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A b s t r a c t

This paper presents the experimental results of the real-time performance of model-
based control algorithms. We compare the computed-torque scheme which utilizes the
complete dynamics model of the manipulator with the independent joint control scheme
which assumes a decoupled and linear model of the manipulator dynamics. The two
manipulator control schemes have been implemented on the CMU DD Arm II with a
sampling period of 2 ms. We discuss the design of controller gains for both the computed-
torque and the independent joint control schemes and establish a framework for
comparing their trajectory tracking performance Our investigation shows that the
computed-torque scheme outperforms the independent joint control scheme as long as
there is no torque saturation in the actuators. Based on our experimental results, we
conclusively establish the importance of compensating for the nonlinear Coriolis and
centrifugal forces even at low speeds of operation. This represents an important result
because it serves to resolve the controversy about the need to compensate for these forces
at low speeds of operation.



1. Introduction
In this paper we present the experimental results of the real-time performance of

manipulator control algorithms using the full dynamics model. We compare the
computed-torque scheme which utilizes the complete dynamics model of the manipulator
with the independent joint control scheme. The control schemes have been implemented
on the CMU DD Arm II with a sampling period of 2 ms.

Although many simulation results have been presented, the real-time implementation
and performance of model-based control schemes with high control sampling rates had not
been demonstrated on actual manipulators, until recently [8, 9, 1]. The main reasons for
this are:

1. Even though the recent Newton-Euler recursive formulation of the dynamics
reduced the amount of computation, its real-time use with a high sampling rate has
not yet been practical for the commercially available microprocessors.

2. It is difficult to obtain the dynamic parameters of the robot, such as the link inertias
and the center-of-gravity vectors, because research in this area has been lacking.

3. In addition to inertial, centrifugal/Coriolis, and gravitational forces that must be
correctly modeled, arm dynamics involve other components of forces, such as static
and dynamic friction, which vary due to conditions and thus are hard to predict or
model. Since such unpredictable components tend to be large in the nondirect-drive
arms, they hamper the efficacy of the computed-torque method.

One of the goals of the CMU Direct-Drive Arm n [13] project is to overcome the above
mentioned difficulties and demonstrate the effect, of full dynamics compensation on the
real-time trajectory tracking of manipulators. For the real-time computation of the
inverse dynamics, we have developed a high-speed and powerful computational
environment. The computation of inverse dynamics has been customized for the CMU DD
Arm E and a computation time of 1 ms has been achieved [5]. To obtain an accurate
model we have computed and measured the various parameters from the engineering
drawings of the CMU DD Arm II by modeling each link as a composite of hollow and solid
cylinders, prisms, and rectangular parallelopipeds. We have also proposed an algorithm to
identify the dynamics parameters [7] which has been implemented on the CMU DD Arm EL
The results of the experimental implementation of our identification algorithm are
presented in [6]. Finally, the negligible friction in our direct-drive arm especially makes it
suitable to test the efficacy of the computed-torque scheme.

This paper is organized as follows: In Section 2, we present an overview of the
manipulator control schemes that have been implemented and evaluated on the CMU DD
Arm EL The experiments to determine the characteristics of the individual joint drive
systems are described in Section 3 and the design of controllers is discussed in Section 4*



The real-time experimental results are presented and interpreted in Section 5 and
conclusions are drawn in Section 6. In the Appendix, we describe our experimental
hardware set-up.

2; Manipulator Control Techniques
The robot control problem revolves around the computation of the actuating joint

torques/forces to follow the desired trajectory. The dynamics of a manipulator are
described by a set of highly nonlinear and coupled differential equations. The complete
dynamic model of an Ardegrees-of-freedom manipulator is described by:

r = D{9)d+h(e,9)+g(8) (1)

where r is the N-yectoT of the actuating torques; D(0) is the NX AT position dependent
manipulator inertia matrix; h($,8) is the JV-vector of Coriolis and centrifugal torques; g(0)
is the iV-vector of gravitational torques; and 9, 9 and 9 are iV-vectors of the joint
accelerations, velocities and positions, respectively.

This complex description of the system makes the design of controllers a difficult task.
To circumvent the difficulties the control engineer often assumes a simplified model to
proceed with the controller design. Industrial manipulators are usually controlled by
conventional PJD-type independent joint control structures designed under the
assumption that the dynamics of the links are uncoupled and linear. The controllers based
on such an overly simplified dynamics model result in low speeds of operation and
overshoot of the end-effector.

