inverse solution is not applicable, the actuation and scnsing structures cannot be determined
and the sensed forward solution cannot be calculated. A dynamic force analysis is required to
compute the wheel and robot motions since we cannot determine when wheel rotational slip will
vceur by kincwatic calenlations aloue. Likewise, the number of DOFs cinnet be determined from
(5.4.4).
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Coordinate System Assignmcents for Rover

7.6.5 Remarks

We conclude from this example thet kinematic modeling of a WMR must be addressed in
the design stage. Rover can be redesigued to operate as an omnidirectional WMR by coustruct-
ing the steering links so that the wheels are non-redundant. Since there are six actuators, the
redesigned actuation structure will not be robust and will allow actuator conflict. The Denning
Sentry robot[70] replicates the kinematic structure of Rover. with the exception that all three
wheels are mechanically steered and driven in unison. The Denning WMR avoirds actunator conflict
by utilizing only two actuatory and mechanically coupling the wheel motions, but in so doing it

sacrifices ommnidirectionality.
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7.7 Stanford Cart

7.7.1 Kinematic Description

The Stanford Cart has the kinematic structure of an automobile, two front wheels with coupled
steering angles and two parallel non-steered back wheels, as shown in Figure 7.7.1. The rotations

of wheels three and four and the coupled steering for wheels one and two are actuated.

Stanford Cart

(Pseudo-bicsan-bican-whemor)

(z-axes are cut of the page) (x-axes are out of the page)

Top View Side View

Figure 7.7.1

Coordinate Systemn Assignements for the Stanford Cart
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7.7.2 Coordinate Transformation M atrices

The coordinate systems assigned in Figure 7.7.1 load to the following coordinate transforniatioii
meatrices:

(1 0 0 I cos0s, -sin#Si 0 O
Jirp _. 01 0 la Hy g sinfg, COS“S, 00
"70 0 10 T 0 0 10
\0 0 0 1J 0 0 01 :
71 00 -/, '‘coss.  -sinfls;, 0 O ;
1] T = O I O Ia Ha: * _ 511]. 031 COSOS, 0 0
H>F 0001 0 2 1 o0 0 10
.0 0 0 1 0 0 0 1.
10 0 O
_ 0O 10 O
Si = S’T =
el ={001 -
000 1
I /
oR o wl r
Ths = ,: Haiss = SaTr =1 .
0 01 -i' >
00O
100 - i
R 190 10 =4 He iy g
Tawo=1o0 01 -y Bs, ="Tc =1 -
0 00 1 ! é
7.7.3 Wheel Jacobian Matrices 5;;-
The equations-of-motion for wheels one and two arc written by applying tlu» Jacobian matrix
for steered conventional wheels in (A3.3.2), and for wheels three and four by applying the Jacobian
matrix for non-steered conventional wheels in (A3.2.2):
£y

e\ FRUOg L <l [wens
VHV V tChBOSt XI c I Way, 2 (771)
-1 W,

Vs ~Retulg, I, -1, Wy x
Yy = fa A, Whp, x (7.7.2)
Wi ) | -1} \ ws,
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YRz 0 =1 w
YRy = R -1, ( w;z) (7.7.3)
0

Wayszz
WR

YRz 0 —lb w
vpy | = | R L < vz ) (7.7.4)
wnr 0 1 waz

7.7.4 Mobility Characteristics

We assume! that the steering angles are equal; ie., 0g, = s, = 0s. and consequently wg, =
ws, = ws. We substitute these equalities into the wheel Jacobian matrices in (7.7.1) and (7.7.2) to

form the composite robot equation in (5.2.2):

(—Rsinos I, -1, 0 0.0 0 0 0) (1 0 0y
RcosOs —l, 1. 0 00 0 0 0 01 0

0 1 -1 0 00 0 0 0 (“’”\ 00 1

0 0 —lo —Rsin0s {, 0 0 0 0 S 100

0 0 —-Il. RcosOs I, O 0 0 0 wb 0 1 0

0 0 1 0 1 0 0 0 0 waz | o o0 1],

0 0 0 0 0 0 -l 0 0 u“’) T11 0 0l?

0 0 0 0 0 R -l 0 0 sz 01 0

0 0 0 0 00 1 0 0 wss | 0 0 |

0 0 0 0 0 0 0 0 =l \ZW} l1 00

0 0 0 0 00 0 R I waz lo 1 0
S 0 0 0 00 0 0 1)/ \o 0 1/

(7.7.5)

Because of the coupling between wheels one and two, the applicable soluble motion criterion
test is rank{By] = w. We observe in (7.7.5) that the rank of the (12 x 9) matrix B, is cight, but
there are nine wheel variables (i.e., w = 9). Accordingly, the mobility structure of the Stanford

cart is not soluble and the inverse and forward solutions arc not applicable.

7.7.5 Remarks

The Stanford Cart is kinematically similar to an automobile. Even though automobiles operate
satisfactorily for transportation, we cannot satisfactorily model the motion of the Stanford carl
using ouly kinewatic characteristics. We conclude that a dynamic analysis is required to model its

motion.

1 The Stanlord Cart had an Aekerman steering iskane 45 between the twe front wheels, The Ackerman linkage

approzimatly ensures the actuator coupling eritesion by providing the correct wheel nuglos to avold wheel slip.
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7.8 Conclusions

The six exawples presented in this section demonstrate that our kinematic modeling method-
ology in Scction 4 and the solutions in Scction 5 establish the foundation for devcloping and
solving the kinematic equations-of-motion of a WMR. Furthermore, we illustrate that writing the
equations-of-motiion for complex kinematic structures, such as Rover, is not practical without a
systematic framework. The examples show that formulating the equatious-of-motion for a WMR

is a straightforward procedure which does not require insight into the operation of the robot.

We note that the actuated inverse and sensed forward solutions are applicable to WMRs which
satisfy the soluble motion criterion (the Unimation robot, Newt and Uranus). The WMRs which
have redundant wheels (Neptune, Rover, and the Stanford Cart) do not satisfy the soluble motion
criterion and the actuated inverse and sensed forward solutions. are not applicable. Without these
calculations, the control of WMRs having redundant wheels is inferior. We conclude that kinematic
modeling of a WMR must be undertaken in the design stage (Section 6.2). Since kinematic modeling
is eritical for WMR control, the design of the wheels and the positioning of the wheels, actuators

and sensors must ensure that all of the modecling calculations are computationally feasible.

