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A b s t r a c t

This paper presents algorithms for identifying parameters of an N degrees-of-freedom
robotic manipulator. First, we outline the fundamental properties of the Newton-Euler
formulation of robot dynamics from the view point of parameter identification. We then
show that the Newton-Euler model, which is nonlinear in the dynamic parameters, can be
transformed into an equivalent modified model which is linear in dynamic parameters. We
develop both on-line and off-line parameter estimation procedures. To illustrate our
approach, we identify the dynamic parameters of the cylindrical robot, and the three
degree-of-freedoin positioning system of the CMU Direct-Drive Arm II. The experimental
implementation of our algorithm to estimate the dynamics parameters of the six degrees-
of-freedom CMU DD Arm II is also presented.



1. In t roduc t ion

The robot control problem centers around the computation of the actuating
torques/forces to produce the desired motion of the end-effector. The model-based control
schemes such as the computed-torque [14] and resolved-acceleration [1.2] controllers
accomplish this objective by incorporating the complete dynamic model of the
manipulator in the control law. Since the fundamental assumption here is that the robot
dynamics are modeled accurately, precise knowledge of the kinematic and dynamic
parameters of the robot is required. In practice, it is also necessary to identify on-line the
mass and inertial characteristics of the payload in order to achieve accurate trajectory
tracking with varying payload.

This paper presents an algorithm to estimate the dynamics parameters of a robot from
the measurements of its inputs (actuating torques/forces) and outputs (joint positions,
velocities and accelerations). To facilitate the identification procedure, we modify the
Newton-Euler formulation so that it becomes linear in the dynamic parameters. We
introduce the torque/force error model for parameter identification based on this modified
Newton-Euler formulation of the robot dynamics. The torque/force error model is then
cast into the series (input-error) and parallel (output-error) identifier structures for on-line
and off-line parameter estimation, respectively.

Earlier work in identification of robot dynamics concentrated on estimating the mass of
the payload. Paul [16] presented two techniques with the assumption that the
manipulator is at rest. His first method used the joint torques/forces, and the second
method a wrist torque/force sensor. Coiffet [4] extended this technique, for a manipulator
at rest, to estimate also the center-of-mass of the payload. By using special test torques
and moving only one degree-of-freedom at a time, the moments-of-inertia of the payload
can also be estimated. Recently, general purpose algorithms to estimate the dynamics
parameters have been proposed [9, 15, 1].

Our general-purpose algorithm is suited for both on-line and off-line applications: in off-
line identification only one link of the robot is commanded to oaove for the purpose of
parameter estimation, whereas in on-line identification the parameters are estimated while
the robot is in motion performing the task in hand. We can adopt the strategy of
estimating off-line the dynamics parameters of the robot and then estimating on-line the
inertial characteristics of the payload. This procedure improves the robustness of the
estimation, decreases the computational requirements, and adapts to varying payloads,
We demonstrate our identification algorithm through simulation experiments on a
cylindrical robot, and the positioning system (i.e., the first three degrees-of-freedom) of the
CMU Direct-Drive Arm II [7]. We have implemented our identification algorithm to
estimate the dynamics parameters of the six degrees-of-freedom CMU DD Arm II and the
experimental results are presented in this paper.



This paper is organized as follows: la section 2, we review the Newton-Euler formulatioj
and identify its properties applicable to robot parameter identification. We then derive, ij
section 3, our identification procedures for a general-purpose N degrec-of-freedom robot
1B section 4, we evaluate the performance of our algorlthni on the two case study robots
The experimental results for tic six degrees-of-freedoiB CMU DD Arm II are presented ii
section 5 and finally, io section 6^ we draw our conclusions.

