
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-156

An Improved Algorithm for the Automatic Verification
of Finite State Systems Using Temporal Logic

Michael C. Browne
Carnegie-Mellon University

Pittsburgh, Pa. 15213

ABSTRACT: One method of verifying finite state systems is to represent the system as a state-

transition graph and use an efficient algorithm, called a model checker, to determine if this structure

is a model of a temporal logic specification. An example of this approach was given by Clarke,

Emerson and Sistla [3], who developed a model checking algorithm for a propositional branching-

time temporal logic called CTL (Computation Tree Logic). Unfortunately, their algorithm assumes that

all of the state transitions are unconditional, when in practice the transitions of most finite state

machines depend on the values of a set of inputs. In this paper, we present an improved CTL model

checking algorithm that allows conditional transitions. Although the worst case complexity of our

new algorithm is the same as the original model checker, we show that for certain classes of CTL

formulas, the new algorithm is a significant improvement.

1 . Introduction
There are two distinct methods of applying temporal logic to system verification. In the first ap­

proach, temporal logic is used as a deductive system in which proofs are constructed to show that the

system meets its specifications [5,6]. Although this technique is very powerful, the construction of

such proofs can be very difficult for a human and almost impossible for a machine. Furthermore, it is

unlikely that any significant degree of automation is possible, since the complexity of most temporal

logics is so high that the construction of an automatic theorem prover is probably not feasible.

The other method is model theoretic in nature and is only applicable to finite state systems, such as

network protocols and hardware controllers. In this approach, the system is represented as a finite

state-transition graph, or Kripke structure. Then, instead of constructing a tedious proof, an efficient

algorithm, called a model checker, is used to determine whether or not this structure is a model of the

temporal logic specification. Clarke, Emerson and Sistla have presented an example of this

approach [3] by developing a model checking algorithm for a propositional branching-time temporal

logic called CTL (Computation Tree Logic). The usefulness of this algorithm, which is linear in both

the number of states and the size of the specification, has been demonstrated in several other

papers [1,2].

This research was supported by NSF Grant Number MCS-82-16706.

One drawback of this algorithm is that it assumes that the state transitions are unconditional in that

all of the transitions from a state are always enabled. However, most of the systems encountered in

practice (particularly hardware controllers) have state transitions that are enabled or disabled by a set

of external input signals. In order to remove these conditional transitions so that this algorithm can be

used, it is necessary to replace each state of the original system by a set of states, one for each

possible combination of input signals, and to determine which transitions are possible from each new

state by evaluating the conditions. If there are n inputs, there are 2? input combinations, so this

preprocessing results in an exponential blowup in the number of states. Since the model checker is

linear in the number of states, this algorithm is exponential in the number of input signals.

In this paper, we present a new algorithm that can verify systems with conditional transitions without

the additional preprocessing that the old algorithm requires. In the worst case, the new algorithm is

also exponential in the number of input signals. However, if the formula being verified is in a special

class, the new algorithm is linear in the number of input signals and quadratic in the size of the input

formula. Since this class of formulas includes all of the formulas that we have ever attempted to verify

in practice, we believe that the new algorithm is a significant improvement on the original model

checking algorithm.

We have implemented both the original model checker and the new algorithm in C on a VAX/780 in

order to compare their performance. We attempted to use both algorithms to verify two hardware

controllers (a simple traffic light controller and a UART). In the first test, the old algorithm took 17.8

seconds of CPU time and the new algorithm took 3.3 seconds. In the second test, the new algorithm

took 54.5 seconds of CPU time, but the preprocessing for the old algorithm added too many states for

our implementation of the old algorithm to handle. The test of the old algorithm was aborted after 2

hours (!).

The paper is organized as follows: In section 2, we describe the syntax and semantics of the logic,

called Computation Tree Logic (CTL). In section 3, we describe the structure of the finite state

systems that we will verify. In section 4, we give an outline of our algorithm. In section 5, we give a

detailed proof of part of the algorithm. In section 6, we discuss the efficiency of the algorithm. The

paper concludes with a brief discussion about the usefulness of this algorithm and future enhance­

ments.

2. The Specification Language
The formal syntax for CTL is given below. AP is the underlying set of atomic propositions.

1. Every atomic proposition p € AP is a CTL formula.

2. If ^ and f2 are CTL formulas, then so are ~<fr ^ Af 2 , AX fv EX f r Af^U f 2] , and E ^ U y.

The symbols A and have their usual meanings. X is the next time operator; the formula AX ^ (EX

intuitively means that ^ holds in every (in some) immediate successor of the current state. U is the

until operator; the formula Af^U f 2] (E ^ U f 2]) intuitively means that for every computation path (for

some computation path), there exists an initial prefix of the path such that f2 holds at the last state of

the prefix and f 1 holds at all other states along the prefix.

We define the semantics of CTL formulas with respect to a labeled state-transition graph. Formally,

a Kripke structure is a triple M = (S, ft, P) where

• S is a finite set of states.