These six examples exhibit notewoerthy features. If the wheel variables which are actuated
and the wheel variables which are sensed arc identical, than either the actuation or the sensing
structure can be robust, but not both. TFor example, the actuation structure of the Unimation
robot is robust and the sensing structure is not: whereas, the seusing structure of Uranus is robust
but the actuation structure is not. Since we desire both robust actuation and robust sensing, we
should not limit our WMR designs by sensing only the wheel variables that are actuated?. When
wheel level feedback control is implemented, the actuated wheel variables 1nust be sensed to provide
local feedback. For the preferred robot level control, we provide robust sensing and actuation. By
sensing and actuating different wheel variables, we also reduce the incchanical complexity of the
bardware. We note further that wheel slip is more likely to occur with actuated wheel variables
than unactuated ones because the actuated variables are force;/torque sources. Thus thie effects of
wheel slip on the calculation of the robot position from wlheel sensor measurements are reduced by

sensing unactuate:d wheel variables.

The only WMRs which allow three DOTFs motion are the ones which consist exclusively of
wheels with three DOFs (the Unimation Robot and Uranus). A WMR having non-steered conven-
tional or redundant coenventional wheels may be mechanically easier to construct but cannot allow

three DOF's motion. We suggest that three DOFP motion can be practically utilized when the WMR

2

if Lrushless motors are utiY 2 d as actaarors, each nctnated wheel variable must be sensed to enable electronie

commnutation.
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has an onboard manipulator. The mobility of the WMR extends the workspace of the manipulator.
When the WMR is for transportation of parts, materials or tools from place to place, only two
DOFTs arc necessary. The mechanically simplest design to provide two DOTF's is two diamectrically
opposed non-steered conventional wheels, as on Newt. Drive motors may coupled directly to the
wheel axles. One or two additional castors arc nceded for stability. This design also cinbodies

simmple and casily calculated sensed forward and actuated inverse solutions.

The application of our methodology to excemplary WMRs completes our study of WMR kine-

matics. Tn Section 8, we sumnarize our development and provide concluding remarks.




8. Conclusions

We have developed and illustrated a methodology for the kinematic modeling of WMRs. We
have found that the established kinematic modeling methodology for stationary manipulators is not
applicable to WMRs because of the higher pair whed-to-floor joints, the multiple closed-link chains
formed by multiple whedls, and the unactuatcd and unsenscd whed variables. Our development
gpans the kinematic analyss of WMRs, including:

» A survey of existing WMRs (in Section 2);

* Modeling of ball, omnidirectional, and conventional whedls (in Section 3);

* Assgnment of coordinate systems (in Section 4.3) ;

» Formulation of the transformation matrices (in Section 4.4);

» Formulation of the kinematic equations-of-rnotion (in Sections 4.6, 4.7, and 4.8);
 Solutions of the kinematic equations-of-motion (in Section 5);

* Characterization of WMIt mobility (in Section 5);

» Applications to design, control, dead-reckoning, and dip detection (in Section 6);
* Kinematic modeling of sx cxamplary WMRSs (in Section 7); and

» Naming and diagramming of WMR kinematic structures (in Appendix 1).

In this concluding section, we summarize our development and highlight the significant results
and implications.

We begin moddling a WMR by sketching the mechanical structure. We assgn one robot
coordinate system, and aftzp, steering, and contact coordinate system for each whed (in Section
4.3). We apply the Sheth-Uicker convention to coordinate system assignment and transformation
matrix calculation because it alows the modeling of the higher-pair wheel contact-point motion and
provides unambiguous transformation matrix labeling for the multiple closed-link chains formed by
the whedls.

We model each whed (conventional, stecrcd-conventional, omnidirectional or ball whed) as a
planar-pair which dlows three DOFs. X-trauslation, Y -tranglation, ami O-rofcation. A conventional
whed attains Y -trauslational motion by rolling contact. The translation in the X direction and the
O rotation about the point-of-contact occur when the whed dips. We mode the rotational dip as
awluvl DOF because relatively smdl forces are required; furthermore, tin*. mgority of dl WMRs
rely on this DOF. We do not consider the X-traiislational whed dip a DOF because relatively large
forces are necessary. Omnidirectional wheels aso rely on rotational whed dip but bal \Whocta do
not.

By inspection of the sketch, we write the robot-to-hip, hij>-!o-seerinj!; and stoeriu!;-to contact

mby
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transformation matrices for each wheel in the format of Table 4.4.2. Under the assumption of no
wheel slip, the wheel rotations define the motion of the wheel contact-point coordinate system with
respect to a stationary coordinate system at the same position and orientation on the floor. The
coordinate system fixed with respect to the floor is important because we reference the velocities of
the wheel contact-point to this instantaneously coincident coordinate system. The rotational veloc-
ity of a wheel about its axle is thus proportional to the translational velocity of the contact point
coordinate system with respect to the instantancously coincident wheel contact-point coordinate
system. Similarly, there is an instantancously coincident robot coordinate system to reference the
velocities of the robot coordinate system. We assign instantaneously coincident coordinate systems

because of the higher-pair wheel contact points.

For cach wheel we develop a Jacobian matrix (in Section 4.7.3) to specify the robot velocities (in

Rype, Bu Ry» I, r) as linear combinations

the instantancously coincident robot coordinate system:
of the wheel velocities (e.g., the steering velocity, the rotational velocity about the wheel axle, the
rotational slip velocity. and the roller velocities for omnidirectional wheels). We write the Jacobian
matrix for a wheel by substituting clements of the coordinate transformation matrices, wheel and
roller radii and roller orientation angles into the symnbolic Jacobian matrices of Appendix 3. For a

stecred wheel, the Jacobian matrix depends explicitly on the steering angle.

Our study has illuminated the following important wheel properties. A (3 x w;) Jacobian
matrix J; is associated with a wheel having w; wheel variables. If the Jacobian matrix has rank
w;, it satisfies the non-redundant wheel criterion in (4.7.15), the wheel has w; DOFs and all wheel
variables are independent. If the rank of the Jacobian matrix is less than w;, the wheel is redundant
having fewer than w; DOFs, and some of the wheel variables are dependent. Specifically, any
conventional wheel which is steered about an axis that intersects the wheel contact-point, or is
oriented perpendicularly to the line from the steering axis to the contact-point, is redundant. We
have noted disadvantages of redundant wheels (without wheel couplings). The actnated inverse and
sensed forward solations do not apply. We cannot characterize the actnation and seusing structure
of WMRs with redundant wheels because the actuation and sensing characterization trees are
developed by applying the actuated inverse solution. We also cannot determine the nuiuber of
DOTs of a WMR with redundaat wheels (and no wheel couplings) becanse the DOFs caleulation in
(5.4.4) is not computable. Since the actuated inverse solution is not applicable, we cannot control
such a WMR by calculating the actuator velocities from the desired robot velocities.  Steering
the WMR by calculating the steering angle of a redundant wheel is an ad-hoc approach since a
steering angle cannot be controlied instantancously. We point-out that some existing WMRSs having
redundant steered-conventional wheels (e.g., Neptune and the Stanford Cart) are controlled in this

manner with some success. Since onr survey and examples show that WMRs bave been designed
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with redundant wheels, we infer that the implicatious of redundant wheels were not previously

well-understood.