2. Propert ies of Robot Dynamics Model for P a r a m e t e r Es t ima t ion

Hobot dynamics describe the temporal interactions of the joint motions in response tc
lie inertial, centrifugal Coriolis, gravitational, and actuating torques/forces. Roboi
dynamics are highly coupled and noslinear 8econd*order differential equations. The
identification pmhkm is to estimate all of the kinematic and dynamic parameters that
affect tie link torques/forces. The Denayit-Hartenbcrg parameters constitute the
kinematic paramttersf and tie link masses, link inertiast and center-of-mass vectors are
tht dynamic paianiatcrs*

Two formulations lave htm nuti to model robot dynamics {16, 2? 13]: closed-form
Lapfflge formulation and recursive Newton*Euler formulation. While the former leads to
physical insight, the latter Ii computationally mom efficient aad suited for real-time
control application** We will but our development of parameter identification algorithms
©a tie Nfwtott'Eulcr fortnuUti&n* We fust funaarke tht 0 (N) recursive Newton-Euler
%3it»k fqamuons wd ilew thai Ii is aonltmetr la the dynamic and kinematic
parameters* We then show tl*l trMiforming tltt classical link inerlla tensor (expressed
about ibe center t£ mM$ of ll« I»i) to the link cewdkate frame results in a modified
N>wt#4*£tthf formuUtioQ *bich is linear la all dynamic parmmeters* This modified linear
fetmulatton » more atUf active from l i t il«illfieat»» point-of^vievr.

2*1. XtfHtoti-l't'il^r Formulat ion

T^ N^wttn F^-Sr fc;HT:ij,i>%^:i sho^r* w equations (Ij-{9) computes the Inverse
4>Mjv,c> :k . jrMi i;?^a*r^?***!.• from -cint pa:->i%iQi&, ¥eloelties, and accelerations) based

f:ji Vhc t^% ^ *r.;;;2-,; :m *%» f^\^ri $rt* fjacku KL^i w±n\oT&, The fonvard recursions

I'- I ??Ar;',*'*s; "U ktnfiifiV.:- '*:ir\V.** trim tb* hmt tc the ejid-effector. The initial

•:••.?£'*•*'*'* '*•'? ' ":y «z*wx* t b t ?.U r r ^vpJnMr ih at rfM In the gravitational field The
l i ' - f c - - ^ ?-v i^r-"^' ":^ ;^

f t n v ^ f - ; ?h^ ?W">s aid HiJin^nts m;n; the emi-effector to the

'?'<*"' -*'>•* "'*'^,^A^:, Jt.'h f?^ - ^ ii^tti..:;, z-\il.<>i'*i.nilzT<x*ie^/forces.

,v-;. „,,, . ,„ K



T r.',A z+lK + 2<A+1 + w£X(zo^+l)] rotational

A . . . oj. translational
t~hl t

rotational

translational

~VQ==[9X 9 gj gravitational acceleration

(4)

F.=m.v* (5)

.) (6)

»,=A.+ 1n - + l + p .Xf. + N. + . .XF. (8)

^ f Bt iAi*<) rotational
Tf I f/CAjiJ translationa!
f»̂  I: external force at the end-effector.

^ ^ nioment at the ead-effector.

The computational requirements of the general-purpose and customized recursive
Newton-Euler algorithms for various types of manipulators, such as manipulators with
paraUel/perpestdicular joint axesf spherical wrists, or sparse center-of-mass vectors and

fcia tensors, have been detailed by Kandae, Khosla and Tanaka [7].

(i}-{9), we note the following properties:

JU 'The Newton-Ealer model is linear in the classical link inertia tensors I..
t

This property follows directly from the backward recursions in equations (5)-(9). The
joint torque/force r. in (9) is liacar in the moment n.. In the recursion for the moment
n - in (8), the aet moment Ni exerted on link i appears additively. Finally^ the moment



Table 1: Kinematic and Dynamic Parameters

m. Total mass of link i

r. Joint torque/force at joint %

OJ. and a;. Angular velocity and acceleration of the i-ih coordinate frame

v. and v. Linear velocity and acceleration of the i-ih coordinate frame

v.* and v.* Linear velocity and acceleration of the center-of-mass of link i

Fj and N- Net force and moment exerted on link i

f. and n. Force and moment exerted on link i by link i— 1

Pl Position of the i-th coordinate frame with respect to the (z-l)-th coordinate
frame: p.=fa. d.sina. d.cosa]

s- Position of the center-of-mass of link i: s .=\s. s- $. ]

zo =[0 0 l ] r

Af* Orthogonal rotation matrix which transforms a vector in the i-th coordinate

frame to a coordinate frame which is parallel to the (i— l)-th coordinate frame:

cosO^ —cosa.sinO- sina*$in6*

A~ sin8i cosai cos$i —since* cosOi

0 sina. cosa*

',:;.•• for£=1,2,. • - - fNf where AN+l &E.

