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Abstract

This paper illustrator* tho methodology of the CMU Design
Automation System by presenting, an automated design of the
PDP-8/E data palhs from a functional description. This
automated clnsign (using synthesis techniques) is compared
both to DECV, implementation and the Intersil single chip
implementation.

1, Introduction

AG it is becoming possible to integrate larger numbers of
logic components on a single chip, the need for more powerful
design aide is becoming apparent. Indeed, these aids must be
capable of supporting a designer from the system level of
design clown to I ho mask level. In this way the systems level
designer can become more aware of the implications of
higher-level design tradeoffs on implementation properties
such as silicon area, power consumption, testability, and speed,
and ho able to make more timely use of new technologies. The
ultimate goal of the Carnegie-Mellon University Design
Automation (CMU-DA) System [12] is to provide a
technology-relative, structured-design aid to help the
hardware designer explore a larger number of possible design
implementations. Inputs to the system are a behavioral
description of the system to be designed, an objective function
which specifics the user's optimization criteria, and a data base
specifying the hardware components available to the design
system.

The CMU-DA system differs from other design automation
systems because the input design description is a functional
specification. Such a specification provides a model that, while
accurately characterizing the input-output behavior desired for
the implementation, doer, not necessarily specify its internal
structure. Tho system software collectively performs the
synthesis function by transforming the input functional
description into a structural description. The design process
involves binding implement at ion decisions in a lop-clown
manner as a design proceed?, through the design system. More
structural decisions are made at each level until a complete
hardware specification if. obtained, with the most influential
design trade offt. being performed first in order to cut clown
'the design search space.

The purpose of this paper is to illustrate the methodology of
the CMU-DA system. Tho results given here arc worst case -
many optimizations which are straightforward have not been
implemented yet; research is in progress on others. The
design of the data part of a DEC PDP-3/E [5] from the ISP
level through to a TIL and standard coll design will be
discussed. Only the subset of the full DA system which is
presently implemented has been used for this example. The
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components are shown in Figure J.

The P0P-8/E is first functionally described using the ISP
language [1]. A data-memory allocator [7] is used to generate
the structure? of the data paths from the functional description.
This allocation is in lorms of abstract logic components. The
next r.lcp in the design is to bind physical modules to the
abstract design from a modulo database [9], This step
provides I he system with the capability of designing relative to
now technologies. This binding will be illustrated both in terms
of TTl. chip* and the CMOS standard cells in the Sandia design
system [10]. . The standard cell output of the CMU-DA system
is then translated for input to the Sandia design system. At
this point, chip area can be calculated and detailed timing
information can be gathered using SALOGS [3].

The paper will conclude by comparing these two alternative
designs to commercial implementations.
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2. The PDP-8/E Example

Ac the CMU-DA syslc?m has evolved, more complex design
example? have been used to observe its performance. The use
of the PDP-S/F. is n major slop in two ways: 1) It represents
about a five fold incroar.e in Ihe circuit complexity over
previously reported example designs [8], and 2) It is a
commercially available system that has been implemented in
various technologies by different manufacturers over several
years, fhur, it is possible lo compare a non-trivial automated
design lo designs clone by several designers with different
logic components.

The PDP-8/L ir, one model in a family of computers having
nearly identical ISP descriptions. (That is, they implement
nearly the same instruction sot, with different hardware
structure*). A portion of the ISP description used by the
automated design system is shown in Figure 2.

The description begins by declaring the memory and
processor stale. A 13 bit link-accumulator ( lac) register is
defined but can alternately be accessed as the one bit link (L)
and 12 bil accumulator (Ac). Next, instruction interpretation is
defined using tho declared memory and registers. After the
instruction fetch and increment of the program counter in the
instruction interpretation section, instruction execution
(CxCcO) ir» called. Illustrated here are the six memory
reference instruc ;:ons. Not shown but implemented in iho
automated designs are the effective address calculation,
input/output instructions and tho operate microinstructions.
Note that Ihn Mb=Mp[Pc] instruction fetches the location
pointocl to by tho Pc and places it in the Mb register. No
mention need be made of transfer of the current Pc to a
memory addrnss register, which is a part of the hardware
structure.

