
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
o f photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



A SURVEY OF PARALLEL ALGORITHMS 
IN NUMERICAL LINEAR ALGEBRA 

Don Heller 

February 1976 

Department of Computer Science 
Carnegie-Melion University 

Pittsburgh, Pa. 15213 

This work has been supported by the National Science Foundation 
under Grant MCS75-222-55 and the Office of Naval Research under 
Contract N00014-76-C-0370, NR 044-422. 



TABLE OF CONTENTS 

Page 

1. Introduction 1 
2. Parallel and Pipeline Computers 7 

a. Parallel Computers 7 
b. Pipeline Computers 12 
c. Consequences of the Models • 16 

3. Basic Algorithms • 22 
a. General Expressions and Recurrences 22 
b. Inner Products and Related Computations 25 

28 
30 

c. The Fast Fourier Transform 2 8 

4 # Linear Systems 
on 

a. General Dense Matrices J U 

38 b. Triangular Systems 
c. Tridiagonal Systems 43 
d. Block Tridiagonal and Band Systems 49 
e # Systems Arising from Differential Equations . • . .52 
f. General Sparse Matrices 60 

5, Eigenvalues . • 63 

Acknowledgments • • 69 
References . • • • # • 69 

i 



ABSTRACT 

new The existence of parallel and pipeline computers has inspired a 

approach to algorithmic analysis. Classical numerical methods are generally 

unable to exploit multiple processors and powerful vector-oriented hardware. 

Efficient parallel algorithms can be created by reformulating familiar algor­

ithms or by discovering new ones, and the results are often surprising. A 

comprehensive survey of parallel techniques for problems in linear algebra 

is given. Specific topics include: relevant computer models and their 

consequences, evaluation of ubiquitous arithmetic expressions, solution of 

linear systems of equations, and computation of eigenvalues. 



Watson: !fYou have formed a theory, then?1' 

Holmes: flAt least I have got a grip of the essential facts of the 
case. I shall enumerate them to you, for nothing clears 
up a case so much as stating it to another person, and I 
can hardly expect your cooperation if I do not show you 
the position from which we start.11 

-- Sir Arthur Conan Doyle, Silver Blaze 

1. INTRODUCTION 

Numerical algorithms can be generally classified in various ways, such 

as algebraic vs. analytic, finite vs. infinite, exact vs. approximate. With­

in recent years a new classification has become important: sequential vs. 

parallel, brought about by the development of parallel and pipeline computers, 

These devices allow concurrent arithmetic processing, can easily handle large 

volumes of information, and often provide hardware facilities for many in­

herently parallel operations found in numerical linear algebra. 

In previous surveys of numerical parallel algorithms, Miranker [71] 

described early work in several areas, and Poole and Voigt [74] prepared a 

general annotated bibliography. Our present intention is to provide a more 

complete and up-to-date discussion of parallel methods for linear systems of 

equations and eigenvalue problems, along with background information concern­

ing the computer models and fundamental techniques. Original material has 

been included to create a unified treatment. We consider algorithms using 

both exact and finite-precision arithmetic, and the inherent complexity of 

computations. As will be seen, good algorithms for parallel and pipeline 

computers may be strikingly different from good algorithms for ordinary com­

puters. 



-2-

The idea behind parallel computers is that programs using P "central" 

processors should run P times faster than otherwise identical programs using 

only one processor, although experience and theory show that the actual 

speedup is often much smaller. Examples of large parallel computers are 

the Carnegie-Melion University C.mmp, constructed from up to 16 asynchronous 

minicomputer processors (Wulf and Bell [72]), and the University of Illinois 

Illiac IV, with 64 synchronous processing elements under the direction of a 

single control unit (Barnes et al. [68], Bouknight et al. [72]). The Illiac IV 

was built by Burroughs Corporation and is now located at NASA Ames Research 

Center. The Goodyear Aerospace STARAN, with an associative memory and up 

to 32 processors that can perform serial-by-bit operations on 256 words 

simultaneously, is a somewhat different approach to high-speed computation 

(Rudolph [72]), and will not be considered here. 

The idea behind pipeline computers is essentially that of an assembly 

line: if the same arithmetic operation is going to be repeated many times, 

throughput can be greatly increased by dividing the operation into a sequence 

of sub-tasks and maintaining a flow of operand pairs in various states of 

completion. This process is especially suited to vector computations, and 

vectors are taken as fundamental data types. Thus pipeline computers are 

also known as vector computers. Available pipeline computers are the Control 

Data Corporation STAR-100, with two pipes (Hintz and Tate [72]), the Texas 

Instruments Advanced Scientific Computer, with up to four pipes (Watson [72]), 

and the recently announced CRAY-1 (Cray [75]). The IBM 2938 Array Processor 

is also pipelined (Ruggiero and Coryell [69]). 



-3-

Section 2 of the survey is devoted to a general discussion of parallel 

and pipeline computers, and how certain architectural features can affect 

the behavior of algorithms. We consider two realistic models and a theoreti­

cal model in which an unlimited number of parallel processors are available. 

These are not mathematical models of computation, but minimal descriptions 

intended to allow brief and hopefully meaningful analyses. Of prime impor­

tance are the observations that decreases in computation time depend on the 

ability to move data quickly, and that data must be arranged to conform with 

the architectural restrictions of the computer. 

Section 3 concerns the evaluation of general arithmetic expressions and 

some important special cases, such as recurrences, inner products and matrix 

multiplication. The solution of a linear system of equations Ax = v is dis­

cussed in Section 4. Csanky [75] has recently answered a major theoretical 

question concerning bounds on the number of parallel computation steps required 

to compute x, but the method displayed is unstable. Stable algorithms, such 

as Gaussian elimination with pivoting, use considerably more time and considerably 

fewer resources. If A has a regular pattern of zero and nonzero elements then 

much faster stable algorithms can be derived, and these approach the known 

theoretical lower bounds on computation time. Finally, parallel eigenvalue 

calculations are considered in Section 5; the brevity of this section reflects 

the relatively small number of results. 

For simplicity of language we will refer to algorithms for parallel or 

pipeline computers as parallel algorithms, and hope that no confusion results. 

Actually, there are many common characteristics, especially the ability to 

process vectors efficiently. 



-4-

Parallel algorithms depend on one simple yet crucial observation: in­

dependent computations may be executed simultaneously. A set of computations 

is said to be independent if each result variable appears in only one computa­

tion. For example, in vector addition the set of component sums is indepen­

dent. Thus two N-vectors may be added in a single step using N parallel 

processors; the vector addition is said to exhibit inherent parallelism, as 

is any algorithm with large sets of independent computations. 

A parallel algorithm may be created by recognizing the inherent parallel­

ism of a sequential algorithm (i.e., an algorithm for a single-processor com­

puter). While many familiar algorithms really are sequential, standard opera­

tions of linear algebra often have considerable inherent parallelism. It is 

sometimes necessary to restructure an algorithm to increase this property. 

This can involve reordering a linear system or reorganizing a computation to 

spread operations across several processors. The latter technique leads to 

the important theoretical result that the inner product of two N-vectors can 

be computed in (iogNJ + 1 steps using N processors, and it can be shown that 

there is no faster algorithm. It is also possible to use an automatic search 

for parallelism in sequential programs (for example, see Kuck [73]), but we 

will not consider this aspect. In fact, good sequential programs sometimes 

obscure their parallelism precisely because they are written for sequential 

computers. 

We use a parenthesized list of indices to emphasize the inherent parallel­

ism of a set of computations in which the operations are identical and only 

the operands differ. For example, if C « AB, A g R m X n , B £ R n X p , a sequential 

All logarithms are base 2. [x] is the unique integer satisfying x ^ [x| < x+1. 



-5-

program to compute C is 

for i 8 3 1 step 1 until m do 

for j = 1 step 1 until p do 

begin s «- 0; for k = 1 step 1 until n do 

s «- s + a._ b, . ; 
ik kj 

c. . <- s 

end. 

In the parenthesis notation this becomes 

Sij *" °* 0 * 1 * m ; 1 * j * p ) ;  

for k = 1 step 1 until n do 

Sij " S i j + a i k b k j » 0 * 1 1 * J *P>; 
cij *" s i j ' ( 1 * 1 5 m ; 1 * j s p ) 

or even 
n 

Ij "X aik bkj' ( U i S m ; U J s P ) c 
1.1 

k-1 

when we do not want to be restricted to any particular method for computing 

the summation. 

Once an algorithm has been given, we would like to know how good it is: 

how much time and how many resources are needed, are these requirements minimal 

or nearly so, can the algorithm be reconstructed to use fewer resources and 

still have a respectable running time, is it numerically stable? There are 

two viewpoints for this analysis. On the one hand, we want to know how dif­

ficult a problem can be, so we ask how much work must be done by any algorithm 



-6-

that solves the problem (complexity). On the other hand, we want to dis­

cover algorithms that will lead to reliable, efficient programs (simplicity), 

though it is always difficult to predict the effect of a specific idea on 

the execution time of a program. The critical problem for any computation 

model is to identify which parts of an algorithm are most important, and put 

the most effort into optimizing those parts (see, e.g., Moler [72], Parlett 

and Wang [75]). 

For the practitioner, the hope is that parallelism will allow the cost-

effective and fast solution of larger and more complicated problems. For 

the mathematician and computer scientist, there are many interesting theoret­

ical questions about the complexity and simplicity of computations. 



-7-

2. PARALLEL AND PIPELINE COMPUTERS 

In this section we describe certain features of parallel and pipeline 

computers, and some of the ways in which these features affect parallel al­

gorithms. In many cases the choice of an algorithm will be dictated by non-

arithmetic considerations, such as storage and communication requirements, 

and relative performances will be affected by widely varying operating char­

acteristics. Section 2.c is concerned with consequences of the models for 

numerical algorithms, especially lower bounds on computation time. 

For more information about programming and implementation, see Lawrie 

et al. [75], Newell and Robertson [75], Sameh and Layman [74], Stevenson [75], 

the technical reports listed by Poole and Voigt [74], and the March 1975 issue 

of SIGPLAN Notices, which contains the Proceedings of a Conference on Pro­

gramming Languages and Compilers for Parallel and Vector Machines. Other 

relevant surveys are Baer [73], Miller [73], Owens [73], and Stone [73b]; 

architectural issues are discussed by Stone [75b] and T. C. Chen [75]. 

2.a. Parallel Computers 

Our model of parallel computation depends on the use of P identical pro­

cessors, although real computers like Cmmp allow some differences in the 

processors. We regard the number of processors as the important parameter. 

It is assumed that the standard rounding error hypotheses hold for finite 

precision arithmetic, and that double precision accumulation of inner products 

is possible. The basic operations (e.g., +, -, X, /, max, min, and order rela­

tions) take two inputs and produce one result in time t , which depends 

only on the operation and the data types, and not on the number of processors. 

It is possible to generalize to r inputs, but as long as r is fixed its value 

is of minor importance. 



-8-

We assume a large finite primary memory accessible by each processor, 

and make the simple but very strong assumption that any processor can ob­

tain any piece of information in unit time. Register load/store costs and 

i/o for secondary storage will be ignored. 

In reality, all parallel algorithms must deal with the complex problems 

of data manipulation, storage allocation, memory interference and interpro-

cessor communication presented by existing parallel computers. For example, 

the chaotic relaxation methods (Section 4.e) are designed to handle delays 

caused by conflicting requests to shared memory. To reduce these conflicts, 

parallel computers provide each processor with a local memory, along with a 

communication network to permit data transfers between processors. Since 

it is far too costly to link each processor directly to all others * a re­

stricted network must be implemented, causing an accessing delay due to in­

creased path lengths between processors. It is possible for this delay to  

seriously affect program execution times. The Illiac IV network arranges 

the 64 processors as an 8x8 grid and connects each processor to its four 

neighbors. This leads to skewed storage of matrices if it is desirable to 

access rows and columns with equal ease (Kuck [68]). 

Instructions for each processor come from the individual processor or 

from a central control unit. In the first case, the instructions may differ 

across the processors, yielding the Multiple Instruction Stream - Multiple 

Data Stream model (MIMD); the processors need not operate synchronously. In 

the second case, each processor executes the same instruction at the same 

time, though using different data and depending on a local on/off switch (a 

mask in the Illiac IV terminology). This is the Single Instruction Stream -



-9-

Multiple Data Stream model (SIMD). The terms MIMD, SIMD were first used 

by Flynn [66]; this is not the only possible taxonomy, but it fits our 

purposes. The greater part of the survey concerns algorithms for SIMD 

computers, reflecting both present knowledge and the inherent simplicity 

of the model. 

For definiteness we assume that the processors are synchronous* and count 

one step for each set of operations performed simultaneously. Thus the impor­

tant consideration is the number of steps, and not the total number of opera­

tions performed by all the processors. Of course, any operations performed 

in parallel must be independent. 

Various models of parallel computation depend on the number of processors. 

The practical model has a fixed number of processors, independent of the ap­

plication. The theoretical model allows unlimited parallelism ("sufficiently 

many processors"), so that the number may vary with the application. We dis­

tinguish two cases of unlimited parallelism. If a parallel algorithm solves 

a problem of size N using P(N) processors, the number of processors is (poly-

nomially) bounded if P(N) £ p(N) for some polynomial p and all N, and essen­ 

tially infinite otherwise. The number of memory locations may be similarly 

treated. 

Most of the algorithms considered in this survey involve bounded parallel­

ism and memory. Unlimited parallelism is considered for theoretical purposes, 

but it can provide useful information for fixed parallelism if algorithms 

can be transformed to reduce the resource requirements. It should be noticed 

from the following discussion that bounded parallelism is preferred for this 

purpose, since algorithms using an essentially infinite number of processors 

This has two interpretations: if several different instructions are executed 
in parallel, then each must be allowed to finish before the next round of in­
structions is started, or, all instructions executed in parallel are identical. 



-10-

perform an exponential number of operations per step. 

Suppose we are given an algorithm using (N) processors and (N) 

steps, and we want to construct a new algorithm using P 2(N) < P^(N) pro­

cessors and T 2(N) steps, where is not much larger than T.j. Two prin­

ciples, algorithm decomposition and problem decomposition (the names are due 

to Hyafil and Kung [74b]) underlie the transformations to a smaller number 

of processors. The first depends on a simulation argument: if operations 

are performed in step i of algorithm 1, then this one step becomes P̂ /̂ JJ 
steps in algorithm 2. Each new step consists of at most P^ operations per­

formed in parallel, and (Brent [74]) 

Tl T1 
T2 - I P A ] * I ( V V 1 ^ 

i=i i=i 

Ti 

- T ] + ( q - V / P 2 , q = I q.. 
i=l 

Problem decomposition depends on the observation that there is often an M such 

that P,(M) < P 0(N). By partitioning the original problem (size N) into smaller 

problems (size M) and applying algorithm 1 to the small problems, a new "boot­

strapped" algorithm may be obtained. The solution of a linear system by 

block elimination is a familiar example of this principle. 

Recursive doubling, a powerful method of generating parallel algorithms, 

is related to problem decomposition. The idea is to repeatedly separate each 

computation into two independent parts of equal complexity, which are then 

computed in parallel. This is actually a special case of divide-and-conquer. 

For example, 



-11-

fo-1 

1 S-F'Z •.)•(! \).»- M -
i«1 \i=1 / \i=n / 

and by further applications of this splitting the summation can be computed 

in JlogNJ steps using N/2 processors. The subproblems need not be smaller 

versions of the original problem, but should exhibit associative properties 

so that the partitioning can be continued. Recursive doubling has been ap­

plied to several problems, notably in the work of Stone and Kogge on recur­

rence relations. This is discussed briefly in Section 3. 