• R is a binary relation o n S (R C S x S) which gives the possible transitions between states
and must be total, i.e. Vx €S 3y €S [{x,y) €/?].

• P is an assignment of atomic propositions to states i.e. P: S - * 2AP.

A path is an infinite sequence of states (sQ, s v s2,...) such that V/ [(s., s / + f) €/?].

We use the standard notation to indicate truth in a structure: M,sQ N f means that formula f holds at

state sQ in structure M. When the structure M is understood, we simply write s Q l= f. The relation N is

defined inductively as follows:

s Q N p iff pzP{sJ.

s Q l = - « f iff not (s Q N f) .

s o N / i A f 2 i f f s o N = f i a n d s o l = = f 2 '

sQ N= AX iff for all states f such that (s Q , f) € ft, f f 1 .

SqNEX^ iff for some state t such that (sQ,f) €/?, f N ^ .

s 0 N A [f 1 U f a l iff for all paths (s Q , V . ^

sQi=E[f,Uf2] iff far some path (s 0 > s 1 f . ^

We will also use the following abbreviations in writing CTL formulas:

UNIVERSITY LIBRARIES
carnegie-mellon university

Pittsburgh. Pennsylvania 15213

/ Vg • - ! (- 1 / A - . g)

AF / s A[frue U f] intuitively means that / will hold sometime in the future along every path.
(f is inevitable.)

EF f =E[/rue U /] means that / will hold sometime in the future along some path, (f is
possible.)

AG / • -1 EF (-1 f) means that / holds at every state on every path, (f holds globally.)

EG f = -1 AF (-1 f) means that there is a path along which f holds at every state.

In verifying finite state systems, we are often interested only in the system's behavior along fair

paths. For example, if the system allocates a shared resource between several users, we might want

to consider only those paths along which no user keeps the resource forever. Unfortunately, it has

been shown that CTL cannot express assertions about correctness along fair paths [4]. Therefore, it

is necessary to modify the semantics of CTL in order to deal with fairness.

Let F be a finite set of CTL formulas, {c Q , c 1 c n } , called fairness constraints. We define a fair path

to be a path along which each fairness constraint is satisfied infinitely often. CTL F (CTL with fairness)

has the same syntax as CTL, but the semantics are different in that all of the path quantifiers range

over fair paths. For example, the definition of Np (satisfiability in CTL F) for EX is:

sQ N EX f iff for some fair path (sQi s r . . .) , $ 1 N= f.

3. The Finite State System Description
The finite state systems that our algorithm deals with are 5-tuples, M = (S, /, O, R, P) where

• S is a finite set of states.

• / is a finite set of input propositions that transitions can depend on. 2l is the finite set of
possible input assignments. Let 1(1) be the set of formulas of propositional logic that only
contain propositions from /. Let sat be the satisfiability relation for 1(1), so that A sat G is
true if A € 2 1 satisfies G € 1(1).

• 0 is a finite set of output propositions that label states. / n O = 0 .

• R is a set of triples (s,t,G) from S x S x (l(l)-{false)). For any pair of states, s and f, only
one triple (s,f,G) will be in R. The meaning of a triple is that if the structure is in state s,
and the current input state satisfies G then the structure may make a transition to state f.
Every state must have a successor, so R must satisfy

Vx€S V A € 2 j 3 (x,y,G)€fl [AsatO].

• P is an assignment of output propositions to states i.e. P: S 2 ° .

Let AP, the set of atomic propositions, be / u 0 . Now, it is necessary to define what it means for a

CTL formula to be true in such a structure. For any 5-tuple of this form, we can define an equivalent

Kripke structure, M' = (S' , /?', P') where

• S ' = { < s , 4 > | s € S & A € 2 1 } .

• fl' = {(<s,,4>,<f,B>) | <s,A>, <t,B> €S'& (s,/,G) €fl & A sat G}.

• P ' (<M>) = P(s)U/ \ .

We can apply the CTL semantics in section 2 to define truth in Mf. Therefore, we can define truth in

M at state s with input state A by the equivalence:

M,s,A t = / ~ M ' , < s , A > N f .

We can define t=f for M in a similar manner.

4. A Brief Overview of the Algorithm
Since the truth of a CTL formula is conditional on the state of the input, the goal of our algorithm is

to find all of the possible inputs which can satisfy the CTL formula at each state. This is done by

labelling each state, s, with a formula, label(s,f)» from L(l) such that:

M,s,A \f'f*=>A sat label(s,f).

