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ABSTRACT

Two algorithms are presented for sorting n2 elements on an nxn mesh-connected
processor array that require O(n) routing and comparison steps. The best pre-
vious algorithm takes time O(n log n). The algorithms of this paper are shown
to be optimal in time within small comnstant factors. Extensions to higher-
dimensional mesh-connected processor arrays are also given,
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1. Introduction

In the course of a parallel computation, individual processors will need to
distribute their results to other processors and complicated data flow problems may
arise. One way to handle this problem is by sorfing "destination tags" attached to each
data element, as discussed in Batcher [1968] Hence efficient sorting algorithms for
parallel machines with some fixed processor interconnection pattern are relevant to
almost any use of these machines.

In this paper we present two algorithms for sorting N = n? elements on an nxn
mesh-type processor array that require O(n) unit-distance routing steps and O(n)
comparison steps (n is assumed to be a power of 2), The best previous algorithm
takes time O(n log n) (Orcutt [1974]). One of our algorithms, the sz-way merge sort, is
shown optimal within a factor of 2 in time for sutficiently farge n, if one comparison
step takes no more than twica the time of a routing step. Our other O{n) algorithm, an
adaptation of Batcher’s bitonic merge sort, is much less complex but optimal under the
same assumption to within a factor of 45 for all n, and is more efficient for moderate
n

- We believe that the algorithms of this paper will give the most efficient sorting
algorithms for ILLIAC IV-type parallel computers.

Our algorithms can be generalized to higher-dimensional array interconnection
patterns. For example, our second algorithm can be modified to sort N elements on a
j-dimensionally mesh-connected N-processor computer in O(N Hiy tlme, which is optimal
within a small constant factor,

Efficient sorting algorithms have been developed for interconnection patterns
other than the "mesh" considered in this paper. Stone [1971] maps Batcher's bitonic
merge sort onto the "perfect shuffle” interconnection scheme, obtaining an N-element
sort time of O(FOgEN)l on N processors. The odd-even transposition sort (see
Appendix)} requires an optimal O(N) time on a linearly connected N-processor computer.
Sorting time is thus seen to be strongly dependent on the interconnection pattern.
Exploration of this dependence for a given problem is of interest from both an
architectural and an algorithmic point of view.

In Section 2 we give the model of computation, The sorting problem is defined
precisely in Section 3. A lower bound on the sorting time is given in Section 4
Batcher’s 2-way odd-even merge is mapped on our 2-dimensional mesh-connected
processor array in the next section. Generalizing the 2-way odd-even merge, we
introduce a 2s-way merge aigorithm in Section 6. This is further generalized to an s?-
way merge in Section 7, from which our most efficient sorting algorithm for large n is
developed. Section 8 shows that Batcher's bitonic sort can be performed efficiently on
our model by choosing an appropriate processor indexing scheme. Same extensions
and implications of our results are discussed in Section 9. The Appendnt contains a
description of the odd-even transposition sort.
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2. Model of Computation

We assume a parallel computer with N = n'xn identical processors. The
architecture of the machine is similar to that of the ILLIAC IV (Barnes, et. al. [1968]).

The major assumptions are as follows:

(i) The interconnections between the processors are a subsef of those on the ILLIAC
IV, and are defined by the following two dimensional array:
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where the p’s denote the processors, That is, each processor is connected to all.
its neighbors. Processors at the perimeter have two or three rather than four
neighbors; there are no "wrap-around” connections as found on the ILLIAC IV.

The bounds obtained in this paper would be affected at most by a factor of
2 if "wrap-~around" connections were included, but we feel that this addition would
obscure the ideas of this paper without substantially strengthening the results,

(i) 1t is a SIMD (Single Instruction stream Multiple Data stream) machine (Flynn[1966)).
During. each time unit, a single instruction.is broadcast to all processors, but only
executed by the set of processors specified in the instruction. For the purpose of
the paper, only two instruction types are needed: the routing instruction for
interprocessor data moves, and the comparison instruction on two data elements in
each processor. The comparison instruction is a conditional interchange on the
contents of two registers in each processor. Actually, we need both "types"” of
-such comparison instructions to allow either register to receive the minimum;
normally both types will be issued during “one comparison step”.

