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Abstract

This paper illustrates the methodology of the CMU Design
Automalion Syslem by presenling.an aulomaled design of the
PDP-8/E dala palhs from a funclional descriplion.  This
automaled design (using synlhesis lechniques) is compared
both to DEC's implementation and the Intersil single chip
implernenlation,

1. Introduction

As il is becominp, possible to inteprale larger numbers of
logic componenls on a single chip, the need for more powerful
design aids is becoming apparent. Indeed, these aids must be
capable of supporling a designer from lhe system level of
design down to lhe mask level. In this way the systems level
designer can become more aware of the implicalions of
higher-level design lradeoffs on implemenlation properties
such as silicon area, power consumption, testability, and speed,
and be able to make more fimely use of new technologies. The

ultimale goal of Ihe Carnegic-Mellon Universily Dcsign'

Automalion (CMU-DA) Syslem [12] is 1lo provide a
technology-relative,  struclured-design  aid to  help the
hardware designer explore a larger number of possible design
implemenialions. Inputs to lhe syslem are a behavioral
descriplion of the system to be designed, an objective function
which specifies the user's oplimization crileria, and a data base
specifying the hardware components available to the design
system.
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The CMU-DA syslem diflers from olher design aulomation
syslems because lhe inpul design description is a funclional

- specification. Such a specificalion provides a model thal, while

accuralely characlerizing the input-oulput behavior desired for
the implementalion, does nol necessarily specify ils inlernal
struclure.  The syslem software colleclively performs the
synthesis  funclion by lransforming the inpul functional
descriplion inlo a struclural description. The design process
involves Dbinding implemenlation decisions in a lop-down
manner as a desipgn proceeds through the design syslem. More
structural decisions are made at each level until a complete
hardware <pecificalion is obtained, with the mast influential
desipn lrade offs being performed first in order to cul down
‘the design search space. ’

The purpose of this paper is lo illustrale the methodology of
the CMU-DA system. The resulls given here arc worst case -
many oplimizations which are straightforward have not been
implemenied yet; research is in progress on others. The
design of lhe dala parl of -a DEC PDP-3/E [5] from lhe ISP
level through to a T1L and standard cell dusign will be
discussed. Only the subsel of the full DA syslem which is
presenlly implemenled has been used for this example. The

. This  rescarch is supported in part by NSF Grant
MCS77-09730. and Army Research  Office Grants
DAAGZ29-76-G~0224 and DAAG29-78-G-0070.




components are shown in Figure J.

The POP-8/E is first functionally described using the ISP
language [1]. A data-memory allocator [7] is used to generate
the structure? of the data paths from the functional description.
This allocation is in lorms of abstract logic components. The
next rdcp in the desigh is to bind physical modules to the
abstract design from a modulo database [9], This step
provides | he system with the capability of designing relative to
now technologies. This binding will be illustrated both in terms
of TTI. chip* and the CMOS standard cells in the Sandia design
system [10]. . The standard cell output of the CMU-DA system
is then translated for input to the Sandia design system. At
this point, chip area can be calculated and detailed timing
information can be gathered using SALOGS [3].

The paper will conclude by comparing these two alternative
designs to commercial implementations.
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2. The PDP-8/E Example

Ac the CMU-DA syslc?m has evolved, more complex design
example? have been used to observe its performance. The use
of the PDP-S/F. is n major slop in two ways: 1) It represents
about a five fold incroar.e in Ihe circuit complexity over
previously reported example designs [8], and 2) It is a
commercially available system that has been implemented in
various technologies by different manufacturers over several
years, ‘fhur, it is possible lo compare a non-trivial automated
design lo designs clone by several designers with different
logic components.

The PDP-8/L ir, one model in a family of computers having
nearly identical ISP descriptions. (That is, they implement
nearly the same instruction sot, with different hardware
structure*). A portion of the ISP description used by the
automated design system is shown in Figure 2.

The description begins by declaring the memory and
processor stale. A 13 bit link-accumulator (lac) register is
defined but can alternately be accessed as the one bit link (L)
and 12 bil accumulator (Ac). Next, instruction interpretation is
defined using tho declared memory and registers. After the
instruction fetch and increment of the program counter in the
instruction  interpretation  section, instruction execution
(CxCcO) i» called. lllustrated here are the- six memory
reference instruc’ons. Not shown but implemented in iho
automated designs are the effective address calculation,
input/output instructions and tho operate microinstructions.
Note that Ihn Mb=Mp[Pc] instruction fetches the location
pointocl to by tho Pc and places it in the Mb register. No
mention need be made of transfer of the current Pc to a
memory addrnss register, which is a part of the hardware
structure.