The main procedure is shown in figure 4-1 . Once the type of CTL formula is determined,

LabelGraph is called recursively to determine the truth conditions for all of the subformulas of /

(these conditions are needed in the labelling routines). Then, the labelling routine for the specific

type of CTL formula is called to set label(s,f). After the algorithm terminates, the truth conditions for /

and all of the subformulas of f are known.

procedure LabelGraph(f)
if f = p then

begin
AtomicLabel(0;
return;

end;
iff = - i ^ then

begin
LabelGraph^);
NotLabel(/);
return;

end;

end

Figure 4 - 1 : The Main Procedure, Labelgraph

In order to handle fairness, we assume that label(s,c.) and label(s,fa/r) are formulas from 1(1) such

that:

A sat label(s,c.) <=> M,s,A N=c.
A sat label(s,/a/r) <=> 3 a fair path in M' from <s,A>

5. Correctness of the Algorithm
After LabelGraph(Z) is called, label(s,0 is set to a formula from 1(1). If the algorithm is correct,

M,s,A Np f <=> A sat label(s,0

This will be proven by cases. Due space limitations, we will only give complete proofs for two cases: f

is an atomic proposition and / is Ef^U f2]. (The proofs of the other procedures are similar. The other

procedures are given without proof in Appendix II.)

5 . 1 . f is an atomic proposition.

procedure AtomicLabel(0
for alls €S do

if fit then
if f eP(s) then

label(s,/) = true;
else

label(s,f) = false;
else

label(s,0 = f;
end

Figure 5 - 1 : The Procedure That Labels Atomic Propositions

By the definition of Np for an atomic proposition,

M,s,A \ff **M',<s,A>)f f
<=>ftP'(<s,A>).

Since P'(<s,A>) = P(s)UA,

M,s,A f <=>f €P(s) V / € A .

There are three cases that must be considered.

1.f€l&f €P(s).

Since / €/, f CA, so

M,s,A tff**f£P(s).

Since / € P(s) is our hypothesis, M,s,A fj= f is true. But AtomicLabel sets label(s,0 to true,
so A sat label(s,f) is true for any A. Therefore,

M,s,A \ff <=* A sat label(s,0-

2.f € / & f iP(s).

Since f $/, f cA.so

M,s,A tff*=>ftP(s).

Since f <tP(s) is our hypothesis, M,s,A tj=/ is false. But AtomicLabel sets label(s,f) to
false, so A sat label($,f) is false for any A. Therefore,

M,s,A \==f <=*A sat label(s,f).

3.f €/.

Since f € /, f c P(s), so

M,s,A)ff<=*f €A.

In this case, AtomicLabel sets label(s,f) to f> so by the definition of sat, A sat
label(s,/)<=>/€A. Therefore,

M,s,A tff <=> A sat label(s,/).

Therefore, AtomicLabel is correct.

5 .2 . / = £ [/ , U f2]

EUlabel uses two arrays of booleans, marked and stacked, that are indexed by the states of the

machine. The intent is that marked[s] should be true if there is a state <s,A> in M'that satisfies

U f 2] , and stacked[s] should be true if a call eu(s) is in progress.

Since LabelGraph calls itself recursively before EUlabel is called, we use recursive induction to
establish:

M,s,A \ff^ <=*A sat labelfs,^), and
M,s,A \ff2 <=>A sat label(s,f2).

Let INV be an abbreviation for the formula:

Vs [marked[s] —•

3 A [M r s , A ^ f E [/ 1 U f 2]] &

V „ > 0 V Paths in M\ (^B^Kt^^Kt^B^)

[« - ' « * V 0 i / < n ^ f l / » r ' l] -
v o < / < n f"1 marked^] markedly 7] v s t a c k e d ^ ,]]]] &

Vs [stacked[s] —• marked[s]].

Lemma 1 : The subroutine eu satisfies the assertion:

{INV & 3 A[M,s, A I f E[f1 Uf 2]] & - i marked[s] & - i stacked[s]}
eu(s)

{INV & Vs [stackedfs] = stacked[s]'] & marked[s]},

where stacked[s]' is the value of stacked[s] before the call.

procedure EUIabel(0
for all s € S do

begin
marked [s] = false;
stacked[s] = false;

end;
for all s € S do

if - i marked[s] & (label(s,f2) A label(s, fair)) * false then
eu(s);

for alls €S do
begin

label(s,0 = label(s,f2) A \abe\(s,fair);
for all (s,t,G) €/?do

if marked|>] then
label(s,0 = (G AlabeKs,^)) vlabel(s,0;

end;
end

procedure eu(s)
begin

stacked[s] = true;
markedfs] = true;
for all {t,s,G) €/?do

if - i marked[r] & -istacked[f] & (labelfrf.,) A G)* false then
eu(f);

stacked [s] = false;
end

Figure 5-2: The Procedure That Labels E ^ U f2]

Proof: We will prove this lemma by recursive induction.

To begin with, marked[s] holds after the call. Since the second statement sets marked[s] to true

and eu never sets an element of marked to false, marked[s] must be true after the call. We can also

show that the array stacked is not changed. Initially, the precondition states that stackedfs] is false.

The first statement sets stacked[s] to true. If the precondition of eu is satisfied, the recursive calls

leave stacked unchanged. So when the loop terminates, all elements of stacked are unchanged

except for stackedfs], which was false and is now true. Since the last statement sets stacked[s] to

false, stacked[s] is also unchanged. Therefore, eu leaves stacked unchanged. Now, we must show

that INV is true after eu.

