
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Prototype Software for Automatic Generation
of On-line Control Programs

for Discrete Manufacturing Processes

Gregg Ekberg and Bruce H. Krogh

CMU-RI-TR-87-3

Flexible Assembly Laboratory
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

February 1987

Copyright (c) 1987 Carnegie Mellon University

This work has been supported in part by General Motors Corporation North American Philips
Corporation, and the National Science Foundation under research grant DMC-8451493*

Table of Contents
1
3
4

1 Introduction
2 Control of an Automatic Conveyor 3
3 DBBUILD
4 PROGGEN 7

4.1 Description 7
4.2 Analysis 14

5 Additional Utilities 17
5.1 TIMERS 17
5.2 COUNTERS 17
5.3 EXTERNAL FUNCTIONS 18

6 Conclusion 18
I. Sensors, Actuators, Resources, and Operations for Conveyor Example 19
II. DBBUILD User's Manual 22

I I I Introduction 22
II.2 Structure 22

IL2.1 Operation Records 22
IL2.2 Resource Records 24
IL2.3 Actuator Records 25
II.2.4 Sensor Records 26

IL3 Menus 26
II.3.1 Operation Menu 27
EL3.2 Resource Menu 29
H.3.3 Actuator Menu . 30
0,3.4 Sensor Menu . 31

11

List of Figures

Figure 1: Modular paint shop conveyor system 5
Figure 2: Detail of conveyor stops and chain ' 5
Figure 3: Petri net model of conveyor control logic for the base-coat booth 6
Figure 4: Database structures and pointers: operation records 8
Figure 5: Database structures and pointers: resource records 9
Figure 6: Database structures and pointers: sensor records 10
Figure 7: Database structures and pointers: actuator records 11
Figure 8: PROGGEN Flow Chart 12

.Abstract

This report describes prototype software for automatically generating control programs for

discrete manufacturing processes from a high-level description of the system control logic. The

control logic is synthesized from a specification of the physical resource states required for each

operation in the process. The software described in this report allows the user to specify

interactively the operation sequencing logic and the actuators and sensors for each stage of the

process. This information is then used to automatically generate code for on-line control

computers. The current implementation supports binary sensor and actuator signals. The

methodology is illustrated for the automatic generation of instruction list (IL) code to control a

conveyor system in an existing robotic assembly plant.

1 Introduction

The writing and debugging of computer programs for sequential control accounts for a major

component of the cost in implementing automated manufacturing systems. It is also time

consuming and expensive to modify existing control programs. This report describes prototype

software for reducing the time and cost involved in developing discrete control programs by

automatically generating executable computer code from a high-level description of the system

control logic. With this software the manufacturing engineer can specify the control logic in

terms of the physical devices and operations from which the computer generates the programs

for real-time control.

The prototype software described in this report is comprised of two programs: DBBUILD and

PROGGEN. DBBUILD (Data Base BUILDer) is an interactive program used to build and

modify a data base containing the system control description in terms of its physical devices and

operations. PROGGEN (PROGram GENerator), executed from within DBBUILD, generates

source code for the on-line control computer.

Normally, a skilled programmer performs the task of developing the controller program

(usually in the Ladder Diagram Language) from the system designer's description of a discrete

manufacturing system. Several problems can arise from the transfer of information to the

programmer and the manual encoding of the system control logic. This is due to several factors,

including:

• the -designer's description of the system can be misinterpreted;

• the programmer's implementation may be inflexibly structured around the specific
sensor/actuator realization, whereas the design engineer will maintain flexibility to
meet changes in the operation of the system.

• the functional description of the system operation is not clearly reflected in the low-
level control program.

These factors make it difficult to debug the control program or make changes in the sequencing

of operations. Future modifications may be made difficult because the programmer did not

anticipate possible changes in operation sequencing. The manufacturing engineer thinks more

about how the sequencing of operations may affect future operating conditions.

The objective for developing the software described in this report is to eliminate the need for

manually encoding the discrete control logic for manufacturing systems. This task is

accomplished by the computer, allowing the system designer to specify and modify the control

program using a high-level functional representation of the system. To maintain a systematic

approach of generating system control programs, the code is generated for one operation at a

time, using physical states of resources as enabling conditions. It is not necessary for the user to

specify when to enable and disable the operation actuators; this task is performed automatically

by PROGGEN.

Control of a discrete manufacturing system involves the coordination of multiple resources in a

sequence of discrete operations. The initiation of each operation depends on the states of

physical parts and devices (resources) within the system. A resource is any component within

the manufacturing system that is involved in the system's operation: robots, fixtures, raw

materials, controllers, etc. Following the execution of an operation, the states of the resources

involved in the operation are changed; sensors are used to monitor changes the resource states.

We use Petri nets (PN) to model the discrete decision and control of a manufacturing system.

Previous research has shown that PN models are effective for modeling the evolution of the state

transitions in discrete systems [l|. PNs contain transitions, representing operations or events;

places, representing conditions or states in the process; and directed arcs connecting the places

and transitions. In the graphical representation of PNs, transitions are represented by vertical

bars and places are represented by circles. The conditions enabling an operation are the resource

states associated with the operations input transition. Upon completion of the operation the

resources will be in the states associated within the output transition.

Recently, a systematic methodology was developed for synthesizing PN models of discrete

manufacturing systems [2, 3, 4]. As presented by Beck [2], systematic approaches to developing

the manufacturing system control logic can be synthesized from activity cycles for each resource.