(ili} Define

tp = time required for one unit-distance routing step, ie., moving one item
from a processor o one of its nelghbors. -
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tc = time required for one comparison step.

For example, a comparison-interchange step between two items in adjacent
processors can be done in time 2tR+tC. Of course, concurrent data movement is
allowed, so long as it is all in the same direction; and also any number (up to N) of
concurrent comparisons may be performed simultaneously,



3. The Sorting Problem

The processors may be indexed by any function that is a one-to-one mapping
from {1,2, . . ,nix{l,2, .. .n} onto {0,1, . . JN=13 Assume that N elements from a
linearly ordered set are initially loaded in the N processors, each receiving exactly one
element. With respect to any index function, the sorting problem is defined to be the
problem of moving the jth smallest element to the processor indexed by j for all j = 0,
1, ..,N-1.

Example 3.1.

Suppose that n = 4 (hence N = 16} and that we want to sort 16 elements initially
loaded as follows:
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Three ways of indexing the processors will be considered in this paper.

(i) Row-Major _Indexing: After sorting we have
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(1) Shuffled Row-Major Indexing: After sorting we have

L |

10 —{ 1t 14 — 15

Note that this indexing is obtained by shutfting the binary representation of the
row-major index. For example, the row-major index 5 has the binary
representation 0101, Shufﬂmg the bits gives 0011 which is 3. (In general, the .
shuffled binary number, say, "abcdefgh” is "aebfcgdh“)

(iit) Snake-Like Row-Major Indexing: Atter sorting we have
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This indexing is obtained from the row-ma;or mdexing by reversing the ordering
in even rows.

The choice of a particular indexing scheme depends upon how the sorted
elements will be used {(or accessed), and upon which sorting algorithm is to be used.
For example, we found that the row-major indexing is poor for merge sorting.

It is clear that the sorting. problem with respect to any mdex scheme can be
solved by using the routing and comparison steps. ‘We are interested in designing
algorithms which minimize the time spent in routing -and comparing.



4. A Lower Bound

Observe that for any index scheme there are situations where the two elements
initially ioaded at the opposite corner processors have to be transposed during the
sorting.
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It is easy to argue that even for this simple transposition we need at least 4(n-

1) unit-distance routing steps. This implies that no algorithm can sort n2 elements in

"time less than O{n). In this paper, we shall show two algorithms which can sort n2

elements in time O(n). One will be developed in Sections 5 through 7, the other In
Section 8.



5. The 2-Way Odd-Even Merge

Batcher’s odd-even merge (Batcher[1968], Knuth [1973, pp. 224-226]) of two
sorted sequences {u(i)} and {v(i)} is. performed in two stages. First, the "odd
sequences”  {u(1)u(3)u(5),.,u(2j+1),.} and {W(D)(3),..,v(2j+1),.} are merged
concurrently with the merging of the “even sequences” {u(2),u(8),.,(2}},..} and
{v(2),v(8),.v(2j),..}. Then the two merged sequences are interleaved, and a single
paralfel comparison-interchange step produces the sorted result. The merges in the-
first stage are done in the same manner (i.e., recursively),

We first illustrate how the odd-even method can be performed efficiently on
linearly connected processors, then the idea is generalized to 2-dimensionally
connected arrays, If two sorted sequences {1, 3, 4, 6] and {0, 2, 5, 7} are initialy
loaded in 8 linearly-connected processors, then Balcher’s odd-even merge can be
diagrammed as: 7 ' ‘

L He He HoHe He Ho

L1. Unshuffle: Odd-indexed elements to left, evens to right. .

1 ~‘4—-o——45——'l_3——«5-2—7

L2. Merge the "odd sequences” and the "even sequences".

041 {4{~5t2H3Hs 7

L3. Shuffle.