It is of considerable practical interest to be able to measure the ef­

fectiveness of parallelism. For a given problem, parameterized by N, let 

T 1(N) be the running time of the best known sequential algorithm, and let 

Tp(N) be the running time of a parallel algorithm using P processors. Speed­

up, defined as S p(N) • Tj (N)/Tp(N) , measures the improvement in solution 

time using parallelism, while efficiency, defined as E p(N) 8 3 Sp(N)/p, at­

tempts to measure how well the processing power is being used. A simple 

argument shows that S p £ P and E p £ 1. Note that E^ = 1, so we don't neces­

sarily want to choose the number of processors in order to maximize this 

function. 

For a class of problems it is necessary to consider some different mea­

sures. Let f(x) be the probability that we want to solve problem x taken 

from class X. Kung and Traub [74] define speedup on the average as 

S A p ( X f f ) « f ] [ f(x)T1(x)J/l £ f(x)Tp(x)j 
\x€X / W / 

and the average speedup as 



-12-

AS p(X,f) = ^ f(x)T 1(x)/T p(x). 
x0C 

Each of these functions has different characteristics and, depending on f, 

can expose different features of an algorithm. 

The goal is to construct algorithms exhibiting linear (in P) speedup and 

hence utilizing the processors efficiently. That is, for problems of size N we 

want an asymptotic speedup of the form S p(N) = cP - g(P,N), with 0 < c £ 1, 

0 £ g(P,N) = o(1) as N -* a>; c should be independent of P and close to 1. It 

is suggestive to think of g as a penalty for the use of parallelism on small 

problems, so for large problems the rewards should outweigh the penalties. 

However, linear speedup is not always possible. There are certain com­

putations for which the maximal speedup is S p(N) < k for a constant k, and 

such a computation clearly makes poor use of parallelism. For many important 

problems in linear algebra the best speedup is S p(N) = cP/logP - g(P,N), 

which is acceptable though less than linear. 

2,b. Pipeline Computers 

We now consider a different approach to high-speed computation, the 

class of pipeline or vector computers. These are SIMD machines, but their 

speed is achieved primarily by a form of instruction lookahead in a single 

processor rather than by use of multiple processors. 

By partitioning floating point operations (+, x, etc) into more basic 

sub-operations (exponent adjustment, mantissa arithmetic, etc.) an assembly 

line structure or pipeline can be set up for repetitive calculations such 

as componentwise vector operations and inner products. Successive completed 

results leave the pipeline at a rate determined by the memory transfer rate 



-13-

and the internal stage delay, and not by the total time required for each 

arithmetic operation. To simplify memory transfers, vector operands on 

the STAR must be contiguous blocks of memory locations. Vector operands on 

the ASC and Cray-1 can be any sequence of locations in arithmetic progres­

sion. Interleaving is used to increase transfer rates from relatively slow 

core memories. 

The execution time for a vector operation consists of two parts, an 

initial delay (called the vector startup time) and the sequential appearance 

of completed results. We denote this time as T N + a • where N is the 
op op* 

length of the vectors involved. For scalar operations we continue to denote 

the time as t • Typical values of T, a and t for the STAR are given in 

Table 1; the (core-to-core) vector times include load/store costs while the 

(register-to-register) scalar times do not. 

TABLE 1 
Selected CDC STAR Instructions, 64 Bit Floating Point Operands (CDC [74]) 

N such that 
operation t T a \o/ (t-T)| TN+Q • 1.5TN 

add, subtract 13 .5 96 8 384 
multiply 17 1 156 10 312 
divide 47 2 156 4 156 
square root 73 2 152 
floor, ceiling 11 .5 90 

3 152 
5 360 

376 

380 

V l * % ( 1 3 ) - 5 9 4 <8> 
,a • b (branch) 15-46 -
jA - B (set condi- - .5 95 (3-7) 
' tion code) 
a < b (branch) 15-46 
•maximum - 6 85 (3-10) 29 
summation (13) 4 98 (11) 49 
inner product (30) 4 100 (4) 50 



-14-

Times in the preceding table are given as multiples of the 40 nano­

second cycle time, under certain assumptions. Deviations from these 

assumptions can cause o to increase. 

Two immediate consequences of the timing formula TN + a are the linear 

dependence of execution time on the number of operations performed, and the 

encouragement to use vector operations when T is much smaller than t. For 

N > a/(t-T) it is better to use one vector operation than N scalar opera­

tions. Moreover, the use of long vectors is encouraged in order to minimize 

the effects of a, which is generally much larger than T. The last column of 

Table 1 shows how long the vectors must be so that the actual result rate is 

50^ greater than the asymptotic result rate. 

The STAR also provides another set of instructions for use with sparse 

vectors, each of which consists of a packed vector of nonzero components and 

a bit vector describing the true position of these components. The general 

timing formula for a sparse vector operation is rn + pN 4- a, where n is the 

number of nonzeros in the result vector and N is the number of bits in the 

operand vectors. For a sparse addition, T = 1, p = 1/8, a = 183. 

Many of the problems in constructing programs for pipeline computers 

involve the isolation of vector operations in a particular setting, and data 

manipulation to change conceptual data structures into the vector operand 

format. Consider, for example, the addition of two columns of an N x N 

matrix that is stored by rows. Since a vector on the STAR is defined to be 

a contiguous sequence of memory locations, a matrix column is not a vector, 

contrary to the usual mathematical interpretation. A vector addition (O(N) 

time) must therefore be preceded by a special extraction operation (O(N^) time) 



-15-

to copy the required column elements into vector operand form. A better 

data structure or N scalar operations will preserve the linear running time, 

but these solutions are not always possible or pleasing. The more general 

definition of a vector used by the ASC avoids this difficulty and the column 

addition may be performed directly with a vector operation in 0(N) time. 

A completely different data manipulation problem can occur when second­

ary storage (i.e., discs) must be used (Lynch [74], Knight, Poole and Voigt 

[75]). With current technology, the pipeline computation rate is so much 

greater than the disc transfer rate that, for certain large linear systems, 

the anticipated i /o time overwhelms the anticipated computation time. The 

arithmetic unit will be idle for a significant period, simply waiting for 

its operands. This situation is by no means unique to the pipeline archi­

tecture, and will occur in any computer system with a mismatch between 

computation and transfer rates. It is suggested that intermediate quantities 

be recomputed rather than stored on disc, with the expectation that a large 

increase in computation time will be offset by a greater decrease in the 

I/O time. 

We note one side effect of studying vector computers, which occurred 

during the transition from the CDC 7600 to the STAR at Lawrence Livermore 

Laboratory (Owens [73], Zwackenberg [75]). LRLTRAN, the local dialect of 

Fortran, was extended to include vector operations reflecting the STAR in­

structions, and existing LRLTRAN programs were rewritten using the extensions. 

Prior to the arrival of the STAR, the new programs were run on the 7600, and 

it was found that they ran 1.2 to 2.8 times faster than the original codes, 

since the software vector instructions took greater advantage of the 7600fs 



-16-

lookahead and segmented functional units. This has become known as the 

"vector 7600" effect. 

To simplify further discussion, as we did with the model of parallel 

computation, we will ignore the time required for data manipulation and con­

centrate on the arithmetic time. 

For a problem of size N, where the best scalar algorithm uses R g(N) 

operations, suppose we are considering an algorithm using the vector instruc­

tions and a total of R
y(N) operations. If N is large we certainly want to 

avoid the situation where the use of vector operations is harmful rather 

than beneficial. Following Lambiotte and Voigt [75], we say that the vector 

algorithm is asymptotically consistent if R y(N) = 0(Rg(N)) as N -> », An in­

consistent vector algorithm, though not universally useful, may still be ap­

plicable for some values of N, and it is possible that a consistent algorithm 

may not be applicable at all because of a large asymptotic constant, but vec­

tor algorithms of interest will generally be consistent, take advantage of the 

increased result rate, and minimize the effects of the startup time a. 

2.c. Consequences of the Models 

The fact that the parallel processing element uses only unary and binary 

operations allows the immediate conclusion of a simple lower bound on the 

computation time for a problem with N inputs and a single output. Clearly 

N-l binary operations are necessary and may be sufficient to compute the 

result sequentially, but we are interested in knowing how many of these opera­

tions may be executed in parallel. For this purpose, consider the set BT(P) 

of rooted binary trees defined as follows: 



-17-

1. the tree with one node (both the root and a leaf) is in BT(P) 

and has depth 0; 

2. given a depth n tree in BT(P), if we replace at most P leaves with 

the tree ^/^^ then the new tree is in BT(P) and has depth n+1 ; 

3. all trees in BT(P) are constructed using 1. and 2, 

A depth n tree in BT(P) corresponds to n steps of parallel computation with 

P processors. It is important to note that depth is different from height, 

which is defined as the maximum number of branches between the root and a 

leaf. While not equal in general, we always have height ^ depth. Now, let 

L(P,n) be the maximum number of leaves on a depth n tree in BT(P), and let 

m(P,N) be the minimum depth of any tree in BT(P) with N leaves. Clearly 

L(P,0) = 1, 

L(P,rrt-1) = min(L(P,n)+P, 2L(P,n)), and 

L(P,n-l) < N <: L(P,n) implies m(P,N) - n. 

Letting k = |loglj , we have L(P,n) « 2
m i n ( k , n ) 4- Pmax(0,n-k), so 

m(P,N) = min(k, flogN| ) + max(0, [(N-2k)/p]). 

In summary, at least m(P,N) steps are required to compute one result from N 

inputs using P processors. 

Munro and Paterson [73] have derived a similar but more general lower 

bound on computation time. This result is important because it allows the 

translation of complexity theorems from sequential computation to parallel 

computation. 



-18-

Theorem. If at least q operations are required to compute a single number 

Q, then any algorithm using P processors to compute Q must take at least 

m(P,q-fl) steps. 

Proof. The maximum number of operations that can be done in n steps with P 

processors to compute one result is L(P,n)-1, which is just the maximum num­

ber of non-leaf nodes on a depth n tree in BT(P). Let t be the unique posi­

tive integer such that L(P,t-1)-1 < q ^ L(P,t)-1, so that t = m(P,q+1). 

Fewer than t steps cannot compute Q, although we cannot conclude that t 

steps are sufficient. • 

Actually, we have described the class of optimal algorithms to compute 
A N = ai ° a 2 ° * * # ° AN* w ^ e r e ° i s a n y associative operation. Each tree in 

BT(P) with N leaves and minimal depth represents an algorithm for P processors, 

which we will call an associative fan-in algorithm, and which uses m(P,N) steps 

and N-1 operations. Figure 1 shows one such tree for N = 8, P = 3. These 

methods are more familiarly known as log-sum or log-product algorithms for 

the original applications in which o = + or X, P = [N/2) and m(P,N) • flogNJ; w< 

have already used the summation example to illustrate the recursive doubling 

technique. 

In spite of their simplicity, the fundamental importance of the associ­

ative fan-in algorithms should not be underestimated. We note that m(P,N) 

is approximately N/P + log(P/2) for P < N, and m(P,N) - flogNJ for P ;> N. 

Thus the obtainable speedups in computing A N are SP(N) • P - 0(l/N) and 

S N(N) - N/logN. It is seen that although linear speedup is impossible for 

certain values of P, the fan-in algorithms are optimal in the sense of 

achieving minimal computation time for all values of P. 



Figure 1 

Computation of o ... ° ag with 3 processors. 

Numbers next to a node denote the step in which the operation is performed. 

As an allied question, we can ask how few processors are actually needed 

to compute A N in minimal time. Muraoka [71] showed that if n • JlogNJ and 

|(N-2n-2)/2] if 2 1 1" 1 < N £ ! 2n-} 

P(N) • 
IN - 2 0 " 1

 l f | 2n-l ^ N £ 2° 

then m(P(N),N) * n and m(P(N)-l,N) « n+1. Thus P(N) processors are necessary 

and sufficient to evaluate A N in n steps. Kogge [72c] examined the broader 

problem of evaluating A^, 1 £ j £ N, in n steps, and also considered con­

straints on the communication networks between processors. Clearly P(N) 

processors are still necessary, but the constraints and additional computa­

tions make the sufficiency question more difficult, and only partial results 

are available. One simple result that we will need later is that the powers 

z^, 1 j <> N, may be computed in n steps using max(2 n" 2, N-2 n~ 1) <> N/2 
processors, 



-20-

Another useful observation is that if P(N) = [N/logN] then m(P(N),N) 

21ogN and Sp(N) > P/2. Thus we can reduce the number of processors some­

what and obtain both a logarithmic running time and linear speedup. 

The error analysis for summations and products using the associative 

fan-in algorithm is not difficult. If h is the height of the computation 

tree then it may be shown that 

N 

1 ai) = I a i ( 1 + 5 i > ' I-5J ^ > 
i=l ' i=i 

/ N \ N 
F I IT a i = a i IT a i ( i + e i ^ ''J 

\i-1 ' i«2 

where p. is a small constant depending on the floating point number system 

(Babuska [68], Kogge [72b]). Babuska (also Viten!ko [68]) has observed that 

the fully branched log-sum algorithm (h = |~logNJ| ) yields the best stability 

bounds of any algorithm using N-l additions. This does not preclude use of 

pseudo-double precision summation methods comparable to the ones proposed for 

sequential computation (e.g., Kahan [71]), since these use more than N-1 ad­

ditions. 

Finally, lower bounds for pipeline computers may be compared to lower 

bounds for parallel computers with a fixed number of processors, for in each 

case the computation time is bounded below by a linear function of the num­

ber of operations actually performed. Indeed, we can estimate the time for 

a parallel vector operation as tN/p + s, where s includes overhead and the 

"wrap-up" time t log p/2 for operations with a single result. This is in sharp 

contrast to the "sufficiently many processors" model, where vector additions 



-21-

can be done in a single step and summations in a logarithmic number of 

steps. It is important to be aware of the differences between a fixed 

and unlimited number of processors, and that algorithms executed under 

the two models will have quite different operating characteristics. 

We observe that, for the limited model of arithmetic time and as an 

intuitive guide only, a good algorithm for a pipeline computer should also 

be a good algorithm for a SIMD computer with fixed parallelism, and vice 

versa. One of the flaws of this comparison is the relative importance of 

lower order terms, for a will typically be much larger than s, and we have 

to be careful in discussing algorithms that are expected to be fast nin 

the limit11, the definition of which can change considerably. 



-22-

3. BASIC ALGORITHMS 

Thus far we have established that certain simple but useful computa­

tions can be performed optimally in parallel. In fact, arbitrary arith­

metic expressions with N terms can be evaluated in 0(m(P,N)) steps under 

the P processor MIMD model. Much effort has gone into improving the 

asymptotic constants and in consideration of special expressions such as 

polynomials and recurrences. Important cases for linear algebra are the 

vector inner product, matrix multiplication, linear combinations of vec­

tors, vector norms, linear recurrences, and the fast Fourier transform. 

The results of this section mostly apply to parallel computers, for no 

general theory presently exists concerning the optimal evaluation of 

arbitrary expressions on a pipeline computer. 

3.a. General Expressions and Recurrences 

In deriving the associative fan-in algorithms we were able to use the 

associativity of o in order to reduce the depth of the computation tree 

representing the sequential algorithm A^ = a^, A j « A^ o a ^ + i • The idea 

of restructuring a sequential computation has been successfully extended to 

general arithmetic expressions; Brent [73] summarizes early work and basic 

techniques. Since an upper bound is desired, it may be assumed that the 

expression's directed computation graph is actually a tree. Constants are 

treated as indeterminates and all indeterminates must be distinct. Tree 

manipulations with the flavor of recursive doubling are then applied, re­

ducing the tree depth and hence the computation time. Under the MIMD 

model, Table 2 shows recent results for an expression with N in­

determinates. The P processor cases are derived using the algorithm de­

composition principle. 