The resource activity cycles are developed, individually and then joined at common operations to

synthesize the complete system control logic. We use this approach to define information that is

entered into the database using DBBUILD.

The report is organized as follows. In section 2 we present aa example of an automated

conveyor system in an automobile paint shop which we use throughout the report to illustrate

the functions of DBBUILD and PROGGEN. In section 3 we describe the structure and use of

DBBUILD, and in section 4 we describe PROGGEN and discuss its performance in terms of the

generated controller code. The performance criteria is based on correctness and gains or losses in

efficiency compared to code developed manually by a programmer. In section 5 we propose

methods for incorporating additional utilities such as timers, counters, and external functions

into DBBUILD and PROGGEN. The structure of the database built by DBBUILD corresponds

to a PN model of the system. Thus, PN techniques can be applied to determine if deadlocks or

inconsistencies exist in the control logic. Current research into the application of PN theory for

automatic evaluation and diagnosis of programming errors is discussed in the concluding section.

2 Control of an Automatic Conveyor

In this section we illustrate the Petri net methodology for an automatic conveyor system at the

General Motors Truck & Bus Assembly Plant in Baltimore, MD. This example is used as an

illustration throughout the remainder of the report. The conveyor system, illustrated in figure 1,

indexes vans through a painting module consisting of a preparation booth, a base-coat booth, a

clear-coat booth, and an observation booth. The preparation booth is used for final preparation

of the vans before painting. Coats of pigment and resin are applied in the base-coat booth

followed by the application of a coat of clear resin in the clear-coat booth. (All painting is

performed by robots.) The purpose of the observation booth is to allow sufficient flash time so

that the majority of the solvents can vaporize before the vans enter an oven for baking.

The conveyor system is presently controlled by an Allen-Bradley PLC-2/30. All sensor signals

(from limit switches) and actuator commands (to pushers and mechanical stops) are binary. The

controller coordinates the motion of the vans and the opening and closing of the doors between

the booths. The doors must be closed during painting and a van must not be released into the

next booth before the booth is availabel.

The conveyor chain, shown in figure % is a roller flight chain which allows a van to be held in

place by mechanical stops while the chain, and other vans in the system, continue to move.

Unpainted vans are held by a mechanical stop in the preparation booth and released when the

base-coat booth becomes availabel. After entering the base-coat booth the van skid moves up to

a set of grounding bars where the rear dog on the pusher catches the push plate on the skid (see

figure 2). The van is then pushed into a secured painting position on the grounding bars. Prior

to initiating the base-coat painting cycle the booth doors are closed and the pusher is retracted

to prevent the buildup of paint on the cylinder shaft. Following the completion of the base-coat

painting cycle, the doors are opened and the van skid is pushed off the grounding bars by the

front dog of the pusher if the clear-coat booth is availabel. This sequence of events is repeated

in the clear-coat booth. When the van moves into the observation booth, mechanical stops hold

it in place while the solvents vaporize.

Using the PN methodology described in the introduction; a PN model of this system was

synthesized from single resource activity cycles for the van, conveyor chain, mechanical stops in

the preparation and observation booths, doors, and pushers in the base-coat and clear-coat

booths. The base-booth portion of the PN for the conveyor control logic is shown in figure 3.

Descriptions of the resource states and operations for this part of the net are given in appendix

I. The PN for the clear coat and observation booths are similar.

3 DBBUILD

DBBUILD is an interactive program written in the C programming language and is used to

enter the system description into a data base. The database is comprised of four major record

types: 1) operations, containing information on input and output transitions, resource states,

and actuators, 2) resources, containing information on the resource states and the sensor data

required to define each state, 3) sensors, containing the address label of the sensor input port,

and 4) actuators, containing the address label for the actuator output port. Diagrams of the four

record types are shown in figures 4 through 7.

DBBUILD consists of procedures to create and modify these records. Each record is built using

doubly linked lists established through pointers to structures. For example, and as shown in

figure 4f within the operation structure there are pointers to the next and previous operations,

pointers to a list of the input transitions, pointers to a list of the output transitions, and

pointers to a list of the associated actuators. In turn these structures have pointers to structures

that contain information on the resource states and the actuators.

Attached to each each input and output transition of an operation are the resource states that

are required to enable the transition. While building an operation the user; does not need to

specify the sensors required to define the resource state. This information can be added at some

other lime as a function of the resource state.

A

A
b...£jciL_frt \ ^ju, ., _t-l

• * * «

Figure 1: Modular paint shop conveyor system

Figure 2: Detail of conveyor stops and ciain

Figure 3: Pctri Mt model of conveyor control logic
for the base-coat booth

DBBUILD protects against entering incorrect conditions for identifying a resource state by

accepting a sensor pointer only if the sensor has been entered in the data base. Similarly, an

actuator cannot be referenced in an operation record unless it has been entered in the actuator

database. Additionally, DBBUILD will inform the user if a state attached to an operation

transition is, or is not, present in the resource data base. These checks help prevent confusion

for the user and prevents errors from occurring in the controller code that is generated by

PROGGEN. More information on DBBUILD is provided in the User's Manual in appendix II.