-5 - -
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0“""2"—-‘1 3 4 6 ™5 7

L4. Comparison-interchange (the E’s indicate comparison-interchanges).

o1 H4e2s{at{s s~ 7




Stép L3 above is the "perfect shuffle” (Stone[1971]) and step L1 Is its inverse,
the "unshuffle”. Note that the perfect shuffle can be achieved by using the triangular
interchange pattern below: :

oH1HaHs M2 a6 7
01 e —~55-'53h-6——~7
(o = e e s = M
Cr42rM|1l 93 HA4H16H51I7

where the ++’s indicate interchanges.

Similarly, an inverted triangular interchange

pattern will do the unshuffle. Therefore, both the perfect shuffle and unshuffle can be
done in k-1 interchanges (i.e, 2k-2 routing steps) when performed on a row of

length 2k in our model.

We now give an implementation of the odd-even merge on a rectangular region
of our model. Let M{j,k) denote our algorithm of merging two j. by k/2 sorted adjacent
subarrays to form a sorted j by k array, where jk are powers of 2, k>1, and all the
arrays are arranged in the snake-like row major ordering. We first consider the case
where k=2. If j=1, a single comparison-interchange step suftices to sort the two unit
"sub-arrays". Given two sorted columns of length j>1, NKj,2) consists of the following

steps:

J1. Move all odds to the left column and all evens to the right. Time: 2ty

J2. Use the "odd-even transposition sort” (see Appendix) to sort each column. Time:

2itptite

J3. Interchange on even rows. Time: 2tp

J4. One step of comparison-interchange ,.(every"‘even" with the next "odd"). Time:

ZtR+tc

The following diagram iflustr‘at'e_s the algorithm WKj,2) for j=4.
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For k>2, Mj,k) is defined recursively in the fallowing way. Steps M1 and M2
unshuffle the elements, step M3 recursively merges the "odd sequences™ and the "even
sequences”, steps M2 and M5 shuffle the "odds" and "evens" together, and step M5
performs the final comparison-interchange. The accompanying diagrams illustrate the
algorithm M(4,4), where the two given sorted 4 by 2 subarrays are initially stored in
16 processors as follows:
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Ml. Single Interchange step on even rows if j>2, so that columns contain either all
evens or all odds. If j=2, do nothing: the columns are already segregated. Time:

2ty
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M2. Unshuffle each row. Time: {k-2)‘tR

2 ol abk41
I L |
5 3 8 6
L

107 13 9
' |

t1apH 1t 15 12

M3. Merge by calling M(j,k/Z) on each half. Time: T(j.k'l2)
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M4, Shufile each row. Time: (k-2)tp

11




14 :"15

M35. Interchange on even rows. Time: 2tR

Mé6. Comparison-interchange of adjacent elements (every “even” with the next "odd"),
Time: 4t + to - ' s '
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Let T(j,k) be the time needed by M(j,k). Then we have
T(j,2) = (2] +60p +(j+ Iite,

and for k > 2,
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TGik) = (2k + 8)tp + to + T(ik/2),
These imply that
TGk) < (2j + Ak + Blog K)tg + () + log Kt

(All logarithms in this paper are taken to base 2.)

An nxn sort may be composed of M(;,k) by sorting all columns in O(n} routes and
compares by, say, the odd-even transposition sort, them using M(n2), Mn,4),
M(n,8),..,.Mn,n), for a total of O{n log n) routes and compares, This poor performance
may be assigned to two inefficiences in the algorithm. First, .the recursive sub- .
problems (M(n,n/2), M(n,n/8),..Mn,1}) generated by M(nn) are not decreasing in size
along both dimensions: they are all O(n) in complexity. Second, the method is
extremely "local” in the sense that no camparisons are made between elements initiafly
in different halves of the array until the last possible moment, when each half has
already been independently sorted.