•23-

TABLE 2 
Parallel Computation Times 

Expressions with DIH.^N 

source # of processors # of steps  
1 44 

°< N ' ) 2.881ogN + 0(1) Muller and Preparata [75] 
3 N 41ogN + 0(1) Brent [73] 
P 5N/2P + 0(log N) Winograd [75] 

Expressions without Division 

( N ) 2.081ogN + 0(1) P 
, 8 ° U ) Preparata and Muller [75] 

N 4logN + 0(1) 
P M̂/OTI I ̂ WI 2. Brent [73] L ' ̂  J 

3N/2P + 0(log N) Winograd [75] 

Brent's algorithm for expressions without division is numerically stable, 

and an example due to W. Miller (Brent [74]) shows that the corresponding al­

gorithm for expressions with division can be unstable. The stability of the 

other evaluation techniques has not yet been investigated. Hyafil and Kung 

[74a] show that in Winograd1s scheme (no divisions) the constant term 3jl 

cannot be decreased by much. This is done by considering the first order 

linear recurrence x Q = a Q, x^ « bi xi_i + a n d showing that any algorithm 

to evaluate x^ in t steps must perform at least 3n-t/2 operations. This re­

sult quantifies part of the folk wisdom of parallel computation, that there 

is a tradeoff between speed and the amount of work actually performed. Using 

the fact that we must have Pt £ 3n-t/2 (otherwise t steps could not be suf­

ficient) we conclude that t ^ 3n/(P+l/2). A slightly better result can be 

obtained from the Munro-Paterson theorem, as t ^ m(P,3n-t/2+l) implies 

t * (3n + P(fTogP] - 2) + 1)/(P + 1/2). The substitution N - 2n+l gives 

the desired result. 

Investigation of linear recurrences began with two different applica­

tions, polynomial evaluation and the solution of tridiagonal linear systems. 



-24-

Hornerfs rule, which uniquely minimizes the sequential computation time 

(Borodin [71]), is a familiar example of a first order linear recurrence, 

and was one of the first methods to be reconstructed for parallel computa­

tion. The situation is now quite well understood, and Munro and Paterson 

[73] have described some asymptotically optimal algorithms. With N process­

ors an N*"*1 degree polynomial can be evaluated in logN + (21ogN)^ 2 + 0(1) 

steps, and with P processors in m(P,2N+l) + 0(1) steps. 

Stone [73a] observed that an NxN tridiagonal linear system can be solved 

in O(logN) steps if the first N terms of first and second order linear recur­

rences can be evaluated in O(logN) steps using N processors. This is dis-
th 

cussed in more detail in Section 4.c, and an algorithm to compute m order 
m 

linear recurrences (x^^^,..., x Q given, x^ • ^ aij Xi-j + t >i > * ^ ^ i s 

i = l 

given in Section 4.b, although this is slightly different than the recursive 

doubling techniques used by Stone. 

A series of papers by Kogge and Stone (Kogge [72a,b,c], [74], Kogge and 

Stone [73], cf. Trout [72] and Heller [74b]) dealt with various generaliza­

tions and improvements of Stone's original recurrence methods, although 
linear-like properties are still required. For example, if x Q is given and 

a x +b 
xi+1 a x +d 9 t h e n X " ^ ^ N* m a y b e c o m P u t e c i i n 0(1°8 N) steps with N 

°i Xi i J 

processors. Work by Kung [74] and Hyafil and Rung [75] shows that the linear 

recurrence is really very special, and that only a constant speedup is pos­

sible for general rational and nonlinear recurrences. That is, there can be 

no fast algorithms, regardless of how many processors are available. 

We note that, although the computation of N terms of a low order linear 

recurrence on a pipeline computer generally requires use of the scalar mode 



-25-

because of short vector lengths, Kogge [73] shows how to adapt results from 

the parallel computation of recurrences to the design of special purpose 

pipelines. By careful use of parallel computation networks and feedback 

loops, the maximal output rate of one result per cycle may be achieved. 

3.b. Inner Products and Related Computations 

One of the most important applications of the associative fan-in algor­

ithm is the computation of inner products. Winograd [70] has shown that N 
N 

multiplications and N-1 additions are required to compute a b = ^ a b , so 

i=l 

with P processors it is necessary to use at least m(P,2N) steps. This lower 

bound is achievable on an MIMD machine by a slight alterat 
ion of the fan-in 

method. On a SIMD machine [N/P"| + m(P,N) steps are needed, since we cannot 
T 

perform different operations in the same step. In either case, a b requires 
[logN] + 1 steps given N processors. As before, the error analysis is not 
difficult, for 

\i=l / i=l 

where h £ m(P,2N)+l is the height of the computation tree used. Doubl 

cision accumulation is possible as in sequential computation. 

T 

In considering the N processor evaluation of a b it is important to u 

serve that while half of the operations are multiplications, almost all of 

the computational steps involve performing the additions. In sequential com­

putation it is often possible to estimate an algorithm's performance solely 

by counting multiplications, but this is definitely not the case for parallel 

computation. All operations must be counted. 

e pre-

ob-



-26-

On a vector computer the inner product is generally included as a 

hardware instruction taking time T , N + a, where T , ̂  < T + T 
dot dot dot x sum 

Even if T, = T + T it is better to use the hardware inner product 
dot x sum 

since it will save one vector startup time, which is not insignificant. 

The vector p-norms can also be computed iiji parallel using the associa­

tive fan-in algorithm. Here ||v||p - ̂  LV
IL , so for 1 <; p < oo w e require 

(N/P] unary steps to compute |v^| P, m(P,N) addition steps for the summation, 

and one step for ||v|| • IMÎ  8=8 max|v_J is directly computable in [N/P"1 + m(P,N) 
steps since the maximum operation is associative. The most frequent cases 

are p = 1, 2, and ®, and on a pipeline machine these may be computed using 

the absolute value, summation, inner product and maximum vector instruc­

tions. Similarly, the 1 and » matrix norms are easily computable. In actual 

practice the choice of norm and computational method will be greatly affected 

by the particular application and computer, and the issues involved in this 

choice are far from being resolved. 

An inner product is, of course, a special case of matrix multiplication, 

being the product of 1 X N and N X 1 matrices. More generally, the product 

of m X n and n X p matrices may be optimally computed in JL.ogn| + 1 steps 
with mnp processors, since each component of the m X p result is an inner 

product of n-vectors. If fewer than mnp processors are available then asymp­

totically fast algorithms may be developed using tradeoffs between the fast 

sequential algorithms (Strassen [69]) and the usual sequential algorithm for 

partitioned matrices. For example, if A and B are N X N and we have a fast 

sequential method using cN^ steps, a - log7 - 2.81, then with 8 processors 

C - AB may be computed in cKa/7 + N 2/8 steps. If and are JN/2J X JN/̂  



-27-

' A H A 1 2 \ / B N B 

A 
A 2 , A

2 2 / B \ B 2 , B 2 2 

" ° 1 2 > 

\ 
> T H E N 

' A 1 1 B 1 1 + A 1 2 B 2 1 A 1 1 B 1 2 + A 1 2 B 2 2 \ 

^ A 2 1 B 1 1 + A 2 2 B 2 1 A 2 1 B 1 2 + A 2 2 B 2 2 

E A C H A

I J C

B

K J M A T R I X P R O D U C T I S C O M P U T E D I N O N E P R O C E S S O R I N C ( N / / 2 ) O R S T E P S , A N D 

T H E F O U R M A T R I X A D D I T I O N S A R E E A C H D O N E W I T H TWO P R O C E S S O R S I N (N/2) / 2 S T E P S . 

- 8 1 
T H U S T H E S P E E D U P I S S G ( N ) « 7 - 0 ( N * ) , W H I C H I S S A T I S F A C T O R Y . 

A M A T R I X - V E C T O R M U L T I P L I C A T I O N C • A B I S E Q U I V A L E N T T O T H E F O R M A T I O N O F 

a L I N E A R C O M B I N A T I O N O F T H E C O L U M N S O F A , A N D H E R E WE U S E T H E F A C T T H A T T H E 

C O M P U T A T I O N S F O R T H E C O M P O N E N T S O F C A R E I N D E P E N D E N T . T H U S 

N 

c i " 1 V j V o * i £ N ) 

I F A I S N x N . S P E C I A L C A S E S O F I M P O R T A N C E A R E N B 2 , 3 O R N, A N D I T I S S E E N 

T H A T G O O D S P E E D U P S A R E O B T A I N A B L E F O R A N Y V A L U E S O F N , N A N D P . T H E C H O I C E 

O F A P A R T I C U L A R M E T H O D F O R A P I P E L I N E C O M P U T E R W O U L D D E P E N D O N T H E S T O R A G E 

S C H E M E U S E D F O R A A N D T H E R E L A T I V E C O S T S O F A N I N N E R P R O D U C T A N D A V E C T O R 

M U L T I P L Y - A N D - A D D . 

M U R A O K A A N D K U C K [ 7 3 ] H A V E C O N S I D E R E D T H E E V A L U A T I O N O F A C O N F O R M A B L E 

S E Q U E N C E O F M A T R I X P R O D U C T S A

1

A

2 * * * A

N » W H E R E A± I S E I T H E R 1 x N , N x N , O R 

N x 1 , U S I N G U N L I M I T E D P A R A L L E L I S M . I T I S N E C E S S A R Y T O A S S O C I A T E T H E P R O D U C T S 

C O R R E C T L Y I N O R D E R T O M I N I M I Z E T H E C O M P U T A T I O N T I M E , A N D A M I N I M A L W E I G H T 

P A R S I N G A L G O R I T H M I S G I V E N . 



-28-

Th e parallel evaluation of arbitrary matrix expressions is discussed 

by Maruyama [73] and Kuck and Maruyama [75], who generalize earlier results 

for scalar expressions. If, with unlimited parallelism, N x N matrices may 

be added, multiplied and inverted in t^, t^ and t^ steps respectively, then 

any matrix expression involving n N x N matrices and no inversions may be 

evaluated in 2jlognj(t^ + t̂ .) steps. If inversions are necessary then 

|~logn| (2t A + 3 ^ + tj) - + tj steps are sufficient. 

3.c The Fast Fourier Transform 

The discrete Fourier transform of an N-vector a « (a^,... >a
N--j) is an­

other N-vector b, where 
N-1 

b. « / c / V , 0 <; i £ N-1, 
i L y 

th 
and 0) is the principal N root of unity. We assume for this section only 
that all arithmetic is done with complex numbers. The transform is just a 

2 

matrix-vector multiplication b « Fa, so with N processors we only need to 

generate F (pLogNJ steps given u)) and perform the multiplication (flogNl + 1 

steps). The fast Fourier transform (Cooley and Tukey [65]) allows us to 

compute b just as quickly but only using N processors, or in 0(NlogN/P) 

steps with P processors (Pease [68]). 
For simplicity assume that N = 2 n + 1 , and for 0 £ r £ N-1, 0 £ k £ n, let 

n 

r = [r 0r r..r n] - \ V j 2 J , ^ - 0 or 1, 



-29-

f(r,k) = [ ^ . . . r ^ O r ^ . . . ^ ] , 

g(r,k) - [r k.r k_ r..r 00...0], 

h(r,k) = Cv rk-l l rk+T" rn ]' 
rev(r) = [r n...r Q] = g(r,n). 

The parallel FFT is performed as follows: 

z± - a ) 1 , (0 <= i £ N-1) ; 

c. a., (0 <: i ̂  N-1) ; i l 

for k = 0 step 1 until n dp_ 

C i - C f < i , k ) + 2g(i,k) Ch(i,k)' ( ° * l S H - 1 > ! 
b i " c r e v ( i ) ' ( ° S i S N - 1 ) ' 

Except for the initial computation of z^, which may be done in a variety of 

ways, the algorithm runs in 2TN/P] flogNJ complex arithmetic steps with P 

processors. In essence, F has been factored into flogNJ very simple matrices, 

and the cumulative product is computed. However, the interprocessor data 

movements are just as important as the arithmetic costs, and it may be observed 

that either f(r,k) - r and h(r,k) - r + 2 N~ K or f(r,k) - r - 2 N" K and h(r,k) - r, 

so the movements for c within the loop are well structured (Pease [68], Stone 

[71]). 



-30-

4. LINEAR SYSTEMS 

In this section we consider the parallel solution of arbitrary linear 

systems and some special systems of practical interest; most of the methods 

are direct rather than iterative. Lambiotte [75] covers many of these topics 

with respect to the CDC STAR, and there are a large number of technical re­

ports dealing with implementation on Illiac IV (see Poole and Voigt [74]). 

Throughout this section A will denote a real nonsingular matrix, and we will 
N N x M 

attempt to solve Ax = v, v € R , and AX = B, B g R 

4.a. General Dense Matrices 
-1 2 If x = A v then each component of x depends on the N components of A 

2 

and the N components of v, so at least m(P,N +N) steps are required to com­

pute x with P processors. This number is about 21ogN for large P. Supposing 

that the parallel processor uses w-bit floating point arithmetic, w < », let 
w 

S be the set of all N-vectors such that z « fl(z); there are at most 2 N 

vectors in S. Now, it may be shown that if y G S satisfies 
llAy-vIL - min HAz-v^. 

z£S 

2 

then (A+E)y « v, where ||E is small. Using N | s | processors we can compute 

IJAz-vH^, for each z 6 S, in 1 + flog(N+1)] + [logtt\ steps. The minimization 

over S may be done in (log|s]| steps, for a total of at most 31ogN + w + 4 

steps. Nevertheless, we must reject this approach, for it requires an ex­

cessive number of processors and operations when we regard w as a problem 

parameter, hence giving no useful information for an actual parallel program, 

and also fails to give a clue for the treatment of real numbers (w • ») . 



- 3 1 . 

Let T(P,N,M) be the minimum number of steps required to compute A 

using P processors; the trivial lower bound T(P,N,1) ^ m(P,N^+N) has just 

been mentioned. It is clear that it is no more difficult to compute A ^B 

than A ^v; simply compute, in parallel, A B̂_. where B^ is the j*"*1 column of 

B. That is, T(MP,N,M) « T(P,N,1). It is also clear that T is an increasing 

function of N for any value of P. No one has yet been able to advance much 

beyond this lower bound for general parallel algorithms. 

For some time it was believed that the Gauss-Jordan elimination algor­

ithm would prove to be the fastest way to compute A ^v given any number of 

processors. The running time of this method is linear in N when pivoting is 

not used, and a major open problem was to close the gap between the logarith­

mic lower bounds and the linear upper bounds for T(P,N,1). In fact it is not 

hard to give a plausibility argument (but not a proofI) that at least N steps 

are needed for any recursive algorithm such as elimination. We now know 
-1 2 

that A may be computed in O(log N) steps using a bounded number of processors 
(Csanky [75]). All the mathematical tools involved in this result are class­
ical, but its importance is drawn from the modern notions of sequential and 
parallel computation. 

Suppose that the eigenvalues of A are ^ , 1 £ j <> N, and its character­
istic polynomial is 

N 

f (z) = J| (E-aj) - det(zI-A) 
4» 1 

- * N + C 2 N - ] + ... + C Z + 

N 
Let s. = trace(A^\ = V i , 

I - < » > I a,; »y T H E H E W C O „ L D E N C L T I E S ^ ^ ^ 



-32-

coefficients of a polynomial we have the triangular system 

s 2 S ] 

SN-1 '1 

By the Cayley-Hamilton Theorem f(A) = 0, so we can write 

A" 1 = -(A*"1 + C l A N " 2 + ... + c N_ 2A + c ^ I ) / ^ . 

N / 

Note that = (-1) det(A) f 0 since A is nonsingular. The method is to com­

pute all the powers of A and the traces s^, solve for the coefficients of 

the characteristic polynomial, and finally use the powers and coefficients to 

evaluate A ^. 

To determine the running time, recall that z*", 1 £ i £ N, can be computed 

in n 8 5 [logNJ steps with N/2 processors. This is easily extended to show 
i 3 that A , 1 £ i £ N, can be computed in n(n+l) steps with N(N )/2 processors. 