4 PROGGEN

4.1 Description

PROGGEN is written in the C programming language and is used to generate Instruction List

(IL) code from a data base constructed using DBBUILD. Instruction List programs are executed

sequentially and repeatedly by a programmable logic controller to generate and maintain the

correct outputs to the system. The instructions used in this version of PROGGEN are per the

International Electrotechnical Commission SC65A/WG6 Standard for Programmable Controllers

[5]. The current version of PROGGEN supports the generation of a control program for a

simple discrete process. It does not yet support operations requiring timers, counters, arithmetic

functions, or logical comparison. Possible methods for incorporating these functions are described

in section 5.

The basic logical flow of PROGGEN is shown in Figure 8. It looks at each operation

separately, generating code to check the required resource states. Then, conditional on these

states, code is generated to enable the desired actuator outputs. Setting (latching) the resultant

resource states is based on the sensors associated with the resultant resource states, within a

transition, and is performed to maintain the system state as defined in the Petri net,

The instructions within IL are used to develop conditional branches based on the system state.

For example,

IF [(limit switch 1 (LSI) is activated
AND limit switch 2 (LS2) is not)
OR (limit switch 1 is activated
AND limit switch 3 (LS3) is activated)]
THEN turn on solenoid 1 (SI)

OPERATIONS

POINTER TO BEGINNING
OF OPERATION LIST

OPERATION NAME '
DESCRIPTION
NO OF INPUT TRANS
NO OF OUTPUT TRANS
NO OF ACTUATORS ,

POINTER TO ONE OF
THE INPUT OR
OUTPUT TRANSITIONS

fSTRUCTURE NAME
DESCRIPTION
NO OF INPUT OR

^OUTPUT TRANS

NEXT
TRANSITION

PREVIOUS

POINTER TO EACH
OF THE RESOURCE STATES

STRUCTURE NAME
DESRIPTION
RESOURCE NAME

ESTATE NAME

NEXT PREVIOUS

POINTER TO ASSOCIATED ACTUATORS

STRUCTURE NAME
DESRIPTION
RESOURCE NAME

VSTATE NAME

STRUCTURE
DESRIPTION
ACTUATOR
TYPE OF OUTPUT

V /

Figure 4: Database structures aad pointers: operation records

RESOURCES

POINTER TO BEGINNING
OF RESOURCE LIST

RESOURCE NAME
DESCRIPTION
NO OF STATES

NEXT
RESOURCE

PREVIOUS

POINTER TO ONE
OF THE STATES

STATE NAME
DESCRIPTION
NO OF DIFFERENT

SETS OF SENSORS USED
TO DEFINE THIS STATE

NEXT STATE

POINTER TO ONE OF THE
SETS OF SENSORS

STRUCTURE NAME
DESCRIPTION
NO OF SENSORS IN

_ THIS LIST

NEXT LIST

PREVIOUS

POINTER TO LIST
OF THE REQUIRED

t - SENSORS

STRUCTURE NAME
DESCRIPTION
SENSOR NAME

.SENSOR CONDITION

NEXT PREVIOUS

Figure 5: Database structures and pointers: resource records

10

SENSORS

POINTER TO BEGINNING
Of SENSOR LIST

SENSOR NAME
DESCRIPTION
NO OF RESOURCES IN

WHICH IT IS USED
TYPE OF SENSOR
WIRE NUMBER

NEXT SENSOR

PREVIOUS

Figure 6: Database structures and pointers: sensor records

11

POINTER TO BEGINNING OF
ACTUATOR LIST

ACTUATOR NAME
DESCRIPTION
NO OF OPERATIONS IN

WHICH IT IS USED
TYPE OF OUTPUT
WIRE NUMBER

NEXT ACTUATOR

PREVIOUS

Figure 7: Database structures aad pointers: actuator records

12

IS THERE ANOTHER^ NO
OPERATION?

YES

C6ET NEXT OPERATION }

••END

START THE OPERATION ENA6UN8 OONDITtONS
WITH THE T O " INSTRUCTION FOR THE FIRST

ENA6LIN3 STATE IN THE FIRST INPUT TRANSITION

START TOR" ENABLING
CONDITIONS AND LOAD FIRST
STATE FROM THIS TRANSITION

I
(PET NEXT TRANSITION)

k ARE THERE ANY MORE ^ _TES
[STATES IN THIS TRANSITION

1 r NO (LOAD THE REMAIN!NO STATES
WITH THE •ANO* INSTRUCTION

ARE THERE ANT MORE
INPUT TRANSITIONS

C
NO

ENABLE THE OPERATIONS
ASSOCIATED ACTUATORS

i
TO K X T PAGE FROM NEXT P A S

Figure 8: PROGGEN Flow Chart (Continued on next page)

13

FROM
PREVIOUS PAGE

(IS THERE ANOTHER>

OUTPUT TRANSITON

TO
PREVIOU

NO 1PAGE

YES

LOAD THE OPERATIONS
ENABLING STATES AGAIN

LOAD. AS "AND" INSTRUCTIONS. THE
SENSORS ASSOCIATED WITH THIS
TRANSITIONS RESOURCE STATES

(RESET THE LATCHED STATES OF ALL
RESOURCES ASSOCIATED W I T H THIS

^TRANSITION USING THE RESET INSTRUCTION

SET THE RESOURCE STATES
ASSOCIATED WITH THIS

OUTPUT TRANSITION

T
Figure FLOW (continued)

14

In IL would be represented as follows:

LD
ANDN
0R(
AND
ST

LSI
LS2
LSI
LS3)
SI

To simply enable the actuator when the input resource state conditions are satisfied is not

sufficient. Actuators vary in types; some are required to remain enabled for the duration of the

operation while others are required to remain enabled until another motion of the same actuator

is needed.