First, we will show that the first two statements of eu preserve INV. After the first two statements

execute, both marked[s] and stacked[s] are true, so stackedfs] —• marked[s] is true. Since INV is part

of the precondition and the first two statements only change marked[s] and stacked[s], we know that

stacked[f] - f marked[f] is true for all true for all states other than s. Therefore, we have

Vs [stacked[s] markedfs]].

Now, since - i marked[s] is part of the precondition, -»markedfs] v stackedfs] is true initially. After the

first two statements are executed, stackedfs] is true, so - i markedfs] vstackedfs] is still true. Since

nothing else has changed, the value of the implication

-t markedfr] -+ - i markedly 7] vstacked[f ; > 7]

hasn't changed. Therefore, the invariant still holds for all states other than s. Now that state s is

marked, we must show that:

3A[M,stA\fE[f^f2]]&

V „ > 0 Vpaths in A//7, (<t0,BQ>,<trB

v o < / <n I" 1 marked^] - -»markedly 7] v s t a c k e d ^ ,]]]

The existence of A is given by the precondition. We can prove the second part by contradiction.

Assume that

3 n > 0 3 Path in M', (<f 0,e o>,<f 1,B 1>,...,<f n,8 n>)

[s = f n & V 0 ^ / < n [< f r B ^ y & 3 ^ ^ ^

Since stackedfs] is true but s t a c k e d ^ 7] is false, we conclude that t j + 1 *s. But since t u 1 * s , we

know the invariant holds. Since markedff^ r] and {<trBj>9<tith VB. 7>) is a path in M', we have:

<trB> I f ^ (-> markedty] - i markedff.^ 7] vstacked[f / + 1]) .

Since we have assumed <tfBj> t f ^ and -»markedff.], we conclude -^marked[f / + 7] vs tackedfs f] .

This contradicts markedff^ y] & -istackedff.^ y] , so the invariant is true for state s. Therefore, the first

two statements preserve INV.

Now we want to show that the loop preserves INV. By assumption, a recursive call preserves INV if

the precondition is satisfied before the call. INV is true before the loop. The recursive call eu(t) is

made only if (t,s,G) €/? & -«marked[f] & -»stacked[/] & (labelftf.,) AG) * false, so -mnarkedff] &

- i stackedff] is true before the call. Now it is necessary to show that:

3A[M,t,A\f E ^ U / J] .

Now,

(labelfr^) AG) * false <=>3A [A sat labelfr^) AG]
«=> 3 A [A sat labelft^) & A sat G].

By the definition of fl' and the inductive hypothesis,

(t,s,G) €fl & A sat G -> VB [(</,A>,<s,B>) €/?'], so
3A [M,f,A> I f ^ & VB f(<f,A>,<s,B>) €/?']].

By the precondition, 3 B f/tf,s,B I f Eff 1 U f 2]] , so by definition of f f and M':

3 fair path (<u 7 ,C 7 >,<u 2 ,C 2 >, . . .)3 n > 0

[s = u ^ M , u n , C n ^ f 2 ^ Q < i < n [M t u p C ^ f ^

Since M,t,A l=f/1 and (<f,A>,<s,e>) € f l ' , we can add <f,A> to the beginning of this path. This path must

also be fair, so we have:

3 fair path « ^ C 0 > , < i y 7 , C 7 > , . . .) 3 n > 0

[t = ̂ 0

& ^ c n ¥ ^ & v 0 < / < n[M§urcgtr gi.
Therefore, 3A [M,t,A f f E ^ U y], so the precondition is satisfied when the loop is entered. After a

recursive call, INV is preserved, so the precondition is satisfied for all recursive calls. Therefore, INV

is true after leaving the loop.

Finally, we must show that the final statement preserves INV. To begin with, the implication

stacked[s] -» marked[s] is true after the final statement, since stacked[s] is false. Since nothing else

has changed, we have

Vs [stacked[s] —• marked[s]].

Since the loop makes a recursive call only if (f,s,G) €fl & -«marked[f] & -istacked[f] &

(label(f,f J AG) * false, and marked[f] is part of the postcondition, we can conclude:

Vf [-»((f,s,G) €/?&-» marked[f] & -istacked[f] & (label f tg AG) *fatse)]

Using the same argument as above,

(f,s,G) €R & (label(f,f1) A G) * false <=> 3A [MX A tff^ & VB [{<t,A>,<s,B>) €fl ']] ,so
Vf [3 A [MXA \f f 1 & VB [(<f,A>,<s,e>) <zR']] -> marked[f] vstacked[f]].

By the definition of /?',

3 8 [(<t,A>,<s,B>) tR'] ~ (f,s,G) eR & A sat G
<=* VB [(<f,A>,<s,B>) €/?'], SO

Vf [3A [<f,A> I f ^ & 3B [(<f,A>,<s,B>) €fl ']] marked[f] v stacked[f]].

We will now show that INV is true by contradiction. Setting stacked[s] to false cannot change the fact

that

Vf [marked[f] -> 3A [M,s,A I f E[f1 U g]].