We form the composite robot equation (in Scction 5.2) by adjoining the equations-of-motion
of all of the wheels. Lincar positional couplings between wheel variables (c.g., stecring angles or
wheel axle angles) can be incorporated into the model by making the appropriate substitutions in
the composite robot cquation, as demonstrated in Section 7.7.4 for the Stanford cart. We solve
the composite robot equation and interpret properties of the solutions to illuminate the mobility

characteristics of the robot.

The composite robot equation may have zero, one, or an infinite number of solutions cor-
responding to three WMR mobility characterizations: overdetermined, determined, and undeter-
mined, respectively. The mobility characterization tree (in Figure 5.4.2) allows us to determine
the mobility characteristics of a WM by indicating tests to be conducted on the composite robot
equation. The imnplications of the mobility characterizatiou tree are suminerized by the following.
If the soluble motion criterion in (5.4.1) is satisfied, the actuated inverse solution, actuation and
sensing trees and the WMR DOT caleunlation in (5.4.4) are applicable. The three DOF motion
criterion in (5.4.2) indicates whether the WMR kinematic structure allows three DOF motion. If
the kinematic structure does not allow three DOF motion, the kinematic motion constraints are
computed in (5.4.3). The number of WMR DOFs arc calculated from (5.4.4).

It is both impractical and unnccessary to actuate and sense every wheel variable on a WMR
because of the multiple-closed link chains. A subset of the wheel variables is thus actuated, and
a subset (not neccessarily the same subsect) is scnsed. Even though a specific WMR may allow
three DOTF motion, we must be sure that the wheel actuators can actuate all three DOFs, and
that the sensors can discern three DOFs. We apply the actuation and sensing characterization
trees (in Figures 5.6.1 and 5.8.1, respectively) to provide the answers. The implications of the
actuation characterization tree are summarized by the following three criteria. The adequuate
actuation criterion in (5.6.4) indicates whether the number and placement of the actuators is
adequate for producing all motions allowed by the mobility structure. If the adequate actuation
criterion is not satisfied, some robot DOPFs are uncontrollzble. The robust actuation criterion in
(5.6.6) determines whether the actuation structure is robust; i.e., actuator conflict caunot occur
in the presense of actuator tracking errors. If the actuation structure is adequate but not robust,
some actuator motions are dependent. The aciuator coupling criterson in (5.6.5) iudicales the
actuator dependencies which must be satisfied to avoid actuator conflict and forced wheel slip. The
implications of the sensing characterization tree are summerized by the following three eriteria.
The udequate sensting eriterion in (5.8.4) indicates whether the munber and placement of the wheel

sensors is adequate for discerning all robot motions allowed by the mobility structure. The robust
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sensing criterion in (5.8.5) indicates whether the sensing structure is robust; i.e., wheel dip and
sensor noise produce minimal effects on the calculation of the robot position from wheel sensor
measurements. The wheel dip criterion in (5.8.6) provides a computational method of detecting
wheel dip in robust sensing structures.

We calculate two solutions of the composite robot equation: the actuated inverse and sensed
forward solutions. In the actuated inverse solution in (5.5.5), we calculate the actuated whee
velocities from the desired robot velocities. The actuated inverse solution is applicable for WMRs
satisfying the soluble motion criterion. In the sensed forward solution in (5.7.5), we calculate the
robot velocities from the sensed whed velacities. The adequate sensing criterion indicates whether
the forward solution is applicable for a specific WMR. The composite robot equation in (5.2.2) need
not be formed, if there are no wheel couplings, because the actuated inverse and sensed forward
solutions and the mobility, actuation, and sensing characterization trees are expressed in terms
of the whed Jacobian matrices. The computations required for the actuated inverse and sensed
forward solutions are additions, multiplications and the solution of (at most) three linear algebraic
eguations.

We apply our kinematic methodology to the design, kinematics-based feedback control, dead-
reckoning and whedl dlip detection of WMIIs. Our kinematic methodology provides valuable insights
into these areas. Just as the mobility characterization tree alows us to determine the motion
characteristics of an existing WMR, we may utilize the tree to desgn WMRs to possess such
desired characteristics as two or three DOFs. We may design a WMR with any specified workspace
(i.e., set of allowable motions) by proper choice and placement of the wheels. We have listed the
design criteria for a robust omnidirectiona WMR in Tables 6.2.1 . We model two three-DOF
WMRs as examples: the Uttixnation robot (troas-wheruor in Section 7.2) and Uranus (tetroas-
whemor in Section 7.4). We suggest that three DOF WMRs are applicable for UHC with an on-board
xtjauipulator. The mobility of the basc extends the workspace of the manipulator. The majority
of practical applications (i.cy parti?, tools, and materials transport’) require only two DOFs. We
conclude that a WMR having two diametrically opposed driven wheels (bicas-[x>lycsm-whcxnor) is
ideal for this application because of the simplicity of iU mechanical design and kinematic model.
The actuation characterization tree may he applied to design a WMR to have a robust actuation
structure., thus avoiding actuator conflict, as ?iown for Uranus in Section 7.4/1. Similarly, the
sensing chiurartnixation tree may bo applied to design a WMR with a robnat sousing structure to
minimize the advera? %itvet» of whed «lip on the calculation of the WMR position. We have noted
that the sat of turtuattnl wheel variables and sensed whed variables cannot coincide If both robust
actuation anil robust *HMitli; ac? desired.

The Vv WMR raiitrol yydeuia which have been dorumen'ed cur wheel level control nyn
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tems(17,33], without using a dynamic model of the WMR. The documented designs are tailored to
the specific WMR being controlled. We detailed a kinematics-based robot level control system (in
Section 6.4) for WMRs for which the sensed forward and actuated inverse solutions are applicable.
Dead reckoning is the real time calculation of the robot position from wheel sensor measurements.
We develop a dead reckoning update calculation in Section 6.4 by integrating the robot velocity

computed by the sensed forward solution.