The ISP description [1] is compiled into a representation
which is machine readable by Ihe data-memory allocator. The
next sections will discuss the data-memory allocation (where
an abstract data path ir» synthesized), a module binder that
illustrates how tho CMU-DA system can design relative to new
technologies, and a translator to Sandia's SALOGS simulator
[10].

3. The Allocation Process

The data-memory allocators perform a mapping function
from thn algorithmic (ISP) description to the data-path part of
the hardware implementation, which is called a data-path graph
The data parl consists of Ihe data-storage elements, data
operators, and data paths necessary to implement the
operations specified in the algorithmic description. Due to the
characteristics of Ihe ISP language this mapping may be
multi-valued in either direclion, rather than a simple
one-to-one translation.

The PDP-8/E design described here was produced by a
data-memory allocator which uses the distribuled-logic design
style. This .stylo of (or approach to) design encompasses
design with small and medium scale integration components.
As pointed out earlier, Ihe allocator itself is technology
relative and the mapping onto .specific integrated circuit
packager? is performed by a separate module binder program.
The process referred to as allocation throughout Ihe remainder
of this paper is a synthesis of logic using generic logic
elements; data pathr., operators, registers, and multiplexers, all
of any bil width.

The procedurn used by Ihe allocator might be compared to a
two-pass compilation. The first pass may be considered a
syntax or feasibility chock The allocator inputs a parsed ISP
description, con&k'.idr. data structures analogous in function to
symbol tables, ?UM\ enforces constraints necessary to insure
that the data-storage locations, logical mappings, and
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input/oulpiil inlnfacn chnr.u loi ir»lirr> spr'.ificci in .Ihe
description can ho implomnntnd in hnidwaro. If no errors nro
encountered, il proceeds lo allocate the ba-.ic data-storage
structures colled for in Iho description, and any additional data
paths, storage, and operators necessary to implement
variablo-cicccssing schemes described by ISP. The second
pass may be considered as the semantic phase, with the
activity of r.qclo generation replaced by Ihe allocation of data
paths, operators, and additional storage as needed to
implement Iho actions described in the ISP description.
Parallelism analysis is performed at several levels to warn the
user of error conditions and determine constraints relating to
optimization of hardware. The allocation is then completed by
the addition of multiplexing where required.

However, allocation differs from compilation in that in a
compil.nlion one is concerned with implementing the specified
data operations on a fixed data part whose capabilities are
known o. priori. In allocation, the allocator must bo able to
recall and utilize Iho capabilities of a data part which is being
dynamically created. The allocator thus works from the inside
out, first creating the data storage and access structures, and
then adding Ihe neces?«ary' data paths and operators to
perform Ihe described data operations. Finally, the output of
the allocator is a non-planor directed graph, rather than a
linear list of compi'cd inductions.

The first version of the allocator is experimental, and it
performs only minor optimizations on Ihe allocated hardware.
It has been designed to investigate Ihe feasibility of
performing the mapping from ISP lo hardware, the types of
data structures needed for allocation, and areas where
optimizations are possible in future, more sophisticated
allocators.

Tho allocator has boon designed as a possible skeletal
structure for future allocators in order to standardize
input/output formats and data structures.

4. Performance of the Data-Memory Allocator

Thn allocator program was run using the ISP description of
the PDf'-S/E and tho resultant data paths are shown in Figure
3. A binding of modules was clone by hand to compare the
results of the allocator to the original DEC design (Figure 4)
[5] .

It is difficult to compare Ihe automated PDP-8/E data-path
design with Iho original DEC design (or three reasons. First,
the ISP description input to tho allocator declares ar, registers
some values Iho PDP-8/E ur.es but never stores explicitly in
registers, such as Iho effective address. These show up as
registers in Iho allocator's design. Second, the allocator
designs distributed logic, and Ihe DEC design was clone in the
central-accumulator design style. (Th.it is, this allocator does
not contain Ihe design rules for largo scale collapsing of Ihe
data paths'into a central-accumulator stylo of design [13]).
Third, the DEC design ha*\ assumed a boundary between Ihe
control and data-memory parts of Ihe design, but the boundary
is different from that imposed on the allocator by Ihe ISP
description. Thus some tor.tr;, flags, and registers which must
be declared explicitly in Iho ISP description are part of the
control in the DEC design.

