NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Prototype Software for Automatic Generation
of On-line Control Programs
for Discrete Manufacturing Processes

Gregg Ekberg and Bruce H. Krogh

CMU-RI-TR-87-3 5)

Flexible Assembly Laboratory
The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

February 1987

Copyright © 1987 Carnegie Mellon University

This work has been supported in part by General Motors Corporation, North American Philips
Corporation, and the National Science Foundation under research grant DMC-8451493.

Table of Contents

1 Introduction 1
9 Control of an Automatic Conveyor 3
3 DBBUILD 4
4 PROGGEN 7
4.1 Description 7

4.2 Analysis 14

5 Additional Utilities 17
5.1 TIMERS 17

5.2 COUNTERS 17

5.3 EXTERNAL FUNCTIONS 18

6 Conclusion 18
1. Sensors, Actuators, Resources, and Operations for Conveyor Example 19
II. DBBUILD User’s Manual . 22
1.1 Introduction 22
I1.2 Structure 22
11.2.1 Operation Records 22
I1.2.2 Resource Records 24
11.2.3 Actuator Records 25
11.2.4 Sensor Records 26

I1.3 Menus 26
I1.3.1 Operation Menu 27
11.3.2 Resource Menu 29
I1.3.3 Actuator Menu . 30
I1.3.4 Sensor Menu . 31

-RTY LIBRARIES
L£LLOMN UNIVERSITY
YLYANES 15213

oo PRI
Py iSRG, ribenss

R

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

i

List of Figures

Modular paint shop conveyor system

Detail of conveyor stops and chain

Petri net model of conveyor control logic for the base-coat booth
Database structures and pointers: operation records

Database structures and pointers: resource records

Database structures and pointers: sensor records

Database structures and pointers: actuator records
PROGGEN Flow Chart

O Voo,

1

12

Abstract

This report describes prototype software for automatically generating control programs for
discrete manufacturing processes from a high-level description of the system control logic. The
control logic is synthesized from a specification of the physical resource states required for each
operation in the process. The software described in this report allows the user to specify
"interactively the operation sequencing logic and the actuators and sensors for each stage of the
process. This information is then used to automatically generate code for on-line control
computers. The current implementation supports binary sensor and actuator signals. The
methodology is illustrated for the automatic generation of instruction list (IL) code to control a

conveyor system in an existing robotic assembly plant.

1 Introduction

The writing and debugging of computer programs for sequential control accounts for a major
component of the cost in implementing automated manufacturing systems. It is also time
consuming and expensive to modify existing control programs. This report describes prototype
software for reducing the time and cost involved in developing discrete control programs by
automatically generating executable computer code from a high-level description of the system
control logic. With this software the manufacturing engineer can specify the control logic in
terms of the physical devices and operations from which the computer generates the programs

for real-time control.

The prototype software described in this report is comprised of two programs: DBBUILD and
PROGGEN. DBBUILD (Data Base BUILDer) is an interactive program used to build and
modify a data base containing the system control description in terms of its physical devices and
operations. PROGGEN (PROGram GENerator), executed from within DBBUILD, generates

source code for the on-line control computer.

Normally, a skilled programmer performs the task of developing the controller program
(usually in the Ladder Diagram Language) from the system designer’s description of a discrete
manufacturing system. Several problems can arise from the transfer of information to the
programmer and the manual encoding of the system control logic. This is due to several factors,
including:

e the-designer’s description of the system can be misinterpreted;
e the programmer’s implementation may be inflexibly structured around the specific

sensor/actuator realization, whereas the design engineer will maintain flexibility to
meet changes in the operation of the system.

e the functional description of the system operation is not clearly reflected in the low-
level control program.

These factors make it difficult to debug the control program or make changes in the sequencing
of operations. Future modifications may be made difficult because the programmer did not
anticipate possible changes in operation sequencing. The manufacturing engineer thinks more

about how the sequencing of operations may affect future operating conditions.

The objective for developing the software described in this report is to eliminate the need for
manually encoding the discrete control logic for manufacturing systems. This task is
accomplished by the computer, allowing the system designer to specify and modify the control
program using a high-level functional representation of the system. To maintain a systematic
approach of generating system control programs, the code is generated for one operation at a
time, using physical states of resources as enabling conditions. It is not necessary for the user to
specify when to enable and disable the operation actuators; this task is performed automatically

by PROGGEN.

Control of a discrete manufacturing system involves the coordination of multiple resources in a
sequence of discrete operations. The initiation of each operation depends on the states of
physical parts and devices (resources) within the system. A resource is any component within
the manufacturing system that is involved in the sys;t;em’s operation: robots, fixtures, raw
materials, controllers, ete. Following the execution of an operation, the states of the resources

involved in the operation are changed; sensors are used to monitor changes the resource states.

We use Petri nets (PN) to model the discrete decision and control of a manufacturing system.
Previous research has shown that PN models are effective for modeling the evolution of the state
transitions in discrete systems [1]. PNs contain transitions, representing operations or events;
:blaces, representing conditions or states in the process; and directed arcs connecting the places
and transitions. In the graphical representation of PNs, transitions are represented by vertical
bars and places are represented by circles. The conditions e_nabling an operation are the resource
states associated with the operations input transition. Upon completion of the operation the

resources will be in the states associated within the output transition.

Recently, a systematic methodology was developed for synthesizing PN models of discrete
manufacturing systems [2, 3, 4]. As presenﬁed by Beck [2], systematic approaches to developing
the manufacturing system control logic can be synthesized from activity cycles for each resource.
The resource activity cycles are developed, individually and then joined at common operations to
synthesize the complete system control logic. We use this approach to define information that is
entered into the database using DBBUILD.