Cl^sical inertia tensor of link i about the center-of-mass of link t {and parallel
to the t-th coordinate frame); with principal inertias /- . i\ and / . : and
cross-inertias J. s / , and / . .



N- in (6) is linear in the classical link inertia tensor I..

2. For rotational joints, the Newton-Euler model is nonlinear in the center-of-mass
vectors s..

From equations (4) and (5), the net force F is linear in the center-of-mass vector s-
The vector cross product s-XF- in (8) is thereby nonlinear (quadratic) in s.. Hence,
the torque r. for a rotational joint in (9) is nonlinear in the center-of-mass vector ŝ . It
must be noted that for translational joints the center-of-mass vectors appear linearly.

3* The Newton-Euler model is nonlinear in the kinematic parameter vectors p..

From equations (3)-(5) and (7), the link force f. is linear in the vector, p.. The vector
cross product p-Xf- in (8) is thereby nonlinear in p . Hence, the torque/force r. in (9)
is nonlinear in the vector, p .̂.

4. The dynamic equations of links i+1 through JVare independent of the mass m. and the
classical inertia tensor I - of link i.

This physically intuitive property is an immediate consequence of the backward
recursions.

In summary, the classical link inertia tensors I. and the link masses m. appear linearly in
the Newton-Euler dynamics model, but the link masses are multiplied by linear and/or
quadratic functions of the center-of-mass vectors s- and nonlinear functions of the joint
position variables 0.. In contrast, the Lagrange formulation, which utilizes the pseudo-
inertia matrices, has been shown to be linear in the dynamic parameters [15]. The pseudo-
inertia matrices are formed by first expressing the classical inertia tensors about the link
coordinate frames and then combining their elements linearly. We thus infer that if the
Newton-Euler model in equations (l)-(9) is reformulated such that the link inertia tensors
are expressed about the link coordinate frames instead of the link center-of-mass
coordinate frame, the modified Newton-Euler formulation will be also linear in the center
of the mass vectors s..

2*2- Transformation of Inertia Tensor
Let Cf={x.) y., z^ be a Denavit-Hartenberg coordinate frame for link t and let

C* = (x^ 8 y. , Zj ) be a coordinate frame which is fixed at the center-of-mass of link i and
whose axes are parallel with those of C*. From the definition, s. is the translational vector
from the origin of the link coordinate frame G* to to the origin of the center-of-the-mass
coordinate frame (7» .

If L is the classical link inertia tensor about the center-of-mass of link i, the
corresponding inertia tensor I ' , about the link i coordinate frame C. is computed



according to the parallel-axis theorem or Steiner's law:

^E-s^ i 1 ) (10)

where E is the 3X3 identity matrix. This transformation of the inertia tensor includes the
quadratic terms of sz-. When we substitute this in equation (6) in the Newton-Euler
formulation, the quadratic terms from s-XF. in (8) are absorbed in the transformation,
thus resulting in the modified Newton-Euler dynamic formulation which is linear in
center-of-mass vectors [9, 8].

Properties 1 and 2 together with this transformation lay the foundation for our
identification algorithms, and Property 4 will be used to derive our off-line identification
algorithm.

2.3. Torque/Force Error Model
In general, identification of all the link masses, dynamics parameters and the kinematic

parameters is a problem of nonlinear estimation. If we assume that we have nominal
values of those parameters, say from engineering drawings, we can linearize the
torque/force equation of each link about the nominal values of the kinematic and dynamic
parameters to obtain the torque/force error model [15]:

*i^TrTiQ=tiTA^i ^ i==1>2> * • • >N (")

where rf is the applied torque/force to link if r® is the value of the torque/force, as
computed by an inverse dynamics model using the nominal values [13], e^ is the input
torque/force error of link t, A$* is the correction vector of unknown parameters that
affect the torque/force of link t, and ^- is the nonlinear vector function of the kinematic
and dynamic parameters and the output measurements (joint positions^ velocities an4
accelerations). The torque/force error model in equation (11) relates the error
torque/force of link i to corresponding modeling inaccuracies in the kinematic and
dynamic parameters.