Therefore, if /A/\/ is false, we must have:

3 f [marked[f] & 3 n > 0 3 path in M' , (<a 0 ,C 0>,<u 1 . C ^ <u„,Cn>)

[f = u„ & V 0 < / < | ? [M . ^ C , * f g & 3 0 < / < n h markedly] & marked[u / + 7] & - is tacked^. , ,]]]] .

Since the only change is that stacked[s] is false and INV was true initially, this can only be true if

u / > 7 = s . Now, we have assumed M,urC. \f f 1 and (<uFCf%<uurCu1>)zR'% so from the loop's

postcondition we can conclude marked^.] v stacked[u.]. But since Vs [stacked[s] —»marked[s]], we

conclude marked[u,]. But this contradicts -»marked[u.], so /A/V must be preserved by the final state­

ment.

Therefore, the lemma is true. •

Lemma 2: After the loop in EU label that calls eu has terminated,

Vs [marked[s] <=> 3 A [M,s,A I f Ef^U fj]].

Proof: To begin with, we want to show that whenever eu is called, the precondition is satisfied.

Initially all states are unmarked and unstacked, so INV A -< stackedfs] is trivially true. Since eu is only

called if -> markedfs] & (label(s,f2) A label(s, fair))* false is true, - i markedfs] is true. By the inductive

hypothesis and definition of label(s,fa/r),

label(s,/ 2)A label(s, fair)* falser 3 A[Asatlabel(s,f 2)A label's, fair)]

<=> 3 A[A sat label(s,f2) & A sat label's,/a/V)]
<=* 3A[M,s,A I f f2 & 3 a fair path from <s,A>].

So by definition, 3 A [M,s,A * f Ef^U f2]] is true. Therefore, the precondition is true when the loop is

entered. Since eu preserves INV and doesn't change the array stacked, the precondition is true for

all iterations of the loop.

After the loop has terminated, INV is still true. Therefore, the forward implication of this lemma is

true. In order to prove the reverse implication, we start by showing that INV implies:

Vs [-i markedfs] —•

V „ > 0 Vpaths in M', (<f 0 l S 0 > l <f 1 l B 1 >,.. . > <f n l S f l >)

Cs = fo & vo</ <n lM>frBi ¥ ' i l & M^tfBn ¥ f 2 ~> ^ marked[g]].
Assume that this is false, so we have:

3 s [-i markedfs] &

3 ^ 0 3path in M' , (« o i B 0 > l <f 1 l f l 1 > l „. f <f r | f e | | »

Since t is marked, INV tells us that

v o</<n h m a r k e d l ^ -> - imarked ly t] vs tackedf^ ,]] .

Since the array stacked is initialized to be false and eu doesn't change the array, s tacked[f / + f] is
false, so

v o < / <n ^ m a r k e d f y] - * marked^ + J], or equivalently
v o < / < n f m a r k e d ^ " f marked[f / - 7]].

Since we know markedff J, we can apply modus ponens n times and conclude markedf^]. But since

s = fQ, this contradicts our hypothesis -«markedfs]. Therefore, the statement is true.

Since eu always marks its argument and stacked is initialized to be false, the postcondition for the
entire loop is:

INV&Vs f - i stackedfs]] & Vs [-» (-i markedfs] & label(s,f2) A label(s,fa/r) # false)], or

INV & Vs [-1 stacked[s]] & Vs [label(s,f2) A label(s,te/r) *fafse -+ marked[s]].

By the inductive hypothesis and the definition of label(s, fair),

label(s,f2) A label(s, fa/r)* false<=> 3 A [A s at label (s, f2) A label(sf fair)]
<=> 3 A [A sat label(s,/2) & A sat label(s, fair)]
<=> 3 A[M,s,A I f f2 & 3 a fair path from <s,A>].

So the loop's postcondition is:

INV & Vs [-i stackedfs]] & Vs[3 A[M,s,A 1= f 2 & 3 a fair path in M'from <s,A>] -> markedfs]].

We have shown that if a state is unmarked and there is a path from this state that satisfies E ^ U f j ,

then the state on this path that satisfies f2 must be unmarked. But since all states satisfying f2 on a

fair path have been marked when the loop is exited, we conclude that if there is a path from an

unmarked state that satisfies EJ^U f 2] , the path must be unfair. Therefore,

Vs[-»marked[s]-+ -*3A[M,s,A I f E ^ U f J]] .

This is the reverse implication, so the lemma is proven. •

The second loop sets label(s,f) such that:

label(s,f) = label(s,f2) A label(s,fa/r) v V { G A labeKs^Ks,*,G)€fl & marked[f]}, so
A sat labelfc,/) <=>A sat label(s,f2) A \abe\($,fair) v

3 f[(s,f,G)€fl & marked[f] & A sat G & A sat labelfs,^)].