The report is organized as follows. In section 2 we bresent an example of an automated

conveyor system in an automobile paint shop which we use throughout the report to illustrate

the functions of DBBUILD and PROGGEN. In section 3 we describe the structure and use of
DBBUILD, and in section 4 we describe PROGGEN and discuss its performance in terms of the
generated controller code. The performance criteria is based on correctness and gains or losses in
efficiency compared to code developed manually by a programmer. In section 5 we propose
methods for incorporating additional utilities such as timers, counters, and external functions
into DBBUILD and PROGGEN. The structure of therda,ta.ba,se built by DBBUILD corresponds
to a PN model of the system. Thus, PN techniques can be applied to determine if deadlocks or
inconsistencies exist in the control logic. Current research into the application of PN thegry for

automatic evaluation and diagnosis of programming errors is discussed in the concluding section.

2 Control of an Automatic Conveyor

In this section we illustrate the Petri net methodology for an automatic conveyor system at the
General Motors Truck & Bus Assembly Plant in Baltimore, MD. This example is used as an
illustration throughout the remainder of the report. The conveyor system, illustrated in figure 1,
indexes vans through a painting module consisting of a preparation booth, a base-coat booth, a
clear-coat booth, and an observation booth. The preparation booth is used for final preparation
of the vans before painting. Coats of pigment and resin are applied in the base-coat booth
followed by the application of a coat of clear resin in the clear-coat booth. (All painting is
_performed by robots.) The purpose of the observation booth is to allow sufficient flash time so

‘that the majority of the solvents can vaporize before the vans enter an oven for baking. g

The conveyor system is presently controlled by an Allen-Bradley PLC-2/30. All sensor signals
(from limit switches) and actuator commands (to pushers and mechanical stops) are binary. The
controller coordinates the motion of the vans and the opening and closing of the doors between
the booths. The doors must be closed during painting and a van must not be released into the
next booth before the booth is availabel. |

| T‘he conveyor chaaln shown in figure 2, is a roll,er fhght cham whmh allows a van t-o be held in
phce by mechanical stops while the cham, a.md otber vans in the system, continue to move.
Unpainted vans are held by a mechanical stop in the pmpma&xon booth and released when the
base-coat booth becomes availabel. After entering the base-coat booth the van skid moves up to
‘a set of grounding bars where the rear on the pusher catches the push pl@e on the skid (see

figure 2). The van is then pushed into a secured painting position on the grounding bars. Prior

e

s iR R i

to initiating the base-coat painting cycle the booth doors are closed and the pusher is retracted
to prevent the buildup of paint on the cylinder shaft. Following the completion of the base-coat
painting cycle, the doors are opened and the van skid is pushed dff the grounding bars by the
front dog of the pusher if the clear-coat booth is availabel. This sequence of events is repeated
in the clear-coat booth. When the van moves into the observation booth, mechanical stops hold
it in place while the solvents vaporize.

Using the PN methodology described in the introduction; a PN modd of this system was
synthesized from single resource activity cydes for the van, conveyor chain, mechanica stops in
the preparation and observation booths, doors, and pushers in the base-coat and clear-coat
booths. The base-booth portion of the PN for the conveyor control logic is shown in figure 3.
Descriptions of the resource states and operations for this part of the net are given in appendix
|. The PN for the clear coat and observation booths are similar. '

3 DBBUILD

DBBUILD is an interactive program written in the C programming language and is usad to
enter the system description into a data base. The database is comprised of four mgjor record
types. 1) operations, containing information on input and output transitions, resource states,
and actuators, 2) resources, containing information on the resource states and the sensor data
required to define each state, 3) sensors, containing the address label of the sensor input port,

and 4) actuators, containing the addreas label for the actuator output port Dragrams of the four
Lt s 5 % jg\'\ . : .

record types are shown in figures 4 through 7.

B Y L
S T

DBBUILD consists of procedures to create’ and modify these records. “Each record is built using
doubly linked lists established through pointers to” structtires. For” eXampIé and as ghown'in
figure 4 within the operation structure there are poi nters to the riext and previous’ operatrons,:
pointers to a list of the input transitions, pornters to a list of the output transrtrons and.
pointers to alist of the associated actuators. In turn these' structures have poi nters to structures
that contain information on the resource state$ and the actuators.

Attached to each each input and output transition of an operation are the resource states that
are required to enable the transition. While building an operation the user; does not need to
specify the sensors required to define the resource state. This information can be adoted at some
other lime as afunction of the resource state.

_ |
A_-"‘"""““ B)

B .

——Ub...EjciL_ frt

;M)

y '**«f-ﬁ"-"

Pusre R
Foswenr Pos
i FAES lacsmr
Crrms & hod g
SECTme) ot

Figure 2. Detal of conveyor stops and ciain

940

N THIDOA L0
WOL-HYII2O
...m&O AT ﬁ:z _

gt

RIS

1.Un_m

.:l&@lv_ TI\! JO0THI008

o1do VOO HYITI WOy ~——

Pctri wt model of conveyor control logic,

Figure 3:

for the base-coat booth

i

DBBUILD protects against entering incorrect conditions for identifying a resource state by
accepting a sensor pointer only if the sensor has been entere‘d in the data base. Similarly, an
actuator cannot be referenced in an operation record unless it has been entered in the actuator
database. Additionally, DBBUILD will inform the user if a state attached to an operation
transition is, or is not, present in the resource data base. These checks help prevent confusion
for the user and prevents errors from occurring in the controller code that is generated by