If we know the kinematic parameters (e.g., by measuring them) and the Newton-Euler
model is transformed according to equation (10), then identification of the remaining
dynamic parameters is a problem of linear estimation. The subject of estimating the
Haematic parameters has been the focus of much research, and many algorithms have
been proposed [17, 3, 6,18]. la the sequel, we will assume that the kinematic parameters
of the manipulator axe kaowa and the problem is one of estimating the dynamics
parameters. Consequently, ia (11) ^ is a function of only the known kinematic
parameters and robot output measurements. Equation (11) is thus a linear equation with
/if. unknowns, Ie«, fi^dimlA^^ Because of the property 4, in section 2.3, we can step
sequentially through the links, from the tip to the bmef aod Identify the dynamic



parameters that affect the link torques/forces of each link. It mast be noted, however,
that all the parameters may not be always identifiable, nor need be identified. That is, the
number of independent dynamic parameters is less than or equal to the total number of
dynamic parameters of a robot. This is explained in greater detail in section 3.3.

2*4* Example: Cylindrical Robot
We will illustrate the approach presented so far by using a three degrees-of-freedom

cylindrical robot. We first develop its Newton-Euler dynamics model. After observing its
properties, we apply the transformation of inertia tensor to obtain the equivalent modified
Newton-Euler model. Finally the torque/force error model is developed.

The cylindrical robot consists of three degrees-of-freedom: a rotation 0., a vertical
translation GL and a radial translation cL- The Denavit-Hartenberg parameters of the
cylindrical robot are:

Link

1
2
3

e
Q

0
0

a

0°
-90°

0°

a

0
0
0

d

0
d2

The coordinate vector of the cylindrical robot is thus q==[^1 cL cL] . We assume that the
classical link inertias of the three links are diagonal and that only the s1 , so and s~

±z Zy oz

components of the center-of-mass vectors are non-zero. These assumptions do not suffer
from any loss of generality, and the cylindrical robot preserves all of the inherent coupling
and nonlinear characteristics of robot dynamics.

We expand the Newton-Euler recursions (l)-(9) to obtain the complete dynamics model
of the cylindrical robot:

Tz = mzdz-mz(s3z+dz)QL
2 . • (12)

We observe that equations (12)-{!4) are linear in the classical link inertia tensor
components, but nonlinear in the link center-of-mass vectors due to the presence of m^s^ 2

In (14). Also the dynamic parameters of link i do not affect the torques/forces of links i+l



through 3.

Now the nonlinear transform in equation (10) for this cylindrical robot is given as,

(16)

J'u.-'U. (I7)

Upon substituting (15)-(17) into (12)-(14), we obtain the modified dynamics model:

(19)

We note that the nonlinearity ^ 3 ^ 3 / in (14) has been absorbed by the transformation
(15), and that /« and I^zz are retained. From this observation, we naderst^ndfilial mice
the Bonlinearities associated with link t are identified in the dynamics models W;e'may
proceed to transform the inertias of only link i.

Now the torque/force error models for the cylindrical robot are given by:

e3 = 4(m3a3J{-2^2] + Am^-d^2] (21)

H = Aim^m^+g] (22)

III the aboTe model the number of independent dynamic parameters are? /x»==2 {m*s«
TOj: BUJCBOWE), II^X (m2: unknown^ and /Jj==l (because we can only identify the sum of
t ie three inertias in (23), and the prodact TTI^S^ and m« have already been Identified in
(21)). We measure the input torque/force to Ink t and the position, velocity aad
acceicratloa of link * at AT sampling instants (where N > /*.), compute the nominal values
of r% (according to t i t inverse dynamics model in (18)-(20)), and apply the linear least-



squares algorithm to estimate the dynamic parameters of link i.