Using the inductive hypothesis and the definitions of fl'and label(s,fa/r), we get

A sat label(s,f) <=> (M,s,A I f f2 & 3 a fair path in M'from <s,A>) v

3t [marked[f] & VB [(<s,A>,<f,B>) €fl '] & M,s,A \ffj.

Since markedff] <=> 3 B [M,t,B I f E[/ 1 U f 2]] f this becomes:

A sat label(s.f) <=> (M,s,A t= f2 & 3 a fair path in A//7from <s,A>) V
3f [3B [M,t,B * f E ^ U f j] & VB [(<s,A>,<f,B>) & A/f,s,A t f g .

This implies:

A sat label(s,0 <=• (M,s,A I f f 2 & 3 a fair path in M'from <s,A>) V

3 f [3S [MXB\f E[^U f 2] & (<s,A>,<f,B>)€fl'] & M,s,A Njr f ,] .

Using the definition of t f for M and regrouping:

A sat label(s,0<=* (M' ,<s,A> * f f 2 & 3 a fair path from <s,A>) V
3 <t,B>[M',</, B > * f E ^ U/2]&(<s,A>,<f,B>)€R']&M',<s,A> * f ^ .

From M,f,B * f Ef^U/J, we can infer that 3 a fair path in M'from <f,B>. Therefore, using the definitions

of EX and A , we get:

A sat label(s,f) ~ (M' ,<s,A> \f f2 & 3 a fair path from <s,A>) v {M/ ,<s,A> I f ^ A EX E ^ U f2]).

Since this is the fixpoint characterization of E[f1 U f 2] for fair paths, we have:

A sat label(s,0 ~ M ' , < s , A > t f E ^ U f2J

Therefore, EU label is correct.

6. Complexity of the Model Checker
In this section, we consider the complexity of verifying CTL formula f in structure M = (S, /, 0 , R, P).

We assume that the conditions in R are given in disjunctive normal form. Furthermore, let |/| be the

length of f> |/| be the number of input propositions, and \R\ be the total number of conjuncts in the

transition conditions.

We should begin by pointing out that the new algorithm is no worse than the original algorithm.

Theorem 3: The complexity of verifying CTL formula f in structure (S, /, 0 , ft, P) is Oflfl^M-lftl),

Proof: To begin with, we will represent all of the label(s,0 formulas by an array of 2^' booleans, one

for each possible input assignment. If an array element is true, then the corresponding input assign­

ment satisfies the formula that we are representing. It is easy to see that negation, disjunction, and

conjunction of formulas in this form requires 0{2^) time (we only need to examine each array element

once). It is also possible to keep track of whether there are any elements set to true, so satisfiability

can be done in constant time.

Now, it can be shown that each labelling procedure does a constant amount of boolean formula

manipulation and other work for each state and each transition. Therefore, the complexity of each

procedure is 0(2' / ' (|S| + \R\)). But since each state has at least one transition, |S| is 0(|ft|), so the

complexity of each procedure is 0(2 , ;'-|fl|). Since a labelling procedure is called once for each

operator in f, it is clear that \f\ calls are made. Therefore, the complexity of the algorithm is

Otif|2"".|fl|). •

It is doubtful if a different representation for the boolean formulas would give a better result. After

all, if the formula f contains only inputs and propositional operators, the model checking problem

reduces to boolean satisfiability, which is NP-hard. (As it is, we avoid being exponential in the length

of the formula by being exponential in the number of inputs instead.)

Although in general the new algorithm has the same complexity as the original, if we restrict the

logic, we can get a much better result. Consider the following definition of allowable CTL formulas:

1. true is an allowable CTL formula.

2. If p is an atomic proposition and f is an allowable CTL formula, then p Af and ->p Af are
allowable.

3. If f1 and f2 are allowable CTL formulas, then so are / 1 v f2, EX fy EG f v and E[f^U f2].

In practice, we have found that this class of formulas is sufficiently general for most purposes. Even

though no universally quantified formulas are allowable, it is usually the case the the negation of such

a formula is allowable.

This definition of allowable was chosen because it allows us to specify an upper bound on the

complexity of all of the label(s,f) formulas. This bound is given in the following lemma, which will not

be proven here:

Lemma 4: If f is an allowable CTL formula, then all of the formulas label(s,0 can be represented

in a data structure that takes up 0fl/||fl||f|) space. Moreover, determining if (label(s,f)

Alabel(s,fa/r))*fa/se can be done in constant time and determinining if (label(s,0 AG)*false

(where (s,f,G) €f?) can be done in 0(\G\) time (where |G| is the number of conjuncts in G).

The idea is that label(s,f) can be written as

V B.A V (C..AG.)

where B. is a conjunct of input literals, C.. is either true or false, and G. is a conjunct in a transition

condition from state s. Since it can be shown that / is 0(\f\) and the total of the j for all states is 0{\R\)t

we can represent all of the label(s,f) as an array of \R\ rows and 0(\f\) columns. Each element in the

array is a B. A G. A C / y conjunct that can be represented by an array of size |/|. Therefore, the total

amount of space is 0(|/||/?||f|). In addition, if we keep track of how many columns are not empty in

each row, we can determine if (label(s,f) AG)*false in 0(\G\) time by testing if any of the |G| rows

corresponding to a conjunct in G have a column with a non-empty value. Furthermore, we can keep

track of whether any row corresponding to a fair transition has a non-empty column, so that we can

determine if (label(s,0 A label(s,fa/r))*fe/se in constant time.