N 
V 2 Since trace(A) • ) a.,, we can compute s., 1 ^ i ^ N, in n steps using N 

processors. Late^7^ I N Section 4.b, we will show that a triangular linear 
system can be solved in (nH-1) (itf-2)/2 steps using N 3/68 + O(N^) processors. 

(This particular result is due to Chen and Kuck [75].) Finally, A ^ may 
3 -1 

be computed in n+2 steps using N processors. Since x « A v requires only 
2 

n+1 more steps with N processors, we have 

21ogN < T(N4/2,N,1) £ (3/2)log2N 4- O(logN) . 



-33-

The number of processors required can be reduced somewhat while pre-
2 

serving the O(log N) time by computing inner products in O(logN) steps 

using Oft/logN) processors. Thus if P « 0(N 4/logN), T(P,N,1) « 0(log 2N). 

Note also that if A is M X N, M £ N, and A has full column rank, then we 
t T can compute A , the generalized inverse of A, since A A is positive definite 

and A 1 = (A TA ) " V 

As for stability, the evaluation of c M is extremely sensitive to round-
N 

ing errors committed in the evaluation of the traces s^. In many cases 

severe cancellation will occur (see the discussion of Leverrier's method in 

Wilkinson [65]) f and a very large number of figures must be carried in order 

to obtain a reasonable computed value of A \ 

In summary, we have an excellent theoretical result, but it will be of 

little help in creating programs for real parallel computers. For this we 

must return to the standard elimination methods, which are known to be stable 

and which have enough inherent parallelism to allow efficient execution on 

parallel and pipeline computers. We suspect that there is a conservation 

law for linear systems, which states that if a stability criterion is to be 

met then a certain number of arithmetic steps must be performed. We believe that 

techniques developed by W # Miller [75] are worth pursuing for parallel computation. 

We discuss four elimination methods: Gauss-Jordan, the LU and QR de­

compositions, and a method due to Pease [74]. Each has different merits 

according to the computing model and characteristics of A. In each case we 

identify B with columns N+1 through N+M of A, and compute X m A - 1 B by per­

forming operations on whole rows of the augmented matrix. For notational 
th 

convenience "row i" will refer to the i row of (A,B). 



-34-

The Gauss-Jordan algorithm is the simplest to describe. Assuming 

pivoting is not necessary for stability, we have 

Algorithm G-J: 

for j = 1 step 1 until N do 

row i «- row i - (a_/a_)row j, (1 ^ i ^ N , i ^ j ) ; 

x . «- a. 7a. ., (1 <, i <; N; N+1 ^ j ^ N+M) • 
ij ij ii 

Using (N-1)(N+M) processors this requires 3N+1 steps. Note that A ^ can 

be computed in parallel with A ^B, so that Y = A is later obtainable by 

a matrix multiplication. 

If a ^ =* 0 at some point in Algorithm G-J, then it is sufficient (mathe­

matically at least) to search column j below the diagonal to discover a non­

zero pivot before performing the elimination step. This adds an additional 

number of comparison steps equal to 
N-1 
V 
L 
j-i 

jlog(N-j)] = Nn - 2 N - n + 1, n = [log(N-1)| . 

Thus the effort expended in partial pivoting can overwhelm the arithmetic 

effort, in contrast to the single processor case where pivoting does not 

radically change the running time. 

Sameh and Kuck [75b] describe one way to overcome the pivoting problem. 

Using the square-root-free Givens transformations (Gentleman [73]), a di­

agonal matrix D, an upper triangular matrix R and an orthogonal matrix Q, 

1/2 
such that QA = D R, can be obtained in 8N-7 steps (only two of them 

2 
involving square roots) with N processors. Q is computed implicitly as a 



-35-

product of simpler matrices. For notational purposes we use a procedure 

Rotate(i,j) which applies a root-free Givens transformation to rows i-1 

and i in order to eliminate a.., where 1 ^ j < i ^ N. Rotate takes care 

of managing the scale factors in D, and the rows are interchanged if 

necessary for stability. The triangularization algorithm is thus 

for k » 1 step 1 until N-1 do 

be^in Rotate(N-2p,k-p) , (0 <> p <: min(k-1 ,N-k-1)); 

Rotate(N-2p-1 ,k-p) , (0 £ p <> min(k-l ,N-k-2)) 
end , 

Once A has been reduced to triangular form, any of the methods of Section 4.b 

can be used to solve the resulting triangular system. 

If only N processors are available (cf. Pease [67]) the Gauss-Jordan 
2 

algorithm without pivoting uses N + 2NM + M arithmetic steps. Partial 

pivoting is not costly since O(NlogN) comparison steps still suffice. 
Algorithm G-J (N processors): 

for j • 1 step 1 until N do 

begin t ± - a
i j / a

j j * O * i * N, i + j); 

for k - j+1 step 1 until N-+M do 

aik - aik ~ V j k ' (1 ^ i ^ N, i ^ j) 
end; 

for j - N+1 step 1 until N+M do 

Xij " aij^ aii > 0 * 1 * N ) # 



-36-

Th is is, of course, only one of many possibilities. It has the advan­

tage that the only data movements needed are to spread a column across the 

processors and to broadcast one number to all processors. The algorithm 

decomposition modification to P processors is easily done. 

For a pipeline computer it is better to use Gaussian elimination, as 

this minimizes the number of arithmetics when we are limited to operations 

on whole rows and columns (Kluyuev and Kokovkin-Shcherbak [65]). The method 

due to Strassen [69], which uses asymptotically fewer operations by perform­

ing block elimination, requires some complicated addressing schemes that may 

be quite difficult to implement. Because of the restrictive definition of 

vector operands on the STAR, it is necessary to provide two sets of Gauss 

elimination routines, depending on whether A is stored by rows or columns 
T 

(Lambiotte [75]). In addition, the symmetric factorization A = IDL when 

A is positive definite requires both routines, for if L is stored by rows 
T 

(columns) then L is stored by columns (rows). 

The preceding elimination algorithms are familiar ones from sequential 

computation, and we have really only given parallel implementations of them. 

Pease [74] recently presented a new algorithm for the solution of a general 
2 

system (cf. Pease [69]). Although the method would require 0(N logN) steps 
2 

using N processors (as opposed to Gauss-Jordan1s 0(N ) steps), it is inter­

esting in that any parallel computer with an interprocessor communication 

network designed for the FFT can implement it reasonably well. In particular, 

special purpose FFT devices could be modified to support the algorithm, and 

it is expected that this will be the primary application; it is not recom­

mended for other situations. 



-37-

We give a simple recursive definition of Pease's method, though this 

does not illuminate relations with the FFT. Like other elimination algor­

ithms it works by premultiplying the augmented matrix. Suppose for simplicity 
that N « 2 n 

Algorithm P(n): 

if n • 0 then x «- A *v else  

begin 

let A «( ), x 

n— 1 n 1 where A^ and are 2 x 2 " ; 

simultaneously solve A^(F^9g^) » (E^fv^) 

and A 2(F 2,g 2) - (E 2 >v 2) 

by Algorithm P(n-l); 

simultaneously solve (I-F 1F 2) x 1 - ( g ^ F ^ ) , 

and (I-FJF^XJ = (gj-Fjgj) 
by Algorithm P(n-l) 

end. 

In the first application of A l g o r i t h m P ( n . 1 ) f A j £ . y s transformed into 

I F,\/x, 

F2 v U'W 
This system is premultiplied by 

1 

• F 2 I 

to form 



-38-

o r - *2^K2J \ g 2 - F 2 g l 

The last step is simply the cyclic reduction method originally suggested for 

implicit use with large scale iterative methods (Varga [62]). The numerical 

stability of Algorithm P has not yet been discussed thoroughly; a manageable 

pivoting scheme must be given with a corresponding error analysis. 

4.b. Triangular Systems 

We have seen that the solution of dense systems requires the ability 

to solve more specialized systems quickly. Suppose now that A is a nonsingular 

triangular matrix; without loss of generality we can assume A is lower tri­

angular. It is easily verified that the straightforward sequential solution 
2 

of Ax 3 v requires N arithmetic operations. The parallel solution of Ax = v 
was first considered by Heller [74a], who showed that x can be comput-

2 4 ed in O(log N) steps with 0(N ) processors. The original method was rather 

complicated, involving the evaluation of lower Hessenberg determinants by 

recursive doubling, and the result has since been improved by reducing the 
3 

processor requirement to 0(N ) . It is of some interest to consider three dis­

tinct but similar algorithms for this problem. These algorithms succeed by 

use of recursion and doubling, in that the number of completed computations 

(i.e., components of x) doubles at each stage. 

The first method (Chen and Kuck [75]), is a variation of Gauss-Jordan 

elimination, and might be called elimination by diagonals. "Row i" again 

refers to a row of the augmented matrix, where for notational simplicity we 

set a. . = 0 if i <: 0 or j £ 0. 



-39-

Algorithm C-K: 

ica« 

rows. 

A. Let 
THE SECOND „ETH„D (BORODIN AND MUNRO [75]) N.ES PARTITIONING TO INVERT 

WHERE A, AND a, ARE LOWER TRIANGNIAR AND AJ IS M X .. SO THAT 

row i «- (row i)/a i i, (1 <: i <. N) ; 

for j = 1 step j until N-1 do 

2j-l 
row i «- row i - ) a , row i-k, (j+1 <, i <. N) ; 

k=j 

2 

Using less than N (N+l)/2 processors, for each j we can do all the multipli 

tions in the loop in parallel, followed by the log-sum addition of j+1 

The time is thus, for n • JLOGNJ , 
n-1 

1 + ^ 1 + flog(2k+l)L = (n2+3n+2)/2 = 0(log 2N). 
k«0 ' 

By a closer analysis of the number of processors needed when only essential 

operations are performed, N 3/68 + 0(N 2) processors suffice. Chen [75] shows 
2 

that if A is a Toeplitz matrix (A - ) then N /4 processors are suffici-
2 

ent. It is also seen that AX • B can be solved in O(log N) steps with no 
2 

more than N (N4W) processors. 



-40-

The algorithm proceeds in two stages, first simultaneously inverting A ] and 

A and solving A Y = A , and then multiplying Y and A ~ \ The total time is 

t(0 = 1, 

t(N) = min (max(t(m) ,t(N-m)) + 1 + ["logml ) 
1 ̂  XT ' » 1^n<N 

using O(N^) processors. The proper choice for m is [N/2~| ; thus t(2 n) = (n2+n)/2 
2 

and in general t(N) = 0(log N). 
A third method was obtained independently by Heller [74b] and Orcutt [74]. 

Supposing that A has a unit diagonal, let A = I - L, where L is strictly lower 
N 

triangular. Since L 8 3 0 

x = A - 1 v - (I + L + L 2 + ... + L N" 1)v 
2n-1 2 n ~ 2 

= (I + L ) (I + L ) ... (I + L)v 

where again n a flogNJ . x is computed by repeatedly squaring L and accumulat­

ing matrix-vector products according to the above formula. The time required 
2 2 is at most n + n steps using at most N (N+l) processors. 

This technique also provides a simple algorithm for linear recurrences. 

Suppose that a „ • 0 for i-j > m, so the system Ax = v represents an m*"*1 

order linear recurrence with initial values. We assume that m « N. Parti­

tion A into m X m blocks A ± j f 1 * i, J * n - [N/HI] may be smaller than 

m X m ) ; there are only two block diagonals that are nonzero, namely A ± ± and 

A . , • Now consider i,i-1 



-41-

A* = diag(Aj]f...,A^)A, 

* -1 -1 v • diag(A,,,..../ y 

nn diag(A1 ,..,A^)v f 

and note that A. . = I A. . - = A..A. . Using 2m N processors, A and n ' li i,i-1 * 2 v may be computed in O(log m) steps since A., is triangular. Moreover, 

powers of L • I - A all have a single block diagonal. To compute L 

from L requires the parallel computation of n-2 m x m matrix products, 

which may be done in 1 + (lognj steps. Collecting these results, x (the 

first N terms of the recurrence) may be computed in O(logm logN) steps. 
2 

It i s not hard to show that 0(m logN) steps suffice with N processors. 
We next apply algorithm and problem decomposition in order to reduce 

3 

the processor requirements for triangular systems below N and still obtain 

fast algorithms. These results are due to Hyafil and Kung [74b]; similar 

ideas appear in Chen [75]. 
First consider the following scheme to solve Ax « v. 

X i *~ V ( 1 * 1 * N ) ;  

for j « 1 step 1 until N do 

begin x. «- x./a. .; 
— J J J J 

X i X i " a i j V * 1 * N ) 

end. 

Using P <; N processors this require s 
N 

I 1 + [<N-J)/p| < N 2/P + 2N 
J-l 

steps. Using vector instructions on a pipeline machine, the arithmetic cost 
would be 



-42-

(T, + T )N 2 / 2 + (t. - T V2 - T /2 + a, + a )N. + x — -F X + X 

These are both acceptable speedups, since the scalar time would be 

(t + + t x)N 2/2 + (t^ - tjl - t x/2)N. 

Now suppose that P = N processors are available, 1 < r < 3. Let 

m = [P^ 3| and partition A into m X m blocks A , 1 £ i, j <, n = fN/RNL 
(A may be smaller than m X m) . Similarly partition x and v, and apply 
nn 

the following algorithm: 

x. «- v., (1 £ i ^ n) ; 
1 1 

for j =* 1 step 1 until n do 

begin x^ «-
 AJJXJ' 

x. «- x. - A. .x., (j+1 <> i <> n) 
1 1 IJ J 

end. 

-1 3 The computation of A j j x j *-s done using the fast algorithm, since m processors 

are available. The total time required is, for k 6 5 Jlogm] , 

n 

I (k 2+3k+2)/2 4- [(n-j)/m](k+2) 

j-1 

= 0(nk 2 + n 2k/m) - 0 ( N ] ~ r / 3 l o g 2 N + N 2 " r l o g N ) . 

If 3/2 £ r < 3 the first term dominates, and if 1 < r < 3/2 the second term 

dominates. Thus there is a tradeoff between the use of the fast algorithm 

and the cost of combining the results of its application. 



-43-

4.c. Tridiagonal Systems 

Stone [73a] first discussed the solution of a tridiagonal system on a 

parallel computer, relating the LDU decomposition of A to first and second 

order linear recurrences. The fact that these recurrences are relevant was 

not new, but Stone developed recursive doubling algorithms to compute the 

necessary terms in O(logN) steps with N processors. Thus it is possible to 

solve tridiagonal systems in nearly minimal time, since at least m(N,4N-2) 

(about logN) steps are necessary. 

For notational convenience we write a tridiagonal matrix as a triple of 
vectors, so 

A = 

1 

N-1 'N-1 

CJ.BJ.C) 

where we assume S ] = c N = 0. The IDU factorization expre sses 

A = LDU = (1 l,0)(0,d .,0)(0,l,n) 
J J J 

and it is easily verified that 

u. 

J 
V d j - T 2 * j * N' 
cj/ dj» 1 ^ j £ N. 



-44-

Ax 8 8 v is then solved by solving Lw = v and Ux = D 'w. The bidiagonal sys­

tems represent first order linear recurrences, and D V is computable in 

a single parallel division step using N processors. Since L and U are com­

pletely determined by D, all that remains is a fast method of computing D. 

This is found by defining p A « 1, p- = b,, p. = b.p. - - a c. np. 0 and 
0 H V *j J J-1 j J-1 j-2 

observing that d_. = p /p y Thus the parallel computation of a second 

order recurrence completes the algorithm. 

