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Abstract

This paper deals with the learnability of boolean functions. An intuitively appealing notion of

dimensionality of boolean functions is developed and used to identify the most general class of boolean

function families that are learnable from polynomially many positive examples with one-sided error. It is

then argued that although bounded DNF expressions lie outside this class, they must have efficient learning

algorithms as they are well suited for expressing many human concepts, A framework that enables efficient

learning of bounded DNF functions is then identified.



1- Introduction

Much attention has been paid to machine learning in the area of Artificial Intelligence (Michalski,

Carbonnell and Mitchell, 1983). Most of the literature in this category report investigations involving

heuristic and ad hoc methods for solving specific problems. Until recently, formal approaches were limited to

the area of inductive inference, as surveyed in (Angluin and Smith, 1983). The work reported in (Valiant,

1984) and (Blumer, Ehrenfeucht, Haussler and Warmuth, 1986) has helped refocus interest in a formal

framework for the problem.

(Valiant, 1984) presents computational models for learning and derives algorithms for learning specific

classes of boolean functions like bounded CNF, monotone DNF etc. In answer to an important question left

open in (Valiant, 1984), we identify a general family of functions that is no harder to learn than bounded CNF

but is not expressible as k-CNF for any fixed k. Going further, we give a theorem that identifies the most

general class of function families that can be learnt with one-sided error from polynomially many positive

examples. In doing so we develop the notion of dimensionality for boolean functions, in a manna: that is

independent of the structure of their boolean expressions. This is the main result of this paper. Our

development of the notion of dimensionality was independant of that first introduced in (Vapnik and

Chervonenkis, 1971) and more recently discussed in (Blumer et al, 1986). Although our notion is less general,

in that it is specific to boolean functions, it is far more intuitive than that of (Vapnik and Chervonenkis, 1971).

The supporting lemmas and theorems in this paper do not invoke the heavy machinery that (Blumer et al,

1986) borrow from (Vapnik and Chervonenkis, 1971), as they (the lemmas and theorems) are no stronger

than necessary to the problem at hand. For the sake of completeness, we show that our notion of dimension is

equivalent to that of (Vapnik and Chervonenkis, 1971)*

We then argue that many human concepts are bounded DNF, and hence there must be efficient

algorithms that learn them. Using our dimensionality theorem we show that bounded DNF functions cannot

be learnt with one-sided error from polynomially many positive examples. Placing some restrictions on the

probability distribution of the examples allows us to obtain a polynomial time algorithm that leams bounded

DNF expressions with two-sided "error. We can show that learning algorithms chat work for arbitrary



distributions do not exist This leads us to believe that while human concepts are often bounded DNF, they

are not learnt as such, but as disjunctions of simpler sub-concepts.

2. Preliminaries

We consider n boolean variables *xi~.v that can take on values from {0,1}. An assignment is an

assignment from {0,1} to each of the variables. A learning algorithm is an algorithm that attempts to infer a

function /on the variables, from positive examples for/ Le, assignments that satisfy / The learning algorithm

has at its disposal a subroutine EXAMPLE, that at cadi call produces a positive example for the function to

be learnt For a particular assignment a, the probability that the learned function will be queried on a is P(a)$

as given by the probability distribution function P. Also, the probability that a particular satisfying

assignment a of/will be produced by a call of EXAMPLE is P(a)/(% P(a^\ where the summation is over the

set of satisfying assignments for/ In addition the learning algorithm knows a priori that the function to be

learned belongs to some subset of all boolean functions on the same variables.

