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Abstract
This paper deals with the learnability of boolean functions. An intuitively appealing notion of
dimensionality of boolean functions is developed and used to identify the most general ciass of boolean
function families that are learnable from polynomially many positive examples with one-sided error. It is
then argued that although bounded DNF expressions lie outside this class, they must have efficient learning
algorithms as they are well suited for expressing many human concepts. A framework that enables efficient '

learning of bounded DNF functions is then identified.



1- Introduction

Much attention has been paid to machine learning in the area of Artificia Intelligence (Michalski,
Carbonnell and Mitchell, 1983). Most of the literature in this category report investigations involving
heuristic and ad hoc methods for solving specific problems. Until recently, formal approaches were limited to
the area of inductive inference, as surveyed in (Angluin and Smith, 1983). The work reported in (Vaiant,
1984) and (Blumer, Ehrenfeucht, Haussler and Warmuth, 1986) has helped refocus interest in a forma

framework for the problem.

(Vadiant, 1984) presents computational models for learning and derives agorithms for learning specific
classes of boolean functions like bounded CNF, monotone DNF etc. In answer to an important question left
open in (Valiant, 1984), we identify ageneral family of functions that is no harder to learn than bounded CNF
but is not expressible as k-CNF for any fixed k. Going further, we give a theorem that identifies the most
general class of function families that can be learnt with one-sided error from polynomialy many positive
examples. In doing so we develop the notion of dimensionality for boolean functions, in amanna: that is
independent of the structure of their booleaﬁ exprons This is the main result of this paper. Our
development of the notion of dimensionality was independant of that first introduced in (Vapnik and
Chervonenkis, 1971) and more recently discussed in (Blumer et a, 1986). Although our notion islessgeneral,
in that it is specific to boolean functions, it is far more intuitive than that of (Vapnik and Chervonenkis, 1971).
The supporting lemmas and theorems in this paper do not invoke the heavy machinery that (Blumer et d,
1986) borrow from (Vapnik and Chervonenkis, 1971), as they (the lemmas and theorems) are no stronger
than necessary to the problem at hand. For the sake of completeness, we show that our notion of dimensionis

equivalent to that of (Vapnik and Chervonenkis, 1971)*

We then argue that many human concepts are bounded DNF, and hence there must be efficient
algorithms that learn them. Using our dimensionality theorem we show that bounded DNF functions cannot
be learnt with one-sided error from polynomially many positive examples. Placing some restrictions on the
probability distribution of the examples adlows us to obtain a polynomial time agorithm that leams bounded

DNF expressions with two-sided "error. We can show that learning agorithms chat work for arbitrary




distributions do not exist. This leads us to believe that while human concepts are often bounded DNF, they

are not learnt as such, but as disjunctions of simpler sub-concepts.

2. Preliminaries

We considcr n boolean variables Ve, that can take on values from {0,1}. An assignment is an
assignment from {0,1} to each of the variables. A learning algorithm is an algorithm that attempts to infer a
function fon the variables, from positive examples for f. i.e, assignments that satisfy £ The learning algorithm
has at its disposal a subroutine EXAMPLE, that at cach call produces a positive example for the function to
be learnt. For a particular assignment g, the probability that the learned function will be queried on ais P(a),
as given by the probability distribution function P. Also, the probability that a particular satisfying
assignment q of fwill be produced by a call of EXAMPLE is P(a)/(3} P(ai))‘ where the summation is over the
set of satisfying assignments for £ In addition the learning algorithm knows a priori that the function to be
learned belongs to some subset of all boolean functions on the same variables.