The main reason for Ihe difference in design seen from Ihe
block diagram lovol of Figures 3 and 4 is that the design styles
are different. Tho multiplexing is used in different ways. In
Ihe DEC version, tho operators nro shared, and are used lo
provide no-op paths from one register to another. In Ihe CMU
version, only rogislers nro shared and use multiplexed inpuis.
The ISP language ir; pailinlly the source of this disparity. In
ISP, the user can repeatedly use register A as a destination
from various sources. However, Ihe expressions A-»B and C+D
do not imply nor discount a single adder. Olher differences in
the design include Ihe use of multiplexers for shifting iri the



DEC <lor.i|\n, iiiicl u«.f.» u( li ur/< omplcjmnnl 0/1 chips for creating
complements. "ONiniV1 of the MQ and AC registers in the DEC
version is CIMMO wilhin Iho multiplexing hardware. Constants
are of Ion en Mod in ono place and gated ovor already, existent
data paths to Ihr registers. In the CMU version, these
constants are multiplexed at the register inputs.

In r.pitc of thor.o differences, estimates of chip count
indieale thai tho allocator produces a path graph which would
require 39 / moro integrated circuit chips that the DEC
designers used for the dala paths and registers. These
estimates wore done by hand lo gauge the performance of the
allocator; an automatic binding ir» discussed in the next section.
These rslimale?; wore made Using tho same 1970 technology
chip r-el the DEC designers had lo deal with. The 397. excess
hardware can bo found in multiplexors which connect the
registers tho extra registers declared in the ISP description,
and duplicated operators like increment and add. Much of this
excess can bo allribuiocl lo the lack of optimization capability
in thr allocator algorithm, future, more sophisticated allocation
al(jorilhmr«, coupled with the capability for high level
optimization [ I ? ] available in the complete CMU-DA system will
be able to significantly improve the data part design.

Further analysis of Ihis design is in progress and includes a
manual implementation of tho control port. Comparisons of the
DEC and CMU data-path speeds will then bo possible.

5. Modulo Bindinc

The modulo binding phnr.o of tho CMU-DA system employs
the Modulo Data Itasn System (MDH5) and follows the
data-memory allocation Mop. It has the tar.k of translating the
abstract link';, memories, registers, and operations in a
data-path graph into a design using physically realizable
module'.;. A second par.s of module binding will occur after
control allocation.

At present Iho module binding portion of the design system
is primarily a rcr-rnrch tool that will be used lo investigate
automated-module binding. A goal of this research'is to model
the module binding problem sufficiently lo generalize this part
of tho CMU-DA system lo handle a wide range of module types
from LSI chips through Standard Colls. The implemented
portions of MDBS were used lo assist a designer in binding
data-part modulo* lo the CMU PDP-8/E data-paths produced
by the Onla-Memory Allocator described in Section 4. The
results of the data-part module binding are compared to the
DEC PDP-8/E design in Section 7. A similar comparison will be
made to the standard-cell binding after those results are
presented in Section 8.

6. Organization of MDBS

MDI3S consists of four sections shown in Figure 5: an I/O
section thai is responsible for translaling between Ihc internal
and external forms of I he pnlh graph; a Module Data Base
t?vccoriri mpf.lmnir.m; a command language interface; and the
module binding mechanism.

The input/output section is tho interface lo other parts of
the CMU-DA system. Tho path graph, generated by an
allocator is placed in internal form for processing. The output
file bar. the same format ar» Iho inpul path graph (with module
binding information appended) and can be reread by the input
section for additional processing.

Tho Modulo Dala Uasc is a hierarchical data base that is
distributed in various ASCII files. Tho highest lovol of Ihc data
base ir> the index which ir» road automatically during system
initialization. Tho index contains pointers lo all defined
desipn-r.tylo r.els, each of which is a collodion of module sets
appropriate for a given design style. A design stylo set file
contains poinlorr. lo Iho actual module set information (the

""Data Book11) and summary information (typical cost, speed,
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load, and drive capabilities of modules in the set). Access to
data bar.c information during module binding occurs frequently
and utilizes various lovok of detail from basic type matching
through specific delay and timing characteristics.