The first inefficiency can be attacked by designing an f'upw‘ards" merge to
complement the “sideways" merge just described. Even more powerful is the idea of
combining many upwards merges with a sideways one. This idea is used in the next
section.

i3
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6. The 2s-Way Merge

In this section we give an algorithm M(jk,s) for merging 25 arrays of size jfs by
k/2 in a j by k region of our processors, where jks are powers of 2, s21, and the
arrays are in the snake-like row-major ordering. The algorithm M({j,k,s) is almost the
same as the algorithm M{j,k) described in the previous.section, except that M'(jks}
requires a few more comparison-interchanges during step M6. These steps are
exactly those performed in the initial portion of the odd-even transposition sort
mapped onto our "snake" (see Appendix).  More precisely, for k*2, Ml and M6 are
replaced by .

M1’ Single interchange step on even rows if j»s, so that columns cbntain either all
evens or all odds.. If j=5, do nothing: the columns are already segregated. Time:
2tn ' :

M6’ Perform the first 2s-1 parallel comparison-interchange sfeps of the odd-even
transposition sort on the “snake", It is not difficult to see that the time needed
is at most '

s(Afn+te) + (s-1X2fp#tc) = (6s-2)tp + (2s-Dit.

Note that the original step M6 is just the first step of an odd-even transposition sort.
. Thus the 2-way merge is seen to be a special case of the 2s-way merge.

Similarly, for M(j,2,s), j>s, J4 is replaced by, M’, which takes time
(2s-1)2tp+ o)

M'(s,2,s) is a special case analogous to M1,2), and may be performed by the odd-even
transposition sort (see Appendix) in time 4stp + 2st. ‘ ‘

The validity of this algorithm may be demonstrated by use of the 0-1 principle
(Knuth [1973], p.224): if a network sorts all sequences of Qs and 1's, then it will sort
any arbitrary sequence of elements chosen from a linearly ordered set. Thus, we may
assume that the inputs are-0"s and 1’s. It is easy to check that there may be as many
as 2s more zeros on the left as on the right after unshuffling (i.e., after step J1 or
step M2). After the shuffling, the first 2s-} steps of an odd-even transposition sort
suttice to sort the resulting array. : '

Let T°(j,k,s) be the time required by the algorithm M{jks). Then we have that
T(28) s (2) + 8s + 2R+ (j + 26 - 1')tc
and that for k > 2,

T'(jks) < {2k + 65 - 2tp + (25 - Lt + T(jik/2;8).

14



These imply that
T'(jks) = (2j + 4k + (6s)log k + O{s+log k)i
+ (j H2s)log k + Ols+log k)Hc.
For s = 2, a merge sort may be derived‘that ‘ha_sl the fp!lowiﬁg-time behavior
S*n,n) = Sn/2,nf2) + T(nn2). | |
Thus, ' ' |
Sn,n) = (12n + Q(Iogzn))tR +(2n + 0(|o§2n})_tc. L
Suddenly, we have an algorithm that- sprts in finear t.ime. In the following

section, the constants will be reduced hy a factor of 2 by the use of a more
complicated multi-way merge algorithm. :

15



7. The s2-Way Merge

The sz—way merge M (j,k,s) to be mtroduced in this section is a generalization of
the 2-way merge M(jk). Input to M”(jk) is s2 sorted jls by kfs arrays in a j by k
region of our processors, where jk;s are powers of 2 and s>1, Steps M1 and M2 still
suffice to move odd-indexed elements to the left and evens to the right so long as j>s
and k>s; M”(js,s) is a special case analogous to M(j,2) of the 2-way merge. Steps Ml
and M6 are now replaced by

M1™. Single interchange step on even rows if j>s, so that columns contain either all
evens or all odds. If j=s, do nothing: the columns are- already 'segregated, Time:
2tp

M6™. Perform the first s2-1 parallel comparuson interchange steps of the odd-sven
transposition sort on the "snake” (see Appendix). The time required for this is
(27208t + te) + (s2/2 - 12ty + t) = (3s2'- 2g + (s2 - it

The motivation for this new step comes from the realization that when the inputs are
0’s and I's, there may be as many as s2 more zeros on the left half as the right after
unshufffing.