PROGGEN. More information on DBBUILD is provided in the User’s Manual in appendix I

4 PROGGEN

4.1 Description

PROGGEN is written in the C programming language and is used to generate Instruction List
(IL) code from a data base constructed using DBBUILD. Instruction List programs are executed
sequentially and repeatedly by a programmable logic controller to generate and mainta,in the
correci; outputs to the system. The instructions used in this version of PROGGEN are per the
International Electrotechnical Commission SC65A/WG6 Standard for Programmable Controllers
[5]. The current version of PROGGEN supports the generation of a control program for a
simple discréte process. It does not yet support operations requiring timers, ‘coumelis, arithmetic
funcmon.s or loglca.l comparison. Possible methods for incorporating these functions are described

in sectlon 5

The basic loglcal ﬂmw of PROGGE’N is shown in Figure 8. It looks at emch op»era:bwu
separately, generating code to check the required resource states. Then, condmmai on these
states, code is generated to enable the desired actuator outputs. Setting {lamchmg) the resultant

resource states is based on the sensors associated with the resultant. amsource states, wmhm a

transition, and is performed to maintain the system state as defined in th@‘.P m ne!;, T (

The instructions within IL are used to develop conditional branches hased (mf&he system state.
For example,

IF [(1imit switch 1 (LS1) is activated
AND 1limit switch 2 (LS2) is not)

OR (limit switch 1 is activated

AND 1limit switch 3 (LS3) is activated)]
THEN turn on solenoid 1 (S1)

OPERATIONS

POINTER TO BEGINNING
OF OPERATION LIST

OPERATION NAME) NEXT OPERATION {~
DESCRIPTION g
NO OF INPUT TRANS

NO OF OUTPUT TRANS [peeriare

NO OF ACTUATORS \
POINTER TO ONE OF POINTER TO ASSOCIATED ACTUATORS
THE INPUT OR
OUTPUT TRANSITION
: NEXT o
- TRANSITION ;
STRUCTURE NAME 4 STRUCTURE Na
DESCRIPTION DESRIPTION
NO OF INPUT OR ACTUATOR
N
OUTPUT TRANS P REVIOUS y TYPE OF QUTPUT |

POINTER TO EACH
OF THE RESOURCE STATES

STRUCTURE NAME

DESRIPTION

RESOURCE NAME
ESTATE NAME

NEXT PREVIOUS

STRUCTURE NAME | 7
DESRIPTION
RESOURCE NAME |
STATE NAME .

Figure 4. Database structures aad pointers: operatioh records

’.‘ et
£

RESOURCES

POINTER TO BEGINNING
OF RESOURCE LIST

RESOURCE NAME
DESCRIPTION
NO OF STATES

PREYIOUS

POINTER TO ONE
OF THE STATES

. NEXT STATE

STATE NAME
DESCRIPTION
NO OF DIFFERENT
SETS OF SENSORS USED
TO DEFINE THIS STATE

PREYIOUS

POINTER TO ONE OF THE
SETS OF SENSORS

NEXT LIST

{ STRUCTURE NAME
| DESCRIPTION
| NO OF SENSORS IN
THIS LIST

| POINTERTO LIST
| OF THE REQUIRED
y SENSORS
£ STRUCTURE NAME
| DESCRIPTION

| SENSOR NAME

SENSOR CONDITION

S

! PREYIOUS

Figure 5: Database structures and pomt;ers Ssneres rovords

10

SENSORS

POINTER TO BEGINNING
OF SENSOR LIST

NEXT SENSOR

/' SENSOR NAME —o(
DESCRIPTION |

| NOOF RESOURCES IN
WHICHIT ISUSED | \

TYPE OF SENSOR | PREVIOUS

| WIRE NUMBER ¢ R i

L J \.

Figure 6: Database structures and pointers: sensor records

11

POINTER TO BEGINNING OF
ACTUATOR LIST

NEXT ACTUATOR
>

ACTUATOR NAME

DESCRIPTION

NO OF OPERATIONS IN
WHICH IT IS USED

TYPE OF OUTPUT

WIRE NUMBER

PREVIOUS

Figure 7. Database structures aad pointers. actuator records

12

1S THEREANOTHER) NO
OPERATION ? ND

! YES
((GET NEXT OPERATION)

WITH THE “LD" INSTRUCTION FOR THE FIRST

) J
START THE OPERATION ENABLING CONDITIONS
ENABLING STATE IN THE FIRST INPUT TRANSITION

ARE THERE ANY MORE S
STATES IN THIS WTIG} YL

START “OR" ENABLING
| CONDITIONS AND LOAD FIRST
STATE FROM THIS TRANSITION NO LOAD THE REMAINING STATES
Y | WITH THE “AND" INSTRUCTION
{(GET NEXT TRANSITION)
; < A
s { ARE THERE ANY MORE
"\ NPUT TRARSITIONS
|
4
ENABLE THE OPERATIONS
TO NEXT PAGE FROM NEXT PAGE

Figure 8: PROGGEN Flow Chart (Continued on next page)

13

FROM T0
PREVIOUS PAGE PREVIOUS PAGE

IS THERE ANOTHER) NO
OUTPUT TRANSITON J) >

YES

LOAD THE OPERATIONS
ENABLING STATES AGAIN

SENSORS ASSOCIATED WITH THIS

LOAD, AS "AND"™ INSTRUCTIONS, THE
TRANSITIONS RESOURCE STATES

RESOURCES ASSOCIATED WITH THIS

RESET THE LATCHED STATES OF ALL
TRANSITION USING THE RESET INSTRUCTION

SET THE RESOURCE smrzsj

ASSOCIATED WITH THIS
OUTPUT TRANSITION

Figure FLOW (continued)

14

In IL would be represented as follows:

LD LS1
ANDN LS2
OR(LS1
AND LS3)
ST s1

To simply enable the actuator when the input resource state conditions are satisfied is not
sufficient. Actuators vary in types; some are required to remain enabled for the duration of the
operation while others are required to remain enabled until another motion of the same actuator

is needed.