The Command Language Interpreter (CLI) is the
experimenter/designer's interface to the module binding
system. The CLI moy be used only to select a file to be
processed and direct the disposition of the resulting bound
path-graph. The CLI also provides a number of tools to inspect
the path-graph, modify the graph structure and bind designer
selected modules to specific, nodes of the graph.

The module hinder applies transformations to both the path
graph and module functions in order to match the desired
behavior with the available building blocks. The graph
transformations are localized decompositions or combinations
of nodes that preserve the specific behavior.' Module
transformations are primarily combinations of nodes since
modules cannot be physically decomposed. However,
multifunction modules such as shift registers and ALUs may
require partitioning of the non-conflicting functions of the
same module onto r.cparalr? nodes of the grnph.

The mosi prevalent type of graph transform is localized to a
single node or several connected nodes of a similar type.
Registers are usually decomposed into nodes of smaller bit
width. Logical operators nre usually modified by reduction to
a canonical form, Ihon synthesized with available module
operations. Multiplexors and demultiplexers are frequently
transformed from a single level to a multilevel form. Arithmetic
operators (particularly the signed and complement arithmetic
modes) require algorithmic decomposition.

fA m6re complex type of transformation involves the
combination of nodes of different types into single nodes
capable of multiple functions. Shift operators and special
purpose arithmetic operators (increment, decrement, and clear)



are generally combined with register (unctions in available
modulo r,oU. These transformations often provide significant
reduction?* in the yi aph complexity by elimination of constants
and reduction of multiplexor size.

Operator node transformations primarily involve the
application of axioms and identities to combine available
modulor, into an aggregate that performs a desired function.
Boolean identities and DeMorgan's Theorem will direct logical
synthesis. Arithmetic mode transformations (for unsigned,
signod-magniludc, two's complement, and one's complement)
will be ulili7ocl to synthesize required modes from available
modes.

For ca'..O5 whore single transformations on either the graph
or the modules do not provide the desired match, an iterative
approach will bo utilized. The graph and the module
tranrJorms will be alternately applied until one or more
matcher, are found, a eye.In is delected in Iho transformations,
no further gain is delected by applying transforms, or one of
the system constraints (speed, cost, etc.) is violated by the
resulting implementation.

A central goal of the CMU-DA system is to produce .designs
that have been optimized toward the designer's objectives and
fall within the external constraints. Module binding is the first
operation in the design system that attaches actual costs to
the implementation and his specific r>pccc\% delay, and power
information available. Iherofore, evaluation of the bound
design must be performed to insure compliance with tl)e
constraints. Critical constraints (i.e. constraints which the
designr, must moot) will bo dynamically estimated by projecting
the final value based on an extrapolation from the number of
nodes remaining to be bound and the accumulated value for
the nodes already hound; a true evaluation of the fully bound
design will bo made ar, a final pass to insure compliance with
the constraints. The dynamic evaluation will be used to select
between functionally identical module choices with different
performance parameters.

7. PDP8 Baseline Example

A partial module binding of the PDP-8/E was clone with the
available pieces of MDBS, which contain limited transform
capabilities.

The modulo binding section contains a set of primitive
operations that can modify the path graph structure (but not
its behavior). The operations allow register nodes to be split
at bit boundaries, operator nodes to be joined into single
nodes with wider bit widths, nodes to be inserted, and nodes
to be deleted. These operations allow the path graph nodes to
be transformed to conform with the structure of available
modules. An the MfDHS becomes more fully implemented, these
primitive operations will be used to build larger scale path
graph transforms that can be applied automatically.

The existing system aids the designer in producing correctly
bound path graphs by the strict enforcement of rules
concerning application of the structural modification primitives.
These operations are restricted to minimize Ihe possibility of
modifying Ihe behavior of the path graph. Some examples of
these rules are:

- Nodes may not be deleted while connected to
more than one link.

- Links may not be doloted while joining two nodes.

- Half links (i.e., signals to external sources) may not
bo deleted.

- Operator nodes may be joined only if they are of
Ihe same typo.

10



A diffornnl htil equally important kind of asr.ichncc ir, provided
to allow I ho closip.nor to display any aspect of I ho binding
process. Tor example, I ho designer may display one module in
the data base, all modules providing a specific function, or the
entire data book.