M”(j,5,8), j2s, can be performed in the following way:

N1. (log s/2) 2-way merges: M(j/s,2),!~ﬁ(j/s.4)',...,M(j/s,s/2).‘
N2. A single 2s-way merge: Mjs,s). -

16 T ,8) is the time taken by MY(jks), see have for ke
T7(j,5,8) = (2j + Ol(s + j/s)og st +(j + Ol(s + j/s)log s‘))tb
and for k > s, ' '
TG 8) = (2 + 32 + O(IM + (82 + O(t + T™(jk/28).
Therefore, |
T(jk,s) = (8K + 2j + 35210g(k/s)' + Olfs + j/s)log s ‘+ tog kIt
+ (j+ szlog(k/sj + (s + j/s)log s + log K)}te.

A sorting algorithm may be developed from the sz-way merge; a good value for
s is approximately nl/3 (remember that s must be a power of 2). Then the time of
sorting nxn elements satisfies :

16



5"'{n,n) = §"(n2/ 3,n2/ 3y + T“(n,n,nlla).

This leads immediately to the following result.

Theorem 7.1

If the snake-like row-major indexing is used, the sorting problém can be done in
time '

(6n + O{nZ/SIog n))IR"r (n+ O(n-z/alog nMte.

It tc € 2tg, Theorem 7.1 implies that (6n+2n+0(n?/Slog nitg is sufficient time
for sorting. In section 4, we showed that 4(n-1)tp time is necessary. Thus, for large
enough n, the sz-way algorithm is optimal to within a factor of 2. Preliminary
investigation indicates that a careful implementation of the sz-way merge sort is
optimal within a factor of 7 for all n, under the assumption that tp < 2tp.

17



8. The Bitonic Merge

In this section we shall show that Batcher's bitonic merge algorithm (Batcher
[1968], Knuth [1973, pp. 232-237)) lends itself well to sorting on a mesh-connected
parallel computer, once the proper indexing scheme has been selected. Two indexing
schemes will. be considered, the "row-major” and the "shuffled row-major” indexing
schemes defined in Section 3. ' ' '

The bitonic merge of two sections of a bitonic array of j/2 elements each takes
log j passes, where pass i consists of a. comparison-interchange between processors
with indices diflering only in the ith bit of their binary representations. (This
operation will be termed "comparison-interchange. on the ith bit"} Sorting an entire
array of 2% elements by the bitonic method requires & comparisen-interchanges on the
oth bit (the teast significant bit), k-1 comparison-interchanges on the first bit,...,(k-i)
comparison-interchanges on the ith bit,..., and 1 comparison-interchange on the most
significant bit. For any fixed indexing scheme, in genera! a comparison-interchange on
the ith bit will take a different amount of time than when done.on the jth bit: an
optimal processor indexing scheme for the bitonic algorithm minimizes the time spent
on comparison-interchange steps. A necessary condition for optimality is that a.
comparison-interchange on the j”" bit be no more expensive than the (j+1)St bit for all
j. If this were not the case for some j, then a better indexing scheme could
immediately be derived from the supposedly optimal one by interchanging the jth and
the (j+1)St bits of all processor indices {since more comparison-interchanges will be
done on the original P bit than on the (j+1)5! bit). -

The bitonic algorithm has been analyzed for the row-major indexi'hg scheme: it
takes

Ofn log nitg + 0(log2n)tc

time to sort n? elements on n2_ processors (Orcutt [1974]). However, the row-major
indexing scheme is decidedly non-optimal. For the case . 64, processor indices
have six bits. A comparison-interchange on bit 0 tskes just 2tp + te, for the
processors are horizontally adjacent. A comparison-interchange on bit 1 takes 4tp +
.ty since the processors are two units apart. Similarly, a comparison-interchange on
bit 2 takes 8tp + tn, but a comparison-interchange on bit. 3 takes only 2t + tC
because the processors are vertically adjacent, This phenomenon may be analyzed by
considering the row-major index as the concatenation of & 'Y* and an "X* binary vector:
in the case nZ = 64, the index is YoY1YoXpX Xg. A comparison-interchange on X;
takes more time than one on Xj when i > j; however, a comparison-interchange on Y
takes exactly the same time as on X;. Thus a better indexing schems may be derived
by "shuffling” the "X’ and 'Y’ vectors, obtaining (in the case n? = 64) YoXoY Xy YoXo
this "shuffled row-major” indexing scheme satjsties our condition on optimality.