Enabling the actuator output for the duration of an operation is established by the fact that

the input states to the operation remain true until an output transition becomes true, as defined

by the associated resource state sensors, and new states are defined.

Other types of actuators must remain rigid even after its motion is complete. For example, the

doors between the booths in the conveyor example must be held open after the door open limit

switch has been activated. This prevents the doors from drifting shut and possibly making

contact with the van, causing a paint defect. The task of maintaining the output to the specified

actuator is performed automatically by PROGGEN. If an actuator has in its description more

than one motion, PROGGEN will first reset all outputs to the actuators then set the output for

the desired motion. Therefore for the case described above, the operation that opens the door

will set (latch) the output to the door open solenoid. In the operation that the door is to be

closed, the output to the door open solenoid will be reset (unlatch) and the output to the door

close solenoid will be set. This method will also work for actuators with more than one motion,

not just two-way actuators.

4.2 Analysis

When sensors are not associated with a resource state, feedback words are needed to maintain

the control logic. Feedback words are words that are stored in memory and are used to

remember if a resource is in a given state. For example, the state of the base booth in the

conveyor example is not explicitly defined by sensors. Therefore when its state is changed it is

set with the mSm Instruction (latched) and a location within its memory structure in DBBUILD is

15

updated with its latched state. If an old state is still latched when a new state is to be latched,

PROGGEN will unlatch the old state and latch the new state. This operation follows from the

fact that a resource cannot be in more than one state at any given time.

Creating feedback words only for those states that are not defined by sensors does not provide

sufficient information on the system state to enable the proper outputs. In the current version of

PROGGEN, feedback words are created for all resource states. Storing all resource states

provides the required information for proper sequencing, but leads to inefficient IL code.

To clarify the need for the storage of all resource state information, consider operations 2 and

5 in the conveyor example (move the van into the painting position and move the van out of the

painting position). The resulting IL code for only remembering those states that are not defined

by sensors is as follows: (Note: enabling conditions are now the sensors for those resource states

that are defined by sensors:)

OPERATION 2

(*Enabling*)
LD BLS1
AND BPLS1
S BPEXT

(*Res\ilti*)
LD BLS2
AND BPLS2
R BPEXT

OPERATION 5

(•Enabling*)
LD
AND
AND
S

CBC
BPLS1
BLS2
BPEXT

(•Result*)
LD
AND
R
R
S
S

(*Rei
LD
AND
R
S

BLS3
BPLS2
BBF
BPEXT
BBC
CBF

suit*)
BLS2
BPLS2
BPEXT
E2

LD BLS1
AND BPLS2
R BPEXT
S El

We see that when both BLS2 and BPLS2 are high, following completion of operation 2f E2

from operation S will be set, which is not what we wan led. To prevent this type of sequencing

problem all resource states, whether defined by sensors or not? are used as feedback words. This

change produces the correct code as shown below.

16

OPERATION 2

(•Enabling*)
LD VI
AND BP1
ST BPEXT

(•Result*)
LD VI
AND BP1
AND BPLS2
AND BLS1
R VI
R BP1
S El

(•Result*)
LD VI
AND BP1
AND BLS2
AND BPLS2
R VI
S V2
S BP2

OPERATION 5

(•Enabling*)
LD
AND
AND
ST

CBC
BP3
V3
BPEXT

(•Result*)
LD
AND
AND
AND
AND
R
R
S

CBC
BP3
V3
BPLS2
BLS2
CBC
BP3
E2

(•Result*)
LD
AND
AND
AND
R
R
S
S
S

CBC
BP3
V3
BPLS2
CBC
BP3
B3C
V4
BP4

The inefficiency of using this method to maintain correct sequencing stems from the fact that

many times feedback words are generated which are not required to maintain correctness. For

example, the state Vl (van entered base booth) is explicitly defined by BLSL At no other time is

BLSl activated, nor will the state Vl exist if BLS1 is not activated.

Using the S (set) instruction is considered poor programming style primarily because if a power

failure occurs the set or latched states will remain high, thus resetting the system logic becomes

very difficult. Also, with set instructions there is possibility of logic errors by forgetting to reset

the word; however, PROGGEN removes this problem because it maintains the states of the

latched words.

17

5 Additional Utilities

The prototype versions of DBBUILD and PROGGEN presented in this report have been

developed to support automatic generation of controller code for systems with binary sensors and

actuators. Further work is required to implement the required software to support timers,

counters, external functions (add, subtract, logical comparison, etc.), and non-binary inputs and

outputs. Some ideas for possible implementations of these control structures are presented in

this section.

5.1 TIMERS

Timers are often used to monitor the sequencing of a system. A timer can be viewed as a

function within an operation that is initiated when the operation is enabled. We propose to have

operations that can be specified as timed operations for which DBBUILD will prompt the user

for the pre-set timer duration. During controller code compilation PROGGEN will allocate a

timer to that operation internally and will attach to the variable state TIMER the address of the

timer completed status word (bit 15 of the timer address [5]). The use of the variable TIMER

allows the user to specify those output transitions that are dependent on the timer. If the

operation reaches an acceptable output transition the timer is automatically reset.