We define a family of functions Fto be any set of boolean functions such that if/and g are two functions

in F with toe same number of variables, then they are also functions of the same variables. The /1th subfamily

Fn of a family Fis the set of functions in Fofn variables. Hence

3. learning with One-Sided Error

Following (Valiant, 1984), we say that a family of ftinetioiB Fis feamable with one-sided error if and only

if there exists an algorithm dial

(a) makes polynomiaBy many calls of EXAMPLE both in an adjustable error parameter h and in die

number of variables A The algorithm need not run in polynomial time

(b) for all fkactions / t o F, and aM probability distributions P over the assignments, the algorithm

deduces with probability (I - I/A) a function g in Fsmh that for any assignment a,

i(ir)= 1 Implies jfff) = 1

i/S = {a\A4 = 1 and g{a) = 0}, then



^ * y h

Further, if the algorithm runs in polynomial time, we say that the family is polynomial time learaable or

p-time leamable. The notions of learnability and p-time learnability capture the idea that the teacher's time is

a lot more valuable than the student's time. So a concept is leamable if it requires a small amount of

student-teacher interaction, even though the student may have to do a lot of homework.

(Valiant, 1984) shows that bounded CNF expressions are p-time leamable with one-sided error and

questions whether the class of p-time leamable functions can be significantly extended beyond the bounded

CNF functions. We will exhibit a rather general family of functions that is p-time leamable with one-sided

error but is not included in the bounded CNF families. For any positive integer m, let ZT1 be the family of

boolean functions whose /1th sub-family consists of all functions of n variables with at most ti* satisfying

assignments.

Theorem 1: For any m, BT is p-time leamable with one-sided error*

Proof: (sketch) Construct an algorithm that calls EXAMPLE iKtf" + hgji) times and presents as

output the disjunction of the distinct assignments produced by EXAMPLE. With probability (1—I/A) the

algorithm will output a function in If1 that differs from the function to be learned with probability no greater

than TJk This can be proved with arguments similar to that of (Valiant, 1984). •

Theorem!: For any fixed m and k, Br<L k~CNR

Proof: Consider the function^ of n variables v^v^ given by

where N= mlogn. Now / has 2OT&8" = «m assignments and so f is in EP. Suppose that for some k, f is

expressible as k-CNF for any n. Pick n such that mlogn > k and examine the clauses of the k-CNF fonnula

g that is supposedly equivalent t o / , g must contain a clause of the form
f* a ft

(ux v ur»V ut V -i ui+l V...-r jij)

where 0 < / < it and



If not, g has a satisfying assignment that sets all of v .̂.., v^ to 0 and hence gn j ^ fn. But then, every satisfying

assignment of gn has atleast one of u^U; set to 1 and again gn j& fn. Hence the theorem. D

It is easy to see that the above proof holds for the family of functions with at most X(ri) satisfying

assignments where X(n) is an increasing function. Furthermore, any such family is p-time learnable as well,

extending the class of p-time leamable functions well beyond the k-CNF expressions.

Next we identify the set of all function families that are leamable with one-sided error. We need the

following definitions for our discussion. In what follows, we shall use the name of a function to refer to the

function or the set of assignments that satisfy it, unless the context demands clarificatioflu

A boolean function is said to be consistent with a set of assignments if it is satisfied by every assignment

in the set

A sub-family F is well-ordered if, for any set of alignments S that is consistent with some function in F'

there easts a function/In Fn such that

(a)/ls consistent with S

(b) for any Jj € Fn consistent with S9fQft

We say that / i s the least function in F consistent with 5. A family Fis well-ordered if its rfl sub-family

F is well-ordered for all n.

Define tbe operator MR to be a mapping from sets of assignments to fimctions in Fn as follows. For any

subset S of assignments consistent with some/in F^ Mn(S) h the least function in Fn consistent with S* US

k not consistent with any fisnetion F^ MJS) is undefined

Proportion 1: FM k well-ordered if and only if for any two functions/and g in F^ ff) g 7^ 0 implies

that there exists a function kef such that h = ff) g>



Proposition 2: For any two sets A and 5,

Mn(A U 5 ) = Mn(Mn(A) U M£B))

The dimension of a sub-family F^ denoted by dimC/y, is the least integer d such that for every function/

in fT, there exists a set 5-of dor fewer assignments such that/is the least function in Fn consistent with Sf.