As a consequence of this lemma, we can show that:

Theorem 5: The complexity of verifying allowable CTL formula f in structure (S, /, O, ft, P) is

0{\f\2M\R\)

Proof: As before, there are 0(\f\) calls made to labelling routines. But because of the above lemma,

it can be shown that the worst case for a single labelling routine is EG fy which takes 0(|^||/Mft|-2|c.|)
time. (The dominant term is due to the loop that must find if (labeKs,^) Alabel(s,c.) AG)*false for

each fairness constraint cf. The complexity of finding the conjunction a disjunction of 0(1̂ 1) con­

juncts and a disjunction of 0flc.|) conjuncts is Od^Mc-l) times the complexity of finding the conjunc­

tion of two conjuncts (in this case, 0(\l\)). Summing over all fairness constraints and all transitions

gives the above result.) If we treat the number and size of the fairness constraints as a constant, the

complexity of EG f 1 is Ofl̂ M/Hfll). But since | f j is 0[\f\) and at most \f\ calls to labelling routines are

made, the algorithm's complexity is 0(| / | 2 | / | |R|) . •

If we have more information about the structure that we are verifying, we can add more formulas

into our "allowable" class. For example, a structure (S, /, O, ft, P) is deterministic iff for all (s,f,G) and

(s,u,H) in ft, either t = u or G A H is unsatisfiable. (i.e. Given an input assignment, there is exactly one

possible next state.) Then, for a deterministic structure, we have the following results:

Lemma 6: For any CTL formula, f, label(s, EX f) can be written as

V (C AG.)
/ 1 1

where C. is either true or false, and G. is a conjunct in a transition condition from state s.

This is obvious from the labelling routine for EX f:

procedure EXIabel(f)
for all s € S do

begin
label(s,f) » false]
for all (s,tfG) €ftdo

if labelft^) A label(f, fair) * false then
label(s,f) = G vlabel(s,f);

end;
end

Lemma 7: For any CTL formula, f, label(s, -i EX f) can be written as

V (C . A G .)
/ 1 1

where Cj is either true or false, and G. is a conjunct in a transition condition from state s.

Since all of the G. are disjoint and include all possible input combinations, we can negate the

formula in the previous lemma by simply negating all of the Cy!

Theorem 8: If the formula -«EX / is added to the definition of allowable, then lemma 4 and
theorem 5 are still true.

From the lemma above, it is clear that label(s,-iEX f) takes 0(|/||ft|) space, which is clearly also

OflWM'l)- We can easily keep track of the same information as before, so lemma 4 still holds.

Furthermore, the previous lemma also gives an algorithm for negating EX f that takes 0(|R|) time, so

EG f is still the worst case in the proof of theorem 5. Therefore, the proof still holds, so theorem 5 is

true for the extended definition of "allowable". •

7. Conclusion
In this paper, we have presented an enhancement to the CTL model checking algorithm that is

capable of dealing with conditional transitions. Although in the worst case, the complexity is the

same as the original algorithm (0(|/|-2' / ' |R|)), the new algorithm performs much better than the original

in practice. The difference in performance can be explained by the fact that most of the formulas that

we have attempted to verify in practice belong to a special class for which the complexity of the new

algorithm is 0(| / | 2 | / | | f l |) .

As it stands, our new algorithm can be used to verify Moore machines directly. In the near future,

we plan to enhance it to deal with Mealy machines as well. (We can currently simulate Mealy outputs

by treating them as inputs and adding a special error state that the machine enters and remains in

whenever the "outputs" are incorrect. Then, we can add a fairness constraint that states that we are

not in the error state infinitely often. Therefore, any transition that enters the error state is unfair, so

these transitions are never considered and the "outputs" are always correct.)

I. Computing the Fairness Labels
In LabelGraph, we assumed that we had access to labelfocp and label(s,fair). In this section, we

describe how these labels are calculated.

If 3 a fair path in M'from <s,A> is always true, it is easy to see that M,s,A \f * <=* M,s,A N f for any

CTL formula f. Therefore, if label(sffa/r) = true and the set of fairness constraints is empty, the

preconditions of LabelGraph will be satisfied and the postcondition will be:

A sat label(s,f) ~ M,s,A \ff
<=» M,s,A N=f.