We have uncovered three methods of dealing with wheel slip: design the actuation structure
to avoid slip, design the sensing structure to detect slip, and minimize the errors in the calculated
robot position due to slip. We model (in Section 3) rotational wheel slip for both conventional and
omnidirectional wheels because many WMR designs rely on this DOF. We wish to avoid, detect or
minimize the adverse effects of the unmodeled translational wheel slip. One approach to eliminating
wheel slip is to actuate all of the wheels, such as with the four-wheel drive on an automobile. Since
this can lead to actuator conflict, we must design wheel couplings to ensurc that the actuator
coupling criterion is satisfied, as with Uranus (in Section 7.4.4). This solution does not guarantee
zero wheel slip, but if slip does occur, all wheels must slip in unison which is unlikely. We have
noted that a robust scensing structure allows us to dctect wheel slip. We thus design the sensing
structure to satisfy the robust sensing criterion and wkeel slip is detected by the method of Section
6.5. In this way, we arc able to detect the onset of wheel slip and notify the robot processor that
an abgolute method of robot positioning (e.g., robot vision) should be applied before continuing.
This mcthod will also fail in the unlikely case that all wheels slip in unison. The least-squares
sensed forward solution (in Section 5.7) is less scnsitive to wheel slippage if the sensing structure
is designed to be robust. If wheel slip does occur, and no absolute positioning method is available,

the adverse effects can be reduced by applying the least-squares sensed forward solution.

Even though our study is tailored to WMRs, our methodology may be applied to the kinematic
modcling of other mcchanisms, such as legged or treaded vehicles. The analysis of mechanisms
having higher-pair joints, multiple closed-link chains or unactuated and unscnsed joint variables
may benefit from our methodology. In particular, our matrix coordinate transformnation algebra (in
Section 4.5) may be applied to the transformation matrices expressing the relationships between
lower and high-pair joints. Qur WMR diagramming and naming conventions (in Appendix 1) may
be extended to legged mobile robots (LMRs) and treaded mobile robots (TMRs).

In Section 9, we discuss our continuing rescarch. We are extending our study of WMRs to

include the dynamic modeling of WMRs.
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9. Continuing Research

Kinematic modeling of WMRs is the first step towards designing feedback control systems. We
are continuing our study by applying our kinematic model to formulate the dynamic cquations-of-
motion of WMRSs. In analogy with the past thirty-year study of stationary manipulators, werealize
that our kinematic methodology is the foundation for the dynamic modeling of WMRs. As with
stationary manipulators, our coordinate system assignments are reference systems for defining the
masses and inertias of the robot components. The forces/torques produced by actuators and by
motions of the robot components may be transformed from one coordinate system to another by
applying our coordinate transformation matrices. Our kinematic calculations of positions, velocities
and accelerations can be applied to calculate the dynamic forces and torques produced by the
motion of the robot components. For example, the recursive Newton-Euler manipulator dynamics
formulation[31] applies kinematics to propagate positions, velocities and accelerations from the
robot base to the end-effector. The forces/torques are then calculated from the end-effector to the
base.

We are applying, to the extent practicable, existing dynamic formulations of stationary ma-
nipulators[31l] to WMR dynamics modeling. We are extending the existing formulations to ac-
commodate the specia characteristics of WMRs, such as multiple closed-link chains, higher-pair
whecl-to-fioor joints and unactuated and unsenscd wheel DOFs. Once the kinematic and dynamic
models are completed, we will focus on WMR control. Our research is paralleled by the physical
construction of Uranus (in Section 7.4). When we establish the foundation for WMR control, we
will implement our designs on Uranus to verify the development and evaluate its performance.

We haveprovided an extensive methodology for kinematic modeling of WMRSs, and we conclude
by pointing out practical extensions to our work. We have developed the actuated inverse and
sensed forward velocity solutions (i.e., the solutions for the actuated whedl velocities from the
robot velocities and the robot velocities from the sensed wheel velocities). We are utilizing pulse-
width modulation to control the actuators of Uranus. The actuators can be modeled by linear
transfer functions from puke-width to motor velocity[51); the pulse-width acts as the velocity
reference nigna and the actuated inverse velocity solution can be applied to calculate these reference
velocities. When motor control is accomplished by controlling the motor current, as is the case
with many stationary manipulators, the motor torque and current arc proportional. Since the
motor current acts as an acceleration reference signal, the actuated inverse acceleration solution h
required. Since there are no commercially-available rotational ttccclmmietors, we utilise available
rotational position and velocity sensors for whedl feedback. The sensed forward velority solution is
thus appropriate for computing the robot' velocities for feedback control and dead reckoning. When
accurate rotational aeceltTometern are developed, the sensed forwurd uraderation flotation will be
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applied.

We have advocated the application of kinematic modeling to the design of WMRs for subse-
quent feedback control. Since present designs are based upon experience with non-robotic mech-
anisms (c.g., automobiles and tricycles) and ad-hoc methods, we expect that kinematic modeling
prior to construction will improve future WMR. designs. In Scction 6.2, we addressed the design of
WMRs. A systemnatic procedure for designing WMRs to obtain specified mobiity characteristics is

thus a promising arca for rescarch.

Stationary manipulators arc open-link chains for most operations. When the end-effecter comes
in contact with an object (e.g., when picking-up an object and placing a peg in a hole), the structure
becomes a closed-link chain and actuator conflict may occur. Compliance has been introduced in
the operation and construction of stationary manipulators to reduce actuator conflict. Similarly,
introducing compliance in either the mechanical design or control system of a WMR to elimninate

actuator conflict in overdetermined actuation structures has practical applications.
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1. Appendix 1: A Nomenclature and Symbolic Representation of WMRs

1.1 Introduction

In this appendix, we introduce a nomenclature and a symbolic represcutation for describing
the essential kinematic structure of WMRs. We define essential kinematic tnformation as the min-
imal information required to solve symbolically the kinematic equations-of-motion. For example,
the presense of a steering link is considered essential kinematic information because an equation
which relates the velocity of a steered wheel to the velocity of the robot body must depend upon
the steering angle. In contrast, the distance between two whecls is not essential kinematic informea-
tion begause knowing the numerical value of the distance does not help to formulate the symbolic
equations-of-mmotion. The nomenclature provides a convenient literal and verbal representation of
the essential kinematic information. The symbolic representation disp]ays‘pictoria.]ly the essential
kincmatic relations between the robot body, wheels and steering links using mmemonic symbols.
Our desire to compare the kinematic characteristics of WMRs of differing structures has led to
these representations. Without siinple, straightforward and informative descriptions of the kine-
matic structure of a WMR, coraparisons between robots become confusing and awkward. The
conventional pictorial representatious are mechanical drawings in which characteristics nnessential
for kinematic analysis complicate understanding. Similarly, the conventional literal descriptions of
WNAMIR kinematics are through lengthy verbal cxplanations. Our symbolic and literal representa-
tions of WMRs characterize the essential kinematic structure of a WMR through simple diagrams

Or 13aInes.