A family F is of polynomial dimension if there exists a polynomial D(n) such that for all n% Fn is of

dimension at most D(n).

Proposition 3: Let Fn be of dimension d Then there exists a set S of d assignments such that

(a) S is consistent with some function in F .
n

(b) for any S1$S2CZS,

Sx ?£ S2 implies MJiSJ y& M£s)

Proof: Since Fn is of dimension d, there is some function/in F^ such that for any set of assignments S

/= Mn(S) implies |S| > d.

Pick a set S of rf^^ignments sach tha t /= M (S) and (a) is satisfied

Then, suppose that Sx and S2 are two subsets of S such that Sl 7^ S% and yet MJiS^ = M^

lo^ of generality let \SX\ < \S2l Now,

Using Proposition 2 on the above equation we get

Mn{S) = MJ.MJLS-SJ U M^) U

=Mn(Mn(S-SJ U MJiSJ) since

= Mn((S- SJ U 5 )̂ by Proposition 2 again.

Hence/= Mn(S) = MJ£S

where | ( 5 - S p u ^ l < <L

A contr^IkrtioiL Hence the remit D



Theorem 3: A family Fis learnable with one-sided error if and only if Fis of polynomial dimension.

Proof:(sketch) (only if) We begin by showing that if a family is learnable with one sided-error, it is

well-ordered Let Fbe a family that is learaable, but not well-ordered Let A be a learning algorithm for F^

Then, for any set of assignments that is consistent with some function in F^ A produces the least such

function. Otherwise A would not learn with one-sided error. Hence F_ is well-ordered and so is F.
n

Let A be an algorithm that learns F^ using (n/h)k calls of EXAMPLE, where k is some integer and h is

the error parameter. Suppose that Fn is of super-polynomial dimension D(n). Then, pick n and h such that

D(n) > (n/hfyl-h). Let </ = Z)(II) and m = (n/A)* Recall that A must leam any function in Fn for any

probability distribution on it Pick a set S of size d as in Proposition 3, and place the uniform probability

distribution on it Now, A will see some m elements of S and output the least function g that is consistent

with these. By Proposition 3, this function will not be consistent with any of the other d-m elements in SL

Consequently, g differs from the function to be learned, Mn(S)t with greater than 1/h probability. Hence A

does not learn F .
n

(if) Let Fbe of polynomial dimension ZXfl). We build an algorithm A to learn Fas follows. L e t / € Fn

be die function to be learned with eiror at most I/A as defined earlier. For any probability distribution P on

f9 consider the set of functions

These are the functions that differ from/with more than the allowable error. The probability that m calls of

EXAMPLE will produce assignments aH consistent with somt particular function in C+ is bounded by

( l - l / f t )* Now \CJ & |FJ £ 2^^. Hence !i*e probability tfeataflm examples will be consistent with any

one function m C^is bounded by 2 ^ % - l/Kp. Thereto, if

is sati&fM, A win karn F. Simplifying, we get

m > b(nB(ri) + togn)

to be sufficient Since D(n) is polynomial, m is polynomial in n and k making F Icamablc with one-sided



error.

This completes the proof. D

Corollary: A boolean family F is learnable with one-sided error if and only if there exists a polynomial

D(n) such that

\Fn\ < 22*a> for all n.

We will now work an example to demonstrate the scope of Theorem 3.

Example 1: For each n, given are ktji) predetermined boolean func t ions / / , . , ^ v, where k(n) is some
1 2 KXJl)

fixed polynomial in ru Consider the function family F whose /1th subfamily F is defined as follows.

In words, Fn consists of conjuncts of any subset of the given k(n)

Oaiml: Fis well-ordered.

Proofi Straightforward. D

Qaim2: Fis of polynomial dimension.