We define a family of functions Fto be any set of boolean functions such that if fand g are two functions
in F with the same number of variables, then they are also functions of the same variables. Then’hsubfamz?y
F”ofafamﬂy F is the set of functions in F of n variables. Hence

F= Uule

2
3. Learning with One-Sided Error
Following (Valiant, 1984), we say that a family of functions F's learnable with one-sided error if and only
if there exists an algorithm that
(2) makes polynomially many calls of EXAMPLE both in an adjustable
number of variables ». The algorithm need not run in polynomial time,

error parameter i and in the

(b) for all functions fin F, and all probability distributions P over the assignments, the algorithm
ility (1—1/k) a function gin Fsuch that for any assignme
g(@)=1implies fa) = 1
ifS = {a| fa) = 1 and g(a) = 0}, then
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Further, if the algorithm runs in polynomial time, we say that the family is polynomial time learaable or

p-time leamable. The notions of learnability and p-time learnability capture the idea that the teacher's time is
a lot more valuable than the student's time. So a concept is leamable if it requires a smal amount of

student-teacher interaction, even though the student may have to do alot of homework.

(Vaiant, 1984) shows that bounded CNF expressions are p-time leamable with one-sided error and
guestions whether the class of p-time leamable functions can be sgnificantly extended beyond the bounded
CNF functions. We will exhibit a rather general family of functions that is p-time leamable with one-sided
error but is not included in the bounded CNF families. For any positive integer m, let ZT* be the family of
boolean functions whose /1™ sub-family consists of al functions of n variables with at most ti* satisfying

assignments.
Theorem 1. For any m, BT is p-time leamabl e with one-sided error*

Proof: (sketch) Construct an algorithm that cals EXAMPLE iKtf" + hgji) times and presents as
output the digunction of the distinct assignments produced by EXAMPLE. With probability (1—I/A) the
agorithm will output a function in If* that differs from the function to be learned with probability no greater

than TJK This can be proved with arguments similar to that of (Valiant, 1984). «

- f
Theorem!: For any fixedmand k, §r.FJ_ k~CNR

Proof: Congder the function” of n variables v/ v/ given by

f= (vlv VeV vN)A LY

ZOT& 8" =

where N= mlogn. Now / has «" assignments and so f isin EP. Suppose that for some k, f is

expressible as k-CNF for any n. Pick nsuch that mlogn > k and examine the clauses of the k-CNF fonnula

g, that is supposedly equivalentto/, g must contain aclause of the form

f a ft
(Uuxy v u»V u VvV -i Uiy V..ot jij)

whaeO < / = itand
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If not, g, has a satisfying assignment that sets all of VsV 1O 0 and hence g, 7% f;z . But then, every satisfying

assignment of g, has atleast one of Uppuunld SEL O 1land again g a % j;l Hence the theorem. [

It is easy to see that the above proof holds for the family of functions with at most X(n) satisfying
assignments where X(n) is an increasing function. Furthermore, any such family is p-time learnable as well,

extending the class of p-time learnable functions well beyond the k-CNF expressions.

Next we identify the set of all function families that are learnable with one-sided error. We need the
following definitions for our discussion. In what follows, we shall use the name of a function to refer to the

function or the set of assignments that satisfy it, unless the context demands clarification.

A boolean function is said to be consistent with a set of assignments if it is satisfied by every assignment

in the set.

A sub-family Fnis well-ordered if, for any set of assignments S that is consistent with some function in Fn,
there exists a function fin F, such that

(a) fis consistent with S

(b)foranyf; € Fnconsistzntwiths,fgj;
We say that fis the least function in Fn consistent with S. A family Fis well-ordered if its n”'sub-family
F"zswell-ordzredforalln.

Deﬁm:theoperatorMnmbeamapping&omsetsofassignmentstoﬁmctionsmf'nasfollows. For any
subset S of assignments consistent with some fin F, M"(.S’)istheleastﬁmctioninl""consistcmwith S. IfS

is not consistent with any function Fu. Ml(S) is undefined.

Proposition 1: Fuisweﬂ-ordﬂtdifandon]yifforanytwo functions fand g in Fu,fng 7% @ implies

that there exists a function & € };suchthath =fNg




Proposition 2: For any two sets A and 5,

Mn(A U5) = My(Mn(A) U M£B))

The dimension of asub-family F* denoted by dimCly, is the least integer d such that for every function/

in f]", there exists a set §-of dor fewer assignments such that/is the least function in F,, consistent with S.