The ISP description [1] is compiled into a representation
which is machine readable by lhe data-memory allocator. The
next sections will discuss the data-memory allocation (where
an abstract data path i» synthesized), a module binder that
illustrates how tho CMU-DA system can design relative to new
technologies, and a translator to Sandia's SALOGS simulator
[10].

3. The Allocation Process_

The data-memory allocators perform a mapping function
from thn algorithmic (ISP) description to the data-path part of
the hardware implementation, which is called a data-path graph
The data parl consists of lhe data-storage elements, data
operators, and data paths necessary to implement the
operations specified in the algorithmic description. Due to the
characteristics of lhe ISP language this mapping may be
multi-valued in either direclion, rather than a simple
one-to-one translation.

The PDP-8/E design described here was produced by a
data-memory allocator which uses the distribuled-logic design
style. This .stylo of (or approach to) design encompasses
design with small and medium scale integration components.
As pointed out earlier, lhe allocator itself is technology
relative and the mapping onto .specific integrated circuit
packager? is performed by a separate module binder program.
The process referred to as allocation throughout lhe remainder
of this paper is a synthesis of logic using generic logic
elements; data pathr., operators, registers, and multiplexers, all-
of any bil width.

The procedurn used by lhe allocator might be compared to a
two-pass compilation. The first pass may be considered a
syntax or feasibility chock The allocator inputs a parsed ISP
description, con&k'.idr. data structures analogous in function to
symbol tables, ?UM\ enforces constraints necessary to insure
that the data-storage locations, logical mappings, and
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ianjt/oquiiI ininfacn  chnr.uloi‘imlirr>  spri.ificci  in  .lhe
description can ho implomnntnd in hnidwaro. If no errors nro
encountered, il proceeds lo allocate the ba-ic data-storage
structures colled for in Iho description, and any additional data
paths, storage, and operators necessary to implement
variablo-cicccssing schemes described by ISP. The second
pass may be considered as the semantic phase, with the
activity of rgclo generation replaced by lhe allocation of data
paths, operators, and additional storage as needed to
implement lho actions described in the ISP description.
Parallelism analysis is performed at several levels to warn the
user of error conditions and determine constraints relating to
optimization of hardware. The allocation is then completed by
the addition of multiplexing where required.

However, allocation differs from compilation in that in a
compil.nlion one is concerned with implementing the specified
data operations on a fixed data part whose capabilities are
known o. priori. In allocation, the allocator must bo able to

recall and utilize lho capabilities of a data part which is being

dynamically created. The allocator thus works from the inside
out, first creating the data storage and access structures, and
then adding Ihe neces?«ary’ data paths and operators to
perform lhe described data operations. Finally, the output of
the allocator is a non-planor directed graph, rather than a
linear list of compi'cd inductions. '

The first version of the allocator is experimental, and it
performs only minor optimizations on Ihe allocated hardware.
It has been designed to investigate Ihe feasibility of
performing the mapping from ISP lo hardware, the types of
data structures needed for allocation, and areas where
optimizations are possible in future, more sophisticated
allocators.

Tho allocator has boon designed as a possible skeletal
structure for future allocators in order to standardize
input/output formats and data structures.

4. Performance of the. Data-Memory Allocator

Thn allocator program was run using the ISP desbription of
the PDf'-S/E and tho resultant data paths are shown in Figure
3. A binding of modules was clone by hand to compare the
results of the allocator to the original DEC design (Figure' 4)

[5].

It is difficult to compare lhe automated PDP-8/E data-path
design with lho original DEC design (or three reasons. First,
the ISP description input to tho allocator declares ar, registers
some values lho PDP-8/E ures but never stores explicitly in
registers, such as lho effective address. These show up as
registers in Iho allocator's design. Second, the allocator
designs distributed logic, and Ilhe DEC design was clone in the
central-accumulator design style. (Th.it is, this allocator does
not contain lhe design rules for largo ‘scale collapsing of lhe
data paths'into a central-accumulator stylo of design [13]).
Third, the DEC design ha¥ assumed a boundary between Ilhe
control and data-memory parts of lhe design, but the boundary
is different from that imposed on the allocator by lhe ISP .
description. Thus some toritr;, flags, and registers which must

~be declared explicitly in lho ISP description are part of the

control in the DEC design.