Our symbolic (naming) representation has been devised to be easily drawn (written or spoken)

and interpreted, while providing the following information:

° The number of wheels;

s The type of cach w‘heclg

. The steercd wheels;

» The relative positioning of the wheels;
) The actuated DOFs of cach wheel; and
. The sensed DOFs of cach wheel.

Our symbolic representation can be angmented to include functional dependencies between
wheels and define the distances and angles between compouents (although these characteristices are
not considered esseatial kinematie information). Although functional dependencies are needed for
symbulic solutions, it is dillivult to incorporate arbitrary funetional relations into our representa-
tion=. Our definition of esseatial kinewatie information i+ chosen becaose onr nltimate objective

is the eoutrol of WMRs coneprently, information required for the forwasd anel inverse Finematice
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calculations is directly applicable to WMR control. For this reason, we specify the DOTs of cach
wheel which are actuated and sensed. The motion of an unactuated (non-sensed) DOF may con-

strain the motion of the robot, whereas the motion of an actuated (sensed) DOT may be calculated

symbolically from the motion of the robot body. Understanding these representations can

most easily be accomplished by scanning the rules delineated in Sections Al1.2 and
A1.2 and then following the examples in Section Al.4. The reader can then refer back to

the rules for a more detailed understanding.

1.2 Symbolic Representation Rules

The rules for gencrating and interpreting WMR diagrams follow.

1.) A WMR is depicted by a large circle.
2.) Each wheel appears as a small circle within the WMR circle.
o

) Eacli steering axis is portrayed as circle smaller than the associated wheel; a steering link

is drawn as a line segment from the steering axis to the respeciive wheel. If the steering
axis intersects the center of the respective wheel, it is depicted as & small circle within and

concentric to the wheel circle, and a steering link is not required.

4.) The relative positions of the wheel circles (for non-steered wheels) and steering axes (for
steered wheels) correspond to the rclative positions of the wheels and steering axes on the

robot.

5.) The DOF's of a wheel are indicated by line segments and arcs within the wheel circle drawn

in the dircctions of the translatioval and rotational DOFs. gespectively. The rotational slip

DOF of a wheel is implied and no arc is drawn. A conventional wheel has one radial line
segment in the direction of travel from the wheel center to the wheel circle. Similarly, an
omnidirectional wheel has two radial ine segments, and a ball wheel has two radial line

segments and ar arc (one quarter of a circle) drawn within the wheel circle. i

6.) The actuated DOFs of cach wheel are drawn with an arrowhead appended to the line indi-
cating the DOF.

7.) The sensed DOFs of cach wheel are drawn with o *T” appended to the line indicting the
DOT. A DOF, which is both actuated and sep. od, i indicated by a closed arrow (i, the

combination of 4 7T and an arrow).
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*8.) (Optional) Functional dependencies between DOFs within or between wheels may be indi-
cated by dashed lines. Dashed lines may also be used to indicate that a component of a

WMR cannot be described adequately by our representation.

1.3 Nomenclature Rules

Our nomenclature expresses the identical information as the symbolic representation in Section
Al1.2. For compactness, we limit the amount of positional, actuation and sensing information in
the naine of the WMR. The rules for creating and interpreting WMR names follow.

1.) The name of the kinematic structure of a wheeled mobile robot ends with the suffix -whemor.

This suffix may be omitted when it is understood that the name is of a WMR.

2.) Sets of onc or more wheels of the same functional type arc indicated by syllables separated

by hyphens.

3.) Two or morce wheels of a WMR are of the same functional type if they are of the same basic
type (i.e., conventional, omnidirectional, or ball); are all steered or all not-steered; are all
actuated and seansed similarly; and are all placed symmetrically with respect to cither the
center of the robot, a line through the robot center (the major axis), or a line perpendicular

to the major axis (the minor axis).

4.) The syllables arc ordered from the beginning to the end of the nare according to the following
precedence characteristics which are listed from the most to the least important:
Symmetry with respect to the robot center;
Symmetry with respect to the major axis;
Symmetry with respect to the minor axis;
Number of wheels;
Steered wheels;
Ball wheels;
Ommidireetioual wheels;
Conventional wheels;
Actuated wheels; and
Sensed wheels.

For example, all wheel sets which are symmetric with respect to the robot center appear
first; and if there is more than one wheel st which is symumetric with respect to the rebot
center, the set having the largest nambier of wheels {if there is not a e} ia listed first in the

name.
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5) Each syllabic representing a set of wheels consists of:
i.) One of the prefixes "tint", " A\ " tri\ " tetra’, "penta", "hexdP, "hepta",
"odd?, " ennedP, "deca", or "poly" to indicate the number of wheels in
the set;

ii.) Followed by one of the letters " c*\ "0", " 6", or "vf to indicate that they
are either conventional, omnidirectional, ball or an unspecified type of
wheel. For an omnidirectional wheel, the fina vowel of the prefix is
dropped before adding ~ 0" to make the name pronounceable;

iii.) Followed by "5", if the wheels are steered;

iv.) Followed by either an "a" or "V to indicate that the wheels are actuated
or unactuated, respectively. A wheel having more than one DOF and/or
a steering axis is considered actuated if the steering cingle or any of the
DOFs is actuated;

v.) Followed by cither an "3" or "n® to indicate that the wheels are sensed or
not-sensed, respectively. A wheel having more them one DOF and/or a
steering axis is considered sensed if the steering angle or any of the DOFs
is sensed.

6.) A kinematic structure of a WMR, which cannot be named adequately according to these
rules, is named by prefixing the name which most closely indicates the structure with
pseudo-.

A class of kinematic structures which may consist of a large nuinbex- of specific instances of
WMRSs is specified by the poly prefix. For example, a pohjeas-whemor refers to the cfdss of WMIts
which have only conventional non-steered wheels arranged symmetrically with respect to the robot
center or its major axis. Similarly a class of WMRs which has a number of wheels whose type is
not specified is called polywas-whemor. Also, if the actuation and sensing characteristics are not
important for the discussion, the actuation and sensing labels may be omitted, min pviyw-whcmor*
Admittedly, our nomenclature has disadvantages. Names cnvitrd by tlicse rules may not be easily
pronounceable. There is not a 0110-to-ono relationship between WMRs and the names created
by our nomenclature. There an* examples of WMRs wliidt have severa Ir*al nnmos {<*&. wheel
sots can always x» divided into multiple sHs, each having frwr wluols). Furlhonnoro, it h not
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always possible to determine the symmetry of a WMR from its name {c.g., a hexzac-whemor may be
symmetric with respect to the robot center or the major axis). These disadvantages are the result
of our attempt to assign compact names. Most ambiguities in the nomenclature can be climinated
by assuming the practical alternative. For example, a tric-whemor must be symmetric with respect
to the robot center and not the major axis, because it would be more practical to name the latter

a bic-unic-whemor.