Proof: For any fiinction/in F^ construct a set of assignments 5-as follows.

for each g of the given k(ri) functions do

if £ is not included i n / pick an

assignment that satisfies/but not g»

If such exists, add it to S+.

od

mi
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S .contains at most k(n) elements and it is easy to verify t h a t / = Mn(Sj). Hence Fn is of dimension Hfl)

and therefore Fis of polynomial dimension, D

Claim 3: F is learnable with one-sided error.

Proof: Immediate from Theorem 3 and the foregoing claims. •

Indeed, it is not hard to see that bounded CNF is a special case of this family. •

Theorem 3 is useful in determining whether or not a family of functions is learnable. However, it cannot

be used to determine p-time learnability. This is precluded by generality of the theorem in that it makes no

assumptions on the structure of the function family. To extend die the scope of the theorem to p-time

learnability, we need the following definition.

A sub-family F is orderabh in time / if and only if for any set of assignments S that is consistent with

some function in F^ the least function in Fn consistent with S is computable in ttoe L A family Fis p-time

orderable if and only if there exists a polynomial 7{n) such that for all n, F is orderable in T{n) time.

Theorem 4: A family F is p-time leamable if and only if it is of polynomial dimension and is p-time

orderable.

Proof: A straightforward extension of the proof of Theorem 3. •

We wiH now establish the relationship between cur notion of dimension and that of (Vapnik and

Ghervonenlds, 1971). Following (Bimms et ai, 1986)t we define the Vaprnk-Oiervoneniis dimension*

denoted by &^JLFJ> of a aibfemily Fm as follows.

Git en a set S of assignments of n variables, let 11(5) denote the set of ail subsets of S obtained by

mfersecting S with the Auctions to F * Le.

If 0(5) = 2^ we say S is shattered by Fn. \C(FJ m the smallest integer if such that no set of cardinality



is shattered by F.
n

Theorem 5: For any subfamily F.
n

dJ^FJ S n-dbniF}

Proof: Letdin^Fj) = d. Since \FJ < 2nd, no set of cardinality nd+ lean be shattered by Fn. Hence,

ndim{F}

By Proposition 3, there exists a set of cardinality diktat is shattered by F. Hence,
It

<; d^FJ

and therefore

4. Learning with Two-Sided Error

Consider the family of boolean functions generated by the bounded-DNF expressions- Le^ for any ifc, the

k-DNF functions are those represented by DNF formulae with at most * variables per clause. It is easy to

verify that for any fixed k, the k-DNF functions are not well-ordered Take a single assignment There are

many k-DNF functions that are consistent with this assignment, but there is no least one among them. Hence

k-DNF functions are not leamable with one-sided error. This is unfortunate as many human concepts tend to

be bounded DNF rather than CNF, perhaps because the former naturally favours positive concepts like

{this A that A that) V {that A that) V...

while k-CNF favours negative concepts like

{-*{this A that A that)) A {-t(that A that)) A~*

In words, k-DNF expresses what is included by the concept, while k-CNF expresses what is excluded by i t

Suppose we send out a child to buy some fruit Given his limited development, k t us assume that the

child only knows of apples* mangoes, pomegranates and grapes* So his concept of fruit is likely to be
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fruit = apples V mangoes V pomegranates V grapes

= {red A /a/cy A fleshy) V (yetlow A yw/cy A fleshy) V

(red A -i yw/cy A cellular) V (purple A jtacy A fleshy)

where each clause in the second expression describes the corresponding fruit in the first, in terms of the

observable variables. It appears that the concept of fruit is better expressed in DNF rather than CNF. Also,

k-DNF concepts tend to be general, in that any k-DNF formula has atleast 2n~k satisfying assignments.

The point of all this is that bounded-DNF functions are important and since they are learned easily by

humans, there must be efficient algorithms for them. Our interest here is best expressed thus. Suppose the

child in the above example delegated die task to the family robot How does he get the robot to learn quicky

what he means by "fruit**? In particular, we wish to find toe framework within which the child can quickly

communicate to the robot what he means by a fruit, as opposed to analyzing a particular protocol with respect

to such concepts. We will now define such a framework.