5.2 COUNTERS

Counters are often required to remember how many times an operation has been executed and

based on the accumulated value of the counter, initiate another operation. For example, in an

automated paint shop the paint gun requires cleaning if the same color has been used N times (If

a different color is used a purge operation is performed which includes cleaning the gun). We

therefore want to count the number of consecutive times the same color has been used. It is

proposed to view the counter as a type of actuator. The counter name would act as the label to

the counter address within the controller code. The state of the counter is then defined by two

associated feedback words representing counting and finished states. These states can be defined

by the counter address bits 16 and 15 respectively [5]. To allow the user to use the counter

feedback words in other operations we define feedback words l a b e l . e n t and l a b e l . d o n e as

follows:

for countervails < M label.cnt = 1; label.done = 0
for countervalue = M label.cnt = 0; label,done = 1
for countervalue > K reset cou&tervalu*; countervalue = 1;

18

where l a b e l is the counter name as defined by the system designer. For example,

samecolor. cnt would be the variable attached to bit 16 of the samecolor counter.

5.3 EXTERNAL FUNCTIONS

External functions are required to perform a series of operations that do not belong at the level

of the system state description. For example, comparing the value of a sensor to some set point.

It is proposed to have the user define an external function label in the associated actuator list in

an operation and it will remain his responsibility to generate code for that label. Simple routines

are easy to write in the Structured Text Language [5] and are easily accessible by the Instruction

List code using the JMP instruction. All variables will be the same names as those used in the

system description level.

6 Conclusion

This report presents some initial work in the area of automatic programming of programmable

controllers from high level descriptions. The software developed illustrates the ability to

interpret a data base that contains the system operation information, and from it generate

executable controller code.

Additional work is required in the area of simulation and analysis of the generated control

logic. The data base generated by DBBUILD is structured identically to the informatioE

contained within a PN model of the system. This structure allows existing Petri net theories to

be used to determine if deadlocks are present. The program that performs the net analysis may

be a simulation program that can simulate the nets operation given an initial marking, or

placing of the tokens.

Ultimately to allow the generated code to be used in a production environment, an interface

such as Ladder Diagram needs to be presented to the technician for use in on-line debugging of

the system. One of the purposes of the DEC Language Specification is to provide consistency

between controller codes. This consistency should allow the development of linking programs

that can change the controller code from IL to Structured Function Chart [5] to executable code,

etc, and back again.

19

I. Sensors, Actuators, Resources, and Operations
for Conveyor Example

The following two lists show the sensors and actuators used in the conveyor example:

SENSORS:

PLS1 PREP BOOTH LIMIT SWITCH 1
BLS1 BASE BOOTH LIMIT SWITCH 1
BLS2 BASE BOOTH LIMIT SWITCH 2
BLS3 BASE BOOTH LIMIT SWITCH 3
CLS1 CLEAR BOOTH LIMIT SWITCH 1

BPLS1 BASE PUSHER LIMIT SWITCH 1
BPLS2 BASE PUSHER LIMIT SWITCH 2

BLDO BASE LEFT DOOR OPEN LIMIT SWITCH
BRDO BASE RIGHT DOOR OPEN LIMIT SWITCH
BLDC BASE LEFT DOOR CLOSED LIMIT SWITCH
BRDC BASE RIGHT DOOR CLOSED LIMIT SWITCH

ACTUATORS:

PBSD PREP BOOTH STOP DOWN
PBSU PREP BOOTH STOP UP
BPEX BASE PUSHER EXTEND
BPRET BASE PUSHER RETRACT
RBDO RIGHT BASE DOOR OPEN
LBDO LEFT BASE DOOR OPEN
RBDC RIGHT BASE DOOR OPEN
LBDC LEFT BASE DOOR CLOSE

The following lists provide a brief description of the resource states and operations modeled by

the PN in figure 3.

VAN RESOURCE CYCLE: SENSORS REQUIRED:

VO = Van at prep booth stop. PLSl
Vl = Van arrived in base booth. BLSl
V2 = Van in base booth painting position. BLS2
V3 = Base coat applied to van. NONE
V4 = Van at base booth doors. BLS3
V5 = Van arrived in clear booth. CLSl
V E l = Failed to move into paint position BPLS2 and BLSl
VE2= Failed to move off grounding bars BPLS2 and BLS2

20

BASE BOOTH PUSHER RESOURCE CYCLE:

BPl =Base pusher retracted and waiting for van to
arrive

BP2 =Base pusher extended with van in the back dog
(thus the van is in the painting position).

BP3 = Base pusher retracted while the van is in the
painting position.

BP4 =Base pusher extended with van in the front dog
(thus the van is pushed past the painting position).

BASE BOOTH DOORS RESOURCE CYCLE:

BDOl = Opened for van to pass through
BDO2 = Base doors open and van passed
BDCl = Base doors closed for painting
BDC2 = Base doors closed, painting complete
BDOE = Error base door open (the doors did not open)
BDCE = Error base doors close (the doors did not close)

BASE BOOTH RESOURCE CYCLE:

BBF = Base booth clear (empty) and waiting
for the next van.

SENSORS REQUIRED:

BPLS1
BPLS2

BPLS1

BPLS2

SENSORS REQUIRED:

BLDO and BRDO
BLDO, BRDO, CLSl
BLDC and BRDC
BLDC and BRDC
BLS3 and NOT BLDO
BLS2 and NOT BLDC

and NOT BRDC

SENSORS REQUIRED:

NONE

CONVEYOR RESOURCE CYCLE:

CS = Conveyor stopped.