1.4 Examples

Iu Scction 2, we illustrate the kinematic diagram and name of fourtcen WMRs. The pre-
dominant WMR kincmatic structurc documented in the literature has two parallel conventional
wheels, onc on each side of the robot (thus, the syllable bicas). These robots also possess one or
two castors for stability. Among the most widely known examples are Shakey[43] and Newt[33] (in
Figurc 2.1). Shakey has two frec-wheeling casters for stability (bicsun), whereas Newt utilizes ouly
one {unicsuny. By mounting the two driven wheels at an acute angle to the floor ia their Topo[22]
robot (in Figure 2.1), the Androbot Company stabilized the robot without the use of castors. Even
though the acute angle of the wheels cannot be represented in cither the symbolic represeantation
or the pame, we can infer that the wheels must be augled for stability by asswing the most prac-
tical realization. Mobile robots whiich possess mndtiple nou-steercd. driven wheels whose axes are
non-colincar must rely on wheel slip if the robot is to navigate turns. Such is the case with the
Terregator[65] {ih Figure 2.2} which uses six parallel, non-steered, conventional wheels, three on
either side (hexacas). The mechanically more complex, steered and driven conventional wheel is
utilized on Neptune[56] (in Figure 2.3), which has a tricycle wheel arrangement; the front wheel is
steered and driven (unicsas), while the two rear wheels are at a fixed parallel oricutation and are
undriven {(bicun). The CMU Rover[48] (in Figure 2.3) has three steered and driveu wheels (tricsas).

The Stanford Cart{46] {in Figure 2.4} has two steered, mudriven wheels in the frout (5icsan)
and two fixed, driven wheels in the back (bican). The two steered wheels are coupled s0 as to be
orieated in the gsamc ditection, thns the pseudo prefiz. The JPL Rover[42] (in Figure 2.4 is similar
to the St.mﬁ&rdﬂaﬂiémmpt that both the front and back wheel pairs have coupled stecring pseundo-
Mz&an—ﬁinsuﬂfm;wnwn Kludge[30] (in Figure 2.4} has conaplex fnnctioual Jdependencies between
the wheels., This mlmt has three conventional wheols that are both steered and driven, as on the
CMU Rover. In addition. a chain aud gear arramgenent is used to equalize all drive velocities and
steering angles. To coraplicate further the arvangement, cach wheel = mounted on an actuated link
which can be piwﬁéﬁ towards or away from the coenter of the robot to adjust its stability properties
(yacudwtriﬂm}, ‘i)amhml lines are used in the sywbelic representation of Khidee to indicate the
functional dependencies between stecrice aneles and wheel aetvation, and the inability to represent

the pivoted link. The hyvbeid spider diivei30] (in Fisnre 2.5) utilizes fnr conventionsl wheels, two
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on either side of the robot, each of which is mounted at the end of a three DOF log linkage
(pseudo-tetracsas). The hybrid locomotion vehide[35] (in Figure 2.5) utilizes six steered and driven
conventional wheels, each at the end of an actuated vertical leg (pseudo-hexacsas). Uranug[49] (in
Figure 2.6) utilizes four omnidirectional wheels positioned at the corners of a rectangle (tetroas).
The Uniination Robot[15] (in Figure 2.6) possesses three DOFs using only three actuators and
three omnidirectional wheels (troas). The most maneuverable wheel is a beli which is actuated so
as to possess three DOFg47] (unibas).

We note that our representations can bo extended to other clasps of mobile robots. For
example, Logged Mobile Robots (LMRS) can be denoted by the suflix lernor, and Treaded Mobile
Raobots (TMRs) may be denoted by the suffix tremor.
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2. Appendix 2: Symbol Tables

Scalars
Scalar Page Definition
Wapz 12 angular velocity of the wheel about the x-axis through its center
Waoy 12 angular velocity of the wheel about the y-axis through its center
Wz 12 angular velocity of the wheel about the z-axis through its center
Waz 12 angular veocity of the steering link about its axis
Wapr 12 angular velocity of rollers about their axes
Uy 12 linear velocity along the x-axis
vy 12 lincar velocity along the y-axis
Wy 12 angular velocity about the z-axis
R 12 wheel radius
r 12 roller radius
n 12 roller angle
N 17 number of wheels
T 36 wheel index
w; 36 number of wheel variables of wheel 7
a; 52 number of actuated wheel variables of wheel ¢
Uq 52 nurnber of unactuated wheel variables of wheel ¢
8; 57 number of sensed wheel variables of wheel £
g o7 number of not-sensed wheel variables of wheel
w 43 total number of wheel variables
a 52 total number of actuated wheel variables
u 52 tal number of unactuated wheel variables
2 58 total number of sensed wheel variables
n 58 total number of not-sensed wheel variables
t 67 continuous time variable
T 67 sampling period
n 67 discrete time index
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Vectors

Vector Page Dimension Definition
p 36 (3 x 1) robot position vector
Pd 68 (3 x1) desired robot position vector
Pn 58 {8+ n}x1) combind robot and not-sensed wheel position vector
q 43 (w x 1) wheel position vector
Qe 53 (ax1) actuated wheel position vector
qy 54 (ux1) unactuated wheel position vector
q, 57 (¢ x 1) sensed wheel position vector
q: 37 (wi x 1) physical wheel position vector of wheel ¢
Q: 36 (4 x 1) psceudo-wheel position vector of wheel 2
Dia 52 (a; actuated position vector of wheel 2
Qi 52 (u ) unactuated position vector of wheel ¢
Qis 58 (8: x 1) sensed position vector of wheel ¢
Qin 58 (n; x 1) not-sensed position vector of wheel 2
qQp 53 (w x 1) partitioned wheel position vector
Spr 68 (3 x1) differential robot displacement vector
0Qq 63 (ax1) differential actuator displacement vector
e 72 (3N x 1) least-squares error vector
erR 68 3 x 1) robot position error vector
kr 68 (3x1) control system feedforward gain vector
k, 68 (a x 1) actuator gain vector
k, G8 (s: x 1) sensor gain vector
Matrices
Matrix | Page Dimeunsion Definition
J; 36 (3 x4) pseudo-Jacobian matrix of wheel ¢
J; 37 (3 x wy) Jacobian matrix of wheel ¢
Jia 52 (3 x a;) actnated Jacobian matrix of wheel ¢
Jin 52 (3 x uyg) unactuated Jacobian matrix of wheel
Jis 57 (3 x s;) seused Jacobian matrix of wheel ¢
Jin 57 (3 x n;) not-senscd Jacobian matrix of wheel ¢
U 44 (¢ X dj an arbitrary matrix
A(U) 44 (exc) delta function
J 1 53 (@ x3) actuated inverse Jacobian matrix
J, 58 (3% ¢) senscd forward Jacobian matrix
W, 37 (4 x 10:) wheel matrix of wheel ¢
A\ 38 (3 x 3) motion matrix
Ay 43 (3N x 3) lefthand side of composite robot equation
By 43 (3N x w) righthaud side of composite robot cquation
Bop 53 (3N x w) righthand side of partitioned compmnv robot_equiation
Ag 54 (3N x 3) lefthand side of robot actuation cquation
B, 54 (3N xa) right haud side of robot actuation equation .
A, 58 (AN x {3+ nj}) Iefthand side of the partitioned robot sensing equation |
B, 58 (PN x 8) rieghthand side of mi;s‘)t— ensing cquation ]
A, 60 (3N % 3) lefthand side of robot sensing cquation )
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3, Appendix 3: Wheel Jacobian Matrices