3. Sequential Identification Procedures for an N - D O F Robot

In this section, we present the identification procedures for an N degree-of-freedom
robot. We use the property 4 of the Newton-Euler formulation to simplify the derivation
of the torque/force equations for the N links of the manipulator. We treat the parameter
identification problem sequentially, starting from link JV(the tip) and proceeding to link 0
(the base), and estimate the dynamic parameters of each link individually. The identified
dynamic parameters of link i become known parameters in the torque/force equation of
link 2—1. This sequential procedure reduces the number of dynamic parameters which
must be estimated from the torque/force error model of each link, and thus results in a
robust identfication procedure.

The identification of the dynamics parameters can be accomplished either off-line or on-
line. In the off-line procedure, we collect all the input—output data prior to analysis and
do not impose any limits on the computation time. In contrast, the on-line procedure deals
with real-time updates of the parameters during robot operation and issue of
computational requirements for estimation becomes important. In the following
paragraphs, we present both the off-line and the on-line techniques for manipulator
parameter estimation.

3.1. Off-Line Identification Procedure
Since the dynamic parameters of the all the links except the payload are constant, we

can estimate these parameters off-line. If we lock the first i— 1 joints mechanically (to set
the velocities and accelerations of joints one through i—1 to zero), we reduce dramatically
the complexity of the torque/force error model of link u This simplification can only be
achieved in off-line estimation. The following steps outline the off-line identification
procedure for an N degree-of-freedom robot:

1. Expand the Newton-Euler recursive equations to obtain the closed-form link
torques/forces equations of the manipulator. In deriving the torque/force equation for
link tj set the velocities and accelerations of links 1 through 2—1 to zero.

2. Convert the Newton-Euler model into the modified (linear in dynamic parameters)
Newton-Euler model, by applying the transformation (10) which transforms the
classsical inertias about the center-of-mass of link i to inertias about the i-th link
frame.

3. Generate the torque/force error model (11) by incorporating the nominal values of the
dynamic parameters to be estimated.

4. Calculate all of the Newton-Euler dynamic parameters in the torque/force error model
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that affect the torque/force of link i. Since the dynamic parameters affecting the
torques/forces of links i+1 through N have already been identified, these dynamic
parameters are known numerical quantities when working with link i.

3.2. On-line Identification Procedure
The on-line identification procedure for an N degree-of-freedom robot parallels steps 1

through 4 above, but in deriving the torque/force equations in Step 1 we allow positions,
velocities and accelerations of links t—1 through 1 to respond to the actuating
torques/forces instead of setting them to zero.

3-3. Identifiable Parameters
Each link of a robot is characterized by a maximium of ten dynamic parameters: the

link mass, the six classical inertias and the three elements of the center-of-mass vector. In
practice, only a fraction of the ten parameters of link i and a fraction of the lQ(N~i)
dynamic parameters of links i+1 through N affect the torque/force T- of lijik L We
emphasize that we can only estimate (and need to estimate) the dynamic parameters that
actually affect the joint torques/forces. For example, the J3 classical moment-of-inertia
parameter of the cylindrical robot does not affect the dynamic robot model in (12)-(14)
and hence cannot be identified.

The estimation of the classical inertias may not be unique and only their linear
combinations may be identified. For example^ equation (23) allows n$ to estimate only the
sum Jr/|ai,+//2 +^'3 , °f the link inertias. Such an estimate is sufficient for1 computing
the closed-form inverse dynamics in (18}-{20). If, however, the inverse dyaamic^ are
implemented by the original recursive Newton-Euler formulation in (l}-(®)* the'nunierical
values of all of the classical link inertias are required. For this purpose^ we can set the
values of first two of the three classical link inertias to zero, and set the third to the value
of the estimated sum. Even though this particular assignment of numerical values may
not have physical significance, it does lead to- the arithmetically-correct computation of
the torque/force.