Unfortunately this method will fail if pivoting is necessary in the 

sequential factorization. One way to avoid this problem is to consider the 

QR factorization of A, where Q is formed from the product of N-1 Givens 

rotations and R is upper triangular with r_ = 0 if j-i > 2. Sameh and Kuck 

[75b] show that by use of linear recurrences Q and R may be computed in 

O(logN) steps with N processors, so A may be solved in O(logN) steps. We 

delay the presentation of the details of this method until Section 5, where 

the QR algorithm for the eigenvalues of a symmetric matrix is discussed. 

The methods of odd-even elimination and reduction are another class of 

parallel algorithms with some quite different characteristics. We first 

discuss odd-even elimination. In keeping with previous algorithms, we de­

scribe the method in terms of row operations on the augmented matrix, al­

though a computer implementation would be in terms of the vectors describ­

ing A and v. It is essential that pivoting not be used, so there are some 

restrictions on the application of the algorithm. For notational conveni­

ence, let a ^ • 6 for indices outside the ranges 1 ^ i ^ N, 1 ^ j ^ N+1. 



-45-

Algorithm E: 

A . > I + K ( R O W I " * ) / A I + K ) I + K , (1 * 1 * N ) ; 

X i - ai,N +l/ aii' ° * N ) -

This is not the only possible row operation, but others differ only by 

scaling. The row elimination preserves the fact that A has only three di­

agonals, but as the algorithm progresses the diagonals move further and 

further apart, until only a diagonal matrix remains. Thus each execution of 

the loop body requires 13 steps with N processors, for a total of O(logN) 

steps to solve Ax = v. In addition, it may be shown that if A is strictly 

diagonally dominant then the two off-diagonals decrease in magnitude rela­

tive to the main diagonal, and the rate of decrease is quadratic (Stone [75a], 

Jordan [74], Heller [74c]). If an approximate solution is desired it is 

therefore possible to leave the loop before it is completed and use the 

computed x as the approximation. 

Algorithm E has an important variation, which was actually the original 

formulation (Hockney [65]), namely odd-even (or cyclic) reduction. It is 

called reduction because it implicitly generates a sequence of tridiagonal 

systems A ^ x ^ « each half the size of the previous system and formed 

by eliminating the odd-indexed variables and saving the even-indexed variables. 

x 1 is then obtained by back substituting x ^ i + 1 \ finally arriving at 

which is the solution to the original problem. For simplicity, assume that 

N - 2 n-l, n ^ 1, and let x Q - x N + 1 = 0. 

for k - 1 step k until N-1 do 

ROW i - ROW i - A . ^ C R O W I - 1 0 / a ^ £ _ k 



-46-

Algorithm R: 

The reduction algorithm has several advantages over the elimination 

algorithm, despite the fact that it is slower when N processors are avail­

able. The first observation is that it is equivalent to Gaussian elimina-
T 

tion (in the usual sequential sense, without pivoting) applied to PAP , P 

a particular permutation matrix. In fact, this is just the nested dissec­

tion ordering (Widlund [72], Birkhoff and George [73]). The concept of 

reordering a system to increase the inherent parallelism of a sequential 

algorithm is a very important one, as will be seen in later examples. The 

second observation is that 0(N) arithmetic operations are performed, as op­

posed to O(NlogN) operations in odd-even elimination and in the recurrence 

modifications of the LU and QR factorizations. For large values of N, the 

reduction algorithm is therefore preferred for implementation on pipeline 

and parallel computers with fixed parallelism, where the operation count 

is as important as the step count. In the terminology of Section 2.b, odd-

even reduction is asymptotically consistent, while the other methods are not. 

Program timings for the CDC STAR are given by Lambiotte and Voigt [75], 

comparing odd-even reduction, sequential Gaussian elimination, and a 

for k = 1 step k until N do 

row i <- row i - a. . . (row i-k)/a. . 
1 , 1-k i-k,i-k 

" ai,i4-k ( r° W i + k ) / a i + k , i + k ' 
(i = 2k, 4k, 2 n-2k); 

for k = 2 n " 1 step -k/2 until 1 do 

X i ~ ( a i , N + 1 " ai,i-k Xi-k " ai,i"fkXi-Hc)/aii' 
(i - k, 3k, 5k, 2 n-k). 



-47-

consistent variation of Stone's method; Stone [75a] gives a different con­

sistent variation. For N smaller than about 100 the sequential algorithm 

is best, as the effect of vector startups is felt by the other two methods. 

For N larger than about 100,odd-even reduction is indeed the best method; 
for very large N (about 2^) it requires about 14$ of the computation time 

for sequential Gaussian elimination, and about 204 of the time for the con­

sistent recursive doubling algorithm. It is also possible to create a poly-

algorithm by using odd-even reduction until a reduced system is obtained 

where the sequential method is faster. 

If an approximate solution is satisfactory and previous computations 

yield good initial approximations an iterative method may be indicated. 

One obvious technique is to reorder the equations according to the red-black 

scheme, so 

where and A^ are bidiagonal and and are diagonal. Because of thi 

decoupling, the SOR-type methods have considerable inherent parallelism, 

and are easily adapted to parallel computation (Lambiotte and Voigt [75]). 

A second technique, proposed by Traub [73] and further developed hy 

Heller, Stevenson and Traub [74], changes the sequential LDU factorization 

into a three-stage iteration. If 

A = A L + A D + A U 
A L = (a., 0, 0), 

A D - (0, b . , 0), 

(0, 0, C j ) , 



-48-

then D = A n - A D - 1A so a natural iteration is = A_ - A T (D^ i - 1^) _ 1 A . 

•L* IJ U D LI U 

Once this iteration has converged, L and U are computed and Lw = v and 

Ux = D ^w are solved using the Jacobi iteration, which is inherently parallel, 

It may be shown that all three iterations converge linearly under weak condi­

tions on A. Because three stages are used and because inaccuracies in one 

stage limit the attainable accuracy in later stages it is important to care­

fully choose the number of iterations used. However, unlike SOR no optimal 

parameters need to be calculated, so termination is the only difficult issue. 

It is possible to alter the three iterations as given in order to im­

prove the anticipated performance on real computers. Suppose first that 

division is much more expensive than addition or multiplication. On the 

Illiac IV, t +
 8 8 7 , t = 9, t = 56 cycles (Burroughs [72]). To avoid divi­sion, compute N = D" instead of D and use one step of the Newton iteration 

for z \ The new iteration is thus 

N ( I ) = N ( i" 1 )(2I - (AD - A / 1 " 1 ^ ^ 1 - 1 ) ) 

Here N^ 1 ^ is taken to be an approximation to (A - A N^1""1 ̂ A ) - 1 . Conver-

gence of the N iteration is slightly slower than the D iteration initially, 

but improves as more accuracy is obtained. This variation may be useful if 

t. > 3t + t , as is the case for Illiac IV. ~ x + 
For pipeline computers a different approach is suggested. If M itera­

tions are used in the first stage, which is 

d®«- "initial value", (1 £ j <; N) ; 

for i = 1 step 1 until "termination" do 
4 J ( 1 ) - BJ - V J V*";"- <2 ̂  - »> 



I 
-49-

the arithmetic cost is M((TI. + T + ) N + (o^ + A+)) , not counting the cost of 
precomputing ~ aj Cj y N o w consider splitting the loop: 

d^ 0 ) - "initial value", (1 <. j <; N ) ; 

for i = 1 step 1 until "termination" do 

begin d j 1 * - b . - Y j - I ^ j - ^ ' (1 ^ j £ N , j even); 

d 

end. 

JU) - BJ " VJ-l^J-l* ̂  ̂  J ̂ N , J odd) 

The cost per iteration is now (TJ. + T +)N + 2 (ct. + tf+) , but only M/2 iterations 

are required because of the use of more recent information. Thus the total 

arithmetic cost is M((T^. + T +)N/2 + (Ô  + CT+)) and the iteration has been 
sped up by nearly a factor of two. The same splitting technique may be ap­

plied to the second and third stages, and this corresponds exactly to the 

Gauss-Seidel iteration with the red-black ordering. Numerical experiments 

using the STAR timing information show that the "accelerated" three stage 

iteration will be faster than the red-black optimal SOR methods. It is also pos­

sible to define more general splittings which could give further improvements. 

4,d, Block Tridiagonal and Band Systems 

We now discuss some extensions of the parallel algorithms for tridi­

agonal matrices. A is a band matrix if â _. « 0 when |i-j| > m for some m; 

if m • 1 then A is tridiagonal. A is a block tridiagonal matrix if it can 

be partitioned as ( A
ij) where A ^ is square and A _ = 0 if | i-j | > 1. We 



-50-

assume for simplicity that all the blocks are the same size. Any band 

matrix is also a block tridiagonal matrix, as is seen by taking mx m 

blocks, and any block tridiagonal matrix is clearly also a band matrix. 

Thus for theoretical purposes we can consider only one of the two cases, 

but for practical purposes it is more efficient to distinguish between 

them. 

Suppose that A is block tridiagonal with n x n blocks. As with the 

tridiagonal case we write 

\ 
A = 

1 w l 
3 2 b 2 c2 

V 
aN-1 bN-1 CN-1 

3 N b N 

(a.,b.,c.), 

where b^ C R n X n . x and v may be partitioned similarly. The study of block 

tridiagonal systems is made easier by the fact that elimination methods 

used for tridiagonal systems may be generalized to block elimination methods, 

As a rule, if the blocks are not mutually commutative then the diagonal 

blocks must be inverted, and this can create very serious storage problems 

when the blocks are originally large and sparse. 

Block elimination adds another kind of inherent parallelism by allowing 

the parallel solution of block systems. For example, the block LU factori­

zation 

d i - b r g i - V 
for j 8 3 2 step 1 until N (to 

d. *- b. - a.u. «- ,7 

J J J j - i j j • j f j . , 



-51-

end; 
,-1 

X N *" N 8N' 
for j = N-1 step -1 until 1 do 

x. «- f. - u.x 
J J J J + 1 

can use Gauss-Jordan elimination to compute u^ ^ and f ̂ .., as well as fast 

matrix multiplication in other computations. O(nN) steps are then used if 
2 

n processors are available. It may be observed, however, that the computa­

tion of the d sequence cannot be transferred into a second order linear 

matrix recurrence without assuming that certain blocks commute. If, for 

example, a^ is nonsingular, 2 ^ j £ N, then we can work with the new system 

A x « v , where we take a = I and a* = (I,a. b.,a. c . ) , v* • (a, v.). The 
1 J J J J J J 

transformation to a recurrence will now succeed, and an 0(n) + O(logn logN) 

algorithm can be formally defined. 

The odd-even algorithms are also easily extended to block tridiagonal 

systems. Heller [74c] discusses thi s in some detail, and shows that if A is 

strictly diagonally dominant then the norms of the off-diagonal blocks rela­

tive to the diagonal blocks decrease quadratically, just as in the tridiagonal 

case. An important observation for the block case is that the additional 

storage required by odd-even reduction is about 2N blocks, while A itself 

requires 3N blocks. 
As an extension of the algorithms for tridiagonal matrices and m*"*1 

order linear recurrences, Hyafil and Kung [75] describe an algorithm for 
2 

0(m N) processors requiring 0(m) + O(logm logN) steps for a system of band­

width m. Tewarson [68] describes another method using a matrix recurrence, 

and this also shows that banded systems can be solved in this time. Vector 



-52-

algorithms for the root-free band Cholesky, symmetric band Gaussian elimina­

tion and profile elimination methods are discussed by Lambiotte [75]. 

4.e. Systems Arising from Differential Equations 

The area of differential equations has exerted a great influence on 

parallel computation, for it provides a range of difficult and important 

problems. Because of these special applications, parallel computers have 

been designed to support in hardware some of the operations naturally occur-

ing in the solution of differential equations. As examples, the interpro-

cessor connections on the Illiac IV are precisely those of the five point 

finite-difference molecule used for two dimensional elliptic equations, and 

the CDC STAR provides vector instructions for differencing and averaging. 

Although our present emphasis is on the treatment of discrete systems 

derived from continuous systems, the parallel solution of differential equa­

tions must be taken as a total package. It is essential that the discretiza­

tion be chosen with parallelism in mind, so that the linear system may be 

generated and solved efficiently. While many standard discretization tech­

niques do yield inherent parallelism in sequential algorithms, this can be 

greatly enhanced by making some basic alterations, mostly with regard to 

boundary conditions. One of the important and restrictive characteristics 

of SIMD and pipeline computers is the necessity of processing data in a 

homogeneous manner. Boundary conditions form an exceptional case in a dis­

cretization, and if not handled correctly will also form an exceptional case 

in a program. The probable effect of this would be to break up the flow of 

parallel operations with lengthy segments of sequential code. It is not 

our purpose to discuss this topic in much more detail, so we assume that 



-53-

the discretization is given and will look for parallel algorithms based on 

properties of the linear system Ax « v. 

Equations in one space dimension generally give rise to banded matrices 

with small bandwidth, and these problems have already been discussed. Two-

dimensional elliptic equations and systems of one dimensional equations 

often yield block tridiagonal linear systems; the blocks may be large and 

sparse or small and dense. If the underlying geometry is, for instance, a 

rectangle, the system will have a very regular pattern of nonzero elements, 

and it is the existence of this pattern that makes the parallel solution 

feasible. General sparse matrices are much more difficult to handle in 

parallel, although hardware facilities such as the STAR's sparse vector in­

structions are designed to aid in this effort. We will return to this later. 

It is important to be able to solve some systems very well; Poiseonfs 

equation on a rectangle is a prime example (Buzbee [73]). Assume a regular 

N x M grid with the usual five point discretization^ Dirichlet boundary 

conditions, the nodes numbered by rows and from right to left within a row. 

The system Ax = v is then block tridiagonal with constant block diagonals; 

that is, A « (-1, B, -I), B - (-1,4,-1). The eigenvalues and eigenvectors 

of the diagonal blocks are known analytically, and in fact the matrix of 

eigenvectors represents a discrete sine transformation. Using parallel FFT 

techniques, the transformation may be applied simultaneously to each row of 

the grid in time O(logN). The original system is now decoupled into N in­

dependent M x M tridiagonal systems, one for each column of the grid. Thes 

may be solved in O(logM) steps using any of the methods already described. 

An inverse sine transformation is then applied to recover the solution. The 

ise 



-54-

net result is that using O(NM) processors the (NM) X (NM) system may be 

solved in O(logNM) steps. The same decoupling technique may be applied 

to separable equations of the form 

on a rectangle, and to the biharmonic equation (Sameh, Chen and Kuck [74]). 

The biharmonic is a bit more difficult to handle, but with an N X N grid 
3 

it may be solved in 0(N) steps using 0(N ) processors, or in O(NlogN) steps 
2 

with 0(N ) processors. 

The odd-even reduction algorithm is another attractive method for 

Poisson's equation (Buzbee, Golub and Nielson [70], Ericksen [72]), although 

because of excessive storage requirements it is not feasible to use the 

block version of Algorithm R. Instead, assuming there are 2 n-1 diagonal 

blocks in A, the sequence of reduced block tridiagonal systems is 

(-1, B < » , - I ) x < » = v ( » , 

each with 2 n 1-1 diagonal blocks, and 

B<*> = ( B ^ V - 21, B<°> - B. 

For numerical stability is represented by vectors p ^ and q ^ \ where 

v ( 1 ) = (0, B ( i ) , 0)P<« +Q ( 1 ). 
The inherent parallelism earlier demonstrated for odd-even reduction is still 

present. The computation of p ^ and requires the solution of systems 

involving B ^ , but B ^ is a polynomial in B of degree 2*, and this polynomial 



-55-

can be factored analytically into its linear terms. Thus can be 

represented by the polynomial itself, does not need to be stored directly, 

and B ^ " 1 can be computed by solving 2 1 tridiagonal systems. Sweet [74] 

has extended the method to cover cases other than 2n-1 diagonal blocks, 

and Swarztrauber [74] gives another extension for separable equations 

using the storage-efficient polynomial representation. 

