NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-161

Compilation for a Processor

Containing Pipelined Register Files

Alan Sussman
Departiment of Computer Science
Carnevjic-Mellon Univarsity
Pittsburgh, PA 15213

October 1986

Abstract

Pipelined register files are a novel form of precessar storage found, for examplo, in the
Link and Interconnection Chip (LINC) designed at Ch, The Warpdr nrocessor uses the
L'NC pipclined register files as a inajor nart of its intermedinte storage capobility. The
processar is a microcoded maching that containg nrany rescurces that must be managed
in every microinstruction, such as a fleating point withmetiz unit 1 data mainary, LINC
pipelined register files for several datzpaths. and thie LINC crosshar switch fer routing
data betwaen datapaths. Past experience with prograimming such machires has shown
the benefits that can be achieved from managing taese resources vith a compiler.

We concentrate on the code gencrator for the Warpdr processor, which manaiies all the
low-level resources in the processor and attenipts to gererate efficiont microcode
quickly. The problems the codé generator must solve are relatsd to effectively utilizing
the capahilities of the intermediate storzge in the processor. numely the pinslined register
files. Based on a set of benchmark programs, we presant empirical data to demonastrate
that we have achieved a satisfactory solution to all ihese problems, and can nenerate
high quaiity microcode that effectively uses the pipeined register files in the Warpde
processor.

The research was supported in part by Defense Advanced Research Projects Agency (DOD),
monitored by the Air Force Avionics Laboratory under Contract £32615-81-K-1539, and Naval
Electronic Systems Command under Contract NO0038-85-C-0134, and in part by the Office of Naval
Research under Contract NOOD14-80-C-0226, NR 048-659. The author was also supported by a grant
from the Generai Eleciric Research and Dcvelopment Center.

1. introduction

The availability of VLS| implementation to universities and research laborataries has fostered
experimentation with new processor architectures, and some of these architectures employ novel
schemes to implement storage. Pipetined register files are an example of a noveal storage structure, A
pipelined register file is similar to a gueue that atlows read-access to all elements. Only the tail
register of the queue can be wrilten, and write operations have a side-effect an all registers. A write
operation shifts the contents of all registers towards the head of the queue {and thereby overwrites
the old value of the head register). Pipelined register files are used in custom VLSI architectures or

available as off-the-shelf components.

All processor architectures contain local or temporary storage in the form of buffers, registers,
queues, or latches. Experience with compilation of high-level language programs for such
processors has shown the benefits that can be achieved from managing those resources with a

compiler.

In this paper, we discuss the impact of pipelined register files on compilation for the Warpdr
processor (and on code generation in particular). The WarpJr processor is an implementation of the
Warp procossor ar.chitecture designed at CMU [4], so it is designed to be a componznt of a systolic
array. We present algorithms, along with their observed performance characteristics, to compile

efficient microcode for the processor,

Pipelined register files are an attractive implementation of temporary or local storage. Since there is
only one location that can be the destination of a write-access, a pipelined register file needs less
conlrol circuitry than a conventional general-purpose register file. This allows compact layouts and
results in significant space savings. On the other hand, pipelined register files do not have the
disadvantages of (strict) queues, which only support read-access to a single location. Pipelined

register files allow random access to all elements in the file,

Most of the difficult tasks involved in compiling code for the WarpJr processor are a direct
consequence of the presence of pipelined register files. Pipelined register files demand additional
support from a language translator. A value remains in the register file only for a finite number of
cycles. Each write-access to the the register file shifts the value one more position towards the head,
and after a fixed number of write-accesses the value is lost. That is, the lifetime of a value in a register
is not controlied explicilly by the compiter {as in a conventional register file), but is controlled
implicitty by the number of write operations to the register file, As a consequence, the order of

instruction evaluation is important; the compiler must attempt to reuse operands while they are still in

UNIVERSITY LIBRARIES
CARNEG!E-MELLON UNIVERSITY
PITISBURGH, PENNSYLVANIA 15213

the reqister file,

The paper first gives an ovaerview of the Warpdr processor architecture. Tlien we discuss the LINC
architecture and the problerms that are created by its capabilities. A complate treatment of the code
generation problems encountered and the algarithms used to solve them follows. We present cur
empirical data on the performance of the code generator. and then shift our attention to compacting
the LINC microcode. Finally, we discuss several issues related to integrating the WarpJr processor
into a complete computer system and finish by presenting our conclusions on tha impact of pipelined

register files on compilation,

2. WarpdJr architecture

The Waerr processor is an implementation of the Warp processor architecture [4] that has been
designed at CMU. As in Warp, the processor is designed to be a computational element in a systolic
array. We call the processor Warpdr to suggest that it is a small, fast implementation of the Warp
architecture. The processor architecture attempts to greatly reduce the chip count of the original
Warp processor and is centered around the Link and Interconnection Chip (LINC), a custom VLSI
chip designed at CMU.

A major goal of the design project is to investigate the effectivencss of LINC in a Warp-style
architecture, by providing a small, reliable implementation of such an architeciure. The datapath of
the processor consists of a floating point arithmetic unit, 4 copies of LINC and a local data memory.
Each input to the ALU is supplied with eperands from one LIMC pipelined register file, and the results
from the ALU arg fed hack inio the LINC to be switched to any desired datapath in the processor,
including either input to the ALU. There are two major datapaths flowing through the processor,
called X and Y, in addition to the address and systolic control caode paths. A block diagram of the
datapath of the WarpJr processor is shown in Figure 2-1, Although the word size of the processor is
32 bits, most physical datapaths in WarpJr are 16 bits wide, so 32 hit data transfers must be
performed in two clock cycles.

The processor is similar in design to the Warp processor, with several important exceptions. The four
copies of LINC [8] provide all datapath control and intermediate storage in the processor, replacing
both the register queues and the PALs that implement the crossbar in the Warp processor. The LINC
architecture is described in the next section. Another major difference from the Warp processor is
that the Hoating point processor in WarpJr is a single ADSP-3220 [3], which performs a floating point
(or integer) ALU operation in one clock cycle of approximately 100ns. Thercfore, data pipelining in a

WarpJr processor comes fron the two stage pipeline in LINC. not from the floating point unit. The

1
P
t
.
LIt
iy H] CA
16 - ANRR }
AUR W A0 L SYSCCn G
- no
16 4
MEMORY
(4k x 32 birs) R ~n1
16
80 Xn >
AlRn-1 16
SYSEa-1 2 | A)
7a LINC x 4 ¢
co n~
Xn-1 . BI 16
16 /}/ N
1 3 X
¥ Al A7 1 2
ol 45— €1 €0 ALUOP LUST
16 2 e uo ALUS
P 3 ALU -
F1 32
3z
G0 A2
M
il GI 0 a2
16

Figure 2-1: WarpJr Datapath

Warp processor contains the Weitek floating point chip set[12], consisting of a floating point

multiplier and a floating point ALU, each of which is used as a five stage pipelined, 200ns clock cycle
a 432 bit local

data memory. This explains the need for the address (ADR) path through the processor. Overall, the

chip. The last major part of the datapath, which is the same in both processors, i

major difference between the WarpJr and Warp processors is not in ‘their architecture, but in the
amount of hardware required to implement them. A Warp cell requires approximat ly 250 commercial
components on a 15" x17" board. On the other hand, a WarpJr cell requires only about 75 chips,
mounted on a small 6" x9" VME board.