To improve the performance of the PID controllers, researchers have investigated model-
based control schemes which attempt to compensate for the nonlinearities and the
mismatch in the dynamical description of the robot. One of the model-based techniques is
the feedforward dp%mmics compensation method which computes the desired torques
from the given trajectory and iejecte these torques as feedforward control signals.
Independent joint feedback controllers are then added with the intention of 'compensating
for the SHI&IJ coupling torques arising out of the mismatch in the dynamics of the model
and1 the real arm [3,11]. More thorough compensation can be achieved by the
covnpuied-iorque technique in which the dysamic* compensation is included in the
feedback loop to decouple aad linearise the maalpmlator dynamics. This technique has'
been extend-ed to operate in the Cartesian space and is called resolved-acceleration
scheme [10].

We have implemented computed-torque and the independent joint coafcrol schemes and
compared their real-time performance. To est&bliili m framework for comparing the
performance these two schemes, we consider the control law ia two steps; computation of



the commanded acceleration and computation of the control torque. The commanded
joint accelerations u. can be computed in one of the following three ways:

U 2 =

U3 = K
p(

ed-e) + K A~*) + h W

where K and K^ are NXN diagonal position and velocity gain matrices, respectively.
The AT-vectors 6 , and 9 are the desired and measured joint positions, respectively, and the
11 • " indicates the time derivative of the variables. Whereas only the position error and
the velocity damping is used in equation (2), the commanded acceleration signal in
equation (3) uses a velocity feedforward term, and the commanded acceleration signal in
equation (4) uses both the velocity and acceleration feedforward terms. The idea is to
increase the speed of response by incorporating a feedforward term.

The fundamental difference between the independent joint control schemes and the
model-based schemes lies in the second step in the control law, i.e., the method of
computing the applied control torque signals from the commanded acceleration signals. If
the vector of actuating joint torques r is computed from the commanded acceleration
signal under the assumption that the joint inertias are constant, then we obtain an
independent joint control scheme. On the other hand, if the actuating torques r are
computed from the inverse dynamics model in equation (1) then we obtain the computed-
torque scheme.

Specifically, we have implemented and evaluated the real-time performance of the
following three control schemes:



Independent Joint Control (IJC) In this scheme, linear PD control laws were designed
for each joint based on the assumption that the joints are decoupled and linear. The
control torque r applied to the joints at each sampling instant is:

r = Ju. (5)
where J is the constant 7VXN diagonal matrix of link inertias at a typical position.

Computed-Torque Control (CT) This scheme utilizes nonlinear feedback to decouple the
manipulator. The control torque r is computed by the inverse dynamics equation in
equation (l), using the commanded acceleration u. instead of the measured acceleration 0:

z (6)

where the M ~ w indicates that the estimated values of the dynamics parameters are used
in the computation.

Computed-Torque Control with Reduced Dynamics (RCT) The effect of the velocity
dependent Coriolis and centrifugal term h($90) on the trajectory tracking performance of
manipulators has been a subject of controversy [4, 12j. To study this effect, we compute
the control torque excluding the velocity dependent terms in the inverse dynamics in
equation (6). The control torque is therefore:

r=0(0)u t . + g(*) (7)

For file sake of brevity we will henceforth use the abbreviations IJCi, CTz and RCTi to
refer to the independent joint control, the computed-torque, and the reduced computed-
torque schemes, respectively. The number i in the abbreviations denotes the method of
computing the commanded accelerations from either (2), (3) or (4). For example, CT3
would imply that the control torque is computed as:

The real-time control experiments using these schemes have been performed with the
CMCT DB Arm DL Before proceeding with.the design of the controler gain matrices, we

determine the order and tranifer function of the individual joint drive systems,

3. Oliajracterlsiies of the Joint Drive Systems of CMU DD A r m H
The application of the control law m equation (8) is based oa the assumption that each

individual Ink cma be modeled as a double iategrator aad that the joint drive is a torque
controlled device. The CMO DD Arm H km very little friction, and is driven by brushleso
DC-torque motors with the amplifiers which eoatrol motor current rather thaa voltage or
spetd. To ensure thai the above Mfmmptioa it satisfied^ we have identified the
characteristics of the joint drive sysfeemt.



We conducted the open-loop small-signal frequency response analysis and identified the
continuous-time transfer function of each joint. Since our sampling period of 2 rns is
about 10 times smaller than the dominant mechanical time constant of the system we
assume that the effects of sampling are not evident in the input-output response of the
system: this assumption is indeed supported by the experimental results.