The main reason for lhe difference in design seen from Ihe

" block diagram lovol of Figures 3 and 4 is that the design styles.

are different. Tha multiplexing is used in different ways. In
Ihe DEC version, tho operators nro shared, and are used lo
provide no-op paths from one register to another. In lhe CMU
version, only rogislers nro shared and use multiplexed inpuis.
The ISP language ir; pailinlly the source of this disparity. In
ISP, the user can repeatedly use register A as a destination
from various sources. However, Ihe expressions A»B and C+D
do not imply  nor discount a single adder. Olher differences in
the design include lhe use of multiplexers for shifting iri the




DEC <lo".i[\n, iiiicl u u( li ur/< omplcjmnnl 0/1 chips for creating
complements. "ONiniV' of the MQ and AC registers in the DEC
version is avmo wilhin ho multiplexing hardware. Constants
are oflon en-Mod in ono place and gated ovor already, existent
data paths to Ihr registers. In the CMU version, these
constants are multiplexed at the register inputs.

In r.pitc of thor.o differences, estimates of chip count
indieale thai tho allocator produces a path graph which would
require 39/ moro integrated circuit chips that the DEC
designers used for the dala paths and registers. These
estimates wore done by hand lo gauge the performance of the
allocator; an automatic binding i» discussed in the next section.
These rslimale?; wore made Using tho same 1970 technology
chip r-el the DEC designers had lo deal with. The 397. excess
hardware can bo found in multiplexors which connect the
" registers tho extra registers declared in the ISP description,
and duplicated operators like increment and add. Much of this
excess can bo allribuiocl lo the lack of optimization capability
in thr allocator algorithm, future, more sophisticated allocation
al(jorilhmr«, coupled with the capability for high level
optimization [I?] available in the complete CMU-DA system will
be able to significantly improve the data part design.

Further analysis of Ihis design is in progress and includes a
manual implementation of tho control port. Comparisons of the
DEC and CMU data-path speeds will-then bo possible.

5. Modulo Bindinc

The modulo binding phnro of tho CMU-DA system employs
the Modulo Data Itasn System (MDH5) and follows the
data-memory allocation Mop. It has the ta'k of translating the
abstract link';, memories, registers, and operations in a
data-path graph into a design using physically realizable
module'.;, A second par.s of module binding will occur after
control allocation.

At present Iho module binding portion of the design system
is primarily a rc'-rnrch tool that will' be used lo investigate
automated-module binding. A goal of this research'is to model
the module binding problem sufficiently lo generalize this part
of tho CMU-DA system lo handle a wide range of module types
from LSI chips through Standard Colls. The implemented

- portions of MDBS were" used lo assist a designer in binding

data-part modulo* lo the CMU PDP-8/E data-paths produced
by the Onla-Memory Allocator described in Section 4. The
results of the data-part module binding are compared to -the

. DEC PDP-8/E design in Section 7. A similar comparison will be

made to the standard-cell binding after those results are
presented in Section 8.

6. Organization of MDBS

MDI3S consists of four sections shown in Figure 5. an I/O
section thai is responsible for translaling between lhc internal
and external forms of lhe pnlh graph; a Module Data Base
tvecoii mpfimnirm; a command language interface; and the
module binding mechanism.

The input/output section is tho interface lo other parts of

the CMU-DA system. Tho path graph, generated by an
allocator is placed in internal form for processing. The output

file bar. the same format a» lho inpul path graph (with module
binding information appended) and can be reread by the input
section for additional processing.

Tho Modulo Dala Uasc is a hierarchical data base that is
distributed in various ASCII files. Tho highest lovol of Ihc data
base > the index which » road automatically during system
initialization. Tho index contains pointers lo all defined
desipn-r.tylo r.els, each of which is a collodion of module sets
appropriate for a given design style. A design stylo set file
contains poinlorr. lo lho actual module set information (the
"Data Book) and summary information (typical cost, speed,
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5. Organization of the Module Data Base System

load, and drive capabilitieé of modules in the set). Access to

data bar.c information during module binding occurs frequently
and utilizes various lovok of detail from basic type matching
through specific delay and timing characteristics.