Just as in a Warp processor, a WarpJr processor contains an AM2910 series microcontrolier i2l.
However, in WarpJr a microcode word is only 40 bits, less than 1/3 the size of a microcode word in
Warp. This is slightly misteading though, because five bits of a WarpJr microcode word address a 64
bit LINC control pattern (the address is the same for each of the four copies of LINC in the processor).
The best way to think of the WarpJr microcode is as a two-level microstore. The lower level consists
of the internal LINC control patterns, and the upper level contains the cell microstore. Each
instruction in the upper level includes an address for a LINC control pattern. The WarpJr writable

contral store contains 4K microcode words. These 4K WarpJr microcode words and the 64 word

control store on LINC provide the target for our code generation effarts for the machine. For a more
detailed description of the WarpJr processor design, including application examples, see the Warpdr

overview by Nishizawa [10].

Because the Warp and WarpJr processors are similar in s0 many ways, it seems reasonable to
attempt to share as much work as possible in designing compilers for the machines. By the time
WarpJr had been designed, much work had already gone into designing a high level language (W2
[6]) and building a compiler for the Warp processor {and the entire systolic array machine to be built
with it}. Fortunately, the compiler had been designed to generate intermediate code in a form suitable
for code generation for any processor with capabilities similar to those of Warp, including Warpdr.
Therefore, we decided to use the W2 compiler for Warp as a tront end for the Warpdr compiler, and
work on generating microcode from the intermediate code. This proved to be a good decision,
because we were able to build our compiler in a reasonable amount of time and cotlect statistics on
its performance, particulariy on the performance of the LINC pipelined register files, without going
through the difficulties of language design and building a new front end for the compiter,

3. LINC architecture and problem areas

Four copies of LINC provide ai! of the datapath control and the intermediate storage capability in the
Warpdr processor. LING is a custom VLS| chip designed at CMU whaose sole function is to serve as an
efficient link between system mecdules, like the ones in WarpJdr. LINC allows system functional
elements to communicate with each other through a crossbar switch, and can buffer each of its
inputs in a FIFO or programmable delay and buffer each of its cutputs in a pipelined register file.
Interccnnection configuration and register access contro! are perfarmed by control patterns stored
on the chip, which are addressed externally. In WarpJr, the LINC confrol patterns are addressed by

the processor microcode.

The complete LINC architecture is discussed by Hsu [8], but we will give a short overview to provide
enough information to understand the issues involved in compilation for a processor containing
LINCs. The novel features of LINC include the integration of storage and switching on a single chip
and the provision of an on-chip control store, both of which provide many interesting possihilities for
new computer architectures. LINC has eight 4-bit datapaths, consisting of eight FPDs (FIFO and/or
programmable delays), an 8x8 crossbar and eight pipelined register files. The datapath is a two stage
pipeline, so there is a minimum delay of two 100ns clock cycles before an input can appear at an

output port. A block diagram of LINC appears in Figure 3-1.

LINC has a data buffer at every input port, which can be configured as part of one of two FIFOs (of

CA[0-4]

~

BANK F/Fp--:3

CONTROL PATTERN MEMORY

REGISTER
L Ga_t
WAF WRF > .
wnt mnr = F LFO/DE LAY [CONTROL PATTLRN REGISTER |
3;;.3:;%_CONTROLLER scan-in scan-out L
. \L li 24 11 44 -
AT —1 3 ~> A0
1 - — > co
DI=3 1RO/ A A possear |1 [gégiéiﬁﬁ 00
E1— PROG.DELAY L | — ™ rfiee [PFO
FI— — — > Fo
GI— — — > GO
HI— — —_ — HO

L T

Figure 3-1: LINC datapath hlock diagram

maximum depth 31) or as a programmabie delay of from 1 to 31 cycles. The configuration is stored in
the d-code register depicted in Figure 3-1, and is intended to remain stable during program
exacution. The FIFOs are controlled by off-chip read and write signals, and similarly provide off-chip
status signals (full and empty). Whiie LINC can support two FIFOs, Warp.Ir only provides microcode
control for one FIFO because each FIFO requires several bits of microcode every cycle. In the default
configuration for WarpJdr, all input buffers are configured as programmable delays of length one,
except for the buffer corresponding to LINC input Gi (see Figure 2-1) which is a programmable delay
of length two.

In WarpJr, LINC input Gi can be used in conjunction with input El for sending 32 bit ALU outputs to 16
bit processor outputs X or Y over two clock cycles. This is accomplished by first routing the high-
order bits from input El through the crossbar to the desired crossbar output and on the following
clock cycle routing the low-order bits from input GI to the same output. The additional delay of one
cycle through the programmable delay associated with input Gl allows the high and low order parts of
a 32 bit result to both be routed to the same crossbar output even though the crossbar can transmit

only one 16 bit value to an cutput in a single clock cycle.

An 8x8 crossbar connects the LINC input FPDs to the output pipelined register files. The crossbar is
unidirectional, allowing each output port to select the input port it wighes to read on each cycle. The
design allows broadcasting. since multiple output poris can read the same input port on a given
cycle. Crossbar control is provided by the control pattern register, which is loaded from the control

pattern memory.

Between the crossbar and each LINC cutput port is a 14-deep pipelined register file. A pipelined
register file is similar to a queue that allows read access to all elements. Only the tail register of the
queue can be written, and write operations have a side effect an all registers. A write operation shifts
the contents of all registers towards the head of the queue, thereby overwriting the old value of the

head register, as is shown in Figure 3-2.

NEWS Al Bl ¢! 0| x ———} new| a | B | ¢ | D

T T

TAIL HEAD

Figure 3-2: Write operation for pipelined register file

Another example of a pipelined register file is the AMD 29520 register file, which has a depth of two
[2]. Any number of these parts can be cascaded to form a pipelined register file of the desired depth.
The polycyclic architectura designed at ESL also incorporates a variant of pipelined regisier files in its

interconnection elements [11].