The transfer function obtained from the frequency response analysis is valid only for
small displacements around a particular position of each joint. For convenience, we chose
this as the home position of the CMU DD Arm II where all the joint displacements are
zero [5]. We allowed only one joint to move under a sinusoidal excitation signal while all
the other joints were mechanically locked. The sinusoidal excitation was generated on the
microprocessor and applied through the digital-to-analog converters at a control sampling
period of 2 ms. Sinusoidal signals ranging in frequency from 0.1 Hz to 10 Hz were applied
and the input signal and the output position recorded. From the input-output
measurements we generated the Bode plots wherein the log-magnitude plot had a slope of
—40 db/decade and the phase angle was approximately —180 degrees, which suggested
that the single link system is indeed a double integrator. The identified transfer functions
are depicted in Table . This test also supports our assumptions that:

1. Our control sampling period is much smaller than the dominant time constant
of a system, and the resulting input-output behavior can be characterized in
the Laplace s-plane.

2. The effects of the armature inductance of the motor and the time constant of
the amplifier are negligible and the joint drive is a torque controlled device.

3. The effect of viscous (or friction) damping is negligible.

Item 1 is an important result because it permits us to proceed with the controller design in
the s-domain and allows us to specify the controller criteria in terms of the desired
damping.

To verify that the modeled amplifier gain and the torque constant of the motor are
accurate, we computed the manipulator inertia matrix D(0) at the home position of the
CMU DD Arm EL The computed diagonal elements of this matrix were within 10% of the
identified joint inertias (in Table ) and support our assumption about the amplifier gains
and the motor torque constants.

4. Control ler Design
The performance of the nonlinear CT scheme and the linear IJC scheme can be

compared only if the same criteria are used for design of the controller gain matrices.
Fortunately, this is possible because the gain matrices K and K appear only in the
commanded accelerations which are the same (Equations (2)-(4)) for both CT and IJC



schemes. Thus, whether we implement the simplistic independent joint control scheme or
the sophisticated computed-torque scheme, we are faced with the problem of designing the
gain matrices K and K . These matrices are chosen to satisfy the specified output
response criterion.

4.1. Design of Gain Matrices for Independent Joint Control
The closed loop transfer function relating the input 9.. to the measured output 9 - for

joint j is:

where 7=1 if velocity feedforward is included and zero otherwise, and <5=1 if acceleration
feedforward is included and zero otherwise. The closed-loop characteristic equation in all
the three cases is,

s2 + kvjs + kpj=0 (9)

and its roots are specified to obtain a stable response. The complete closed-loop response
of the system is governed by both the zeros and the poles of the system. In the absence of
any feedforward terms, the response is governed by the poles of the transfer function.

Since it is desired that none of the joints overshoot the commanded position or the
response be critically damped, our choice of the matrices K and K must be such that
their elements satisfy the condition:

Besides, in order to achieve a high disturbance rejection ratio or high stiffness It Is ako
necessary to choose the position gain matrix K as large as possible which results in a large

In practice, however, the choice of tike Telocity gain K is imitccl1 by the aoise present in
the velocity measurement. We determined the upper fait of He velocity gain
experimentally: we set the potation gala to zero aai increased tfee vwfocity gala of each
joint until the nnmodeled high-frequency dynamics of the system w«e excited by the noise
introduced In the Telocity measmreiaeiit* This value of K represents the mawmmn
allowable velocity gala. We ch©« 80% of the inaaotaaiiin velocity g*$n in order to obtain as
high valm c€ the position gain as possible aad stil! be well within tlie liability limits with
retfieet to the nnmodeled high frequency dynamtes» Tie «I«a#ats of 'the petition gain
matrk K were computed to ntitffy the critic^ daiaplag condttkui Im equation (10) &nct
alio achieved the maxiiaiinj dlsiirhtace rejection ratio. The elenienti of t ie velcnrity aad



position gain matrices used in the implementation of the control schemes are listed in
Table .

We also performed a small-signal step response test of the individual joints to check the
performance of the linear controllers for the joints. Each joint was commanded with a
step input of amplitude 0.1 rad while the other joints were locked and the input-output
response plotted. We used the gain values listed in Table and confirmed that the response
of the system was indeed critically damped.