A family Fis of polynomial dimension if there exists a polynomial D(n) such that for al no, F, is of

dimension at most D(n).

Proposition 3: Let F, be of dimension d Then there exists a set Sof d assignments such that

(a) Sisconsistent with some functionin F .
n

(b) for any S;sSCZS
S, £ S, implies MJiSt y& V£
Proof: Since F, is of dimension d, there is some‘function/in F~ such that for any set of assgnments S
/= My(S) implies |S| = d. |

Pick aset Sof rf*Mignments sach that/= M (S) and (a) is satisfied

Then, suppose that S, and S; are two subsets of Ssuch that § 7" S, and yet MJiS* = M"[SI). Without
| o of generality let\S\ < \S) Now,
S=(S-SPUSUS,
Using Propasition 2 on the above equation we get
Mu{S) = MIMILS-SI U M*) U M (S))
- =M(Mn(S-SJ U MJiSJ) since M (S)) = M (S).

= My((S I U 5 by Proposition 2 again.
Hence/= M,(S) = MJES—-S,)U Sl)
where|(5-Spu”l <<L

A contrMkrtioiL Hence the remit D




Theoremn 3: A family Fis learnable with one-sided error if and only if F'is of polynomial dimension.

Proof:(sketch) (only if) We begin by showing that if a family is learnable with one sided-error, it is
well-ordered. Let F be a family that is learnable, but not well-ordered. Let A be a learning algorithm for Fn.
Then, for any set of assignments that is consistent with some function in F , A produces the least such

function. Otherwise A would not learn with one-sided error. Hence F’z is well-ordered and so is F.

Let A be an algorithm that learns F,, using (n/h)¥ calls of EXAMPLE, where & is some integer and & is
 the error parameter. Suppose that F,l is of super-polynomial dimension D(n). Then, pick n and % such that
D(n) > (Wh¥1—h). Letd = D(n) and m = (n/R)*. Recall that A must learn any function in F, for any
probability distribution on it. Pick a set S of size d as in Proposition 3, and place the uniform probability
distribution on it. Now, A will see some m elements of S and output the least function g that is consistent
with these. By Proposition 3, this function will not be consistent with any of the other d&-m elements in S.
Consequently, g differs from the function to be learned, M (S), with greater than //h probability. Hence A
does not learn F,

(if) Let F be of polynomial dimension D(n). We build an algorithm A to learn Fas follows. Let f€ F
be the function to be learned with error at most 1/ as defined earlier. For any probability distribution P on
J/; consider the set of functions

Cf={glg€ F,P(f-g 2 Vh}
These are the functions that differ from fwith more than the allowable crror. The probability that m calls of
Wwﬂpmdmeasignmmaﬂmwamtwimmpmmmmﬁmmcfkbmn&dby
(1~ VB Now |C) < |F,| < 2™ Hence the probability that all m examples will be consistent with anty
one function in C, s bounded by 2”21~ 1/4)". Therefore, if

2D — kY™ < Uk |

is satisfied, A will learn F. Simplifying, we get

m > h(nD(n) + logn)
to be sufficient. Since /(n) is polynomial, m is polynomial in # and A, making F lcarnable with onc-sided



erTor.
This completes the proof, O

Corollary: A boolean family F is learnable with one-sided error if and only if there exists a polynomial

D(n) such that

IF | < 2P for all n.
We will now work an example to demonstrate the scope of Theorem 3.

Example 1: For each n, given are k(n) predetermined boolean functions f;.);,...fk(n), where k(n) is some
fixed polynomial in n. Consider the function family F whose nth subfamily 1’7,l is defined as follows.
F,={dg= ,(E\S 5 SC Uy fyfiuht

In words, F, n consists of conjuncts of any subset of the given k(n) functions.
Claim 1: Fis well-ordered.
Proof: Straightforward. OJ
Claim 2: Fis of polynomial dimension.