Each LINC pipelined register file uses one bit in the control pattern register to decide whether to write
the current crossbar output into the register file. Each pipelined register fite output is specified by a
four bit field in the control pattern register, and also serves as a LINC output port. The field specifies
one of the fourteen pipelined register file stages, the crossbar output, or high-impedance. Therefore,
LINC provides a bypass mode for its pipelined register files, because it is possible to route a value
directly from the input port to the output port of the register file. The bypass path implements a "hot
spot” - the input is valid for only one cycle. Of course, it is possible to use the bypass path and write

the value into the pipelined register file.

The LINC control pattern memory and control pattern register determine the operation of the crossbar

and pipelined register files. The memory contains 64-bit control patterns, configured in two banks of

32 words each. This means that one bank can be loaded with new control patterns while the other
bank is cantrolling the systern data flow. The limitations of 84 total control pattorns and the bank size
of only 32 control patterns are the souroe of two of the prablems we must soive in caompiling programs
for the Warpdr processor. The control pattern memory requites a five hit oft-chip a-idress, provided in
WarpJr by the processor microcode, which selects the control pattern from the bank currently
controlling the chip. The centrol pattern register containg the pattern addressed in the previous clock

cycle and controls the LINC behavior in the current clock cycle.

The work presented in the rest of the paper is mainly concerned with solving the problems presented
in using the LINC pipelined register filcs effectively. Therelore, we must justify this effort by providing
reasonably compelling reasons for using pipelined register files. A k-deep pipelined register file
requires one bit of write control and a log, k bit read address every computation cycle. On the other
hand, a k-deep general purpose register file requires two Iogzk addresses every cycle for both a read
and a write address. In LINGC, the savings in control togic was crucial to implement the design on a
single chip. S8ince LINC has eight pipelined register files, each fourteen deep, we save 24 hits of
control every cycle. The advantages of pipelined register files thus include requiring less control
pattern memory, a lower control bus bandwidth, and a simpler control structure for the register cell
than tor 4 general purpose register file. While pipetined register files are not as powerful as general
purpose rzgister files, we shall see that it is possible to efficiently generate good microcode from a

high level language for « processor containing pipelined register files {(namely WarpJr).

Several major problems in compiling programs for the WarpJdr processor are related to using the
capabilities of LINC. These preblems include using the pipelined register files efficiently and dealing
with the limited size of the LINC control store. To use the pipelined register files efficientty, the code
generator must use the pipelined register file bypass mode as often as possible to minimize the
number of operands that must be written into the register files. Minimizing the number of operands
written into the pipelined register files also implies that we need a good algorithm for assigning
operands to the ALU input register files, because we don't want to write many operands into both ALU
input register files. Another goal of the code generator is to minimize the number of pipelined register
file overflows. A pipelined register file overflows if the value lost during a write is needed by a
subsequent computation. Therefore an overflow is an expensive event, requiring us to recycle a

value back inta the pipelined register file that overflowed sa that the computation can be perforimed.

The second major problem in using LINC in WarpJr is minimizing the number of control patterns that
must be stored in the LINC control memory. Since the WarpJr microstore contains many more

microinstructions than does the LINC control memory, we must attempt to use a LiNC control pattern

for more than one WarpJr microinstruction. The LINC control memory is partitioned into two banks,
one of which can he loaded while the other is cantrolling the system dataflow. Therefore, the basic
requirement for managing the LING control store is that no Warpdr program should need mare than
32 LINC contrei patterns in any given sequence of microinstruciions {the seguence length is
determined by how long it takes to load a bank of the LINC cantrol store with new control patterns).
More formal statements of the pipelined reqgister file problems and the LINC centrol store problem,

along with the solutions we have implemented for WarpJr, are presented in {ater sections.

LINC pipelined register files have one important additional consequence in compiling programs for
the WarpJr processor. The pipelined register files make it impossible to perform many global
optimizations during code generation, because pipelined register files do not allow explicit register
allocation. The major difficulty that pipelined register files introduce is that a value cannotremainin a
fixed location in the register file for an indefinite length of time. A write to a pipelined register file is
not to a register chosen by the programmer, but is always to the tail of the register file. In addition, the

value in the head register of the pipelined register file is always last by performing a write operation.

The compiler cannot do global register allocation, or many other global optimizations that require
explicit control over registers. This limitation can be easily cbhserved by locking at prescrving values
in pipetined register files across a basic block that is the bcrly'of a loop. Since the block can be
executed many times (however many times the loop iterates), any write to a pipelined register file
scheduled for the block is done muitiple times, once for each loop iteration, resulting in the loss of
values stored during previous blocks in the pipelined register file. A simple exampie of this behavior
for a pipelined register file (called R) is shown in Figure 3-3.

store x into R
for i = 1 to N do
begin

. other statcments in loop

store a[i] into R
end
read x from R

Figure 3-3: Example of global register allocation probiem

In the example, the position of x in the pipelined register file A for the execution of the read depends
on N, the number of iterations of the loop. If N is greater than the number of registers in the register
file, the value x is lost from the register file so cannot be read at all. More generally, calculating the

position to read from after execution of a loop requires both counting the number of times the loop is

executed (which cannot be know at compile time {or a while loop) and analyzing the pattern of writes
done to the pipelined register file in the body of the toop. Therefore the only safe place in WairpJdr to
store clata. so that it can ke explicitly written to and read from a fixed address, is cach processor's
local data memory. Unfortunately, it is mora expensive (in number of microinstructions executed) to
access the data memory of a WarpJr celt than it is to access its LINC pipelined register files. We can
still perform global optimizations that only require transformations on the intermediate code, such as
copy propagation, code motion (to move invariant computations out of a loop), common

subexpression elimination, etc. [1], but such transformations are outside the scope of this work.

4. Basic code generation/scheduling

The high level problem to be solved is to generate good microcode for the WarpJr processor. The
input to the code generator (also called the scheduler) is a set of basic blocks with flow control
between blocks embedded into the block information. The computation that the block performs is
represented by a directed acyclic graph (a dag), with nodes corresponding to operations to be
performed and edges representing the dependency relationships between operations (in our dags, a
parent depends on the results of its children). The generation of the basic block structure and the
computation dags for the blocks is performed by the front end of the W2 compiler [7], which performs
focal common subexpression elimination, constant folding, and several other local optimizations on
the intermediate code (as represented by the dags for the basic blacks) before it is input to the
Warpdr scheduler. As we have discussed, the presence of pipelined register files in the processor
makes many global optimizatinns impossible because pipelined register fites cannot store a data item
indefinitely. The implicit register management strategy for pipelined register files compel us tu
generate code separately for each basic block. Any data that must pass between blocks is stored in

the local data memory of the processor.