Enabling the actuator output for the duration of an operation is established by the fact that
the input states to the operation remain true until an output transition becomes true, as defined

by the associated resource state sensors, and new states are defined.

Other types of actuators must remain rigid even after its motion is complete. For example, the

doors between the booths in the conveyor example must be held open after the door open limit i
switch has been activated. This prevents the doors from drifting shut and possibly making
contact with the van, causing a paint defect. The task of maintaining the ou‘tput to the specified
actuator is performed automatically by PROGGEN. If an actuator has in its description more
than one motion, PROGGEN will first reset all outputs to the actuators then set the output for ;
the desired motion; Therefore for the case described above, the operation that opens the door
will set (latch) the output to the door 6pen soleno‘id:.\ in the dberation tha;t the door is to be
closed, the output to the door open solenoid will be reset (unlatch) and the output to the door
close solenoid will be set. This method will also work for actuators with more than one mo“tibn,

not just two-way actuators.

4.2 Analysis

When sensors are not associated with a resource state, feedback words are needed to maintain
the control logic. Feedback words are words that are stored in memory and are used to
remember if a resource is in a given state. For example, the state of the base booth in the
conveyor example is not explicitly defined by sensors. Therefore when its state is changed it is
set with the *S* instruction (latched) and a location within its memory structure in DBBUILD is

15

updated with its latched state. If an old state is still latched when a new state is to be latched,
PROGGEN will unlatch the old state and latch the new state. This operation follows from the
fact that a resource cannot be in more than one state at any given time.

Creating feedback words only for those states that are not defined by sensors does not provide
aufficient information on the system state to enable the proper outputs. In the current version of
PROGGEN, feedback words are created for all resource states. Storing al resource states
provides the required information for proper sequencing, but leads to inefficient IL code.

To darify the need for the storage of all resource state information, consider operations 2 and
5 in the conveyor example (move the van into the painting position and move the van out of the
painting position). The resulting IL code for only remembering those states that are not defined
by sensors is as follows. (Note: enabling conditions are now the sensors for those resource states
that are defined by sensors:)

OPERATION 2 CPERATION 5
(*Enabl i ng*) (* Enabl i ng*)
LD ‘BLS1 LD CBC
AND BPLS1 AND BPLS1
S BPEXT ' AND BLS2
S BPEXT
(*Res\ilti*) (*Resul t*)
LD BLS2 LD BLS3
AND BPLS2 AND BPLS2
R BPEXT R BBF
R BPEXT
S BBC
S CBF
{(+*Regults) (*Reisui t*)
LD BLS1 LD BLS2
AND BPLS2 AND BPLS2
R BPEXT R BPEXT
S = S E2

We see that when both BLS2 and BPLS2 are high, following completion of operation 2; E2
from operation S will be set, which is not what we wanled. To prevent this type of sequencing
problem all resource states, whether defined by sensors or not, are used as feedback words. This
change produces the correct code as shown below.

16

OPERATION 2 OPERATION 5
(*Enablingx*) (*Enabling*)
LD Vi LD CBC
AND BP1 AND BP3
ST BPEXT AND V3

ST BPEXT
(*Result*) (¥Result*)
LD Vi LD CBC
AND BP1 AND BP3
AND BPL52 AND v3
AND BLS1 AND BPLS2
R Vi AND BLS2
R BP1 R CBC
s E1l R BP3

S E2
(*Resultx*) (*Resultx*)
LD Vi LD CBC
AND BP1 AND BP3
AND BLS2 AND v3
AND BPLS2 AND BPLS2
R Vi R CBC
s v2 R BP3
s BP2 s B3C

s V4

s BP4

The inefficiency of using this method to maintain correct sequencing s&emsfrom the fact that
many times feedback words are generated which are not required to mamtam mm‘ectness For k
example, the state V1 (van entered base booth) is explicitly defined by BLS1. At no other time is
BLS1 activated, nor will the state V1 exist if BLS1 is not activated. .

Using the S (set) instruction is considered poor programming style pnmuily becwme if a power
failure occurs the set or latched states will remain high, thus resettmg ﬁw sys@em_;lapc becomes
very difficult. Also, with set instructions there is possibility of logic errors by fo ing
the word; however, PROGGEN removes this problem because it maintains the émes of the

17

5 Additional Utilities

The prototype versions of DBBUILD and PROGGEN presented in this report have been
developed to support automatic generation of controller code for systems with binary sensors and
actuators. Further work is required to implement the required software to support timers,
counters, external functions (add, subtract, logical comparison, etc.), and non-binary inputs and
outputs. Some ideas for possible implementations of these control structures are presented in
this section.