4.2. Design of Gain Matrices for Computed-Torque Scheme
The basic idea behind the computed-torque scheme is to achieve dynamic decoupling of

all the joints using nonlinear feedback. If the dynamic model of the manipulator is
described by equation(l) and the applied control torque is computed according to equation
(6), then the following closed-loop system is obtained:

where the functional dependencies on 9 and 8 have been omitted for the sake of clarity. If
the dynamics are modeled exactly, that is, U=D, K=h and g=g, then the decoupled
closed loop system is described by

Upon substituting the right hand side of either equation (2), (3) or (4) in the above
equation, we obtain the closed-loop input-output transfer function of the system. The
closed-loop characteristic equation in all the three cases is:

s2 + kvjs + kpj = 0 (11)

where k ~ and k . are the velocity and position gains for the j-th joint. Upon comparing
equation (9) and (ll)> we obtain the relationships

k m=k lIJ°l and fc fc
pj pj VJ VJ .

which suggest that the gains of the IJC scheme are also the gains of the CT scheme. This
equality must be expected because the closed-loop characteristic equation for both the
independent joint control and the computed-torque scheme is the same.

5. Exper iments and Resul ts

5*1. Trajectory Selection and Evaluation Criteria
Since the DD Arm II is a highly nonlinear and coupled system it is impossible to

characterize its behavior from a particular class of inputs, unlike linear systems for which
a specific input (such as a unit step or a ramp) can be used to design and evaluate the



controllers. Thus an important constituent of the experimental evaluation of robot
control schemes is the choice of a class of inputs for the robot. The criteria for selecting
the joint trajectories is detailed in [6].

For evaluating the p'erformance of robot control schemes, we use the dynamic tracking
accuracy. This is defined as the maximum position and velocity tracking error along a
specified trajectory.

5-2. Real-Time Results
We have implemented the nine control schemes IJCi, CTz and RCTi (for

1 = 1, 2 and 3), presented in Section 2, and evaluated their real-time performance on the
six degrees-of-freedom CMU DD Arm IL Because of lack of space, we present our results
for two simple but illustrative trajectories.

The first trajectory is chosen to be simple and relatively slow but capable of providing
insight into the effect of dynamics compensation. In this trajectory only joint 2 moves
while all the other joints are commanded to hold their zero positions and can be envisioned
from the schematic diagram in Figure . Joint 2 is commanded to start from its zero
position and to reach the position of 1.5 rad in 0.75 seconds; it remains at this position for
an interval of 0.75 seconds after which it is required to return to its home position in 0.75
seconds. The points of discontinuity, in the trajectory, were joined by a fifth-order
polynomial to maintain the continuity of position, velocity and acceleration along the
three segments. The desired position, velocity and acceleration trajectories for joint 2 axe
depicted in Figure 1. The maximum velocity and acceleration to be attained by joint 2 are
2 rad/sec and 6 rad/sec , respectively.

The position and velocity tracking curves for the schemes CT3, IJC3 and RCT3 are
depicted in Figures 3 through 8. The corresponding position and velocity tracking errors
in the three schemes for each joint are shown in Figures 9 through 14. To give an idea of
the relative performances, the maximum position and velocity tracking errors of each joint
are depicted in Table . We note that CT3 had the least position tracking error while IJC3
displayed the maximum error for all the three joints shown. The same can be said in the
velocity tracking wherein CT3 exhibits the least tracking error* while IJC3 has the
maximum tracking error amongst all the three schemes. Similar results were also obtained
for the last three wrist joints but have not been included for the sake of brevity.

Writing the dynamic equations for the first three degrees-of-freedom of the CMU DD
Arm II provides an insight to interpret the results:



4- d23^ + h2j\ + ^ 3 ^ 3 (13)

r3 =

The coefficients d. , /i.., and g. are functions of the joint position vector 6 and are detailed
in [7]. * ^

The applied torque signals for the three schemes are shown in Figures 15—17. Further,
decomposition of the applied torques in CT3 into the inertial, the centrifugal and Coriolis,
and the gravity components of joints 1 through 3 is presented in Figures 18—20. First of
all, we note that the applied torque for joint 1 has a profile similar to the desired
acceleration of joint 2 except during the periods of constant speed (0 J5 to 1.0 sec and 2.25
to 2.5 sec) in the trajectory. This suggests that the inertial coupling torque d^^
dominates along most part of the trajectory. This is further supported by the profile of
the inertial torque component in Figure 18; the small deviations are due to the velocity
and position tracking errors which contribute to the computed joint acceleration in
equation (4). During the periods of constant speed the applied torque curve is not similar
to the desired acceleration profile because the centrifugal and the Coriolis components
dominate. The exclusion of these velocity dependent torque components in RCT3
therefore results in increased velocity tracking errors as observed in Figure 10. This
demonstrates the importance of including the velocity dependent terms in the dynamics
for trajectory tracking even at low joint velocities.

Next, the applied torque for joint 3 is also dominated by the velocity dependent ^223^2
term in (14) and the inertial torque component arises from the error in position and
velocity tracking in the first three joints as evidenced in Figure 20.