Proof: For any function fin F o construct a set of assignments Sfas follows.
begin
Sf=ﬂ
for each g of the given k(n) functions do
if g is not included in £, pick an
assignment that satisfies fbut not g.
Ifsuchexists,adadittosf.

end




S

and therefore F'is of polynomial dimension. [J

contains at most k(n) elements and it is easy to verify that f= M n(S j} Hence Fn is of dimension k(n)

Claim 3: F'is learnable with one-sided error.
Proof: Immediate from Theorem 3 and the foregoing claims. [
Indeed, it is not hard to see that bounded CNF is a special case of this family. O

Theorem 3 is useful in determining whether or not a family of functions is learnable. However, it cannot
be used to determine p-time learnability. This is precluded by generality of the theorem in that it makes no
assumptions on the structure of the function family. To extend the the scope of the theorem to p-time

learnability, we need the following definition.

A sub-family Fnis orderable in time ¢ if and only if for any set of assignments S that is consistent with
some function inF,{theleastﬁmcﬁonin FuconsistentwimSiscomputabieinﬁmeL A family Fis p-time
orderable if and only if there exists a polynomial Rn)smhthatforaﬂn,F"rsordembkin T(n) time.

Theorem 4: A family Fis p-time learnable if and only if it is of polynomial dimension and is p-time
orderable.

Proof: A straightforward extension of the proof of Theorem 3. O

We will now establish the relationship between our notion of dimension and that of (Vapnik and

Blumer et al, 1986), we define the Vapnik-Chervonenkis dimension,
bydw(F),ofambfunﬁyF’asfoﬁm

Given a set S of assignments of n variables, let TI(S) denote the set of all subsets of S obtained by
intersecting S with the functions in F, Le. |
1(S) = {SNf1f< F}
IfFTI(S) = 25, we say S is shattered by F. d, (F.) is the smallest integer d'such that no set of cardinality d+ 1



is shattered by F "

Theorem 5: For any subfamily F' "

dim(F,) < d (F,) < n-dim(F,)

Proof: Let dim(F n) = d. Since IF,,I < 2™ 1o set of cardinality nd+ 1 can be shattered by Fn. Hence,
dw(Fn) < ndim(F)
By Proposition 3, there exists a set of cardinality d that is shattered by Fn. Hence,
dim(F) < d_(F)
and therefore
dim(F) < d (F) < ndim(F)
O

4. Learning with Two-Sided Error
Consider the family of boolean functions generated by the bounded-DNF expressions. i.e., for any k, the

k-DNF functions are those represented by DNF formulae with at most & variables per clause. It is easy to
verify that for any fixed k, the k-DNF functions are not well-ordered. Take a single assignment. There are
many k-DNF functions that are consistent with this assignment, but there is no least one among them. Hence
k-DNF functions are pot learnable with one-sided error. This is unfortunate as many human concepts tend to
be bounded DNF rather than CNF, perhaps because the former naturally favours positive concepts like

(this A that A thal) V (that A thaf) V ...
while k-CNF favours negative concepts like

(—(this A that A thaf)) A (—(that A thab)) A...
~ In words, k-DNF expresses what is included by the concept, while k-CNF expresses what is excluded by it.

Suppose we send out a child to buy some fruit. Given his limited development, let us assume that the

child only knows of apples, mangoes, pomegranates and grapes. So his concept of fruit is likely to be
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fruit = apples V mangoes V' pomegranatesV grapes
= (red A juicy A fleshy) V (yellow A juicy A fleshy) V
(red A = juicy A cellular) v (purple A juicy A fleshy)
where each clause in the second expression describes the corresponding fruit in the first, in terms of the
observable variables. It appears that the concept of fruit is better expressed in DNF rather than CNF. Also,

k-DNF concepts tend to be general, in that any k-DNF formula has atleast =k satisfying assignments.

The point of all this is that bounded-DNF functions are important and since they are learned easily by
humans, there must be efficient algorithms for them. Our interest here is best expressed thus. Suppose the
child in the above example delegated the task to the family robot. How does he get the robot to learn quicky
what he means by "fruit"? In particular, we wish to find the framework within which the child can quickly
communicate to the robot what he means b); a fruit, as opposed to analyzing a particular protocol with respect
to such concepts. We will now define such a framework.