Three major problems must be solved to generate microcode for the processar. The first problem we
call register file assignment, because we must decide which ALU input register file will receive each
operand of each ALU operation. The problem occurs because the two ALU inputs in WarpJr are
connected to different LINC pipelined register files, so if an ALU operation requires two operands they
must reside in different ALU input register files. This problem must be resolved prior to scheduling
the dag nodes for the basic blocks, so that during scheduling we can decide to which pipelined
register files (and more specifically, to which ALU input register file or files) we must route operands.
The second problem is to scheduie the nodes in the dag for each block. The solution ta this problem
requires generation of a sequence of microinstructions (and LINC control patterns) for the block, and

then the insertion of sequencing information at the end of each block to generate the correct flow

10

control between blocks. The last major code generation problem occurs in handling pipelined
register file overflows. A register lile overflow takes place when the value lost because of a register
file write is needed os an operand by a operation that has not yet heen evaluated. We are schoduling
oparations for a single basic biock at a time, so we can tell during code genoration when an ovorilow
occurs, simply by noting that a required register file read depth is greater than the actual maximum
depth of a pipelined register file {in the case of LINC the depth is 14}. We will now more fully describe

these problems and present the algorithms used to solve them.

4.1. Assigning operands to pipclined register files

In the Warpdr processor, each input to the ALU is associated with a different register file. A simple
block diagram, showing only the ALL, its input pipelined register files and the switch for the teedback
path, is shown in Figure 4-1, to further clarify the problem we must sclve. We see that for operations
requiring two operands, the ALU must receive inputs from two different pipelined register files, and
the Al.U result must be routed back through the switch to the appropriate register file(s) if the result is
needed for further ALU operations.

R1
DATA-IN SWITCH ALU
P

R2 —

DATA-QUT >

Figure 4-1: Simple pracessor model

We therefore have a register file assignment problem. We must assign each operand to an
appropriate register file so that the two operands of a binary operation reside in different register files.
For some sequences of operations it may be necessary to store a value in mare than one file. Figure
4.2 shows a code sequence with its computation dag that requires a node to be allpcated to both
cegister files (in the dag edges point from top to bottom, and a parent node depends on the resuits of
its children): Node X must be stored in both register files (or A1 and B1 must both be stored in both
tites).

One solution to the register file assignment problem is to simply direct all operands to both pipelined
register files that are connected to the ALU inputs. However, this is not practical since the pipeltined
register fites are only of limited depth. If too many operands are shifted inta a pipelined register file,

the oldest ones are lost, Therefore it is important to minimize the number of operands that must be

11

X — At - B1:
A2 — A1 * X
B2 — X *B1;

Figure 4-2: A dag that needs an operand in two pipelined register files

directed to both input pipelined register files.

Register file assignment problem: Given a dag that must be evaluated on an

ALU with two pipelined register files. Find an assignment of operands to register

files that minimizes the number of operands that must be stored in both files.
The problem is equivalent to 2-coloring a graph, if we represent each operand as a node in the graph,
and insert an edge between each pair of nodes that are operands of the same ALU operation. Then, if
we can 2-color this graph, we can assign the operands to pipelined register files so that no operand is
assigned to both register files. There are polynomial time algorithms to decide whether or not a graph
is 2-colorabie [5], but this is not sufficient tor our needs. We require not only a 2-color decision
algerithm, but also a scheme for assigning nodes to register files regardless of the resuilt of the
decision algorithm. The decision algoritb only tells us whether it is possibie to 2-color a graph, not
how to do it

Good heuristics for coloring graphs are known [9], but are more complex than necessary to solve our
particular problem, We will justify the choice of a simple atgorithm later, in the performance analysis
section of the paper. We have implemented an algorithm which traverses the graph recursively from
the roots of each basic block, assigning nodes to register files following the simple heuristic of doing
its best to assign the two children of a node to different register files. An operand may have multiple
parents because of the existence of common subexpressions, so a node is visited exactly once for
each of its parents. Therefore, the running time of the register file assignment algorithm is

proportional to the number of edges in the computation graph for the program.

The recursive function color(node) is called for each roat of each basic block. In the algorithm, the

requirement is to color the two children of a single node opposite from one another.

Definition 1: Two nodes are colored opposite from one another if either they have been
assigned different colors, or at least one of the nodes is assigned both colors.

12

Algorithm 1: Register file assignment.
Input. Set of computation dags, ona for cach basic block in the source program.

Qutput. The sume computation dags as in the input, vl all nodes cuicred so that icr any node
with two children, the children are colored opposite from one another.

Method. Recursive function color(node).

1. Count the number of children node has.
2. if node has nc children return.

3. If node has 1 child and it is not already colored, cotor it arbitrarily, recursively visit
the child eolor(child), and return,

4, Node has 2 children. There are 3 cases!

a. If neither child is already colored, color child? and child2 opposite from each
other, recursively visit both children, color{chiid?) and color{child2), and
return.

b. If one child, say child1, is already colored, color child? opposite from child1,
Fecursively visit child2 color{child2), and return,

¢. if both children are already colored, and they are not already colored cpposite
from cach other, color one of the children both colars (thus assigning it to
both register files), and return,

4.2, Scheduling

The scheduler generates microcode for one basic block at a lime. The major goal of the scheduler is
to generate good microcode for the WarpJr processor, mainly by using the bypass mode of the LINC
pipelined register files as often as possible and doing its best to minimize the number of overflows
from the LINC pipelined register filas. The scheduler uses the flow control information provided in the
intermediate code representation to generate the necessary sequencing control at the end of each

basic block.

In general, generating optimal code for an arbitrary dag is a difficult problem. However, list
scheduling has proved to be a good heuristic scheduling strategy, and we describe briefly our
implementation, Scheduling a dag ncde is accomplished by allocating the resources the node
requires. In the WarpJr processor, resources are entities such as the ALU, the various paths through
the LINC crossbar, the LINC pipelined register files and the LINC output ports, and accesses to the
data memory. Resources are represented by fields in the WarpJr microinstructions and in the LINC

control patterns. To impiement the list scheduling algorithm, we maintain both a ready list, R, and an

13

almost ready list, A, of nodes to be scheduled,

Definition 2; Dag node lists ready and almost-ready for the list scheduling algorithm,

The ready list, A, contains those nodes currently ready to be scheduled (ordered by some cost
function),

The almost-ready list, A, contains the nodes n such that

e all children n. of n are already scheduted
e the result of (at least) ong child n,is not yet available because of the internal delay of
the processaor.