The Command Language Interpreter  (CLI) is the
experimenter/designer's interface to the module binding
system. The CLI moy be used only to select a file to be
processed and direct the disposition of the resulting bound
path-graph. The CLI also provides a number of tools to inspect
the path-graph, modify the graph structure and bind designer-
selected modules to specific, nodes of the graph.

The module hinder applies transformations to both the path
graph and module functions in order to match the desired
behavior with the available building blocks. The graph
transformations are localized decompositions or combinations
of nodes that preserve the specific behavior. Module
transformations are primarily combinations of nodes since
modules cannot be physically decomposed. However,
multifunction modules such as shift registers and ALUs may
require partitioning of the non-conflicting functions of the
same module onto r.cparalr? nodes of the grnph.

The mosi prevalent type of graph transform is localized to a
single node or several connected nodes of a similar type.
Registers are usually decomposed into nodes of smaller bit

width. Logical operators nre usually modified by reduction to
a canonical form, lhon synthesized with available module
operations. Multiplexors and demultiplexers are frequently

transformed from a single level to a multilevel form. Arithmetic
operators (particularly the signed and complement arithmetic
modes) require algorithmic decomposition. ’

A mére complex type of transformation involves the
combination of nodes of different types into single nodes
capable of multiple functions. Shift -operators and special
purpose arithmetic operators (increment, decrement, and clear)




“are poncrally combined wilh regisler funclions in available
module sels.  Theae transformations oflen provide significant
reduclions in the praph complexily by eliminalion of constants
and reduclion of mulliplexor size.

Operalor node transformalions primarily involve the
application of axioms and idenlilics to combine available
modules inlo an agpregale thal performs a desired function.
Boolean idenlities and DeMorgan’s Theorem will direct logical
synlhesis.  Arithmelic mode lransformations (for unsigned,
sighcd-magnilude, (wo's complement, and one’s complement)
will be utilized o synthesize required modes from available
modes,

For cases where single {ransformalions on either the graph
or lhe modules do nal provide the desired maltch, an iterative
approach will be ulilized, The graph and the module
tran~forms  will be alternalely applied until one or more
malches are found, a cydcle is delected in the lransformalions,
no furlher gain is delecled by applying transforms, or one of
lhe syslem conslraints (speed, cost, elc.) is violaled by the
resulling implementalion.

A central goal of the CMU-DA syztem is to produce designs
that have been oplimized toward the designer’s objectives and
fall within the exiernal conslrainls, "Module binding is the first
operalion in the design syslem lhat allaches actual costs to
the implementation and has specific speed, delay, and power

informalion available.  ‘Therefore, evaluation of the bound
design must be rerformed 1o insure compliance with the

conslraints.  Crilical consirainls (i.e. conslraints which the
designs must meel) will be dynamically estimated by projecting
the final value based on an exlrapolalion from the number of
nodes remaining lo be bound and the accumulaled value for
the nodes alrcady hound; a true evaluation of the fully bound
design will be made as a (inal pass 1o insure compliance with
the constraints, The dynamic evalualion will be used to select
between funclionally idenlical mocdule choices wilth different
performance paramelers.
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7. PDP8 Baseline Example

A parlial module binding of the PDP-8/E was done wilh the
available pieces of MDBS, which conlain limited transform
capabilities.

The module binding seclion contains a sel of primitive
operalions that can modily the palh graph structure (but not
ils bechavior). - The operalions allow register nodes to be split
at bit boundaries, operalor nodes to be joined into single
nodes with wider bil widths, nodes to be inserted, and nodes
to be deleled. These oprralions allow the path graph nodes to
be transformed to conform wilh lhe slructure of available
modules. As the MDBS hecomes more fully implemented, these
primitive operations will he used to build larger scale path
graph lransforms that can be applied automalically.

The exisling syslem aids the designer in producing correctly
bound palh graphs by the slrict enforcement of rules
concerning applicalion of the siructural modification primitives.
These operalions are restricled to minimize the possibility of

modilying the behavior of the palh graph. Some examples of -
these rules are: :

Nodes may nol be deleted while connecled to
more lthan one link,

Links may nol be deleted while joining two nodes.

Half links (i.c., signals to exiernal sources) may nol
be deleled.

Opcralor nodes may be joined only il lhey are of
lhe same lype.