5.1 TIMERS

Timers are often used to monitor the sequencing of a system. A timer can be viewed as a
function within an operation that is initiated when the operation is enabled. We propose to have
operations that can be specified as timed operations for which DBBUILD will prompt the user
for the pre-set timer duration. During controller code compilation PROGGEN will allocate a
timer to that operation internally and will attach to the variable state TIMER the address of the
timer completed status word (bit 15 of the timer address [9). The use of the variable TIMER
dlows the user to specify those output transitions that are dependent on the timer. If the
operation reaches an acceptable output transition the timer is automatically reset.

52 COUNTERS

Counters are often required to remember how many times an operation has been executed and
based on the accumulated value of the counter, initiate another operation. For example, in an
automated paint shop the paint gun requires cleaning if the same color has been used N times (If
a different color is used a purge operation is performed which includes cleaning the gun). We
therefore want to count the number of consecutive times the same color has been used. It is
proposed to view the counter as a type of actuator. The counter name would act as the labd to
the counter -address within the controller code. The state of the counter is then defined by two
associated feedback words representing counting and finished states. These states can be defined
by the counter address bits 16 and 15 respectively [5]. To alow the user to use the counter
feedback words in other operations we define feedback words label.ent and label.done as
follows:

for countervails < M | abel . cnt 1; label.done =0
for countervalue = M | abel . cnt 0; | abel,done =1
for counterval ue > K reset cou&ervalu*; countervalue = 1;

18

where label is the counter name as defined by the system designer. For example
samecolor. cnt would be the variable attached to bit 16 of the samecolor counter.

5.3 EXTERNAL FUNCTIONS

External functions are required to perform a series of operations that do not belong at the levd
of the system state description. For example, comparing the value of a sensor to some set point.
It is proposed to have the user define an external function label in the associated actuatof list in
an operation and it will remain his responsibility to generate code for that label. Simple routines
are easy to write in the Structured Text Language [5] and are easily accessible by the Instruction
List code using the JMP instruction. All variables will be the same names as those used in the
system description level.

6 Conclusion

This report presents some initial work in the area of automatic programming of programmable
controllers from high level descriptions. The software developed illustrates the ability to
interpret a data base that contains the system operation information, and from it generate
executable controller code.

Additional work is required in the area of simulation and analysis of the generated control
logic. The data base generated by DBBUILD is-structured identically to the informatioE
contained within a PN mode of the system. This structure allows existing Petri nettheories to
be used to determine if deadlocks are present. The program that _._pé[forms the net analysis may
be a simulation program that can simulate the nets operation given.an initial .marking, or
placing of the tokens.

P

Ultimately to alow the generated code to be used in a production environment, an interface

such as Ladder Diagram needs to be presented to the technician for use in on-line o_[e_b_ugg_ing of

the system. One of the purposes of the DEC Language Specification is to provide consistency

between controller codes. This consstency should alow the development of linking programs
that can change the controller code from IL to Structured Function Chart [5] to executable code,
etc, and back again.

19

I. Sensors, Actuators, Resources, and Operations
for Conveyor Example

The following two lists show the sensors and actuators used in the conveyor example:

SENSORS:

PLS1 PREP BOOTH LIMIT SWITCH 1

BLS1 BASE BOOTH LIMIT SWITCH 1

BLS2 BASE BOOTH LIMIT SWITCH 2

BLS3 BASE BOOTH LIMIT SWITCH 3

CLS1 CLEAR BOOTH LIMIT SWITCH 1

BPLS1 BASE PUSHER LIMIT SWITCH 1

BPLS2 BASE PUSHER LIMIT SWITCH 2

BLDO BASE LEFT DOOR OPEN LIMIT SWITCH

BRDO BASE RIGHT DOOR OPEN LIMIT SWITCH

BLDC BASE LEFT DOOR CLOSED LIMIT SWITCH

BRDC BASE RIGHT DOOR CLOSED LIMIT SWITCH
ACTUATORS:

PBSD PREP BOOTH STOP DOWN

PBSU PREP BOOTH STOP UP

BPEX BASE PUSHER EXTEND

BPRET BASE PUSHER RETRACT

RBDO RIGHT BASE DOOR OPEN

LBDO LEFT BASE DOOR OPEN

RBDC RIGHT BASE DOOR OPEN

LBDC LEFT BASE DOOR CLOSE

The following lists provide a brief description of the resource states and operations modeled by

the PN in figure 3.

VAN RESOURCE CYCLE: SENSORS REQUIRED:

VO = Van at prep booth stop. PLS1

V1 = Van arrived in base booth. BLS1

V2 = Van in base booth painting position. BLS2

V3 = Base coat applied to van. NONE

V4 = Van at base booth doors. BLS3

V5 = Van arrived in clear booth. CLS1

VE1= Failed to move into paint position BPLS2 and BLS1

VE2= Failed to move off grounding bars BPLS2 and BLS2

20

BASE BOOTH PUSHER RESOURCE CYCLE:

BP1 =DBase pusher retracted and waiting for van to
arrive

BP2 =DBase pusher extended with van in the back dog -
(thus the van is in the painting position).

BP3 =Base pusher retracted while the van is in the
painting position.

BP4 =Base pusher extended with van in the front dog

(thus the van is pushed past the painting position).

BASE BOOTH DOORS RESOURCE CYCLE:

BDO1 = Opened for van to pass through

BDO2 = Base doors open and van passed

BDC1 = Base doors closed for painting

BDC2 = Base doors closed, painting complete

BDOE = Error base door open (the doors did not open)
BDCE = Error base doors close (the doors did not close)

BASE BOOTH RESOURCE CYCLE:

BBF = Base booth clear (efrnpty) and waiting
for the next van.

CONVEYOR RESOURCE CYCLE:

CS = Conveyor stopped.