Geometrically, "shuffling" the " and 'Y’ vectors ensures that all arrays
~encountered in the merging process are nearly square, s0 that routing time will not be

18



excessive in either direction. The standard row-major indexing causes the bitonic sort
to contend with sub-arrays that are always at least as wide as they are tall; the
aspect ratio can be as high as n on an nxn processor array.

Programmmg the bitonic sort would be a Iuttle t,rlcky, as the "direction” of a
comparison-interchange step depends an the processor index. Orcutt [1974] covers
these gory details for row-major indexing; his algorithm may easily be modified to
handle the shuffled row-major indexing scheme. Here is an example of the bitonic
merge sort on a 4x4 processor array for the shuffled row-major indexing; the
comparison “directions” were derived from the following diagram (Knuth [1973], p
237)

Rrage 1 Stoge 2 Stage 3 Stage 4
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Stage 1. Merge pairs of adjacent lxl matrices by the comparison-interchange
~indicated, Time: ZtR + e :
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Stage 2. Merge pairs of 1x2 matrices; note that one member of a pair is sorted in
ascending order, the other in descending order. This will always be the case in

any bitonic merge. Time: 4tp + 2t _‘ c »
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Stage 3. Merge pai.rs of 2x2 matrices. Time: 8tp + 3te.
c c
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10 2 11 {15 10 9 1815
[ R Tc [ c ]
13711t t83 13148 513
ct] ctf cr] ct] [Cc ] c
6 8150 s Ids 1o

20



- 2 = -11 —-12

o |— w

| Wl

|<|‘<|

Stage 4. Merge the Iwoczx4 matrices. Time: 12tn + ate.
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Let 1'_"’(2]) be the time to merge the bitonically sorted elements in processors #0
through #2'-1, where the shuffied row-major indexing is used. Then after one pass of
comparison-interchange, which takes time 2ri}2]t'p+tcl the problem is reduced to the
bitonic merge of elements in processors &0 thrngh 82'"1-1, and that of elements in
procesors #2i~1 to w2i_y It may be observed that the latter two merges can be done

concurrently. Thus we have ‘
Ts»(l) - 0'
T2l = TRl 4 2N 2Y 4y
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Hence )
o @220t + it i i s 0dd, and
Tan(2|) - ' .
(832112 - t)ty + it if i is even.

Let S"’(22j) be the time taken by the corresponding sorting algorithm (for a square
array). Then ' ‘

$™(1) =0,
s7(22) = §™(22171) « T(22)
= 5m(220-1 4 1(22i) + T(22i-1),
Hence

s™(22)) = (14(2)-1) - 8j)tg + (2 + Pte.

In our model, we have 22) &« N = n2 processors, leading to the following
thereom. : :

Theoren_'r 81
1¢ the shuffled row-major indexing is used, the bitonic sort can berdone in time
(14(n-1) - 8log mtp + (2log2n +'7Iog nite,
If tos2tg, it may be seen that the bitonic merge sort algorithm is optimal to
within a factor of 4.5 for all n (since 4(n-1)tp time is necessary, as shown in Section

4). Preliminary investigation indicates that the bitonic merge sort is faster than the
sz-way odd-even merge sort for n<512, under the assumption that to < 2tp.
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9. Extensions and Implications

(i) By Theorem 7.1 or 8.1, the elements may be sorted into snake-like row-major
ordering or in the shuffied row-major ordering in Q{n) time. By the following
lemma we know that they can be rearranged to obey any other index function with
relatively insignificant extra costs, provided each processor has sufficient memory
size,

Lemma 9.1

If N = nxn elements have already been sorté‘d with respect to some index function
and if each processor can store n elements, then the N elements can be sorted
with respect to any other index function by using an additional 4n-1)tp units of
time. |

The proof follows from the fact that all elements can be moved to thelr
destinations by four sweeps of n-1 routing steps in all four directions.