For the Poisson equation we have used finite differences and a partic­

ular ordering of the nodes of the grid. A more general approach for square 

grids (N x N) using a different ordering is given by Liu [74]. The only 

assumption necessary is that A is symmetric positive definite and that a ^ 

can be nonzero only if nodes x^ and x^ are corners of the same elementary 

square. This admits a large class of elliptic equations and finite differ­

ence or finite element methods; in the rowwise ordering A would be block 

tridiagonal. Liu shows that the nested dissection ordering (George [73], 
T 

Birkhoff and George [73]) coupled with the LDL decomposition allows the 
2 3 solution of Ax = v in 0(N) steps using 0(N ) processors. We note that 0(N ) 

multiplications are required to form the decomposition sequentially (Hoffman, 

Martin and Rose [73]). Nested dissection partitions the square grid into 

five disjoint subsets of grid points such that when A is reordered to group 

these subsets together we have 

T 
PAP = 

C3 C 4 



-56-

The first four subsets are square, so the dissection may be repeated recur­

sively; the fifth is "+" shaped and separates the first four from each other. 

It is clear that the inherent parallelism of the sequential elimination has 

been greatly increased by use of this ordering. To reduce the probability 

of memory interference without increasing the solution time, Liu suggests a 

new ordering, called doubly nested dissection. Like nested dissection it 

recursively uses f l+ f l shaped separating sets, but the crosses are now double 

width, providing more complete independence of the square subsets. 

Lambiotte [75] reports on the implementation of nested dissection on 

the CDC STAR. By taking advantage of the ability to predict the number and 
T 

location of nonzeros per row of L it is possible to obtain an algorithm 
2 3 consistent in both storage (0(N logN) words) and time (0(N )). However, the 

vectorization is complicated enough so that the standard band methods are 

expected to be more efficient (both in terms of runtime and programming 

costs) for moderate values of N. 

From a theoretical standpoint direct methods are sufficient, and it 

would appear that there is no need for iterative methods. However, from a 

practical standpoint there will still be some cases, such as irregular domains, 

nonseparable elliptic equations and three-dimensional problems, where an itera­

tive solution will be attractive. In addition, many iterative methods for 

linear systems can be used to define iterative methods for nonlinear systems 

(Ortega and Rheinboldt [70]), so we can also learn something about the paral­

lel solution of these more difficult problems. 

A large class of iterations is defined by a splitting of the matrix A 

(Varga [62]). Two matrices A^ and are chosen such that A • A^ - A^ and 

systems involving A^ may be solved "easily". Given an estimate x ^ , improved 



-57-

estimates are generated by the rule A ^ 1 * 1 ^ = A 2 x ^ + v. A number of 

techniques may be used to accelerate convergence of the basic method, but 

the success of the iteration still depends crucially on the proper choice 

of the structure of A^ # 

One approach is to let A^ be any of the special forms already discussed. 

In the case of nonseparable elliptic equations a good choice for A^ is a 

close relative of the Poisson matrix (Concus and Golub [73]). Of course, 

the simplest choice is A^ = diag(A), yielding the Jacobi iteration, but 

convergence is generally so slow that the method is not competitive. Gilmore 

[71] suggests use of Jacobi overrelaxation with an associative processor, but 

slow convergence is again a detracting factor, as well as the fact that for 

a consistently ordered matrix the optimal relaxation factor is uo = 1. 

A second approach looks for efficient implementations of standard sequen­

tial iterations. To illustrate, suppose we have a two-dimensional elliptic 

equation and an N x N grid with a five point finite difference approximation. 

It can be observed that a point SOR method with the rowwise ordering has es­

sentially no inherent parallelism. By choosing a different ordering of the 

nodes this situation can be greatly improved without sacrificing the rate of 

convergence. The basic schemes are the red-black ordering, the diagonal 

ordering and subdomain partitioning. These ideas have appeared in many inde­

pendent publications, with several minor variations, so it is impossible to 

give all credits, but Karp, Miller and Winograd [67] and Morice [72] are 

good sources. 

The red-black ordering (or any other 2-cyclic ordering (Varga [62])) 

enables us to write 



-58-

and diagonal, so the SOR methods may be described wholely in terms of 

vector operations. In fact, these vectors have average length N^/2, which 

is an attractive feature for pipeline computers. The diagonal ordering de­

composes the grid as 2N-1 diagonals, creating an independence of computa­

tions that allows all the nodes of a diagonal to be updated simultaneously. 

The subdomain approach is suitable for a parallel computer with a small 

number of processors: each processor is assigned to a group of points, 

which it updates sequentially. 

These methods all use an ordering and partitioning of A such that the 

smaller systems arising in block SOR are actually diagonal. Of course, 

the natural ordering could be used with line SOR, where only tridiagonal 

systems need to be solved. The alternating direction implicit methods sim­

ilarly require only the solution of tridiagonal systems. The first half 

step of the iteration simultaneously solves a tridiagonal system for each 

row of the grid, and the second half step does the same for each column. 

Lambiotte [75] presents a STAR implementation of ADI for Poisson's equation, 

in which the grid is stored by columns, the row systems are solved by simul­

taneous execution of the usual sequential algorithm, and the column systems 
2 2 

are solved as one N x N tridiagonal system using odd-even reduction. 

Hayes [74] reports on some tests conducted on the ASC to compare the 

standard iterative schemes (not including AD I) for the solution of Laplace's 

equation on a unit square. For mesh size h 8 3 l/80 (N=379) the best method is 

the cyclic Chebyshev semi-iterative scheme, which is essentially SOR in the red-



-59-

black ordering but with better parameters. It is interesting to note, 

however, that the symmetric SOR semi-iterative method (Young [72]) is the 

closest competitor. This method uses the natural rowwise ordering and the 

bulk of the computation has essentially no inherent parallelism, but it is 
-1/2 

still a good method because it converges so quickly (0(h ) iterations 

vs. 0(h" 1) iterations for SOR and CCSI). Lambiotte [75] shows that it is 

advantageous to consider SSOR-SI based on the diagonal ordering. The good 

rate of convergence is preserved, and the diagonal ordering allows the use 

of vector instructions. Although the vectors are only of length N, as op-
2 

posed to N j2 with the red-black ordering, for large values of N this becomes 

less important than the convergence rate. 

To close this subsection, we consider some iterative methods for paral­

lel computers with a small number of asynchronous parallel processors. The 

chaotic relaxation methods, originally developed for the iterative solution 

of linear systems (Chazan and Miranker [69], Donelly [71]) and now extended 

to nonlinear systems (Robert, Charnay and Musy [75]), take advantage of 

asynchronous computation by randomly relaxing components in parallel. The 

current values of the solution are stored in a common memory, and the itera­

tion is terminated when some condition is met; e.g., one processor is given 

the task of checking for convergence. There must be some way of guarantee­

ing that, if the parallel program were allowed to run forever, each component 

would be updated infinitely often, for otherwise convergence could not occur. 

Because synchronization is not part of the algorithm, it is expected that 

programming will be considerably easier, especially since memory access con­

flicts can be resolved by the computer system itself, and not by the chaotic 



-60-

relaxation programs. Chazan and Miranker [69] show that convergence occurs 

i f p ( J B | ) < l , B = I - diag(A) "'A, independent of the schedule of computa­

tions; if p(|B|) ^ 1 then there exists a schedule for which convergence 

does not occur, even when all components are updated infinitely often. 

A related class of iterations for the P processor SIMD model was given 

by Robert [70]. The system is partitioned into P x P blocks, and groups of 

components are updated simultaneously and explicitly as in the Jacobi itera­

tion, rather than simultaneously and implicitly as in the usual block itera­

tions. With one processor the method reduces to Gauss-Seidel iteration, and 

with N processors it is the Jacobi iteration. If A is an M-matrix it is 

possible to compare the rates of convergence for different values of P: if 

P.j divides exactly, and M^ and M^ are the iteration matrices for Robert's 

methods, then p(M.j) <. pCM^) < 1. It is possible to show that for a given 

value of P the block Gauss-Seidel iteration is asymptotically faster, so 

Robert's method will be less time consuming if the block systems are dif­

ficult to solve. 

4.f. General Sparse Matrices 

At the 1968 IBM Sparse Matrix Conference the hope was expressed that 

parallel machines would meet the special needs of this area (Wolfe [68]). 

The sparse vector instructions on the CDC STAR, for example, were designed 

for packed storage and faster execution times. However, as Lambiotte [75] 

shows for nested dissection, the storage costs using sparse vectors can 

actually increase over scalar methods. If we choose to represent the N x N 
2 2 2 i matrix A as a sparse vector of length N , then N bits ( |N /64| words) are 

needed to define the structure of A, regardless of its sparsity. Moreover, 



-61-

since the time for a sparse vector operation depends on the number of bits 

in each order vector, the total running time may be adversely affected. 

While most of the matrix elements are zero, the nonzeros need not be 

distributed in a regular pattern, and this can complicate parallel solu­

tions using the LU decomposition. It may be possible to automatically re­

order the system to create a regular pattern. One criterion is to find a 
T 

permutation P with the following property (Calahan [73]): if A Q = PAP f 

1;). \--I-<v;\. 
then the D ^ , s a r e diagonal, nonsingular, and their average size is as large 

as possible. The permutation used by odd-even reduction has this property. 

The automatic generation of P can be quite difficult; if the sparse sys­

tem is at the inner loop of Newton's method for a nonlinear system then the 

preprocessing cost may be spread across a large number of outer iterations. 

Another basic approach is to consider A only as an operator to be ap­

plied to a vector. It is assumed that there is some highly parallel pro-
T 

cedure to evaluate Az and z A given z; it is not even necessary to generate 

A explicitly. Any sequence of operations on whole vectors (e.g., linear 

combinations and inner products) is naturally parallel so the method of 

conjugate gradients may be used as either a direct or iterative method if A 

is positive definite (Palmer [74], Reid [72]). If A is symmetric but in­

definite the operator approach can also be used to derive direct methods 

related to the Lanczos tridiagonalization (Paige and Saunders [75]). If A 

is unsymmetric then an orthogonal bidiagonalization of A can be found with 



-62-

reasonable economy (Cline [74]). As this decomposition proceeds, minimal 

residual approximations can be generated using current information. At 

present these methods appear to be the most favorable for synchronous paral­

lelism; for asynchronous parallelism the chaotic relaxation schemes are the 

natural approach. 



-63-

5. EIGENVALUES 

In this section we consider a rather different problem of linear algebra 

Unlike the solution of a linear system, where the exact answer can be pro­

duced in a finite number of steps, the exact calculation of eigenvalues is 

an infinite process. In actual computation the process is terminated at 

some point. One fundamental technique is to construct a sequence of matrices 

A^, all similar to A and converging to a matrix T from which the eigenvalues 

are more easily obtained. We address only the finite problem of generating 

the next matrix in the sequence. A second technique is to convert A into a 

form where the characteristic polynomial f(\) « det(A-XI) ia easily evaluat­

ed, and to approximate the zeros of f by iteration or bisection. If only 

the largest eigenvalues and corresponding eigenvectors are desired, varia­

tions of the power method are directly applicable, as we only need to com­

pute Az, inner products and linear combinations of vectors. However, we 

will not consider this method, or the general problem of computing eigenvec­

tors. 

First, suppose that A is a dense, real symmetric matrix, and let A Q • A. 
T 

In Jacobi1s method A^ + 1 « R^AJR^, where R i is a plane rotation matrix de­

signed to annihilate (for some p < q depending on i) the off-diagonal 

elements a ^ and a ^ ; that is, a ^ + 1 ) - » 0. Each rotation reduces 

the sum of squares of the off-diagonal elements, so A^ converges to a diagonal 

matrix, and the iteration is halted when the sum of squares is sufficiently 

small. The premultiplication R.^ replaces rows p and q with linear combina­

tions of themselves, and the postmultiplication is analagous. Thus we can 

exploit parallelism by using the inherent parallelism of row and column 



-64-

operations, but Sameh [71] (also Kuck and Sameh [71]) shows that further 
T 

improvements can be made. In this parallel variation we take = M^A^M^, 

M 8 3 T.P., P. a permutation matrix and, supposing N = 2n, 
i l i' l 

rp B AlacrfT^ rp( l) 
T « diag(T1 , T 2 , ..., T n 

'cos c o ^ sin cpjĵ  
T ( D ' J 3 

J I (i) (O V-sin tpr ; cos <pj 

Thus n rotations have been overlapped, and N off-diagonal elements can be 

annihilated simultaneously. The permutations ensure that all the off-

diagonal positions will be subjected to annihilation. 

If A is not symmetric, then the same overlapping technique can be ap­

plied to the Jacobi-like algorithm proposed by Eberlein [62]. A parallel 

version is given by Sameh [71] . Here A i + ] « ^^k^ 9 \J± * S ^ P ^ P̂^ and 

T^ as above, and 
S. « diag(S ( i ), S ( i ) , S ( i ) ) , 

^cosh ^ sinh ty^ 

sinh to, cosh to. 

The biorthogonalization algorithm (Hestenes [58]) can also benefit from over­

lapping column operations (Hall [73]). In this method the columns of A are 

repeatedly orthogonalized in pairs so that, in the limit, AW • Q, where W is 
T 2 T orthogonal and Q Q = D is diagonal. A Jacobi sequence for A A is implicitly 

T 

produced, and the singular value decomposition A - USV is found by setting 

U « QD" 1, S - D, V - W. 



-65-

Many methods can be applied more efficiently if the dense matrix A is 

transformed into a simpler form A = QAQ where Q is orthogonal. If A is 

symmetric then A is taken to be symmetric tridiagonal; otherwise A is 

upper Hessenberg. The outer product formulations given by Wilkinson [65] 

(pp. 290-2, 347-9) show the inherent parallelism of the Householder trans­

formations. It must be observed, however, that the effective vector lengths 

decrease at each step, and this may be a disadvantage in some parallel im­

plementations, despite the fact that it is always an advantage in sequential 

computation. 

Now, suppose that A is symmetric and reduced to tridiagonal form. It 

is well known that the characteristic polynomial may be evaluated by a 

second order linear recurrence. Kuck and Sameh [71] suggest using a multiple 

Sturm sequence and bisection algorithm for N processors, evaluating f at N 

points simultaneously and operating with N intervals. Because derivatives 

of f are also easy to evaluate, parallel root finding methods can be used. 

Of course, the algorithms to evaluate second order recurrences in O(logN) 

steps given N processors are applicable. One place where these occur is in 

the LR algorithm: A ^ is obtained by factoring A^ - k,̂ I » L ^ R
i > where 

is unit lower bidiagonal and R^ is upper bidiagonal, and setting 555 R.L^ + 1 

The shift is necessary to accelerate convergence. Explicitly, suppose that 

A. - k.I - ( a j , b j , C j ) * I f 81 " V 8 j " b j * a j c j - / 8 j - V j " 2 ' N ' 
then 

Al+1 " ( a j 8 j / g J - T 8 j + V l C J 8 j + V V 

and convergence is to an upper bidiagonal matrix. As in Stone's method for 

the solution of a tridiagonal system, the g sequence can be computed in 



-66-

O ( L O G N ) S T E P S W I T H N P R O C E S S O R S , A N D T H E R E S T O F T H E C O M P U T A T I O N S A R E E N -

T 

T I R E L Y P A R A L L E L . S I M I L A R R E S U L T S H O L D F O R T H E L L A L G O R I T H M . 

F O R S T A B I L I T Y R E A S O N S I T I S O F T E N P R E F E R A B L E TO U S E T H E Q R A L G O R I T H M . 

- K ^ I I S R E D U C E D TO U P P E R T R I A N G U L A R F O R M B Y N-1 P L A N E R O T A T I O N S , O B ­

T A I N I N G A ^ - K ^ I = Q J R ^ * O R T H O G O N A L A N D R^ U P P E R T R I A N G U L A R . 