3.1 Introduction

In this appendix, we develop the wheel Jacobian matrices for conventional wheels, steered
conventional wheels, omnidirectional wheels and ball wheels. The whed Jacobian matrix (as intro-
duced in Section 4.7.3) relates the velocities of the WMR to the velocities of the wheel. The whed
Jacobian matrix is the product of the pseudo-Jacobian niatrix * and the wheel matrix Wi-:

3= 3w, (AS.1.1)

The pseudo-Jacobian matrix relates the whed pseudo-velocities to the robot velocities, as
described in Section 4.7:

{ 'CmROCi 'a-hROCi RdCiV 'RdHiy \
i — | 311 VCi °°%'Ci ~ °CiX x| . (AO.1.4)
\ 0 0 1 -1 }

The whedl niatrix in (4.7.13) relates the pseudo-velocities to the actual wheel velocities. The
wheel eqgtiations-of-inotion in Figure 3.2 are applied to construct the wheel matrices. The pseudo-
velocities "Vdx, %y and “(jtdc; are the velocities v, v* and UJ; in Figure 3.1. The actual
wheel velocities are the angular velocities of the wheel and rollers awja, Ojwy, Uwizi and wr about
their respective axes. With these observations, the whed matrix for each wheel is written directly
from the whedl equations-of-inotion in Figure 3.2. The whed Jacobian matrix is then formed by
multiplying the pseudo-Jacobian matrix in (A3.1.2) by the wheel matrix. We consider each of the
aforementioned wheels in turn*

3.2 Conventional Non-Steered Wheel

The conventional non-steered whed has two DOFs; motion in the direction of the whed
orientation, and rotations! dip about the point of contact, corresponding tofchetwo whedl pseudo-
velocities e, f2 ~*d 0uc,7 respectively. The actual wheel velocities are the angular velocity of
the wheel about its axle wy,, and the angular velocity of the rotational slip ur«s. These velocities
arerelaiecl >y the (4 X 2) whedl matrix W,- in {A3.2.1).

0 0‘
q = R O (**;_’*} . {A3.2.1)
i
,0 oy
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The wheel 1atrix is multiplied by the pseudo-Jacobian matrix in (A3.1.2) to form the (3 x 2)

Jacobian matrix:

Conventional Non-Steered Wheel Jacobian Matrix

~R;sinf0q,  Tdg,y
J] = R{COS R{)C‘ —Rdci,: . (A3.2.2)
0 1

This wheel is termed degenerate because the Jacobian is non-square and thus non-invertible.
Even though a robot velocity vector can be calculated from a wheel velocity vector, it is not always
possible to compute a wheel velocity vector from a robot velocity vector. The degenerate nature of
the kinematic equations-of-motion of the non-steered conventional wheel precludes its application
to threce DOF WMRs.

3.3 Conventional Steered Wheel

The conventioanl steered wheel has an additional DOF provided by the steering joint corre-
sponding to the pscudo-velocity #wg,. The actual steering velocity w.,z (in Figure 3.2) is cqual to

the steering pseudo-velocity. The (4 x 3) wheel matrix and the (3 X 3} wheel Jacobian matrix are,

respectively:
0 0 O
. R 0 0 Wiz
0 0 1) \¥u=
and

Conventional Steered Whecl Jacobian Matrix

—R;sin Ron‘. Rd(;_v —*dH,y
J; = R,‘ cos RO(;‘ - Rd(;.z R:I”' z . (A3.3.2)
0 1 -1
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The Jacobian matrix is iiivertibleif its determinant is nonzero; i.e., if
det{Ji) = Ri [*dcy cos¥0¢ - Fdcix sin¥0g) ~ 0 . (A333)

The determinant is zero and the conventional steered whed is redundant if the steering axis inter-
cepts the whedl point of contact (i.e, if 9dcx = Sdciy = 0) “ if the whedl is oriented perpendicular
to the steering link (i.e, if “d$, = ¥ detain®* 6& - Sdcy cos 90 = 0).

3.4 Omnidirectional Wheel

The omnidirectional whedl possesses three DOFs without a steering joint. The DOFs are
motion in the direction of the whed orientation, motion in the direction of the roller orientation
and rotational dlip, which correspond respectively to the actual whed velocities U)wix, Ojwir, and
Ujwiz. The psoudo-velocities ¢ are linear combinations of the actual velocities g*:

O rsn?2 O w
. _ R ~r cosmn o “EY _ ow o
== 0 0 1 (::m‘.,.) = W;«q:. (.434.0)
0 0 0 el

The whed Jacobian matrix is;

Ommnidirectional Wheel Ja_lcobian Matrix

I = | R ,+m) -de.

0 0 1

—Risn"&g  ~sin("Oc +m) Fdey
. (A342)

The dotoriiiinant of the ouuiidircctioiutl whed Jacobian matrix is —|Rir-sin7/£, and conse-
guently the Jacobian matrix is iiivertible whenever the rollers are not aligned with the whed (i.e.,
WIOTKT Tji £ 0),

3.5 Ball Wheel

Tli<* ball Wi+ po’seKren tlirw DOFs o n>tation Zilxntk the throo nor/nnl <’ prhitionocl at
the whedl renter. The wised matrix relating the artiuil whedl velocities wys™.. Uywes, @mi U)iinz to the
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pseudo-velocities is:

R 0 0 Y

. 0 R 0 wiz .

%=1, 0 1 wwiy) = W; q; . (A3.5.1)
0 0 0 Wwiz

The wheel Jacobian matrix is:

Ball Wheel Jacobian Matrix

Ricos BOc, —RisinBc, PBdg,
Jy = | Risin®0g;, Ricos®lo, —Rdox (A3.5.2)
0 0 1

Since the determinant of the ball wheel Jacobian matrix is R?, it is invertible for all non-zero

wheel radii.