SENSORS REQUIRED:
BPLS1
BPLS2
BPLS1

BPLS2

SENSORS REQUIRED:

BLDO and BRDO
BLDO, BRDO, CLS1
BLDC and BRDC
BLDC and BRDC
BLS3 and NOT BLDO
BLS2 and NOT BLDC
and NOT BRDC

SENSORS REQUIRED:

NONE

' SENSORS REQUIRED:

NONE

21

OPERATIONS: ACTUATORS REQUIRED
OP1 =Drop stop in prep booth and allow van to move into PBSD
base booth.
OP2 =Put van into base booth painting position by extending BPEXT
base pusher.
OP3 =Retract base pusher. BPRET
OP4 =Apply base coat to van. NONE
OP5 =Extend base pusher to push van past painting position. BPRET

OP6 =Open base booth doors.

OP7 =Retract base pusher to accept new van arriving in base
booth.

OP8 =Stop conveyor to prevent van from hitting base doors.

OP9=Move van from base doors to clear booth pusher.
OP10=Close base booth doors.

RBDO and LBDO
BPRET

NONE
NONE
RBDC and LBDC

OPE1=Manual reset of base pusher and van in paint position NONE
OPE2=Manual reset of base pusher and van off grounding bars NONE
OPE3=Manually open of base doors and restart conveyor. NONE

OPE4=Manually close base doors

G e e

22.
1. DBBUILD User's Manual

ELI Introduction

OBBUHID m iaetacthre prog"® used to obtain and store information concerning a
naarfactarag ifsim' . The structure of DBBUILD emulates a Petri net model o s
aaiJpii of lit g/tim lope udng exigting Petri net theories. The purpose of this gopend
familiarise (ft* awr with DBBUILD's structures and menues. DBBUILD prompts the usa
lafbrmftlibi thai is required and therefore an experienced programmer would fed
wittlbrtmbfe ariag BIBUILD without first reading this manual. However, DBBUILD wi!
far ufoivuUiM tfctt nay ss8© irrdevant; this manua tries to explain the need for these

EL3 Structure .

Tit ckica I»s» is eomplisd of four mgor record types. 1. operations, containing ihfoh
os iipit m 4vHVE tnuBstikHiS resource- states, and actuators; 2. resources, Ccott
Uhnnlim m‘ttt fAMi~* ~ato aad the sensors data required to define each state; 3. m
ttMiiyiaitg tit aAdras Ubd dt the sensor input port; and 4. actuators, containing the n
AW fer t18 mtomtom osijwt port Schematics of the records are shown in figures 4 throi

rflt" higmgi. HnptitiTOa " the material is not required to use DBBUIOQI

3.1 Operafion WmmmiM 'S
Tit~ A A AbAslopIml IbwEmh ftt feration recorct i

e "W O 'MHI MJi i J; -operation mnare defined by user-;;
inS* - AN AN I S I . operation description ' -%
ti» "mjMjsS; " i1olis the numba of input transit”?
G Wj«d«d_%'m; feol At t&e number of output trans|”

opsration type bolis numbar of associated actua®H

struct Operation type .
tpreir; y
stract in op »in :

-P_PEr: poimter ¢ |ist of input transitio|&

FEruct out *out :
P _OP_PEX. polinter O |jst of output transitics

e suthars would like 1o thaak W
ayno Figurdle for developing the C code for DBBUILD.

23

struct act_list *assoc_act_ptr; pointer to list of actuators
affected by the operation

The following structure contains information on the associated actuators

typedef struct act 1list {

char name~TNAME_SIZE]; structure name defined by DBBUILD
char desc [DESC_SIZE]; not used

char act_name [NAME SIZE]; name of the actuator

char assoc_op_name [NAME SIZE], not used

char act_cond [COND_SIZE]; the condition of the actuator

defined by user
struct act_list *nextu;

struct act_list *prev;

The following structure holds information on the input transitions

typedef struct in op <«
char name [NAME SIZE]; DBBUILD name of the transition
char . desc [DESC_SIZE]; not used
int num_in op AND; number of resource states associated
with the transition
struct in_op *next;
struct in_op- *prev;

struct in _op AND *in op AND ptr; points to a 1list of the resource
states assocliated with the transition

The following structure holds information on the output transitions:
typedef struct out_op {

char name [NAME SIZE];
char desc [DESC_SIZE];

int num_out_op_AND;

struct out_op *next;

struct out_op *prev;

struct out_op_ AND *out_op_AND_ptr;

The following structure holds the input transition’s resource states;

typedef struct in_op_AND <{

char name [NAME SIZE]; structure name defined by DBBUILD
char desc [DESC_SIZE]: not used

char res_name [NAME SIZE]; the resource name

char state_name [NAME SIZE]: the resource state name

struct 1in_op_AND *next;

struct 1in op_AND *prev;

24

n. following .truclur. holds the output transition "Bource L.

tjpedef struct out op AND <
char name [NAME SZE]; -
(of o KA desc [DESCJSZE];
char res naine [NAME SZF] ;
char statejiame [HAMEISZE] ;
fltruct out_op AND *next;
etract -out_op_AND *prev;

H9. 2 E”nrce Records _
" The fafowlag » the resource record and ite components ?