I S 

T H E N C O M P U T E D F R O M R^Q^ + K A S I N T H E L R A L G O R I T H M , A L T H O U G H S Y M M E T R Y I S 

P R E S E R V E D A N D C O N V E R G E N C E I S TO A D I A G O N A L M A T R I X . S A M E H A N D K U C K [75a] 

H A V E R E C E N T L Y SHOWN T H A T R E C U R R E N C E T E C H N I Q U E S A R E A L S O A P P L I C A B L E TO T H I S 

M E T H O D . T H E B A S I C S E Q U E N T I A L A L G O R I T H M I S , F O R A . - K . I = ( A . , , B . , A . ) , 

1 1 J-1 J * J 

A i+1 = ( 0 f j - r 

P L - B ] ; C Q - 1; 

F O R J = 1 S T E P 1 U N T I L N-1 DO  

B E G I N R . <- (P^ 
2 2.1/2 

+ A J ; 
J 

C . «- P . / R . ; S . «- A . / R . ; 
J J J J J J 

J+1 J J+1 J J-1 J 

E N D ; 

Q . S . B + C . C . . A . , (1 ^ J <. N-1); 
J J J+1 J J-1 J 

8. - P . C . , + Q . S . + K . , (1 <: J £ N-1); 
J J J-1 J J I 

^N - P N

C N-1 + K I ; 

a. - r j + 1 s , (1 £ J £ N-1); 

« N * ° « 

A S C A N B E S E E N T H E M A J O R B O T T L E N E C K I S T H E S E Q U E N T I A L C O M P U T A T I O N O F T H E R , 

S , C A N D P S E Q U E N C E S . S A M E H A N D K U C K I N T R O D U C E T H E F O L L O W I N G S E Q U E N C E S : 



2 

= 1, w = b,, w.,, - b.,,w. - a.w. - , 
j « 1, N-1, 

2 2 
z Q = 1, = aj zj_-| + wj» J s ^ N* 

2 

By induction it can be shown that w./w. - - p./c. , and z i/z i . = r., so 

the parallel QR step may be expressed as 

compute wj , 0 ^ j <> N; 

compute Z y 0 ^ j ^ N; 
r j " zj/ 2j-1* (1 ^ J ^ N); 
2 .2/2 ... „v 

8 j V r * j * ; 

2 2 2 3. *~ s.b.,. + w.w. '(a. + r.)/z. + k., 

(1 ^ j ^ N-1); 

2 

Thus the QR iteration requires O(logN) steps with N processors. Note that 

the squares of the off-diagonal elements are used, and that only rational 

operations are necessary (cf. Reinsch [71]). Despite possible ill-condi­

tioning of the linear systems implicit in the computation of w^ and Z y 

Sameh and Kuck report that they have been able to obtain good results in 

simulated execution on a sequential computer. 

We now consider the nonsymmetric case, and assume that A has been re­

duced to upper Hessenberg form by similarity transformation. The standard 

sequential method for real matrices is the QR algorithm with double origin 



-68-

shift, which avoids the need for complex arithmetic. The double shift is 
T 

actually performed by using a similarity transform = P^^P^, where P^ 
is a Householder transformation and is upper Hessenberg except for c^^* 

c 5 ^ and c f ^ , which are nonzero. A. _ is then obtained by reducing C. to 41 42 ' i+2 J ° I 

upper Hessenberg form, and we have 

A i + 2 * ^ i V 

( A . - k . l X A . - k . ^ D ^ Q . R . . 

Either plane rotations or Householder transformations may be used in the 

reduction; the latter is preferred in sequential computation since fewer 

multiplications are used. 

Unfortunately, the parallel implementation of the double QR step may 

be adversely affected by some of the properties that make it so attractive 

for sequential computers. Investigations by Kuck and Sameh [71] for the 

Illiac Iv and by Ward [76] for the CDC STAR show that the necessary use of 

short vectors in either the pre- or postmultiplications and in deflation can 

lead to inefficiencies. On the Illiac this is manifested by low processor 

efficiency, and on the STAR by the fact that the time for the double step 
2 

is oN + 0(N), where a depends on the vector startup time a. This is 

clearly not a good situation, and additional work is needed to find better 

parallel implementations. 

As an alternative to the QR algorithm, Ward [76] suggests the use of 

Laguerre iteration with Hymanfs method of evaluating f(\) and its deriva­

tives (Wilkinson [65]). In fact, Hyman's method corresponds to the solu­

tion of an upper triangular linear system, so this method is attractive when 

parallel evaluation of f is used. 



I 

-69-

Acknowledgments. Valuable comments on the manuscript were received from 

H. T. Kung, D. K. Stevenson, J. F, Traub and R. G. Voigt. This work would 

not have been possible without the continued support and encouragement of 

J. F. Traub. 

References 

Babuska [68]. I. Babuska, "Numerical stability in mathematical analysis,11 

IFIP Congress 1968, North-Holland, Amsterdam, 1969, vol. 1, pp. 11-23. 

Baer [73]. J. L. Baer, !,A survey of some theoretical aspects of multipro­
cessing,11 Computing Surveys, vol. 5, 1973, pp. 31-80. 

Barnes et al. [68]. G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. 
Slotnick, R. A. Stoker, "The Illiac IV computer," IEEE Trans, on Comp., 
vol. C-17, 1968, pp. 746-757. 

Birkhoff and George [73]. G. Birkhoff and A. George, "Elimination by nested 
dissection," in Complexity of Sequential and Parallel Numerical Algor­
ithms, J. F. Traub, ed., Academic Press, N. Y., 1973, pp. 221-269. 

Borodin [71]. A. Borodin, "Horner's rule is uniquely optimal," in Theory of 
Machines and Computations, Z. Kohavi and A, Paz, eds., Academic Press, 
N. Y., 1971, pp. 45-58. 

Borodin and Munro [75]. A. Borodin and I. Munro, The Computational Complexity 
of Algebraic and Numeric Problems, American Elsevier, N. Y., 1975. 

Bouknight et al. [72]. W. J. Bouknight, S. A. Denenberg, D. E. Mclntyre, J. M. 
Randall, A. H. Sameh, D. L. Slotnick, "The Illiac IV system," Proc IEEE, 
vol. 60, 1972, pp. 369-388. 

Brent [73]. R. P. Brent, "The parallel evaluation of arithmetic expressions 
in logarithmic time," in Complexity of Sequential and Parallel Numerical 
Algorithms, J. F. Traub, ed., Academic Press, N. Y., 1973, pp. 83-102. 

Brent [74]. R. P. Brent, "The parallel evaluation of general arithmetic ex­
pressions," J. ACM, vol. 21, 1974, pp. 201-206. 

Burroughs [72]. Burroughs Corp., Illiac IV Systems Characteristics and 
Programming Manual, Paoli, Pa., May, 1972. 

Buzbee [73], B. L. Buzbee, "A fast Poisson solver amenable to parallel com­
putation," IEEE Trans, on Comp., vol. C-22, 1973, pp. 793-796. 



-70-

Buzbee, Golub and Nielson [70]. B. L. Buzbee, G. H. Golub, and C. W. 
Nielson, lf0n direct methods for solving Poissonfs equations,11 SIAM J. 
Num. Anal., vol. 7, 1970, pp. 627-656. 

Calahan [73]. D. Calahan, ''Parallel solution of sparse simultaneous linear 
equations," Dept. of Elec. Eng., Univ. of Michigan, Ann Arbor, 1973. 

CDC [74]. Control Data Corporation, CDC STAR-100 Instruction Execution 
Times, preliminary version 2, Arden Hills, Minn., January, 1974. 

Chazan and Miranker [69]. D. Chazan and W. L. Miranker, "Chaotic relaxation," 
Lin. Alg. Appl., vol. 2, 1969, pp. 199-222. 

Chen [75]. S. C. Chen, "Speedup of iterative programs in multiprocessing 
systems," Dissertation, Dept. of Comp. Sci., Univ. of Illinois, Urbana, 
January, 1975. 

Chen and Kuck [75]. S. C. Chen and D. J. Kuck, "Time and parallel processor 
bounds for linear recurrence systems," IEEE Trans, on Comp., vol. C-24, 
1975, pp. 701-717. 

T. C. Chen [75]. T. C. Chen, "Overlap and pipeline processing," in Intro­
duction to Computer Architecture, H. S. Stone, ed,, Science Research 
Associates, Palo Alto, Calif., 1975, pp. 375-431. 

Cline [74]. A. K. Cline, "A Lanczos-type method for the solution of large 
sparse systems of linear equations," contributed paper, Second Langley 
Conf. on Sci. Comp., Virginia Beach, October, 1974. 

Concus and Golub [73]. P. Concus and G. H. Golub, "Use of fast direct 
methods for the efficient numerical solution of nonseparable elliptic 
equations," SIAM J. Num. Anal., vol. 10, 1973, pp. 1103-1120. 

Cooley and Tukey [65]. J. W. Cooley and J. W. Tukey, "An algorithm for the 
machine calculation of complex Fourier series," Math. Comp., vol. 19, 
1965, pp. 297-301. 

Cray [75]. Cray Research, Inc., "Cray-1 Computer," Chippewa Falls, Wis., 1975. 

Csanky [75]. L. Csanky, "Fast parallel matrix inversion algorithms," con­
tributed paper, 16th Ann. Symp. on Foundations of Computer Science 
(SWAT), Berkeley, October, 1975. 

Donelly [71]. J. D. P. Donelly, "Periodic chaotic relaxation," Lin. Alg. 
Appl., vol. 4, 1971, pp. 117-128. 

Eberlein [62]. P. J. Eberlein, "A Jacobi-like method for the automatic com­
putation of eigenvalues and eigenvectors of an arbitrary matrix," J. 
SIAM, vol. 10, 1962, pp. 74-88. 



-71-

Ericksen [72]. J. H. Ericksen, "Iterative and direct methods for solving 
Poisson's equation and their adaptability to ILLIAC IV," Center for 
Advanced Computation, University of Illinois, Urbana, 1972. 

Flynn [66]. M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, 
vol. 54, 1966, pp. 1901-1909. 

Gentleman [73], W. M. Gentleman, "Least squares computations by Givens 
transformations without square roots," J. Inst. Math. Applies., vol. 12, 1973, pp. 329-336. 

George [73]. J. A. George, "Nested dissection of a regular finite element 
mesh," SIAM J. Numer. Anal., vol. 10, 1973, pp. 345-363. 

Gilmore [71]. P. A. Gilmore, "Parallel relaxation," Goodyear Aerospace 
Corp., Akron, Ohio, July, 1971. 

Hall [73]. J. C. Hall, "Examination of numerical methods for singular value 
decompositions," M.S. thesis, University of Colorado, Boulder, 1973. 

Hayes [74]. L. Hayes, "Comparative analysis of iterative techniques for 
solving Laplace's equation on the unit square on a parallel processor," 
M.S. thesis, Dept. of Math., University of Texas, Austin, 1974. 

Heller [74a]. D. Heller, "A determinant theorem with applications to parallel 
algorithms," SIAM J. Num. Anal., vol. 11, 1974, pp. 559-568. 

Heller [74b]. D. Heller, "On the efficient computation of recurrence rela­
tions,11 ICASE, Hampton, Va #; Dept. of Computer Science, Carnegie-Mellon University, June, 1974. 

Heller [74c]. D. Heller, "Some aspects of the cyclic reduction algorithm 
for block tridiagonal linear systems," ICASE, Hampton, Va.; Dept. of 
Computer Science, Carnegie-Mellon University, December, 1974. 

Heller, Stevenson and Traub [74]. D. Heller, D. K. Stevenson, J. F. Traub, 
"Accelerated iterative methods for the solution of tridiagonal linear 
systems on parallel computers," Department of Computer Science, Carnegie-
Mellon University, December, 1974. 

Hestenes [58]. M. R. Hestenes, "Inversion of matrices by biorthogonalization 
and related results," J. SIAM, vol. 6, 1958, pp. 51-90. 

Hintz and Tate [72]. R. G. Hintz and D. P. Tate, "Control Data STAR-100 Pro­
cessor design,11 COMPCON-72 Digest of Papers, IEEE Comp. S o c , 1972, 
pp. 1-4. 

Hockney [65]. R. W. Hockney, "A fast direct solution of Poisson's equation 
using Fourier analysis," J. ACM, vol. 12, 1965, pp. 95-113. 



-72-

Hoffman, Martin and Rose [73]. A. J. Hoffman, M. S. Martin and D, J. Rose, 
"Complexity bounds for regular finite difference and finite element 
grids," SIAM J. Numer. Anal., vol. 10, 1973, pp. 364-369. 

Hyafil and Kung [74a]. L. Hyafil and H. T. Kung, "The complexity of parallel 
evaluation of linear recurrences," Proc. 7th Ann. ACM Symp. on Theory of 
Computing, 1975, pp. 12-22. 

Hyafil and Kung [74b]. L. Hyafil and H. T. Kung, "Parallel algorithms for 
solving triangular linear systems with small parallelism," Department of 
Computer Science, Carnegie-Melion University, December, 1974. 

Hyafil and Kung [75]. L. Hyafil and H. T. Kung, "Bounds on the speedups of 
parallel evaluation of recurrences," Second USA-Japan Comp. Conf. Proc, 
August, 1975, pp. 178-182. 

Jordan [74]. T. L. Jordan, "A new parallel algorithm for diagonally dominant 
tridiagonal matrices," Los Alamos Sci. Lab., Los Alamos, N. M., 1974. 

Kahan [71]. W. Kahan, "A survey of error analysis," IFIP Congress 1971, 
North-Holland, Amsterdam, 1972, vol. 2, pp. 1214-1239. 

Karp, Miller and Winograd [67]. R. M. Karp, R. E. Miller, S. Winograd, "The 
organization of computations for uniform recurrence relations," J.ACM, 
vol. 14, 1967, pp. 563-590. 

Klyuyev and Kokovkin-Shcherbak [65]. V. V. Klyuyev and N. I. Kokovkin-Shcherbak, 
"On the minimization of the number of arithmetic operations for the solu­
tion of linear algebraic systems of equations," trans, by G. J. Tee, De­
partment of Computer Science, Stanford University, 1965. 

Knight, Poole and Voigt [75]. J. C. Knight, W. G. Poole, Jr., and R. G. 
Voigt, "System balance analysis for vector computers," ICASE, Hampton, 
Virginia, March, 1975. 

Kogge [72a]. P. M. Kogge, "Parallel algorithms for the efficient solution of 
recurrence problems," Digital Systems Lab., Stanford University, September, 
1972. 

Kogge [72b]. P. M. Kogge, "The numerical stability of parallel algorithms for 
solving recurrence problems," Digital Systems Lab., Stanford University, 
September, 1972. 

Kogge [72c]. P. M. Kogge, "Minimal parallelism in the solution of recurrence 
problems," Digital Systems Lab., Stanford University, September, 1972. 

Kogge [73]. P. M. Kogge, flMaximal rate pipeline solutions to recurrence prob­
lems," Proc. First Ann. Symp. on Comp. Architecture, Gainesville, Florida, 
1973, pp. 71-76. 

Kogge [74]. P. M. Kogge, "Parallel solution of recurrence problems," IBM J. 
Res. Deve., vol. 18, 1974, pp. 138-148. 



-73-

Kogge and Stone [73]. P. M. Kogge and H. S. Stone, flA parallel algorithm for 
the efficient solution of a general class of recurrence equations,11 IEEE 
Trans, on Comp., vol. C-22, 1973, pp. 786-793. 

Kuck [68]. D. J. Kuck, lfIlliac IV software and application programming,11 

IEEE Trans, on Comp., vol. C-17, 1968, pp. 758-770. 

Kuck [73]. D. J. Kuck, "Multioperation machine computational complexity,11 

in Complexity of Sequential and Parallel Numerical Algorithms, J. F. 
Traub, ed., Academic Press, N. Y., 1973, pp. 17-47. 