A differant hul equally imporlant kind of assislance is provided
to allow lhe desipner lo display any aspecl ol the binding
process. For example, the desipner may display one module in
the cdala base, all modules providing a specific funclion, or the
enlire data book.

The module choices were made by the designer using
information from the path graph and a small TTL module data
base from lhe dislribuled Design Style Set. The purpose of
binding the dala parl wilh the cxisling syslem is lo contrast
the module sclnclion wilh a hand designed PDP-8/E. This
example provides a worst-case (rom which to judge the
performance of MD3S as more capabililies are added.

Figure 6 was generaled by the MDBS. The registers (named
variables), operalors, and mulliplexors are identified in the
"Comp." (Component) column, The "Device" column lists the
name of lhe selecled package, "Mods." lists the number of
modules required to implement the component funclion. The
lerm "module" refers lo a scparale functional unit in this
conlext.  There may he several modules contained in one
package. "Pkgs." lists the number of packages required for
~each funclion. "Gales" is an eslimale of the equivalenl number
"of logic gales lo implemenl the function. The percentage of

the tolal pales required is listed in the "7Z Total Gates" column.
The cost of each function implementation is computed as the
basic cosl for the number of packages required plus an
overhcad mounling cost of $3.00 per package. The percenlage
of the lotal cosl attribuled lo ecach function is lisled in the "%
Total Cost" column.
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N

Comp. Oavico HMods, Prgs., Gatos ZTolal Cost %Tolal

Cates Cost
ENDD SN741724 2 2 76 3.98 7.78 2,58
Lnc SN24194 3 3 105 5.50 11.67 3.87
LA3T.P SN74174 2 P 76 3.98 7.78 2.58
PC SN74161 3 3 204 10.69 11.67 3.87
MOR SN74174 2 2 76 3.98 7.78 2.58
AR SM74174 2 2 76 3.98 7.78 2.58
TEHP<«0> S3SN7474 | 1 6 0.31 3.3 1.1l
TEnp SN74174 2 2 - 76 3.98 7.78 2.58
EQL SN7485 3 3 93 4.87 11.37 3.77
EQL SN7485 3 3 93 4,87 11.37 3.77
INCR SM7483 3 3 108 5.66 10,77 3.%7
INCR SN7483 3 3 108 5.66 10.77 3.57
AND SN7408 12 3 12 . 0.63 9.60 3.18
OR S5MN7432 12 3 12 0.63 9.7 3.23
nan SN748] 4 h 144 7.54 14,36 4,76
13nux8 SH7415)1 13 13 156 8,17 46.67 15.48
1211UX4  SM7414%3 12 6 96 5.03 21.54 7.14
12MUXA  5N764153 12 6 - 96 5.03 21.54 7.14
12NUX4  SN741%3 12 6 26 5.03 21.54 7.}4
121MUX4  SM74153 )2 6 96 5.03° 21.564 7.14
J3UX4 SN74153 13 7 104 5.45 25.13 8.33

Totals 131 83 1909 100.00 301.54 100.00
Component 7 Gales % Cost

Class

Ragistnrs 36.40 19.17
Oporators 29,86 ' 23,49
Hultiplavors 33.74 52.37

Figure 6: Mocdule Utilizalion For PDP-8/E Data Part

The choice of registers differed from lhe hand module
binding in a few localions. The hand bound PDP-8/C used
SN74194s (four bil universal shifl repisters) exclusively while
the MDBS chose SN741745 (six bil D regislers) when there
was no requirement for the added shifl capabilily.  The
Program Counler (PC) regisler was selected as three
SN74161s  (universal counters) based on the INC flag
associaled wilh the path graph node. The Accumulator (LAC)
was first splil into a one bil node and a twelve bit node, then
the twelve bil parl was allocaled as lhree SN74194s. This is
the same allocalion thal was done by hand. However, the

. »




choice only "nlisfios the shift operation flags (I.SHFT and
RStin). The increment requirement (INC) has effectively been
partitioned out and must be bound separately.

The package count ‘wa'. 30/ higher for the MDBS selection
than for the \)[.C implementation (64 packages for DCC vs. 83
packages for MOFifO. This agrees closely with lho results
obtained by selecting modules strictly by hand (refer to
Section 4). The 30/ difference is attributable to the different
design styles used and the allocator's implementation of the
design. Comparing the total cost of modules for the DEC
implementation and the MDf3S implementation (Figure 6), it is
found that the costs also are 307 higher for the'automatéd
implementation, while the number of equivalent gates is 652
higher for the automated implementation. This indicates that
MDE35 chose modules with a higher level of integration than
DEC did.