Tjrptdrf struct resource_type { L o
Oiwr B«MCI1A1IEySIZE]; Neme of the resource
chix dMcCDESC"SZE]; Description of the resource
Struct rt«ottrce _type *next; BN
Strmct rescurce_type #prev; _
lot pum_stata; , Holds the numb'
- states "the resoi

Struct state_type *statejptr; Points to tlie resourc
structure

IHt following stntcfeurs contains information on the resource states:

Tjrptiff struct state type i The resource state structure

S MBMWMIiM BtZBI"** Nare of the state

taar 4ssc CDB8CIBZZE] Description of the state

Caax latched Usd for generating the IL
code

PLrwct wtat type snext
ttrvct ttattjbyp* *prev

Imgavm ii Numbea of sensors used to
determine the state
ssrect OR typt *01j>tr Points to the series of -

sensors used t>0 define state

T®e foUaviag tferttctws coatalna the name of the series of sensors
et b0 \f1M ; ByMitU4 r«o«rck state;

ffp84% struct OR_type
OUUT ssmme Daag ltm
Char desc (PRIC | _BIIK]
ttntct t.m merxt

stract R tlm *pr#T
Xat aua_AKD

DBBUI LD struc-fcure nanme
not used

NumbeT of sensors in series

Struct AND_type

Typedef struct AND_type
Char name [NAME SIZE]

Char desc [DESC_SIZE]

Struct AND_type *next
Struct AND_type *prev

Char sensor_name [NAME_SIZE]
Char sensor_cond [COND_SIZE]

Char assoc_res_name [NAME SIZE]

I1.2.3 Actuator Records

The actuator record is defined as follows:

Typedef struct actuator
Char name [NAME SIZE]
Char desc[DESC_SIZE]
Struct motion_struct

Int wire_num

Struct actuator *next
Struct actuator *prev
Int num_assoc_op

Struct assoc_op

Typedef struct assoé_pp

Char name [NAME_SIZE]
Char desc [DESC_SIZE]
Char op_name [NAME SIZE]
Char act_list[NAME SIZE]

Struct assoc_op *next
Struct assoc_op *prev

*AND_ptr

Pointer to the sensors in the
series

The following structure contains the sensor names for a specified series

DBBUILD structure name
not used

Sensor name

The state of the sensor -
activated/not activated
not used

Actuator structure

Name of the actuator

Actuates description
Indicates different actuator/
motions

Actual wire number

Number of operation in which
actuator 1s used
Points to an operation

The following structure holds information on the operations in which
the actuator is used:

Name of the operation
Not used

26

I1.2.4 Sensor Records

The sensor record is as follows:

Typedef struct sensor type

Char name [NAME SIZE] gensor name

Int wire_ num

Char desc [DESC_SIZE] description of the sensor (optional)
Int cond - condition the sensor will be in when

actuated
struct sensor_type *next

Struct sensor_type *prev
Int num assSOC_Tes Number of resources for

which this sensor is used
Struct assoc_res *assoc_res_ptr Pointer to assoclated resources

The following structure contains information on resource states
in which the sensor is used:

Typedef struct assoc_res

Char name UlAME__SIZE]~ DBBUILD structure na.mé_“
Char desc[DESC_SIZE] , not used
Char res_name [NAME SIZE] Resource name

Char state_name [NAME SIZE]
Struct assoc_res *next
Struct assoc_res *prev

State name

I.3 Menus

The menus used to prompt the user use terms used to describe elements of Petri nets. Most

menu options are sell explanatory; however, those options that are not will have a brief
explanstion following the menu listing.

The top level menu, and therefore the first one you see, allows you to choose which record you
want to investigate. This menu is as follows:

8 = For sensor data type

R = For resource data type
0 = For operation data type
A = For actuator data type
Q@ = To guit this program

Which type do you want to alter or look at?

27

I1.3.1 Operation Menu

If at the top level you decide to look at operations, the following menu will appear:

I-INSERT new operation

D-DELETE an operation

F-FIND an operation or some info about an operation
A-INSERT assoc. actuator for this operation
P-INSERT an out op cond OR header for this operation
C-INSERT an out op cond AND header for this operation
O-INSERT an in op cond OR header for this operation
H-INSERT an in op cond AND header for this operation
L-LIST all of the names present

Q-Quit, and look at another data base

?-List all of the commands avallabel

“P" will generate the structure for an output transition and name that transition
TRANS _ (n); where n is a number DBBUILD maintains. Once the transition has been named;
DBBUILD will ask if there are any resource states that you want to attach to this transition.
Upon entering a state DBBUILD will generate a struct;lre to hold the state name. DBBUILD

will name this structure STATE _ (n) much in the same way it names the transitions.

“C" can be used to add additional resource states to an existing output transition. DBBUILD
will first ask for th output transition name (TRANS__1, TRANS_ 2, etc.) and then allow you

to enter a resource state.

O" and "H" perform the same as "P and "C" respectively, but are used for input

transitions rather than output transitions.
NOTE 1:

The words "OR" and "AND™" used in the menus refer to transitions and resource states
associated with that operation respectively. OR is used for transitions because they represent
the different enabling or resulting sets of resource states. AND is used for resource states within

a transition because all of the resource states must be satisfied for that transition to be enabled.
NOTE 2:

The labels TRANS _(n) and STATE _ (n) are used by DBBUILD to search through the record.

F’” i \‘\Q «//
. 28
? , : : : :
3 See struct in_op_OR and struct in_op_AND in section 3 of this manual for more
s
Z information.
|
“F* will cause DBBUILD to prompt the user for an operation name and will then display the

next menu containing new options.