A family of functions F is learnable with two sided error if and only if there exists a learning algotithm

that

(a) makes polynomially many calls of EXAMPLE both in the adjustable error parameter ft aid in the

number of variables n.

(b) For all functions/in F^ and the uniform distribution over the assignments, the algorithm will

deduce with probability ( 1 - I/A) a function g in Fsuch that for any assignment a,

We rniphssim here that the uniform probability distribution applies to the examples produced by

EXAMPLE as wdl as to Hie queries asked of the learned fttactioiL If the distribution is allowed to be

arbitrary* we can show etsiy that any karamg algorithm can be farced to deviate from the function to be

learned with prababilit approaching mrfiy.

We sty a k-DNF dmm is prime If and only if It contains k distinct variables. ( A variable and its

negation arc not distinct). We now present m algorithm that teams k-DNF functions of n variables,
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Algorithm 1

(1) Perform (32/z3*/*3) calls of EXAMPLE and for each prime k-DNF clause c. of the n variables,

compute the hit frequency

number of examples satisfying c{

1 total number of examples
(2) Pick the clause Cm such that rm is a maximum. Construct g, the disjunction of all clauses cf such that

r. > r — r

' m 2h{2n)k

(3) Output the constructed function g.

Define the hit probability of a clause to be the probability that a call of EXAMPLE will result in a

satisfying assignment of the clause. Algorithm 1 does nothing more than estimate the hit probability of each

prime k-DNF clause. (There are no more than(2£) < (2n)k of these.) Since the probability distribution is

uniform, all of the prime clauses that are included in the function to be learned will enjoy the same hit

probability and that will be a maximum. Hence, the algorithm attempts to identify the clauses with maximum

hit probability and will do so with high probability. There might be some clauses that are not included in the

function to be learned, but have a hit probability approaching the maximum. These will be included in the

output function g if their error contribution is lower than that allowed by the parameter k Some algebraic

manipulation is required to compute the number of calls to EXAMPLE as specified in the algorithm. In

particular, an approximation of the binomial distribution (Feller, 1957) is useful in estimating the number of

calls to EXAMPLE necessary to ensure that for any clause, with proabability at least (1-1/A), the deviation

of its hit frequency from its hit probability is at most S = —-—. This ensures that with probability (1—I/A),

(a) the clauses in the function to be learned will enjoy a hit frequency in the interval (r . r — 28), where

r is the maximum hit frequency observed.
m

(b) a clause with tut probability less than (^—45) will have a hit frequency outside the interval
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Of the above conditions, (a) implies that with high probability, our algorithm will correctly identify the

clauses present in the function to be learned, while (b) implies that the error contribution of a spurious clause

that is included by fee algorithm in the output function is at most 45. Since there can be at most (2n)k

spurious functions, it follows that with high probability the output function is incorrect with probability at

most

(2/0*45 =

Which is as required.

From &e forgoing, we see that bounded DNF functions are not easy to learn except in some restricted

situations. Perhaps humans do not learn k-DNF functions at one go, but do so clause by clausele, bottom up

instead of top-down. In the robot-child example, this translates to the child teaching the robot tiie sub-

concepts of apple, mango, grape and pomegranate, and then unifying them into the concept of fruit. Of

course, if negative examples were allowed, bounded DNF functions are no harder to learn than bounded

CNF functions. But it is unusual for human concepts to be learned from negative examples.

5. Conclusion

In this paper, we dealt with the teamabiBty of boolean functions. We identified the most general class of

Sanction families that are leamable with one-sided error from polynomially many positive examples. In doing

so, we developed an intuitively appealing notion of dimensionlity for boolean functions. Arguing that many

human concepts are bounded DNF, we identified a framework within which bounded DNF expressions are

tamable,
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