SENSORS REQUIRED:

NONE

21

OPERATIONS:

OP1 =Drop stop in prep booth and allow van to move into
base booth.

OP2 =Pu t van into base booth painting position by extending
base pusher.

0P3 =Retract base pusher.
OP4 =Apply base coat to van.
OP5 =Extend base pusher to push van past painting position.
0P6 =Open base booth doors.
OP7 =Retract base pusher to accept new van arriving in base

booth.
OP8 =Stop conveyor to prevent van from hitting base doors.
OP9=Move van from base doors to clear booth pusher.
OP10=Close base booth doors.

OPEl=Manual reset of base pusher and van in paint position
OPE2=Manual reset of base pusher and van off grounding bars
OPE3—Manually open of base doors and restart conveyor.
OPE4=Manually close base doors

ACTUATORS REQUIRED

PBSD

BPEXT

BPRET
NONE
BPRET
RBDO and LBDO
BPRET

NONE
NONE
RBDC and LBDC

NONE
NONE
NONE

22

II. DBBUILD User's Manual

ELI Introduction . :

0BBUHiD m iatetacthre prog^® used to obtain and store information concerning a

naarfactarag ifsim1 . The structure of DBBUILD emulates a Petri net model to s

aaiJpii of l i t q/tim lope using existing Petri net theories. The purpose of this append

familiarise (ft* awr with DBBUILD's structures and menues. DBBUILD prompts the user

lafbtrmftlibi thai is required and therefore an experienced programmer would fee]

wttlbrtmbfe ariag BIJBUILD without first reading this manual. However, DBBUILD wi!

far ufoivuUiM tfctt nay see© irrelevant; this manual tries to explain the need for these ^

EL3 Structure •:

Tit dkfca l»s» is eomplissd of four major record types: 1. operations, containing infon

os iipit mi «Msi|MBt tnuBsitikHis, resource states, and actuators; 2. resources, cott

Uhnnlim m :ttt f^Mi^1 .^ato aad the sensors data required to define each state; 3. m

ttMiiyiaitg t i t aAdras Ubd dt the sensor input port; and 4. actuators, containing the m

^W fe^ tl§ mtomtom osi|wt port Schematics of the records are shown in figures 4 throi

Tit tepid ISieiiiii &i Afa p r l of lie manual .are for use by those who have an undersfl

rflrt^^^ hlgmgi. Hnpti t iTOa (̂rf the material is not required to use DBBUIOii

Operation WmmmiM 'S

Tit ̂ ^ ^ ^ b As lop Iml 1bw£m h ;ft# cferation record: !|

• ^W* 'MHI ^ J i l i J ; -operation name defined by user-;;!
i^S* # i ^ i ^ i f i l ^ ; . operation description ' -%
ti» ^mjMjs§; " iolis the number of input t ransi t^
Hi MB ««i «B! feolAt t&e number of output t ransl^

bolis number of associated actuat®H

tpreir; : | |

to l i s t of input transitio|§

/O l i s t of

the C code for DBBUILD.

23

struct act_list *assoc_act_j>tr; pointer to list of actuators
affected by the operation

The following structure contains information on the associated actuators

typedef struct act_list <
char name [NAME_SIZE] ; structure name defined by DBBUILD
char desc [DESC_SIZE] ; not used
char act_name [NAME_SIZE] ; name of the actuator
char assoc_op_name [NAME_SIZE] ; not used
char act_cond [COND_SIZE]; the condition of the actuator

defined by user
struct act_list *next;
struct act_list *prev;

The following structure holds information on the input transitions

typedef struct in_°P {
char name [NAME_SIZE] ; DBBUILD name of the transition
char - desc [DESC_SIZE] ; not used
int num_in_op_AND; number of resource states associated

with the transition
struct in_op *next;
struct in_op * *prev;

struct ln_op_AND *in_op_AND_ptr; points to a list of the resource

states associated with the transition

The following structure holds information on the output transitions:

typedef struct out_op <
char name [NAME_SIZE] ;
char desc [DESC_SIZE] ;
i n t num_out_op_AND;
struct out_op *next;
struct out_op *prev;
struct out_op_AND *out_op_A

The following structure holds the input transition's resource states;

typedef struct in_op_AND {
chax name [NAME_SIZE]; structure name defined by DBBUILD
char desc [DESCjSIZE]; not used
char resjaame [NAME_SIZE]; the resource name
char state_name [NAME_SIZE]; the resource state name
struct ±n_op_AND *next;
struct injop^AND *pre¥;

24

n . following . truclur . holds the output t r a n s i t i o n "Bource . « . « . .

tjpedef struct out_op_AND <
char name [NAME_SIZE] ;
c b ^ desc [DESCJSIZE];
char res_naine [NAME_SIZE] ;
char statejiame [HAMEJSIZE] ;
fltruct out_op_AND *next;
•tract out_op_AND *prev;

H.9L2 E^nrce Records

folfowlag » the resource record and ite components:

Tjrptdrf struct resource_type {
Oiwr B«MCIIA1IEMSIZE];
chix dMcCDESC^siZE];
Struct rt«ottrce_type *next;
Strmct
lot

Name of the resource
Description of the resource

Holds the number of different
states "the resource

Struct *statejptr; Points to t l ie resource
structure

IHt following stntcfeurs contains information on the resource states:

Tjrptiff struct state type i The resource state structure
MBmtWMiM^BtZBl"** Name of the s t a t e
4 s s c CDB8CJBZZE] Description of the state

Used for generating the IL
code

Number of sensors used to
determine the state

Points to the series of
sensors used t>o define s ta te

ttrvct ttattjbyp*
l avm i i "*

OR typt *01j>tr

foUaviag tferttctws coatalna the name of the ser ies of sensors
m a BpmitU4 r«»o«rc« state;

DBBUILD struc-fcure name
not used

of sensors in series

ffp§4%t struct OR
ouur

ttntct
•tract
Xat aua

*pr#T

25

Struct AND_type *AND_ptr Pointer to the sensors in the
series

The following structure contains the sensor names for a specified series

Typedef struct AND_type
Char name [NAME_SIZE]
Char desc [DESC_SIZE]
Struct ANDjtype *next
Struct AND_type *prer
Char sensor_name[NAME_SIZE]
Char sensor_cond[COND_SIZE]

Char assoc res name[NAME SIZE]

DBBUILD structure name
not used

Sensor name
The state of the sensor
activated/not activated
not used

II.2.3 Actuator Records

The actuator record is defined as follows:

Typedef struct actuator
Char name [NAME_SIZE]
Char desc[DESC_SIZE]
Struct motionjstruct

Int wire_num
Struct actuator *next
Struct actuator *prev
Int num_assoc_op

Struct assoc_op

Actuator structure
Name of the actuator
Actuates description
Indicates different actuator/
motions
Actual wire number

Number of operation in which
actuator is used
Points to an operation

The following structure holds information on the operations in which
the actuator is used:

Typedef struct assoc_op

Char name [NAME_SIZE]
Char desc[DESC_SIZE]
Char op_naine [NAME_SIZE]
Char actJList [NAME_SIZE]

Struct assoc_op *next
Struct assoc_op *prev

Name of the operation
Not used

26

II.2.4 Sensor Records

The sensor record is as follows:

Typedef struct sensor type
CHar name [NAME_SIZE]
Int ¥ire_nu©
Char desc[DESC_SIZE]
Int cond

Struct sensor_type *next
Struct sensor_type *prer
Int m m assoc res

sensor name

description of the sensor (o p t i o n a l)
condition the sensor wi l l be i n when

actuated

Struct assoc res

Number of resources for
which t h i s sensor i s used

*assoc_res_ptr Pointer to associated r e s o u r c e s

following structure contains information on resource s t a t e s
in Milch the sensor i s used:

yp s t ruc t asgocjres
C&ar nan© DfAME_SI2E]

D>ESCj6ftZE]

Otmr t tat© j ^
Struct &**oc_rt* *n*xt
Struct 9M8OC re» *pre¥

'"'structure
n o t u s e d • •,,' ' ' '',
Resource name
State name

1L:> Menus

Tli mtfttt awd to prompt tie user nm terms used to describe elements of Petri nets. Most

nuilt optio&i wt mlt expluatoiy; however, thc»e options that are not will have a brief

foltewiig t i t meat listing.

Tit top Itftl mraQt sad therefore tie first one you see, allows you to choose which record you

*Mt lo iwN«iffti«. Tllis mean k us follows;

S m F0ir 0tBiW data tjpe
I • ftn r t idarc* data type
0 it For #p«fmtic» rtatm type
A « For scfca»tor dmta type
1 * T# f l i t tb l* program

typt do you want to alter or look at?

27

IL3.1 Operation Menu

If at the top level you decide to look at operations, the following menu will appear:

I-INSERT new operation
D-DELETE an operation
F-FIND an operation or some info about an operation
A-INSERT assoc. actuator for this operation
P-INSERT an out op cond OR header for this operation
C-INSERT an out op cond AND header for this operation
O-INSERT an in op cond OR header for this operation
H-INSERT an in op cond AND header for this operation
L-LIST all of the names present
Q-Quit, and look at another data base
?-List all of the commands availabel

••pu wju generate the structure for an output transition and name that transition

TRANS_(n); where n is a number DBBUILD maintains. Once the transition has been named;

DBBUILD will ask if there are any resource states that you want to attach to this transition.

Upon entering a state DBBUILD will generate a structure to hold the state name. DBBUILD

will name this structure STATE __(n) much in the same way it names the transitions.

11CM can be used to add additional resource states to an existing output transition. DBBUILD

will first ask for th output transition name (TRANS_1, TRANS_2, etc.) and then allow you

to enter a resource state.

"O11 and MHM perform the same as "P" and MC" respectively, but are used for input

transitions rather than output transitions.

NOTE 1:

The words "OR" and MANDW used in the menus refer to transitions and resource states

associated with that operation respectively. OR is used for transitions because they represent

the different enabling or resulting sets of resource states. AND is used for resource states within

a transition because all of the resource states must be satisfied for that transition to be enabled.

NOTE 2:

The labels TRANS_(n) and STATE_(n) are used by DBBUILD to search through the record.

28

See struct in_op_OR and struct in_op_AND in section 3 of this manual for more

information.

«'Fftl will cause DBBUILD to prompt the user for an operation name and will then display the

next menu containing new options.