Algorithm 2: Instruction scheduling: variant of list scheduling.
Input. Set of computation dags, one for each basic block in the source program.

Output. Sequence of microinstructions and LINC control patterns for the WarpJdr processor that
performs the computation specified by the input dags.

Method. List scheduling of the nodes in the dags, using lists A and R as defined above.

1. Select the node n in R with minimum cost; delete n from R. (IR = @, issue a no-op,
update list R as in step 4, and try again.)

2, Reserve all the resources the node n requires.

3. Schedule the node n. If node n uses a result computed by child n, check whether
bypass mode may be used. If not, compute the position of 71, in the pipelined register
file at the time n is scheduled. if n, has overflowed from’ the register file, fix the
overflow using one of the methods described in the next section.

4. Check all the parents of n to see if any now have all their children scheduled. I so,
add the parent to the aimost-ready list A.

Check the nodes of A and move a node p from A to R if the results computed by the
children of p are available (i.e. all pipeline delays in the processor have been
satisfied).

5. If there are still nodes left to be scheduled, go to step 1.

During the list scheduling algorithm we must dynamically keep track of the contents of the pipelined
register files, so that we may generate the correct register file reads for the operands of a particular
operation. Fortunately, because we are only scheduling for a single basic block at a time we can
depend on linear flow of control, so we can be certain that the microinstructions for a block are

executed in sequence. Therefore, to determine the depth of a pipelined register file read for parent

14

node n of its child node m, we find the microinstructions in which n and m were scheduled, call them
H, and I, respectively, and count the number of shifts into the pipelined register file from #, top, .

That is the depth of the register file read for the operand.

We delay the decision to shift an operand into the register file until the parent nodes of the operand
are scheduled, therefore we must update pipelined register file read depths when we decide to shift
an operand into a register file. This is done by incrementing all reads cf the pipelined register file in
microinstructions after the new shift that are to data items in the register file shifted in before the new
shift (thus they are pushed deeper into the pipetined register file by the new shift). Of course, in doing
these increments we may detect an overflow (by incrementing a read past the maximum depth of a
register file), and then we must recycle the lost value back into the register file,

Two key features make the list scheduling algorithm work particularly well in scheduling the basic
block dags for WarpJr. The first feature is that even though the cost function determines the order in
which nodes on the ready list are scheduled, the resources a node requires are allocated at the
earliest possible microinstruction, after the node’s operands have become available, that has all the
free resources needed by the node. The second feature is that the bypass mode of the pipeiined
register files is used as often as possible, minimizing the number of writes to the register files. We can
do this because we do not shift a result into a pipelined register file when scheduling the node that
computes the result, but only shift in a result when an operation that uses the result is scheduled and
cannot use bypass mode (i.e. the operation has been scheduled some tima after the result arrived at

the input port to the register file),

4.3. Overflows

The limited depth of a pipelined register file can be exhausted by the evaluation of some dags.

Definition 3: A pipelined register file overflows if the value lost in doing a write to the register
file is needed by a node that has not yet been evaluated.

Overfiows are a major problem for users of pipelined register files, since there is no way to maintain
values in a pipelined register file after a fixed number of writes (and that number depends solely on
the depth of the pipelined register file). Whenever an overflow occurs, the lost value must be recycled
back into the register fite, through one of the several mechanisms we will soon discuss. Thus we can
state the overflow problem more formally:
Overilow problem: Given a dag D and two pipelined register files of depth n
connected to the inputs of a single ALU. Find a legal evaluation for the dag that

15

minimizes the number of overflows.
An overflow is detected during the list scheduling alyorithm when a pipelined register file read is
generated for an itern that has been tost from the registar file betore the microinstruction containing
the read (i.c. the calculated read depth is greatzr than the actual adiium depth of the pipelined
register file). We have designed the register file assignment algcrithm and the list scheduling
atgorithm to attempt to minimize the number of ove:flows from register files, becausze an overflow is
costly in terms of the quality of the generated microcode. Unfortunately, finding a legal evaluation for
a computation dag that minimizes overflows is not casy. The problem contuins the register
sufficiency problem, which is known to be MP-cainplete [S]. The hest we can therefore currently hope
for is that our heuristic solution will work well. As will be shown later in the performance statistics for
the algorithms, our heuristics do indeed work well for the benchmark programs, generating very few

overflows during the scheduling algorithm.

in WarpJr, there are at least three possible ways to handle the occurrence of an overflow during list
scheduling of a dag representing a basic block. One solution, which is the most generally applicable
solution to the overflow problem, is to modify the dag so that the node which overflowed from the
pipelined register file is also written to WarpJr's local data memory, and then insart local memaory
reads into the dag so that the overflowed nodc is ayzin read into the register file from which it
overflowed. This requires that we throw away all the v.ork that we have already done in scheduling
the block, and start over again with the niew, modified dag. The solution is general, because it will
work in all instances where we datect an overflow, but can be expensive because of the naed to

restart our scheduling algerithm from scratch on the daqg each time an cverflow is detected.

A second method for handling an overflow is to attempt to backtrack and write the node that
overflowed to the local data memory. This can be dana by routing the node to the memory data input
pipelined register file when the node arrives at the LINC crossbar and generating a memaory write in
the appropriate microinstruction. We can then insert a memory read between the microinstruction
that writes the node to memory and the microinstruction that does the register file read that
overflowed. Inserting these local data memory reads and writes inte our already generated
micracode requires that we find microinstructions centaining enough free resources to implement the
overtlow solution. Since such resources are not always available in the restricted set of
microinstructions in which we may allocate them, this solution suffers from the fact ihat it may fail,

and if the solution succeeds it will cost twu complete local memory cygcles,

Yet another solution to the overflow problem is only eazily applicable to overflows from the register

files connected to the ALU input ports. We can recirculate the node that overflows through the ALU,

16

by performing an effective null operation on the value (i.e. add 0.0 to the value), and then route the
result back to the same register file. We must schedule the recirculation ALU operation in some
microinstruction between the one that initially shifted the node into the pipelined register file (so that
the value is already in the register file to be recirculated) and the one that does the register file read
that causes the overflow. We can then reschedule the operation that caused the overflow (the
original register file read) and use the recirculated result as the operand in the register file that

overflowed.