A family of functions F is learnable with two sided error if and only if there exists a learning algotithm
(a) makes polynomially many calls of EXAMPLE both in the adjustable error parameter 4 and in the
number of variables n.

(b) For all functions fin Frmdmmm&mbuMWerﬂmassignmmamalgnﬁthmwm
deduce with probability (1—1/h) a function g in Fsuch that for any assignment a,
Pg(a) 7% fa)) < V/h

applies to the examples produced by
asked of the learned function. If the distribution is allowed to be
arbitrary, we can show easily that any learning algorithm can be forced to deviate from the function to be

EXAMPLE as well as to the queries

We say a k-DNF clause is prime if and only if it contains k distinct variables. ( A variable and its
negation are not distinct). We now present an algorithm that learns k-DNF functions of n variables,




1

Algorithm 1
(1) Perform (32/2*/) calls of EXAMPLE and for esch prime k-DNF dlause ¢, of the n variables,

compute the hit frequency
number of examples satisfying ¢

1= tota ~ number of examples
(2) Pick the clause Cy, such that rp,, is amaximum. Construct g, the digunction of al clauses ¢; such that

rzr — 1 -
m 2h{2n)*
(3) Output the constructed function g.

Define the hit probability of a clause to be the probability that a call of EXAMPLE will result in a
sisfying assignment of the clause. Algorithm 1 does nothing more than estimate the hit probability of each
prime k-DNF clause. (There are no more than(’£) < (2n)¢ of these) Since the probability distribution is
uniform, al of the prime clauses that are included in the function to be learned will enjoy the same hit
probability and that will be a maximum. Hence, the algorithm attempts to identify the clauses with maximum
hit probability and will do so with high probability. There might be some clauses that are not included in the
function to be learned, but have a hit probability approaching the maximum. These will be included in the
output function gif their error contribution is lower than that allowed by the parameter k Some agebraic
manipulation is required to compute the number of calls to EXAMPLE as specified in the agorithm. In
particular, an approximation of the binomial distribution (Feller, 1957) is useful in estimating the number of
cdls to EXAMPLE necessary to ensure that for any clause, with proabability at least (1-1/A), the deviation

of its hit frequency from its hit probability is at most S = —2—. Thisensures that with probability (1—I/A),

(&) the clauses in the function to be learned will enjoy ahit frequency in theinterval (r _.r — 28), where

rmisthe maximum hit frequency observed:

(b) aclause with tt probability less than (*—45) will have a hit frequency outside the interval (r.l.

rn—23).
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Of the above conditions, (a) implies that with high probability, our agorithm will correctly identify the
clauses present in the function to be learned, while (b) implies that the error contribution of a spurious clause
that is included by fee dgorithm in the output function is at most 45. Since there can be at most (2n)*
spurious functions, it fallows that with high probability the output function is incorrect with probability at

most
k
A2

(2/0*45 = aHn )J:

Whichisasrequired.

From & e forgoing, we see that bounded DNF functions are not easy to learn except in some restricted
situations. Perhaps humans do not learn k-DNF functions at one go, but do so clause by clausel e, bottom up
ingtead of top-down. In the robot-child example, this trandates to the child teaching the robot tiie sub-
concepts of apple, mango, grape and pomegranate, and then unifying them into the concept of fruit. Of
course, if negative examples were dlowed, bounded DNF functions are no harder to learn than bounded

CNFfunctions. Butitisunusua for human conceptsto be learned from negative examples.

5. Conclusion

Inthis paper, we dealt with theteamabiBty of boolean functions. We identified the most general class of
Sanction families that are leamable with one-sded error from polynomially many positive examples. Indoing
s0, we developed. an intuitively appeding notion of dimensionlity for boolean functions. Arguing that many
human concepts are bounded DNF, we identified aframework within which bounded DNF expressions are

tamable,
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