The closed-form dyB^jaic model of a six degree-of-freedom robot is in general very
complex, and the corresponding torque/force error model for on-line estimation of all the
loimi parameters including p^yload characteristics is of comparable complexity. To
facilitate the estimation process, a viable strategy is to identify the parameters of all the
links first by the off-line procedure and to estimate on-line the mass and the inertia!
charateristics of the payload. This strategy requires the real-time identification of only
the last link of the robot. Our identification algorithm Is directly amenable to the reai-
tix&e Identification of the payload characteristics for dynamic feedback control.
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3.4. Parameter Identifiers
In sections 5.1 and 5.2, we have developed the torque/force error models. We now need

to cast these models into parameter identifier structures. A parameter identifier consists
of three components: the system to be identified, a postulated model, and an adaptation
algorithm which updates the model based upon an error criterion. In our case, the system
is the physical robot and the model is the Newton-Euler inverse arm dynamics model. The
inputs to the robot are the joint torques/forces and the outputs are the joint positions,
velocities, and accelerations. The input-error structure for identification is shown in
Figure wherein the outputs of the robot are fed to the inverse arm dynamics model which
computes the joint torques/forces. The error signal, which is the difference between the
applied and the computed torques, drives the estimation algorithm.

Often times it is desired to evaluate the robustness of the estimation algorithms through
simulation studies before the experimental implementation. Although the input-error
structure can be used for these practical studies, its implementation is computation
intensive due to the forward arm simulation. We thus introduce the output-error
structure, depicted in Figure 1, for simulation studies. In this structure the difference
between the output torques/forces of the system and the model is the error signal which
drives the identification algorithm. Since the error signal (which is the difference between
the system and the model torques/forces) is identical in both the input-error and output-
error identifier structures they accommodate identical estimation algorithms. This is a
practical advantage because the applicability and performance of an on-line estimation
algorithm can be evaluated through off-line simulation studies.
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4. Simulat ion Resul ts
We have performed simulation experiments for identifying the dynamic parameters of

the cylindrical robot and the three degrees-of-freedorn CMU DD Arm II. We commanded
each joint to move in a sinusoidal trajectory, begining from the rest position to a ninety
degree position and returning in one second. We sampled the trajectory at 20-ms intervals
and used the first half of the trajectory (or 25 sample points) in our identification
experiments. One data point consists of the measurements of the applied torque/force and
the position, velocity and acceleration of a link. Since we estimate only the dynamics
parameters, the problem is linear and we have applied the least-squares algorithm under
the assumption that the input-output measurements were noise-free. This assumption is
justified practically by the current availability of high resolution resolvers (16
bits/revolution) and tachometers [7].

4.1. Cylindrical Robot
In Table 2, we summarize our simulation results for the cylindrical robot. We

implemented the least-squares algorithms for the torque/force error model in equation (20)
of the third link using the 25 data sets and identified the z-component of the center-of-
mass vector of the third link s~ - We then identified the sum of the link inertias from the
torque/force error model of the first link by again using the 25 data sets along the
trajectory. The estimated values match exactly the true values.

Table 2: Simulation Results for the Cylindrical Robot
Link Dynamic Parameter Initial True Estimated

(Dimensions) Value Value Value

m3 (kg)

2 m2 (kg)

1 I, zhyy
(kg-m2)

0.27

0.9

2.1

2.0

1.25

2.5

5.0

2.5

1.249

2.499

5.000

2.5

4.2. CMU Direct-Drive Arm II
The configuration of the CMU DD Arm II is shown in Figure 2. Throughout this

experiment, we assume that the Denavlt-Hartenberg or the kinematic parameters of the
CMU DD Arm 11 arc known.
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The torque/force error model of the 3 DOF positioning system of the CMU DD Arm II is
described the following equations:

h + 2aC^A + aC^ 1

2 a 2

€ 2~

a l a 2 C < 2

where C-=cos9* Mid S»—sin0»*

From tiicsB eqtiaiionsf we observe that:

# The torque of the third link is affected by all the elements of the inertia matrix and
also by the two elements, 5« and $», of the center-of-mass vector. However, we can
only identify seven of the eight parameters in (24) because the inertia elements A
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and L, occur as a linear combination.

• The torque of link 2 is affected by two inertia elements and the mass of the third link,
one inertia element and the mass of the second link, two elements of the center-of-mass
vector of the second link and one element of the center-of-mass vector of the third link.
All these parameters occur independently and can be uniquely identified. Note that
we could identify only the linear combination IoZ2—Io, from the torque/force error
model of the third link whereas we can identify jL and /„ independently from the
torque/force error model of the second link.

• The torque of the first link is affected by three independent dynamic parameters, J-
m* and sn , which can be identified uniquely.