The major difficulties with the recirculation solution to the overflow problem are in finding
microinstructions to schedule both the ALU operation for the recirculation, and in generating the
second operand for that ALU operation {for WarpJr this wou!d mean scheduling a literal with value 0.0
for an addition in the ALU). This is the solution that we have implemented in the code generator for
Warpdr, and it has worked quite well in practice. The implemented strategy should not impose a great
performance penalty on the generated code, because we only use resources that are unused by all
previously generated code. However, fixing up an overflow uses resources that may have been used
in scheduling subsequent nodes in the list scheduling algorithm, so may in reality somewhat affect the
quality of the generated code. To extend the solution to pipelined register files that are not directly
connected to the ALU input ports, such as the locai memory data and address input pipelined register
files, we would have to route the overflowed nodes to an ALU input register file and then use the same
algorithm described above to recirculate the node back to the register file that actually requires the
node. This would involve additional writes into the ALU input port register files, so probably is a poor

saolution to the genera! overflow problem,

5. Pipelined register file performance

We demonstrate that pipelined register files are an attractive implementation of local storage in a
processor such as WarpJr. Because we cannot analytically prove any performance bounds on how
well pipelined register files work, we will use a set of benchmark programs for which pipetined register
files exhibit good behavior on the WarpJr processor, and argue both that these results are generally
applicable to many programs compited using our algorithms and that the results extend to other
processor implementations using pipelined register files. For each benchmark, static performance
data were collected either from the dags representing the computation or from the microinstructions
and control patterns generated by the WarpJr scheduler. Dynamic performance data were obtained
from examining the actual execution path ot each benchmark program on a simulator, and

determining how many times each microinstruction and control pattern were executed.

17

There are many issues involved in measuring the performance of the pipelined register files in the
WarpJr processor. The performance of the register file assignment algorithm tells us how often
operands are directed to both AlLU input register files. A good register file assignment algorithm will
assign few dag nodes to both register files. The schaduling algorithm attempts to use the bypass
mode that LINC provides as often as possible, to save writes into pipelined register files. Therefore,
measuring how often bypass mode is used should give us an idea of the utility of providing such a
facitity in a system that uses pipelined register fites. The performance of the register file assignment
algorithm and the use of bypass mode tell us how well we are minimizing the number of operands that

are written into the register files.

While minimizing the number of operands to be written into pipelined register files is an important
goal, the main issue we dare interested in is the performance of pipelined register files when they are
actually used to provide operands in evaluating computation dags. The depth of a pipelined register
file read of node n can be determined by counting the number of values written into the pipelined
register file from the microinstruction node n is written until the microinstruction node n is read (this
includes the write of node n). There are many ways of evaluating the performance of the pipelined
register files in WarpJr. The average and maximum depths of a pipelined register file read tell us how
deep pipelined register files must be to successfully exacute programs without excessive numbers of
overflows. Another interesting measure of pipelined register file performance is the liveness of the
nodes that are written into the register files. More specifically, we wouid like to find out for a given
data itern that is written into a pipelined register file how long it needs to remain available to be read
{i.e. how deep in the register file the /ast read of a given value ig). The last, and probably the most
significant, parformance measure for pipelined register files is how many overflows occur. This is
really the true measure of how well pipelined register files perform, because untit an overflow occurs
a pipelined register file is just as powerful as a general purpose register file of the same size, the only
difference being the implicit nature of a pipelined register file write location vs. the explicit decision to
write to a given generaI‘ purpose register.

We have selected a set of several medium-sized benchmark programs written in the high level block-
structured language W2 [6] to measure the performance of the pipelined register files in the WarpJr
processor. These inciude several low-level vision algorithms (binop, colorseg, pgen, rgbnorm and
sobel), several signal processing algorithms (fft, conv and lup) and a program to compute a
Mandelbrot sct (mandel). In all that follows, static information is taken directly from the compiled
microinstructions, without reference to program execution, while dynamic information refers to the

microinstructions fetched during program execution.

i8

5.1. General properties of the benchmark programs

To give an idea of the complexity of the benchmarks, we provide data on several properties of each
program. The first complexity measure is the number of lines of W2 source coda. The next sct of
data is information on the output of the front end of the W2 compiler, which generates the
computation dags for each basic block in the source W2 program. The number of basic blocks and
the total number of dag nodes required to describe the computation of the benchmark should give
some idea of the size of the job that the code generator/scheduler for WarpJdr must handle. Finally,
we provide data on the number of microinstructions and LINC control patterns that the scheduler
generates from the computation dags. This tells us the size of the actual program that runs on

WarpJr. Table 5-1 contains the data on the general properties of the benchmark programs.

W2 program # basic # dag # # control
(# lines) blocks nodes pinsts patterns
binop 44 11 76 140 27
colorseq 106 31 227 374 58
conv 177 61 438 580 57
fft 34 13 a1 184 37
lup 63 27 118 252 32
mandel 56 6 92 120 38
pgen 59 10 140 202 52
rgbnorm 112 51 248 : 426 25
sobel 144 79 278 580 31

Table 5-1: Properties of benchmark programs

5.2. Register file assignment

To measure how well our register file assignment algorithm works, we will compute both static and
dynamic information from our register file assignment algorithm, The static numbers show the
number of dag nodes_that are assigned to both ALU input register files, as a percentage of the lotal
number of dag nodes that must be assigned to the register files. The dynamic numbers show how
many microinstructions route operands to both ALU input pipelined register files during actual
program execution, as a percentage of the total number of microinstructions executed. Table 5-2

displays these measurements for the benchmark programs.

As can easily be seen from the table, very few nodes are assigned to both ALU input register filcs by
our register file assignment algorithm. Also, during program execution, not many values are directed
to both ALU input register files because of the register file assignment algorithm. This is a promising

result, as it says that we are not routing many values to more than one pipelined register fil2, even

19

static dynamic
binop 2.9 0.0
colorseg 5.1 1.8
conv 0.0 0.1
fit 0.0 0.0
lup 2.0 0.0
mandel 5.4 6.2
pgen 13.2 1.8
rgbnorm 5.0 0.2
sobel 1.0 0.4

Table 5-2: Perfermance of register file assignment algorithm (in %)

though we do not have an optimal assignment algorithm. The good cbserved behavior of our

assignment algorithm should enhance our pipelined register file performance in later measurements.

5.3. Bypass mode for pipelined register files

Realistic implementations of machines containing pipelined register files provide for a direct path
from the input port to the output port of the register file. The purpose of this path is to allow direct
forwarding of a value that is used only once, without shifting it inte the register file. That is, the
registar file can be bypassed. However, the input is valid at the output pcrt for onlv one machine

cycle (the same one at which it arrives).