Therefore, we can use LabelGraph to check all of the c., so we will have:

A sat label(s,c.) *=> M,s,A N c r

In order to set label(s,fa/r), we use the procedure SetFair. This procedure uses two arrays of

booleans, marked and stacked, that are indexed by the states of the machine. The intent is that

marked[s] should be true if there is a fair path from some state <s,A> in M', and stacked[s] should be

true if a call fair(s) is in progress. We assume that label(s,c.) is defined so that:

A sat labelfccp <s,A> N c r

procedure SetFair()
for all s € S do

begin
marked[s] = false;

stackedfs] = false;
end;

V = S;
E = {(s,0|s,f A (s,f,G)€fl);
Find the strongly connected components of directed graph (V,E);
for all I/', a non-trivial strongly connected component of (VtE) do

if Vc. 3 r, f € V [(r,t,G) €fl & (label(r,c.) A G) #te/se] then
for all v € V' do

if -»markedfv] then
fair(v);

for all s c S do
begin

label(s, fair) = false;
for all (s,f,G) €f l do

if markedff] then
label(s,f) = G vlabel(s,f)

end;
end

procedure fair(s)
begin

stackedfs] = true;
markedfs] = true;
for all (t,s,G) €ftdo

if - i markedff] & -> stackedff] then
eg(f);

stackedfs] = false;
end

I I . The Complete Algorithm

11.1. f =

procedure NotLabel(f)
for a l l s € S d o

label(s,0 = -> labelfef,);
end

H.2. f = f t A / 2

procedure AndLabel(0
for all s € S do

label(s,0 = label(s,M Alabel(s,fJ;
end 2

11.3. f = EX ^

procedure EXIabel(f)
for all s e S do

begin
label(s,0 = false]
for all {s,t,G) eRdo

if labeKf,^) A label(f, fair) * false then
label(s,f) = G vlabel(s,0;

end;
end

11.4. f = AX ^

Since AX f = -^EX (- i f) , we can use NotLabel and EX label to check AX fy

11.5. / = A [^ U f2]

Since A[^ U / 2] s - i (E[-«f 2 U - i ^ A - i f 2] v E G f 2) , we will give an algorithm for checking EG f and

use this routine, NotLabel, EUlabel, and AndLabel to check this case.

1 1 . 6 . / = E G ^

This procedure uses two arrays of booleans, marked and stacked, that are indexed by the states of

the machine. The intent is that marked[s] should be true if there is a state <s,A> in M'that satisfies

EG fv and stacked[s] should be true if a call eg(s) is in progress.

procedure EGIabel(f)
for all s € S do

begin
marked[s] = false;
stacked[s] = false;

end;
V = { s l l a b e l f o f ^ f a / s e } ;
£ = (teOU* tV& (s,t,G) tR & {\abe\{s,fj AG)*false};
Find the strongly connected components of directed graph (V,E);
for all V , a non-trivial strongly connected component of (V,E) do

if Vc. 3 r,t € V [(r,t,G) €R & (labeKr,^) A label(r,c.) A G) *false] then
for all v € V do

if - i marked[v] then
eg(v);

for all s € S do
begin

label(s,0 = fa/se;
for all(s,f,G)€/?do

if marked[f] then
label(s,f) = G AlabeKs,/,) vlabel(s,f)

end;
end

procedure eg(s)
begin

stackedfs] = true;
markedfs] = true;
for all (f,s,G) €f ldo

if - i markedff] & -<stackedff] & (labeKf,^) A G)
eg(f);

stackedfs] = false;
end

References

1 . M. Browne, E. Clarke, D. Dill. Automatic Circuit Verification Using Temporal Logic: Two New
Examples. IEEE International Conference on Computer Design: VLSI and Computers, Port Chester,
NY, October, 1985.

2. M. Browne, E. Clarke, D. Dill, B. Mishra. Automatic Verification of Sequential Circuits. CHDL85,
Tokyo, August, 1985.

3. E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite-State Concurrent Systems
using Temporal Logic Specifications: A Practical Approach. Tenth ACM Symposium on Principles of
Programming Languages, Austin, Texas, 1983.

4. E.A. Emerson, J.Y. Halpern. "Sometimes" and "Not Never" Revisited: On Branching versus
Linear Time. POPL83.

5. B.T. Hailpern, S. Owicki. Verifying Network Protocols Using Temporal Logic. 192, Stanford
University, June, 1980.

6. Z. Manna, A. Pneuli. International Lecture Series in Computer Science. Volume : Verification of
Concurrent Programs: The Temporal Framework. In R.S. Boyer and J.S. Moore, Ed., The Correctness
Problem in Computer Science, Academic Press, London, 1981.

Table of Contents
1. Introduction
2. The Specification Language
3. The Finite State System Description
4. A Brief Overview of the Algorithm
5. Correctness of the Algorithm

5.1. f is an atomic proposition.
5.2. f = E[f 1 U f2]

6. Complexity of the Model Checker
7. Conclusion
I. Computing the Fairness Labels
II. The Complete Algorithm

11.1. f
11.2. f
11.3. f
11.4. f
ll.5.f
ll.6.f

List of Figures
Figure 4 - 1 : The Main Procedure, Labelgraph 4
Figu re 5 - 1 : The Procedure That Labels Atomic Propositions 5
Figure 5-2: The Procedure That Labels Ef^U f2] 7