Kuck and Maruyama [75]. D. J. Kuck and K. Maruyama, "Time bounds on the 
parallel evaluation of arithmetic expressions,11 SIAM J. Comput., vol. 4, 
1975, pp. 147-162. 

Kuck and Sameh [71]. D. J. Kuck and A. H. Sameh, "Parallel computation of 
eigenvalues of real matrices," IFIP Congress 1971, North-Holland, 
Amsterdam, 1972, vol. 2, pp. 1266-1272. 

Kung [74]. H. T. Kung, "New algorithms and lower bounds for the parallel 
evaluation of certain rational expressions," Proc Sixth Ann. ACM Symp. 
on Theory of Comput., pp. 323-333. 

Kung and Traub [74]. H. T. Kung and J. F. Traub, "Methodologies for studying 
the speedups gained from parallelism," contributed paper, Second Langley 
Conf. on Sci. Comp., Virginia Beach, October, 1974. 

Lambiotte [75]. J. J. Lambiotte, Jr., "The solution of linear systems of 
equations on a vector computer," Dissertation, University of Virginia, 
1975. 

Lambiotte and Voigt [75]. J. J. Lambiotte, Jr. and R. G. Voigt, "The solution 
of tridiagonal linear systems on the CDC STAR-100 computer," ACM Trans, 
on Math. Software, Vol. 1, 1975, pp. 308-329. 

Lawrie et al. [75]. D. H. Lawrie, T. Layman, D. Baer and J # M. Randal, 
"Glypnir, a programming language for Illiac IV," Comm. ACM, vol. 18, 
1975, pp. 157-164. § 

Liu [74]. J. W. H. Liu, "The solution of mesh equations on a parallel com­
puter," Department of Computer Science, University of Waterloo, October, 
1974. 

Lynch [74]. W. C. Lynch, "How to stuff an array processor," Third Texas Conf. 
on Comp. Systems, November, 1974. 

Maruyama [73]. K. Maruyama, "The parallel evaluation of matrix expressions," 
IBM T. J. Watson Research Center, Yorktown Heights, N. Y., 1973. 



-74-

Miller [73]. R. E. Miller, MA comparison of some theoretical models of paral­
lel computation,11 IEEE Trans, on Comp., vol. C-22, 1973, pp. 710-717. 

W. Miller [75]. W. Miller, "Computational complexity and numerical stability,11 

SIAM J. Comput., vol. 4, 1975, pp. 97-107. 

Miranker [71]. W. L. Miranker, flA survey of parallelism in numerical analysis,1 

SIAM Review, vol. 13, 1971, pp. 524-547. 

Moler [72]. C B. Moler, "Matrix computations with Fortran and paging," Comm. 
ACM, vol. 15, 1972, pp. 268-270. 

Morice [72]. Ph. Morice, "Calcul parallele et decomposition dans la resolu­
tion d'equations aux derivees partielles de type elliptique," IRIA, 
June, 1972. 

Muller and Preparata [75]. D. E. Muller and F. P. Preparata, "Upper bound to 
the time for parallel evaluation of arithmetic expressions," contributed 
paper, Symposium on Analytic Computational Complexity, Carnegie-Melion 
University, April, 1975. 

Munro and Paterson [73]. I. Munro and M. Paterson, "Optimal algorithms for 
parallel polynomial evaluation," J. Comp. Syst. Sci., vol. 7, 1973, 
pp. 189-198. 

Muraoka [71]. Y. Muraoka, "Parallelism exposure and exploitation," Disserta­
tion, Department of Computer Science, University of Illinois, Urbana, 1971 

Muraoka and Kuck [73], Y. Muraoka and D. J. Kuck, "On the time required for a 
sequence of matrix products," Comm. ACM, vol. 16, 1973, pp. 22-26. 

Newell and Robertson [75]. A. Newell and G. Robertson, "Some issues in pro­
gramming multi-mini-processors," Department of Computer Science, Carnegie-
Mellon University, January, 1975. 

Orcutt [74]. S. E. Orcutt, Jr., "Computer organization and algorithms for very 
high-speed computations," Dissertation, Department of Electrical Engineer­
ing, Stanford University, 1974. 

Ortega and Rheinboldt [70]. J. M. Ortega and W. C. Rheinboldt, Iterative Solu­
tion of Nonlinear Equations in Several Variables, Academic Press, N. Y., 
1970. 

Owens [73]. J. L. Owens, "The influence of machine organization on algorithms, 
in Complexity of Sequential and Parallel Numerical Algorithms, J. F. Traub 
ed., Academic Press, N. Y., 1973, pp. 111-130. 

Paige and Saunders [75]. C. C. Paige and M. A. Saunders, "Solution of sparse 
indefinite systems of equations," SIAM J. Numer. Anal., vol. 12, 1975, 
pp. 617-629. 



-75-

Palmer [74]. J. Palmer, "Conjugate direction methods and parallel computing," 
Dissertation, Department of Computer Science, Stanford University, 1974. 

Parlett and Wang [75]. B. N. Parlett and Y. Wang, "The influence of the com­
piler on the cost of mathematical software - in particular on the cost 
of triangular factorization," ACM Trans, on Math. Software, vol. 1, 1975, 
pp. 35-46. 

Pease [67]. M. C Pease, "Matrix inversion using parallel processing," J.ACM, 
vol. 14, 1967, pp. 757-764. 

Pease [68]. M. C. Pease, "An adaptation of the fast Fourier transform for 
parallel processing," J.ACM, vol. 15, 1968, pp. 252-264. 

Pease [69]. M. C Pease, "Inversion of matrices by partitioning," J.ACM, 
vol. 16, 1969, pp. 302-314. 

Pease [74]. M. C. Pease, "The C(2,m) algorithm for matrix inversion," 
Stanford Research Institute, Menlo Park, California, 1974. 

Poole and Voigt [74]. W. G. Poole, Jr. and R. G. Voigt, "Numerical algorithms 
for parallel and vector computers: An annotated bibliography," Computing 
Reviews, vol. 15, 1974, pp. 379-388. 

Preparata and Muller [75]. F. P. Preparata and D, E. Muller, "Parallel evalua­
tion of division-free expressions," contributed paper, Symposium on 
Analytic Computational Complexity, Carnegie-Mellon University, April, 1975. 

Reid [72]. J. K. Reid, "The use of conjugate gradients for systems of linear 
equations possessing "Property A"," SIAM J # Numer. Anal., vol. 9, 1972, 
pp. 325-332. 

Reinsch [71]. C. H. Reinsch, "A stable, rational QR algorithm for the computa­
tion of the eigenvalues of an Hermitian tridiagonal matrix," Math. Comp., 
vol. 25, 1971, pp. 591-597. 

Robert [70]. F. Robert, "Methods iteratives 1 serie-parallele1 ," C. R. Acad. 
Sci., Paris, vol. 271 , 1970, pp. 847-850. 

Robert, Charnay and Musy [75]. F. Robert, M. Charnay, and F. Musy, "Iterations 
chaotiques serie-parallele pour des equations non-lineaires de point 
fixe," Aplikace Matematiky, vol. 20, 1975, pp. 1-38. 

Rudolph [72]. J, A. Rudolph, "A production implementation of an associative 
array processor - STARAN," AFIPS Fall 1972, AFIPS Press, Montvale, N. J., 
vol. 41, pt. 1, pp. 229-241. 

Ruggiero and Coryell [69]. J. F. Ruggiero and D. A. Coryell, "An auxiliary 
processing system for array calculations," IBM Sys. J., vol. 8, 1969, 
pp. 118-135. 



76-

Sameh [71]. A. H. Sameh, fl0n Jacobi and Jacobi-like algorithms for a parallel 
computer,11 Math. Comp., vol. 25, 1971 , pp. 579-590. 

Sameh, Chen and Kuck [74]. A. H. Sameh, S. C. Chen and D. J. Kuck, "Parallel 
direct Poisson and biharmonic solvers,11 Department of Computer Science, 
University of Illinois, Urbana, July, T974. 

Sameh and Kuck [75a]. A. H. Sameh and D. J. Kuck, lfA parallel QR algorithm 
for tridiagonal symmetric matrices,11 Department of Computer Science, 
University of Illinois, Urbana, February, 1975. 

Sameh and Kuck [75b], A. H. Sameh and D. J. Kuck, "Linear system solvers for 
parallel computers," Department of Computer Science, University of 
Illinois, Urbana, February, 1975. 

Sameh and Layman [74]. A. H. Sameh and T. Layman, "Toward an Illiac IV 
library," contributed paper, Second Langley Conference on Sci. Comp., 
Virginia Beach, October, 1974. 

Stevenson [75]. D. K. Stevenson, "Programming the Illiac," Department of 
Computer Science, Carnegie-Melion University, to appear, 1975. 

Stone [71]. H. S. Stone, "Parallel processing with the perfect shuffle," 
IEEE Trans, on Comp., vol. C-20, 1971, 153-161. 

Stone [73a]. H. S. Stone, "An efficient parallel algorithm for the solution 
of a tridiagonal linear system of equations," J.ACM, vol. 20, 1973, 
pp. 27-38. 

Stone [73b]. H. S. Stone, "Problems of parallel computation," in Complexity 
of Sequential and Parallel Numerical Algorithms, J. F. Traub, ed., 
Academic Press, N. Y., 1973, pp. 1-16. 

Stone [75a]. H. S. Stone, "Parallel tridiagonal equation solvers," ACM Trans, 
on Math. Software, Vol. 1, 1975, pp. 289-307. 

Stone [75b]. H. S. Stone, "Parallel computers," in Introduction to Computer 
Architecture, H. S. Stone, ed., Science Research Associates, Palo Alto, 
California, 1975, pp. 318-374. 

Strassen [69]. V. Strassen, "Gaussian elimination is not optimal," Num. Math, 
vol. 13, 1969, pp. 354-356. 

Swarztrauber [74]. P. N, Swarztrauber, "A direct method for the discrete solu 
tion of separable elliptic equations," SIAM J. Num. Anal., vol. 11, 1974, 
pp. 1136-1150. 

Sweet [74]. R. A. Sweet, "A generalized cyclic reduction algorithm," SIAM J. 
Num. Anal., vol. 11, 1974, pp. 506-520. 

Tewarson [68]. R. P. Tewarson, "Solution of linear equations with coefficient 
matrix in band form," BIT, vol. 8, 1968, pp. 53-58. 



ĈLASSIFIED S6CUW.TY CLASS.R.CAT.QN Qf THIS P A G E rtftM n . „ £„,.,.„, 

REPORT DOCUMENTATION PAGE 
|2 G O V T ACCESSION N O 

1 R E P O R T N U M B E R 

J 4. TITLE (mnd Subtitle) A SURVEY OF PARALLEL ALGORITHMS IN NUMERICAL LINEAR ALGEBRA 
[7. A U T H O R S ; 

DON HELLER 
I9 ^ERFORM'N G ORGANIZATION N A M E A N D ADDRESS CARNEGIE-MELLON UNIVERSITY COMPUTER SCIENCE DEPT. PITTSBURGH, PA 15213 L«« C O N T R O L L I N G OFFICE N A M E A N D AD D R E S S 

OFFICE OF NAVAL RESEARCH 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3 RECIPIENT'S C A T A L O G N U M B E R ' 

5- T Y P E O F R E P O R T A PERIOD C O V E R E D 

INTERIM 
6 P E RFORMING O R G » E P O R T NL 

8. C O N T R A C T Q R G R A N T N ( J N00014-76-C-0370, NR044-422 
10. P R O G R A M ELEMENT. P R O J E C T T A 3 K " A R E A A WORK UNIT N U M B E R S 

12. R E P O R T D A T E 

J FEBRUARY 1976 ARLINGTON, VA 22217 J U . N U M B E R O R P A G E S 

U MONITORING 4 G E N C V N AME A ADDRESS/// different iron, Contusing OWc.) 
15. SECURITY CLASS 'of thle report) 

UNCLASSIFIED 
, 5*' S C H E D U L E F , C A T , ° " I O O W * G R A D L N G " 

[ 16 DISTRIBUTOR S T A T E M E N T (at thle Report)' 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 

19 K E Y W O R D S 'Continue 
on revere, eide if neceeemry mnd identify by block number) 

20. A B S R R « 'Continue, on reveree eide it neceeemry mnd identify hy block number) The existence of parallel ANC 

pipeline computers has inspired a new approach to algorithmic analysis. Classical 
Numerical methods are generally unable to exploit multiple processors and powerful 
./ector-oriented hardware. Efficient parallel algorithms can be created by reform^ 
alating familiar algorithms or by discovering new ones, and the results are often 
surprising. A comprehensive survey of parallel techniques for problems in linear| 
algebra is given. Specific topics include: relevant computer models and their 
comsequences, evaluation of ubiquitous arithmetic expressions, solution of linear SYSTEMS of equations, and computation of eigenvalues. 

1 J A K^B 1473 EDITION O F I N O V 65 IS O B S O L E T E 

JNCI^SglFIED, 
. - U IN H A M S K I K D 
SECURITY CLASSIFICATION O F TM, S P A G E n»t» Ent^d) 



-77-

Traub [73], J. F. Traub, "Iterative solution of tridiagonal systems on : 

parallel and vector computers,11 in Complexity of Sequential and Paral-. 
lei Numerical Algorithms, J. F. Traub, ed., Academic Press, New York, 
1973, pp. 49-82. 

Trout [72]. H. R. G. Trout, "Parallel techniques," Department of Computer 
Science, University of Illinois, Urbana, October, 1972. 

Varga [62]. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood 
Cliffs, New Jersey, 1962. 

Viten'ko [68]. I. V. Viten'ko, "Optimum algorithms for adding and multiply­
ing on computers with a floating point," USSR Comput. Math, and Math. 
Phys., vol. 8, 1968, pp. 183-195. 

Ward [76 ]. R. C. Ward, "The QR algorithm and Hyman's method on vector com­
puters," Math. Comp., Vol. 30, 1976, pp. 132-142. 

Watson [72]. W. J. Watson, "The TI ASC, a highly modular and flexible super­
computer architecture," AFIPS Fall 1972, AFIPS Press, Montvale, N. J., 
vol. 41, pt. 1, pp. 221-229. 

Widlund [72]. 0. B. Widlund, "On the use of fast methods for separable finite 
difference equations for the solution of general elliptic problems," in 
Sparse Matrices and their Applications, D. J. Rose and R. A. Willoughby, 
eds., Plenum Press, N. Y., pp. 121-131. 

Wilkinson [65]. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford 
University Press, London, 1965. 

Winograd [70]. S. Winograd, "On the number of multiplications to compute 
certain functions," Comm. Pure and Appl. Math., vol. 23, 1970, pp. 165-179. 

Winograd [75]. 'S. Winograd, "On the parallel evaluation of certain arithmetic 
expressions," J.ACM, vol. 22, 1975, pp. 477-492. 

Wolfe [68]. P. Wolfe, chairman, "Panel discussion on new and needed work and 
open questions," in Sparse Matrix Proceedings, R. A. Willoughby, ed., 
IBM T. J. Watson Research Center, Yorktown Heights, N. Y., September, 1968. 

Wulf and Bell [72]. W. A. Wulf and C. G. Bell, "C.mmp, a multi-mini-processor," 
AFIPS Fall 1972, AFIPS Press, Montvale, N. J., vol. 41, pt. 2, pp. 765-77f. 

Young [72]. 0. M, Young, "Second-degree iterative methods for the solution 
of large linear systems," J. Approx. Th., vol. 5, 1972, pp. 137-148. 

Zwackenberg [75]. R. G. Zwackenberg, "Vector extensions to LRLTRAN," SIGPLAN 
Notices, vol. 10, no. 3, March, 1975, pp. 77-86. 