(i) If the processors are connected in a kxm rectangular array,

< " 5
|

=

L I S

instead of a square array, similar results can still be obtained. For example,
' corresponding to Theorem 7.1, we have :
Theorem 9.1

If the snake-iike row-major indexing is use'd, the sorting problem for a kxm
processor array (k,m powers of 2) can be done in time.

(m + 2k + 0(h2/3iog )t + (k + Q(h2/3I0g hite,
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where h = min(k,m}, by using the sz-way merge sort with s==0(h”3).

(i) The number of elements to be sorted could be larger than N, the number of
processors, An efficient means of handling this' situation is to distribute an
approximately equal number of elements to each processor initially and to use a
merge-splitting operation for each comparison-interchange operation. This idea is
discussed by Knuth [1973, Exercise 5.3.4-38], and used by Baudet and Stevenson
[1975]. Baudet and Stevenson’s results will be immediately improved if the
algorithms of this paper are used, since they used Orcutt’s Oln log n) algorithm.

(iv) Higher-dimensional array interconnection patterns, ie., Nenl processors each
connected to its 2j nearest neighbors, may be sorted by algorithms’ generalized
from those presented in this paper. For exampie, N = nl elements may be sorted in
time ' '

(3]2 + Xn-1) - 2j log Nitg-+ (1/2)1og?N + log Nitc

by adapting Batcher’s bitonic merge sort algorithm to the “j-way shuffled row-
major ordering”. This new ordering is derived fram the binary representation of
the row-major indexing by a j-way hit shutfle. It n=2°% =3, and
222120Y2Y1Y0X2X1X0 is a row-major index, then the j-way shuffied index is

22Y2X221Y1X120Y0X0

 This formula may be derived in the following.way. The tC term is mot dimension-
dependent: the same number of comparison is performed in any mapping of the
bitonic sort onto an N processor array. The tp termis the solution of

2 ST (og NY - ij + k),

1<iglog n 1gkgj |

where the 2} term is the cost of a comparison-interchange on the (i-l)St bit of any
of the mth_gimension indices” (i.e,, Zj_1,Yi-p» and X;.y when j=3 as in the example
above). The ((log N} - ij + k) term is the number of times a comparison-
interchange is performed on the (ij-k)th bit of the j-way shutfled row-major index
during the bitonic sort. Therefore we have the following theorem.

Theorem 9.2

If N processors are j-dimensionally mesh-connected, then the bitonic sort
can be performed in time O(Nlll), using the j-way shuffled row-major index
scheme. : :
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By using the argument of Section 8, one can easily check that the bound in the
theorem is asymptotically optimal for large N,
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Appendix. The Odd-Even Transposition S_or’t.

The odd-even transposition sort (Knuth [19737, p. 241) may be mapped onte our
2_dimensional arrays with snake-like row-major ordering foliowing way. Given N
processors initially loaded with a data value, repeat N/2 times:

01. "Expensive comparison-interchange" of processors #(2i+l) with processors
#(2i+2), Osi<N/2-1. Time: atp + te if processor array has more than two columns
and more than one row; 0 if N=2; and 2tp + ¢ otherwise.

o2 "Cheap comparison-interchange" of processors #(2i) with processors #(2i+1),
O<igN/2-1. Time: 2tg + t¢c.

1f Toe(j,k) is the time required to sort jk elements in a jxk region of our
processor by the ‘odd-even transposition sort into the snake-like row-maijor ordering,
then

0 ,IF jk=1 ELSE -
2tg+tc o+ IE k=2 ELSE
Toelil) = jk2tg +tc) IE j=1 OR k=2 ELSE

Step J2 of the 2-way odd-even merge (Section 4) cannot be performed by the
version of the odd-even transposition sort indicated above. Since N is even here (N =
2j), step 02 may be placed before step 01 in the algorithm description above (see
Knuth [1973]). Now step 02 may be performed in the normal time of 2tg + tc, even
starting from the non-standard initial configuration depicted in Section 4 as the result
" of step J1. '
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