A comparison of the percentage of equivalent gator, arid Iho
percentage of cost accumulated in three functional classes
(registers, operators, and multiplexors) indicates surprisingly
uniform comparisons. Thn percentage of both gates and cost
is higher for registers in the MDHS implementation than in the
DEC implementation. This trend is expected since the DEC
PDP-8/E uses a central accumulator design style. Also, the
slightly lower percentages for gates, and costs in the operator
class is reasonable for lhe DEC implementation. The most
surprising comparison is the near identical percentage of gates
devoted to data path routing (i.e. multiplexors) in the two
designs implemented in different design styles. It would be
expected that lho central .accumulator style would utilize more

data path routing than lhe distributed style. This apparent -

anomaly'is a rluo to Ilv xrc.a where the module binding - can
make local improvements in a path graph for distributed
designs. 13y utilizing functions intrinsic to certain modules
(such ns the CU-AI? on registers), constants and their
associated data paths can bo eliminated and improve the cost
of implementing a design.

The TTL module binding using MDBS compares favorably
with the DCC implementation and previous hand module
bindings of the automated path graph. It is expected that
much improvement in the package count (and the cost) is
forthcoming as transforms and evaluation techniques are
implemented in MDFJS. However, TTI. module binding is just
one objective of a generalized design system. The following
section discusses an approach to binding CMOS standard cells
to a design with the objective of being able to automate and
produce LSI designs.

8. Standafd Coll Generation

The Sandia standard cell library ('111 can also be used as
physical modules lo implement lho automated PDP-8/E data
part design. Then, using the Sandia software package [1, 10],
it is possible to produce a simulation, insert faults, and perform
automated cell placement and 1C mask generation for a CMOS
LSI chip implementation.

The standard cell binder used for this experiment was .a
small, automatic, package which accessed a local data base of

Sanclin colls. This package only performed the essential
transformations on the graph-expansion of nodes to match the
standard cells. However, this package also gives us a

worst-case measure for module binding performance.

The translation of the design from one environment, the
module binder output, lo another, the simulator input, involves
both the expansion of multi-bit paths produced by the module
bincJer to the single bit connection format of the simulator
input and also the explicit identification of fan-out points. In -
addition to this latter process, termed resolving, the translator
must generate pale specific parameters, such as propagation
delays, by computing capacitances lo obtain a realistic
simulation using SALOGS. Delay parameters are inserted in lh«
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simulation model by the uro of delay paler* wilh associated
times.

The input to 5ALOGS is a description of the network, written
in NDL [3]. « NDL describes the interconnection of functional
blocks. Input and control signals are generated through the
SALOGS simulation Innguaco* SALSIM [4]. ' In SALOG5, gate
representation includes built-in .simuiator elements such as
inverters, transmission Rales, NAND, AND, OR, and NOR gates.
In addition, any set of elements can bo defined as a functional
block and the block Used as a now element.

The NDL can Ihon bo used to automatically generate an 1C
mask and to determine chip area. The portion of the total
data-path area taken up by the different modules is
summarized in Figure 7. -

The upper portion of the Figure compares the size of the
data-path elements listed in Figure 3. The lower part of the
table describes some modules that are more accurately defined
as control than data-path. As expected, the percent of
sub-total Rate count in the upper portion of the table closely
resembles the results from the TTL binding shown in Figure 6.

In sum, the CMU PDP-8 design required 74,042 mil-sqr,
ignoring the area taken up by routing. The experience with
Sandia's IC mask closipn system indicates that routing takes up
about an additional 75/ of the area occupied by the standard
cells,'yielding a chip area of 129,574 mil-sqr. Dy way of
comparison, Intersil's onr' chip CMOS CPU implementation of
the PDP-8 lakes up 29,0 M mil-sqr [6]. It is estimated that
357 of Intersil's CPU chip is devoted to the functional elements
equivalent to that generated by the CMU-DA system. Thus,
there is a factor of J3 difference in the area required for the
two designs.