D-To see the description of the operation
A-To list all of the assoc. actuators with this operation
F-To find info about assoc. actuators with this operation
0-To list all of the out ops assoc. with this operation
H-To get info about the out ops assoc. with this operation
I-To list all of the in ops assoc. with this operation
G-To list all about the in ops assoc. with this operation
Q-To quit looking at this operation
?-To see these commands

"O" will list the names of this operations output transistions (TRANS_1, TRANS_2, etc.).

c a i i s e DBBUILD to ask for the output transition name and then present the resource

states associated with that transition.

"I" and MGa will perform the same tasks as "O" and ttNM respectively except they are used

for input transitions.

The following menus are presented when the MNM and "G" options are chosen from the
t

previous menu: w
D-To see the description of the out_op
L-To list all of the AMDs present
R-To see the resource name and the state name of an AND
Q-You are done looking at this out^op
?-To see these commands

D-Tb see the description of the ln~op
L~To list all of the ANDs present
R-To see the resource naae and the state name of th# AMD
a-Ymi are tone looking at this ln_op
?-To see these

Tie following mean is presented when the *FW' option is used in the previous menu:

D-To see the description of the assocjtct
C-To see the condition the denser will be in after the op

29

L-to l i s t a l l info about the assoc. actuator for this op
Q-You are done lookinga t this assoc_act
?to see these commands

II.3.2 Resource Menu

If from the top level you decide to work on the resource record, the following menu will be

presented:

I-INSERT new resource
D-DELETE a resource
F-FIND a resource or some info about a resource
L-LIST the name and descriptions of the resources present
S-Insert a STATE to a resource
E-ELIMINATE a state from a resource
O-ADD a new SERIES of SENSORS to a given state
A-ADD a SENSOR to a given series of a given state
T-TRASH (delete) a SERIES of SENSORS from a given state
W-Delete a SENSOR to a given series of a given state
Q-Quit, and look at another data base
?-List all of the commands availabel

NOTE-

AS a resource cycles (or is cycled) through the systems operations, its state will change. These

states may or may not be defined by sensors, and in addition some states may be defined by

more than one set of sensors. For example, some arbitrary state may be defined by sensors 1

and 2 or by sensors 3 and 4. DBBUILD's terms for these sets of sensors is SERIES; i.e. sensors

1 and 2 would be listed in SERIES _1 and sensors 3 and 4 would be listed in SERIES _ 2.

DBBUILD uses the word SERIES__(n) to label the structure that contains the pointer to each of

the sensors. See struct OR__type in section 3 of this manual. Additionally DBBUILD uses

SENSOR__(n) as the name of the structure that holds the actual sensor name. See struct

AND __type in section 3 of this manual.

If the MFn option was chosen to find information about a resource, the following menu will

D-To see the description of the state
S~To get info about a particular state
L~t>o l i s t a l l of the states assoc. with this resource
Q-To QUIT looking at this resource
?-to see these commands

30

If at this level "S" is requested the following menu will appear:

D-To see the description of the state
L-To list the SERIES of SENSORS assoc with this state
0-To see info about a particular SERIES.
Q-You are done looking at this state
?-To see these commands

If the "O" option is chosen the following menu will appear:

L-To list SENSORS assoc with this SERIES
S-To list all of the sensor names under this SERIES

and their conditions
A-To see info about a particular associated sensor
Q-You are done looking at this SERIES
?-To see these commands

If at this level the "A" option is used DBBUILD will ask for the sensor name, SENSOR_1,

SENSOR2, etc. This version of DBBUILD does not contain additional information on sensors

beyond what the MSM option provides.

DL3.3 Actuator Menu

If at the top level you requested to enter the actuator record the following menu would appear:

I_IMSERT new actuator
D-DELETE an actuator
F-FIND an actuator or some info about an actuator
L-LIST all of the names present
Q-Quit, and look at another data base
?-List all of the commands availabel

The find command invokes the following menu:

D-To see the description of the actuator
S-Gefc info about a particular assoc op
M-tc list all of the notions this actuator has
L*-Tto list all of fch® assoc op with this actuator
ft-To QUIT looking at this actuator
?-to see these commands

31

11.3.4 Sensor Menu

If at the top level you entered the sensor record, the following menu would appear:

I-INSERT new sensor
D-DELETE a sensor
F-FIND a sensor
L-LIST all of the sensors present
W-Change the WIRE number assoc with a sensor
Q-To quit and look at another data base
?-List all of the commands avallabel

The find option will cause th£ following menu to appear:

D-To see DESCRIPTION of the sensor
L-To LIST all of the states that this sensor is used to define
W-To see the WIRE number of this sensor
Q-When you are done looking at this particular sensor
?-Llst these commands

32

1.

2.

3.

4.

5.

References

J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ., 1981.

C.L. Beck, "Modeling and Simulation of Flexible Control Structures for Automated
Manufacturing Systems", Tech. report, Robotics Institute, Carnegie Mellon University,
1985.

C.L. Beck and B.H. Krogh, "Models for Simulation and Discrete Control of
Manufacturing Systems'1, IEEE International Conference on Robotics and Automation,
San Francisco, April 1986.

B.H. Krogh and C.L. Beck, "Synthesis of Place/Transitions Nets for Simulation and
Control of Manufacturing Systems", Jth IFAC/IFORS Symposium Large Scale Systems,
International Federation of Automatic Control, Zurich, August 1986.

International Electrotechnical Commission, Standard for Programmable Controllers,
-Part 8: Programming Languages, 1982, Technical Committee 65: Industrial Process
Measurement and Control