1 IOC

In summary, for the three degree-of-freedom positioning system of the CMU DD Arm II,
we can identify seventeen of the twenty-seven unknown dynamic parameters.

The results of our simulation experiments for the CMU DD Arm II are summarized in
Table 3. We used the 25 data sets to identify successfully the dynamic parameters which
affect the torques/forces of each of the three links.

5. Experimental Implementation
Experimental implementation of the identification algorithm requires the knowledge of

the applied joint torques and the measured joint positions, velocities and accelerations.
Each joint of the DD Arm II is instrumented to measure the position and the velocity. The
applied joint torques are assumed to be the same as the torques computed from the control
law. This assumption is valid because we use current controlled servo motors and has also
been verified by experimentation [8]. Further, the joint acceleration is obtained by
differentiating the measured velocity.

5.1. Obtaining the Joint Acceleration
The operation of obtaining the derivative of a set of data is inherently noisy because the

differentiator essentially behaves like a high pass-filter. And this effect is further
accentuated if the measured data is known to have some noise. In such a circumstance a
commonly used method is to low-pass filter the measured data and then differentiate the
resultant signal. This procedure serves to reduce the noise in the differentiated signal at
the cost of incorporating a phase shift and hence the loss of fidelity.

Another method involves using the principle of least-squares for solving the problem of
differentiation [11], In this method, the differentiating filter Is designed by fitting a
second-order parabola to five conseqeutive points with the assumption that the derivative
does aot change much during the period of the observations. This assumption is especially
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Figure 3: KiHematic configuration of the CMU Direct-Drive Arm II
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Table 3: Simulation Results for the CMU DD Arm II

Link Parameter Initial Value True Value Estimated Value
(Dimensions)

0.0 0.1 0.1

0.0 0.15 0.15

0.0 0.2 0.1999

0.0 0.15 0.15

Q2) 0.0 0.1 0.1

0.0 0.49 0.4898

0.0 0.7 0.7002

0.3 0.5 0.4999

i2) 0.05 0.2 0.2001

IZzz (kg-m2) 0.1 0.3 0.3001

m2s2x(m) 0.4 1.1 1.1

m2s2z(m) 0.0 0.55 0.55

m3s3 (m) 0.2 0.525 0.5251

m2(kg) 4.0 5.5 5.4999

m3(kg) 2.0 3.5 3.501

1.0 1.3 1.2999

s l x(m) 0.00 2.7 2.7013

i1 (kg) 10.0 13.5 13.5

(*) These values are hypothetical figures for simulation, and do not
correspond to those of the real CMU DD Arm II.
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true since we sample the position and the velocity of the joints every 2 ms. As the five
data points, in general, cannot be guaranteed to lie on a second-order curve, we obtain the
coefficients of the parabola by using the principle of least-squares. The resulting filter is
described by the following difference equation:

-2f{x-2T)-f{x-T)+f{x+T)+2f{x+2T)
/ ( ) — is?

where the symbol denotes the derivative and T is the sampling period in seconds. The
above filter obtains the derivative of the function f(x) at the point x by using the two
immediate neighbors on both sides and thus represents a noncausal operation for real-time
implementation. However, if we are able to tolerate a delay of two sampling periods then
the filter can be made causal by shifting the data by two sampling instants to obtain:

-2f(x-4T)-f(x-3T)+f(x-T)+2f(x)

In the off-line implementation of our identification algorithm, the noncausal nature of the
filter presents no problem as all the data is known in advance. In order to obtain the joint
acceleration from the measured joint velocity, we experimented with many methods of
implementing differentiating filters and found the filter designed on the basis of the
principle of least-squares to possess superior noise rejection properties. Consequently, we
used this differentiating filter to estimate the the acceleration of the joints.

5.2. Trajectory Selection
One of the important constituents of identification is the selection of input trajectories

for exciting the system. The input trajectory must be such that it allows complete
identification of the system. Such a trajectory is known as a persistently exciting
trajectory [5]. Choosing a persistently exciting trajectory is sufficiently complex and has
not been addressed in this research. However, a method to determine if a chosen
trajectory is persistently exciting is presented by Khosla [8]. In the experimental
implementation, we used this method to ensure that the trajectories chosen for
identification of the dynamics parameters were persistently exciting.