In Section 7, the wheel Jacobian matrices developed in this appendix are applied to obtain the

kinematic cquations-of-motions of specific WMRs.




We begin by forming the matrix product:

- {Daa Dan
“\DL Dun

1, Jia O 0 Jia
) I, | . 0 J 0
Aﬂp = : p = .24
: ' .0 :
Iy V 0 0 Ina. O

(T3 O ... 0
0 JEJa
s ] 0
, 0 cee 0 IT.IN.
(BEpBop) = Itda O . MBN
u .
0 J;‘,Jh .
- -. - . 0
0 JIL . JIna

J?u

(g:) = (Bf,Bop) ™! BY, Ac B .

&

0

0
J}"nSi u

o

0

) -

4. Appendix 4: Actuated Inverse Solution Matrix Calculations

In this appendix, we detail the matrix manipulations leading to the actuated inverse solution
in Section 55 . We solve the composite partitioned robot equation in (5.5.3)

to calculate tiie actuated wlicd veodities g, in the least-squares solution in (5.5.4):

Mia
‘.]2n
O .
: Ana | _ Qa
0 ‘E!l‘u - B()p (éh ) ].
JNu q?u :
\_‘EINu)
(44.1)
(A4.2)
o
Jl,Jza
T . 0
e 0 3T I,
0
JE, e
-~ N 0
0 J%‘JN.J
(44.3)

To iiivrrf (B~Bop). we have written iho matrix in hhn-k form with four comptwut” <*ach
vCo a bHdik diagonal matrix. Wo let tl? bltvk matrix X k* tixo inv«T?e of thv matrix i» (A4*3).

J22




To compute the block components of the matrix inverse? in terms of the block components of the
matrix in (A4.3), we apply the fact that the inverse of a matrix times the matrix itself is the identity
matrix; i.e.,

(X X Dm Da\. /I O
vx21 X3 /\DT, D) o 1) (A44)

Since we seek only the upper (actuated) components of the wheel velocity vector ¢, in (A4.1), we
caculate only the two components in the top row of the block matrix inverse. We thus seperate
the solution of the actuated whed velocities

0. = (Xu X12)B{,Acb (A4.5)

from the solution of the unactuated ones. We expand (A4.4) to obtain

X11Daa + X 12D, =1 (A4.6)
and
XIIDm& + Xli.‘Du.u =0. U47)
From (A4.6) and (A4.7), we find
X2 = ~X11 Do DM (A4.8)
and
X11 = (Daa — DauD;jDEuf-l ) (A4.9)
where
(IT.T1.) 7" 0 . 0
D;l= 0 (53)” 5 . (A4.10)
: 0
V 0 0 (3y3wu) I
The matrix Xn in (A4.9) is
A[IFAJYI,] T 0 0
-1 . .
Xy = 0 ~[35 A2 2] - {44.11)
: 0
0 0 -PRATNMN]
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The matrix X2 in (A4.8) is

[es)
b
»

X2 = (A4.12)

O e
o
.
P4

where,

1 -1

A= [T0AJWIG] 0303037 (44.13)

We substitute (A4.12) and (A4.11) into (A4.5) to obtain the actuated wheel velocity vector

T AT1)31a] T I AJL)

IT A(J22)T24] 1IT. A (T2
4 = [J2eA(J2u)T2a] " IZ.A(JI24) 5. (44.14)

IR AdNa)Ina] T I, A(TN)

juation (A4.14) is the lcast-squares solution for the actuated wheel velocity vector. We note
his solution is applicable only when the matrix in (A4.3) is invertible. The conditions under

1 this solution is applicable are specified by the soluble motion criterion in (5.4.1).




5. Appendix 5. Sensed Forward Solution Matrix Calculations

In thisappendix, wedetail the matrix manipulations leading to the least-squar es sensed forward
solution. We solve the partitioned robot sensing equation in (5.7.2)

I Jn O 0 6;?
£ % —Jan - -
aid)=fe o T e
v I e 0 "-JNﬂ . )
ann
N0 . (A5.1)
J:. 0 ... 0\ /4,
- d1e
= {_J Jz. : .z = Bifl.-
: . .0 ot
O ca O JN‘ ‘qu !
to calculate the robot velocities p in the least-squares solution in (5.7.4):
( b ) =(ATA,) 'ATB,4, . (A5.2)
Gn
We begin by forming the matrix product
NI -Jtn -Jon - ~JINn
~J%, I, 0 ... 0
(A:‘A"‘) = _—Jg'u 0 Jg‘n‘]z” ) :
5 : e e 0 A5.3
~I%n 0 0 JL.Twn (AS3)
_(NI T
-\177 D/

where JV is the number of whecb and | is the (3 x 3) identity matrix. Welet the block matrix X

be the inverse of the symmetric matrix (A*An) in (A5.3). Since the inverse of a matrix times thc

matrix is the identity matrix,

’
X1 xu) (Nl T (ASA)
(xzx XaaJ\TT . (1),
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We use the top block row of the matrix inverse to seperate the robot velocity vector p from the

non-sensed wheel velocity vector q,, :

p=(Xu Xi2)AZB.q,. (45.5)
From (A35.4), we obtain
XuNI+X;3TT =1 (45.8)
and
XuT+X;3D=0, (A5.7)
from which
X3 = -X,, TD™! (45.8)
and
Xy = (NI-TD-11T)™! | ' (45.9)
The inverse of the block diagonal matrix D is:
(AT 310" 0 0
D-1= 0 (@ 32) 7" (A5.10)
: ‘. .. 0
0 0 (I%.3nx.)""

We expand the block elements in (A5.8) and (A5.9) to obtain

Xia = -Xu [-312(3T0in) ™" ~T2n(@532n) ™" .. =Ina(@F.dwa) ] (45.10)
where
- , - - -1
X1 = [V = J31a(35,310) 7 3T, = J2n(35aT2n) " 3F = oo = Inval3TInn) T 35
= —[A(J1a) + A(J2n) + ... + A{TNa)]

- -

. - (45.12)

Finally, we substitute (A5.11) and {ASI?) into {A5.5) to obtain the least-squares solution for
the robot velocity vector:
p=[AJ1a)+AJ2n)+...+ A(JN,.)}'I{A‘(J“)J“ A(J1n)32s ... A{Tnn)Ina]qs . (A45.13)

In Section 5.8, we develop the adeguate scmsing criterion which ensure the invertability of the
marrix (AT A, ) in (A5.3) and thereby the applicability of the lenst-squares sensed forward solution
in (A5.13).
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