The module choices wore made by the designer using
information from the path graph and a small TTL module data
base from I ho distributed Design Style Set. The purpose of
binding the data part with the existing system is to contrast
the modulo selection with a hand designed PDP-8/E. This
exampln provides a worst-case from which to judge the
performance of MD11S as mare capabilities are added.

Figure 6 was generated by the MDBS. The registers (named
variables), operators, and multiplexors are identified in the
"Comp.11 (Component) column. The "Device11 column lists the
name of the selected package, "Mods." lists the number of
modules required to implement the component function. The
term "modulo11 refers to a separate functional unit in this
context. There may ho several modules contained in one
package. "F'kgs." lists the number of packages required for
each function. "Gales" is an estimate of the equivalent number
of logic gates to implement the function. The percentage of
the total pales required ir. lir.ted in the "7 Total Gates" column.
The cost of nach function implementation is computed as the
basic cost for the number of packages required plus an
overhead mounting cost of #3.00 per package. The percentage
of tho total cost attributed to each function is listed in the "t
Total Cost" column.
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Figuro G: Module Utilization For PDP-8/E Data Part

The choice of registers differed from the hand module
binding in a few locations. The hand bound PDP-8/E used
SN741945 (four hil universal shift registers) exclusively while
the MDBS chose 5N74J71:; (?six bit D registers) when there
was no requirement for tho added shift' capability. The
Program Counter (PC) register was selected as three
SN74l6 l r , (universal counters) based on the INC flag
associated with I ho path graph node. The Accumulator (LAC)
was (irsl split into a one bit node and a twelve bit node, then
the twelve bit part was allocated as three SN74194s. This is
the same allocation that was done by hand. However, the
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choice only '.nlisfios the shift operation flags (l.SHFT and
R S l i n ) . The increment requirement (INC) has effectively been
partitioned out and must be bound separately.

The package count war. 3 0 / higher for the MDBS selection
than for the \)[.C implementation (64 packages for DCC vs. 83
packages for MOFifO. This agrees closely with Iho results
obtained by selecting modules strictly by hand (refer to
Section 4). The 3 0 / difference is attributable to the different
design styles used and the allocator's implementation of the
design. Comparing the total cost of modules for the DEC
implementation and the MDf3S implementation (Figure 6), it is
found that the costs also are 307 higher for the' automated
implementation, while the number of equivalent gates is 652
higher for the automated implementation. This indicates that
MDE35 chose modules with a higher level of integration than
DEC did.

A comparison of the percentage of equivalent gator, arid Iho
percentage of cost accumulated in three functional classes
(registers, operators, and multiplexors) indicates surprisingly
uniform comparisons. Thn percentage of both gates and cost
is higher for registers in the MDHS implementation than in the
DEC implementation. This trend is expected since the DEC
PDP-8/E uses a central accumulator design style. Also, the
slightly lower percentages for gates, and costs in the operator
class is reasonable for I he DEC implementation. The most
surprising comparison is the near identical percentage of gates
devoted to data path routing (i.e. multiplexors) in the two
designs implemented in different design styles. It would be
expected that Iho central .accumulator style would utilize more
data path routing than Ihe distributed style. This apparent
anomaly'is a rluo to l lv xrc.a where the module binding can
make local improvements in a path graph for distributed
designs. I3y utilizing functions intrinsic to certain modules
(such ns the CU~AI? on registers), constants and their
associated data paths can bo eliminated and improve the cost
of implementing a design.

The TTL module binding using MDBS compares favorably
with the DCC implementation and previous hand module
bindings of the automated path graph. It is expected that
much improvement in the package count (and the cost) is
forthcoming as transforms and evaluation techniques are
implemented in MDFJS. However, TTI. module binding is just
one objective of a generalized design system. The following
section discusses an approach to binding CMOS standard cells
to a design with the objective of being able to automate and
produce LSI designs.

8. Standard Coll Generation

The Sandia standard cell library ("111 can also be used as
physical modules lo implement Iho automated PDP-8/E data
part design. Then, using the Sandia software package [1, 10],
it is possible to produce a simulation, insert faults, and perform
automated cell placement and 1C mask generation for a CMOS
LSI chip implementation.

The standard cell binder used for this experiment was a
small, automatic, package which accessed a local data base of
Sanclin colls. This package only performed the essential
transformations on the graph-expansion of nodes to match the
standard cells. However, this package also gives us a
worst-case measure for module binding performance.