5*3. Experimental Results
We have implemented our identification algorithm together with the differentiating

filter and obtained the estimates of the dynamics parameters of the CMU Direct-Drive
Arm II. The modeled values of the dynamics parameters were chosen to be the initial
estimates and the data of a sample trajectory run recorded. We then estimated the
dynamics parameters based on our algorithm, and these are depicted in Tables 4, 5, and 6.

The Identification experiments were performed with two different persistently exciting
trajectories and two sets of initial values for the modeled dynamics parameters. In all the
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Table 4: Experimental Results for the CMU DD Arm II

Link Parameter Initial Value Estimated Value
(Dimensions)

mg (kg)

0.000426

0.0

0.0

0.000421

0.0

0.000047

0.0

0.0

0.002199

0.269

0.002092

0.000011

0.000022

0.001979

0.000010

0.000310

-0.000090

-0.000187

0.008709

0.90018

(kg-m2)

0.002018

0.0

0.0

0.001049

-0.000092

0.001396

0.0

0.005130

-0.016784

2.817

0.002602

0.000302

-0.000108

0.001349

-0.000070

0.001211

0.000981

0.006744

-0.019689

3.0895
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Table 5: Experimental Results for the CMU DD Arm II (contd.)

Link Parameter Initial Value Estimated Value
(Dimensions)

mA

0.023775

0.0

0.0

0.004055

0.003083

0.021652

0.0

0.134764

0.043011

0.030765

-0.00100

0.000302

0.003655

0.004207

0.029002

-0.002402

0.160372

0.081462

^(W)

m*

H
m 3 (kg)

0.014622

0.0

0.0

0.006615

0.001269

0.012432

0.0

-0.039703

-0.012487

2.801

0.015192

0.000726

0.000109

0.006209

0.001872

0.014080

0.015242

-0.132251

-0.040521

2.92106
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Table 6: Experimental Results for the CMU DD Arm II (contd.)

Link Parameter Initial Value Estimated Value
(Dimensions)

2 ^ ( k g - m 2 ) 0-264736 0-322156

m2s2x{m) -1.039971 -1.156482

m2s2z (m) 0.008722 0.008234

m2 (kg) 7.894 8.2501

1 IUz (kg-m2) 1.193645 1.270784

xslx (m) -5.925900 -6.478305

m1 (kg) 19.753000 20.152630

four experiments, the estimated values of the dynamics parameters were found to be
within 5% of the values depicted in Tables 4 through 6. This variation is practically
negligible and may be attributed to the noise in the measurements which tends to bias the
estimates, and also to the errors in the kinematic parameters which also have a similar
effect.

6. Conclusion
In this paper, we have addressed the problem of robot dynamics parameter identification

and applied our algorithm to experimentally determine the dynamics parameters of CMU
Direct-Drive Arm H. Since the CMU DD Arm II has negligible friction it was not modeled
in the estimation algorithm. However, this may not be the case in non-direct drive
manipulators and the friction would have to b^ modeled. If the friction is modeled as a
linear function of the joint velocity then the estimation problem will still be linear. In
practice the linear approximation, may be inadequate and the friction might have to be
modeled as a nonlinear function. In such a case the estimation problem becomes nonlinear
and more complicated.

In deriving our estimation algorithm we noted that some dynamic parameters do not
appear in the joint torque/force equations and others appear in linear combinations. Since
we don't sense the full torque/force vector at each joints, we can identify only those
parameters which affect the joint torque/force. Based OR this observation, we classify the
parameters in three categories: those that can be uniquely identified, those that can be
Identified only in linear combinations, aad those which cannot be identified. It is
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imperative that the parameters that can be identified only as linear combinations be
singled out and this knowledge be incorporated in the identification procedure, so that the
numerical procedure, such as the least-square error, to compute the parameter values,
becomes stable and robust. Incorporating this knowledge in the inverse dynamics
formulation also reduces its computational requirements. A systematic procedure for the
parameter categorization is further developed by Khosla and Kanade [10, 8].

I
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