We would like to measure how well our list scieduling algorithm is able to take advaniage of the
presence of bypags mode in the LINC pipelined register files. There are two intaresting parforrance
measures that wu can display lor showing the effectiveness of bypass mode in minimizing the number
of operands that are written into pipelined register files. The first is to measure how often bypass
mode is used, both statically in the code generated by the list scheduling algorithm, and dynamically
auring the execution of the program generated by list scheduling. The reievant performance measure
is the number of pipelined register file reads that use bypass mode, as a percentage of the total
number of reads from the WarpJr pipelined register files. The second measure of how usefu! bypass
mede is, is to look at how often the use of bypass mode actuaily saves a shift into a pipelined register
file, again both statically and dynamically. Using bypass mode for a particular operand does not
always save a shift into a pipelined register file, because the operand may be needed for another
operation that cannot be scheduled without shifting the operand into the pipelined register file, Here,
the relevant performance measure is the number of pipelined register file writes that are not done
when bypass mode is used, as a percentage of the total number of uses of pipelinad register file

bypass mode. Table 5.3 shows these measurements for the benchmark programs.

20

Bypass reads Saved writes
{as % of total reads) (as % of bypass reads)
static dynamic static dynamic

binop 435 29.8 99.4 100
colorseg 36.3 35.9 96.5 93.7
conv 28.8 26.2 100 100
fft 38.9 41.0 28.0 8.0
lup 382 36.9 98.0 98.3
mandel 36.9 34.7 95.5 a1.2
pgen 38.3 40.7 94,4 97.2
rghnorm 37.3 36.6 99.6 99.7
sobel 40.5 41.8 100 100

Table 5-3: Bypass mode utilization {in %)

We see that bypass mode is used over 1/4 of the time, both statically and dynamically, in all the
benchmark programs. This means that frequently a data item can be used as soon as it becomes
available at the input to a pipelined register file. Even more importantly, in all the benchmark
programs, over 80% of the uses of bypass mode (and frequently much greater percentages) actually
save a write into a pipelined register file, therevy prolonging the liveness of all the data items already
in a register file, This resuli indicates that few common subexpressions are found in the dags for the
benchmark programs, becauss a common subexpression is used more than once as an operand, so
must be written into a pipelined register file. The statistics provide a strong case for providing a
bypass mode in any syslem containing pipetined register files, because bypass mode enharices the

utility of pipelined register files by greatly decreasing the number of data itcms that must be written.

5.4. Depth of pipelined register file reads

The depth of a pipelined register file read for a particular data item tells us how marny other values
have been wrilten into the pipelined register fite from the time that the data item was written until the
time that it is read. Therefore, the average depth of a pipelined register file read for a given processor
provides information on how deep the actual register files should ba so that as few overflows as
possible occur, The average depth allows us to make an informed decision on trading off silicon area
invested in register files vs. the need to minimize the number of overflows that occur. In addition,
information on the maximum depth of a pipelined register file read for a particular register file in a
processor provides us with worst case information as to how deep the pipelined register file would

have to be to completely remove all overflows from a sample program.

We display the worst case depth information for the three major pipelined register files in the WarpJr

21

pracessor - the ALU input register files (grouped togather), the register file that provides the address
to the local data memory (called ADR-out), and tha register file that provides input data to the local
mernory (called MEM-out). The data chould not ba taken as stating that if the warst case pipclined
register nie read is greater than the depth of a register file in Warpdr, we could not gsnerate correct
cade for the program. The measurements were taken by disabling the overtlow correction algeorithm

just to see what the worsi case behavior of the scheduling algerithm would be.

Table 5-4 shows the average pipelined register file read depth, both staticaily in dynamically, over
all the register files in WarpJr for the the benchmark programs, with overflow correction erabled.
Overflow correction allows us to collect statistics on programs that can actually run on the WarpJr
processor, because no pipelined register file overflows occur. The statistics do not include register
file reads that use bypass mode, and therefore only measure register file reads that actually access
the data from the registers in the pipelined register file. Table 5-5 shows the worst case pipelined
register file read depth for the three register fiies in WarpJr described above, with overflow correction

disabled as described above.

static dynamic
binop 1.85 2.04
colorseg 2.37 2,498
conv 1.60 1.68
fft 1.57 1.54
lup 1.29 1.26
mandel 1.45 1.37
pgen 2.27 212
rghnorm 1.20 1.18
sobel 1.65 1.70

Table 5-4: Average pipelined register file read depth, not including bypass reads

Tabie 5-4 indicates that the average depth of a pipelined register file read, both statically and
dynamically, is only about 2 deep in the register file. Once again, this is a significant result, because it
says that we are almost always reading values that have not resided long in the pipelined register files,
so are highly likely not to have overflowed. In addition, it means that we do not have to make the
actual pipelined register fites in the processor very deep, because we do not access elements deep in
the register file often. The maximum depth results of Tabie 5-5 indicate that most programs never
perform reads that are deep into the pipelined register file. The data provides additional evidence for
the observation that most operands are not used often, and if an operand is used often it is used

within a short sequence of microinstiuctions. The observation is directly analogous to the concept of

22

ADR-out MEM-out ALt-in
bincp 2 2 5
r.olorseg 13 2 16
conv 7 4 8
fft 2 1 7
lup 2 2 6
mandel 2 2 5
pgen 4 5 11
rgbnorm 1 1 3
sobel 3 1 4

Table 5-5: Maximum pipelined regisier file read depth

locality of reference in user programs, and is also a consequence of our local code generation
strategy.

5.5. Liveness

To reinforce our argument that most operands are only used within a short sequence of
microinstructions, we have computed the liveness properties of data items written into the WarpJr
pipelined register' files. In our terminology, liveness of an operand in a pipelined register file is
measured by looking at the /ast time a particular data item is read from a pipelined register file relative
to the time it was written into the register file, both in terms of the number of microinstructions
executed since the item was written to the register file, and in terms of the number of writes to the

register file since the item was written.

The liveness measurements provide us with information on the depth of the last read of a data item
from a pipelined reqgister file and on the number of microinstructions executed between the time a
data item is written into a pipelined register file and the time it is last read from that register file. For
these measurements, static numbers give liveness results as if each microinstruction were executed
exactly once (thereby weighting each microinstruction equally in the average liveness measurement),
while the dynamic numbers are obtained from the actual execution path of the benchmaik program
(which effectively weights each microinstruction by the number of times it is executed). Table 5.6
shows the average liveness of a data item in the WarpJr pipelined register files, both statically and

dynamically, for the benchmark programs.