The translation of the design from one environment, the
module binder output, lo another, the simulator input, involves
both the expansion of multi-bit paths produced by the module
bincJer to the single bit connection format of the simulator
input and also the explicit identification of fan-out points. In
addition to this latter process, termed resolving, the translator
must generate pale specific parameters, such as propagation
delays, by computing capacitances lo obtain a realistic
simulation using SALOGS. Delay parameters are inserted in lh«
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simulation model by the ur.o of delay paler* wilh associated
times.

The input to 5AL0GS is a description of the network, written
in NDL [3]. • NDL describes the interconnection of functional
blocks. Input and control signals are generated through the
SALOGS simulation Innguaco* SALSIM [4]. ' In SAL0G5, gate
representation includes built-in .simulator elements such as
inverters, transmission Rales, NAND, AND, OR, and NOR gates.
In addition, any set of elements can bo defined as a functional
block and the block Used as a now element.

The NDL can Ihon bo used to automatically generate an 1C
mask and to determine chip area. The portion of the total
data-path area taken up by the different modules is
summarized in Figure 7.

The upper portion of the Figure compares the size of the
data-path elements listed in Figure 3. The lower part of the
table describes some modules that are more accurately defined
as control than data-path. As expected, the percent of
sub-total Rate count in the upper portion of the table closely
resembles the results from the TTL binding shown in Figure 6.

In sum, the CMU PDP-8 design required #74,042 mil-sqr,
ignoring the area taken up by routing. The experience with
Sandia's IC mask closipn system indicates that routing takes up
about an additional 75/ of the area occupied by the standard
cells,'yielding a chip area of 129,574 mil-sqr. Dy way of
comparison, Intersil's onr' chip CMOS CPU implementation of
the PDP-8 lakes up 29,0 M mil-sqr [6]. It is estimated that
357 of Intersil's CPU chip is devoted to the functional elements
equivalent to that generated by the CMU-DA system. Thus,
there is a factor of J3 difference in the area required for the
two designs.
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7: Module Data from Translator
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A model can be dnvi$«:d to attribute this seemingly large
difference to various p.'fls of the design system. Since each
part of the design :.;ys»tcm builds on top of the previous stage,
a multiplicative model is used. This model must take into
account the non-optimality of the allocator, non-optimality of
the module binder, differences in basic feature size, and the
differences in routing techniques. The result of the allocator
section indicates a design requiring 1.3 times the size of the
DEC design. There is also a difference in the basic feature
size of the Intersil and Sandia technologies. By way of
comparison, a 12 bit register implemented with Sandia's
standard cells occupies 4 times the area of equivalent register
In Intersil's design [2]. The multiplicative model then becomes

1 3 . 0 « ( 1 . 3 ) ( 4 ) R f

where R is a factor indicating a difference in size between the
CMU design and tho Intersil design introduced by the module
binder. In this case R « 2.5. Not included in the model are
factors due to difference between hand packed and channel
routing techniques, nor factors considering that large
structures (e.g. wide multiplexors) can be more optimally
designed by hand than by combination of simple standard cells.

In the worst case, assuming similar input structures and
feature size, the CMU module binder would produce a design
taking 2.5 times the area of the Intersil design. However, as
discussed above, there are other factors which increase the
CMU design size that were not accounted for in the model.

9. Summary and Conclusions

• The paper has illustrated the methodology behind the CMU
Design Automation System. In particular, the datapath of a
non-trivial digital system (PDP-8/E) has been designed from an
ISPL functional description. Two types of physical modules
were bound to the datapath design.

The binding using TTL series modules indicated that the CMU
design required 307- more modules than the DEC
implementation. The binding using CMOS standard cells
indicated that the CMU design is at most a factor of 2.5 off,
and due to differences in routing techniques may be actually
closer in area to the Intersil design.

As a whole l h * system has demonstrated the synthesis
function in digital system design. The allocator research
indicates automated logic synthesis with optimization is feasble
and specific module-set information is not necessary in order
to produce a reasonable design. The module binding section
has demonstrated how the system can design relative to new
technologies. Future work with the design system will deal
with optimization techniques to be used in better directing the
design algorithms for more complex designs.
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