D-To see the description of the operation

A-To 1ist all of the assoc. actuators with this operation

F-To find info about assoc. actuators with this operation

0-To 1list all of the out ops assoc. with this operation

N-To get info about the out ops assoc. with this operation

I-To 1ist all of the in ops assoc. with this operation

G-To 1ist all about the in ops assoc. with this operation

Q-To quit looking at this operation

?-To see these commands g

O will list the names of this operations output transistions (TRANS _1, TRANS _2, eﬁc.).

»N* will cause DBBUILD to ask for the output transition name and then present the resource
states associated with that transition.

“I* and "G*" will perform the same tasks as *O" and "N*" respectively except they are used

for input transitions.

The following menus are presented when the *N" and "G*" options are chosen from the

previous menu:

D-To see the description of the out_op
1 L-To 1ist all of the ANDs present
ﬁ R-To see the resource name and the state name of an AND
. Q-You are done looking at this out_op
?-To see these commands

D-To see the description of the in-op

L-To 1ist all of the ANDs present

R-To see the resource name and the state name of the AND
Q-You are done looking at this in op

?-To see these commands

The following menu is presented when the "F* option is used in the previous menu:

D-To see the description of the assoc_act
C-To see the condition the sensor will be in after the op

29

L-to list all info about the assoc. actuator for this op
QYau are done lookinga t this assoc._act
?to see these commands

11.3.2 Resource Menu
If fram the top levd you dedde to wak on the resource record, the fdloning mau will be
presented:
| -1 NSERT new resource
D- DELETE a resource
F-FIND a resource or sone info about a resource
L-LI ST the name and descriptions of the resources present
S-Insert a STATE to a resource
E- ELI M NATE a state from a resource
O ADD a new SERIES of SENSORS to a given state
A-ADD a SENSOR to a given series of a given state
T-TRASH (delete) a SERIES of SENSCORS froma given state
WDelete a SENSOR to a given series of a given state

Q Qit, and look at another data base
?-List all of the commands avail abel

NOTE-=

AS aresource cycles (or is cycled) through the systems operations, its state will change. These
states may or may not be defined by sensors, and in addition some states may be defined by
more than one set of sensors. For example, some arbitrary state may be defined by sensors 1
and 2 or by sensors 3 and 4. DBBUILD's terms for these sets of sensors is SERIES; i.e. “sensors
1 and 2 would be listed in SERIES 1 and sensors 3 and 4 would be listed in SERIES_ 2,
DBBUILD uses the word SERIES _(n) to label the structure that contains the boi nter tov_.:each of
the sensors. See struct OR__type in section 3 of this manual. Additibnal_ly_DBBL_J_IrI_l_D_ uses
SENSOR__(n) as the name of the structure that holds the actual Sensor name. See struct

AND __type in section 3 of this manual.

If the MF" option was chosen to find information about a resource, the fOI_I:.bi/_v_ing menu will
appear: .

D-To see the description of the state

S-To get info about a particular state

Lo list all of the states assoc. with this resource
QTo QUIT looking at this resource

?-to see these commands

30

If at this level "S" is requested the following menu will appear:

D-To see the description of the state

L-To list the SERIES of SENSORS assoc with this state
0-To see info about a particular SERIES.

Q-You are done looking at this state

?-To see these commands

If the *O" option is chosen the following menu will appear:

L-To list SENSORS assoc with this SERIES

S-To 1list all of the sensor names under this SERIES
and their conditions

A-To see info about a particular assoclated sensor
Q-You are done looking at this SERIES
?-To see these commands

If at this level the *A" option is used DBBUILD will ask for the sensor name, SENSOR _1,
SENSORZ2, etc. This version of DBBUILD does not contain additional information on sensors
beyond what the “S* option provides.

I1.3.3 Actuator Menu
If at the top level you requested to enter the actuator record the following menu would appear:

I_INSERT new actuator

D-DELETE an actuator

F-FIND an actuator or some info about an actuator
L-LIST all of the names present

Q-Quit, and look at another data base

?-List 211 of the commands availabel

The find command invokes the following menu:

D-To see the description of the actuator
8-Get info about a particular assoc op
M-to 1list all of the motions this actuator has
L-To 1ist all of the assoc op with this actuator
= Q-To QUIT looking at this actuator

. ?-to see these commands

31

I1.3.4 Sensor Menu

If at the top level you entered the sensor record, the following menu would appear:

I-INSERT new sensor

D-DELETE a sensor

F-FIND a sensor

L-LIST all of the sensors present

W-Change the WIRE number assoc with a sensor
Q-To quit and look at another data base
?-List all of the commands availabel

The find option will cause the following menu to appear:

D-To see DESCRIPTION of the sensor

L-To LIST all of the states that this gensor is used to define
W-To see the WIRE number of this sensor

Q-When you are done looking at this particular sensor

?-List these commands i

e

32

References

. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hal, Inc.,
Englevvood Cliffs, NJ., 1981.

C.L. Beck, "Modeling and Simulation of Flexible Control Structures for Automated
Manufacturlng Systems’, Tech. report, Robotics Institute, Carnegie Melon Universty,

1985.

CL. Beck and B.H. Krogh, "Models for Simulation and Discrete Control of
Manufacturing Systems”, |EEE International Conference on Robotics and Automation,

San Francisco, April 1986.

B.H. Krogh and C.L. Beck, "Synthesis of Place/Transitions Nets for Simulation and
Control of Manufacturing Systems', Jth IFAC/IFORS Symposium Large Scale Systens,
International Federation of Automatic Control, Zurich, August 1986.

International Electrotechnicll Commission, Standard for Programmable Controllers,
-Part 8: Programming Languages, 1982, Technical Committee 65: Industrial Process

Measurement and Control