Component Oraa | of Niimbor 7 of 7. of
- Total of Total CAIO
fire* tGatos GMos subtotal

PC 5124.3 6.9 . 170 9.4 13.0

me ha77.1 5.9 117 6.5 8.9
noo 3839.9 5.2 117 6.5 8.9
oR 432.0 0.6 18.0 1.0 1.4
HND ) 476.3 0.6 18.0 1.0 ‘1.4
inrr,3 1413.3 1.9 49 2.7 3.8
INCR 3544.6 4.8 108 6,0 8.3
*»13MUX4 4212.8 5.7 60 3.3 4.6 -
12MUX4 3101.8 5,3 56 3.1 4.3
12MUX4 3901.8 5.3 56 3.1 4.3
121lUX4 3'im.a 5.3 56 3.1 4.3
12MUX4 . 3901.8 5.3 56 3.1 4.3
J3Hux8 $183.4 12.4 139 7.7 10.6
Enno 1323.0 1.8 45 2.5 3.4
INCR ?[>44.G6 4.8 108 6.0 8.3
LD3T.P M23.0 1.8 45 2.5 3.4
NOR JJ23.0 1.8 45 2.5 3.4
MOR 1323.0 1.8 45 2.5 3.4
rubtot*1l 57067.5 77.2/ 1308 72.5/ 100.0/
flynNOZ 317.5 0.4 12 0.7
i#*3>:K0L9 2Ji0J.o 3.3 74 4.1
2x1?1IWX2 2K4 4.2 3.G . 50 2.8
IXIMUX2 141.0 0.2 3 0.2
2>EQL2 Jr-8.4 0.2 5 0.3
SWITCH 1323.0 1.8 45 2.5
| J373.0 1.8 45 25
2xF.0L12 - 2210.6 3.0 64 3.5
LSS 24r,n.9 3.3 84 4.7
GEQ 24G0.9 3.3 84 4.7
NFQ 11.03.8 1.5 32 1.7

. 3xFLHG 330.8 0.5 11 0.6
TOTfII 74042.0 100,1/ 1817 100,8/
<' G.iIn counl 1& In lorins of 2 Input NHND gates

*x 13MUX4 Is 1 of 4 fluX tilth bit width of 13
&% nxTDt n hullc.itnR n cop IPIS of 9 Input EQI
coinpstra tor

Figure 7. Module Data from Translator




A model can be dnvi$«:d to attribute this seemingly large
" difference to various p.'fls of the design system. Since each
part of the design :;ys»tcm builds on top of the previous stage,
a multiplicative model is used. This model must take into
account the non-optimality of the allocator, non-optimality of

the module binder, differences in basic feature size, and the -

differences in routing techniques. The result of the allocator
section indicates a design requiring 13 times the size of the
DEC design. There is also a difference in the basic feature
size of the “Intersil and Sandia technologies. By -way of
comparison, a 12 bit register implemented with Sandia's
standard cells occupies 4 times the area of equivalent register
In Intersil's design [2]. The multiplicative model then becomes

13.0 « (1.3)(4)R;

where R is a factor indicating a difference in size between the
. CMU design and tho Intersil design introduced by the module
binder. In this case R « 2.5. Not included in the model are
factors due to difference between hand packed and channel
routing techniques, nor factors considering that large
structures (e.g. wide multiplexors) can be more optimally
designed by hand than by combination of simple standard cells.

In the worst case, assuming similar input structures and
feature size, the CMU module binder would produce a design
taking 2.5 times the area of the Intersil design. However, as
discussed above, there are other factors which increase the
CMU design size that were not accounted for in the model.
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9. Summary and Conclusions

e The paper has illustrated the methodology behind the CMU
Design Automation System. In particular, the datapath of a
non-trivial digital system (PDP-8/E) has been designed from an
ISPL functional description. Two types of physical modules
were bound to the datapath design. '

The binding using TTL series modules indicated that the CMU
design required 307- more modules than the DEC
implementation. The binding using CMOS standard cells
indicated that the CMU design is at most a factor of 2.5 off,
and due to differences in routing techniqgues may. be actually
closer in area to the Intersil design.

As a whole Ih* system has demonstrated the synthesis
function in digital system design. The allocator research
indicates automated logic synthesis with optimization is feasble -
and specific module-set information is not necessary in order
to produce a reasonable design. The module binding section
has demonstrated how the system can design relative to new -
technologies. Future work with the design system will deal

‘with optimization techniques to be used in better directing the

design algorithms for more complex designs. -
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