Finally, in the case of joint 2 the applied torque curve is similar to the profile of its
desired acceleration. This suggests that the applied torque basically consists of the inertial
torque component. In equation (13) there is no term in £r ~ and hence haidly any velocity
dependent torque component. In fact, we observe that the centrifugal and Coriolis torque
component is zero in the decomposition of joint 2 torque as shown in Figure 19. The
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increase in the position tracking error, in Figure 11, and the deterioration of velocity
tracking, in Figure 12 is basically due to the tracking errors in joints 1 and 3 which are
reflected as inertial coupling terms in the applied torque of joint 2.

We have also conducted experiments'with more complex trajectories which involve
motions of all joints. Figure 21 is such an example, wherein the motions of joint 2 are
depicted for CT3 and IJC3, and demonstrates the superior tracking performance of the
computed-torque method to individual joint control method. We have also been able to
analyze the effect of various torque components in trajectory tracking.

In our experiments, we have noticed an improvement in the trajectory tracking
performance of the independent joint control scheme when the reference acceleration is
also included as a feedforward signal together with the reference velocity as in equation
(4). We have thus compared the best performance of the independent joint control scheme
with the computed-torque scheme.

6. Conclusions
In this paper, we have presented the first implementation of the computed-torque

scheme and compared its real-time performance with the conventional independent joint
control scheme. We have discussed the design of the controller gains for both the
independent joint control and the computed-torque schemes and established a framework
for the comparison of their trajectory tracking performance. Our initial investigation
shows that the computed-torque scheme clearly outperforms the conventional independent
joint control scheme in which no acceleration feedforward is introduced. We have also
shown that inclusion of the reference acceleration as a feedforward control signal reduces
the tracking lag and the improves the trajectory tracking performance of the independent
joint control scheme.

It had been intuitively argued before that the effect of Coriolis and centrifugal forces
become important only at high speeds. Our experiments with the trajectory where only
joint 2 is moving* however, show that these effects introduce trajectory tracking errors
even at small joint velocities. In summary, the computed-torque scheme performs better
trajectory tracking than the independent joint control scheme m the absence of torque
saturation* In the event of torque saturation, the computed-torque scheme may become
unstable if the tracking errors become large. This necessitates generating trajectories by
including both the dynamics and the control law.

I. The CMU DD Arm II
We have developed, at CMU, the concept of direct-drive robots in which the links are

directly coupled to the motor shaft. This construction eliminates undesirable properties
like friction mi gear backlash, The CMU DD Arm II [13] is the second version of the
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CMU direct-drive manipulator and is designed to be faster, lighter and more accurate than
its predecessor CMU DD Arm I [2]. We have used brushless rare-earth magnet DC torque
motors driven by current controlled amplifiers to achieve a torque controlled joint drive
system. The SCARA-type configuration of the arm reduces the the torque requirements of
the first two joints and also simplifies the dynamic model of the arm. To achieve the
desired accuracy, we use very high precision (16 bits/rotation) rotary absolute encoders.
The arm weighs approximately 70 pounds and is designed to achieve maximum joint
accelerations of 10 rad/sec .

The hardware of the DD Arm II control system consists of three integral components: the
Motorola M68000 microcomputer, the Marinco processor and the TMS-320
microprocessor-based individual joint controllers. We have also developed the customized
Newton-Euler equations for the CMU DD Arm II and achieved a computation time of 1 ms
by implementing these on the Marinco processor. The details of the customized algorithm,
hardware configuration and the numerical values of the dynamics parameters are
presented in [5].

T a b l e 1
Transfer Func t ions a n d Gains of Individual Links

Joint (j)

1

2

3

4

5

6

Transfer Function ( — r )
JjS2

1
12.3s2

1
2s2

1
0.25s2

1
0.007 s2

1
0.006*2

1
0.0003s2

kpj

40.0

58.0

400.0

2800.0

1200.0

3000.0

12.6

15.2

40.0

106.0

69.3

110.0
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Table 2
Maximum Tracking Errors for Tl

Joint No.

1

2

3

CT3
Pos Error

(rads)

0.022

0.023

0.008

Vcl Error
(rads/sec)

0.07

0.16

0.005

RCT3
Pos Error

(rads)

0.034

0.04

0.015

Vel Error
(rads/sec)

0.13

0.26

0.019

IJC3
Pos Error

(rads)

0.036

0.032

0.018

Vel Error
(rads/sec)

0.18

0.165

0.09

UKK 2.

i: Schematic digram of 3 DOF DD Arm H
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Figure 19: Torque components in CT3
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