The measurements show that data items are not live for a long time in the WarpJr pipelined register
files. On average, the last microinstruction in which a data item is read from a pipelined register file is

shortly after the microinstruction in which the data item was written into the register file. in addition,

23

Static Dynamic
writes # pinsts # writes # pinsts
binop 1.4 4.0 1.5 5.0
colorseg 2.2 7.3 25 85
conv 1.4 2.9 1.6 3.3
fft 1.5 4.6 1.5 4.5
lup 1.4 5.0 1.2 29
mandel 1.4 3.0 1.6 28
pgen 2.2 89 21 9.5
rgbnorm 1.1 1.6 1.0 1.3
sobel 1.1 1.8 1.2 2.2

Table 5-6: Average liveness of a data item

there are few writes into the pipelined register file in that time interval. The measurements provide
strong support for our contention that data items are usually used within a short sequence of
microinstructions. The data also indicate that the scheduler for WarpJr does a good job of
scheduling operations to use data items shortly atter they arrive at a pipelined register fite. Overall,
the liveness data reinforce the notion that pipelined register files are an attractive form of register
storage for a processcr such as WarpJr. because pipelined register files, while not able to store
operands indefinitely, are abie to store cperands long enough so that the operalions ithat need them

can be scheduled,

5.3, Overflows

Cur majcr concern through all the performance measures on pipelined register files has been their
impact on the number of overflows that will occur during program execution. We wish to minimize the
number of overflows that occur because an overflow forces us to waste resources that are not
explicitly required to perform the computation specified by the program. All of our alyerithms were
explicitly designed to minimize overflows, and now we will present the results of our efforts. Table 5.7
displays for the benchmark programs both the static number of overflows that occurred, as a
percentage of the total numbcr of microinstructions generated, and the dynamic number of overflows
that would have occurred had we not eliminated them through our overflow resolution scheme, as a

percentage of the total number of microinstructions executed.

The evidence is strong that overtiows simply are not a major problem in the WarpJr processor with 14
deep pipelined register files. Overflows occurred in only one program {(colorseg), and in that program
all the overflows were resolved using the strategy described earlier, which, although not a general

solution to the averflow problem, detracts very little from the performance of the compiled microcode.

24

Static Dynamic
binop 0 0
colorseg 1.1 1.9
conv 0 0
fit 0 0
lup 0 0
mandel Y 0
mandel 0 0
rgbnorm 0 0
sobet 0 0

Table 5-7: Overflow occurrences {in %)

With this evidence from the pipelined register files in WarpJdr, and the maximum depth statistics stated
above, we can say that pipelined register files do not have to be extremely deep to provide adequate
support for compilation of high level language programs ta microcode. More specifically, the 14 deep
pipelined register files in the LINCs in WarpJdr provide more than adequate support for basic biock at a

time microcode generation, while providing great savings in silicon area and register control logic.

6. Microstore compaction

When we speak of compacting the microcode for the Warpdr processor. we menn that we wish to
minimize the number of ccntrol patterns for the LINCs in the processor. This is because there are
only 64 control patiern lecations on a LINC, whiile there are 4K control stare viords directly accessible
to the microcontiroller which, in addition to providing an address for the LINC control pattern,

provides control and sequencing capability for the entire processor.

In the WarpJr design, it is intended for LINC control patterns to be used many times. The control
pattern memory in LINC is divided into two banks of 32 words each, which allows us to controf the
datapath with one bank while at the same time we can load patterns into the other bank. This implies
that at any particular time during execution of a program, the program should have a warking set of at
most 32 control patterns, so that we can be preparing for future computations by loading ancther set
of 32 control patterns into the other bank of the control memory. Switching between control banks
frequently is not desirable, because each switch casts one cycle, during which no control paltern is
accessed. This means that for each switch between control banks we lose one computation cycle in
the WarpJr cell, essentially waiting for LINC to switch control memory banks. Therefore we would like
for any program loop to execute completely from one control bank of 32 patterns, to avoid having to

switch banks at every iteration of the loop.

25

We consider LINC control pattern compaction to be a postpass phase of our code generation
algorithm, because it would be difficult to atlempt both to minimize th2 number of LING controt
patierns and generate overall guod microcode at the same time. We have tharefore taken the
approsch of dirst generating the microcode, including the control patterns, and then altempting to
reduce the number of control patterns. In general, for all the sample programs we have seen, the
control patterns generated by the compiler are sparse, meaning that there are many ficlds which
contain default values. We call these don’t care conditions, because it does not matter to the user
what the values of these control pattern fields are, since they will not affect the results of the
computation to be performed. The sparseness of the control patterns generated is what will allow us
to often merge multiple patterns into a single pattern to be used by many microinstructions, We will

now describe the problem more formally and describe our algarithms and results.

6.1. The LINC control pattern compaction problem

The control pattern compaction problem can be stated formally as:
Compaction problem: Given a set of control patterns, and a criterion for
determining whether two control patterns may be merged, find the optimal sequence
of merges to minimize the number of control patterns.

The LINC control patterns provide datapath control for the user program. A LINC control pattern in

WirpJr consists of three fields for sach of the eight datapaths in the processar. The three ficlds are:

¢ a crossbar instruction - to select for each crossbar output the input to be directed to that
output,

¢ a shift instruction - to decide whether or not to shift the crossbar output into the pipelined
register file for the datapath,

* a pipelined register file cutput instruction - to select the register in the pipelined register
file which is read and directed to the LINC output port.

The crossbar and pipelined register file output fields often receive defau't values in the gencration of
microcode {including control patterns) during execution of our list scheduling algorithm. These
default values may therefore be changed to any arbitrary value, and will not affect the correctness of
the microcode. If a crossbar field is set to the default value, this means that the value is neither sent
to the pipelined register file output nor shifted into the register file. Therefore, we can set the field to
any desired value without affecting the computation being performed. if a pipelined register file
output field is set to a default value, the output data is never used once it leaves the LING output port,
Again, we can set the field value to whatever we desire, without affecting the computation being

performed. In contrast, a pipelined register file shift field can never receive a default value, because

26

the decision to shift a register file must be explicitly made for every datapath in every microinstruction
to ensure that the contents of the register Hle reranin in the correct registers for later reads from the
regisler titz. The kay notion is that a pinelinsd reginter file shift aifects he position of all values in the
register file. Therefore, we can never chunge the value of a pipelined register file shitt fleld in a LING

control pattern, because if we do we may execute an erroneous computation.

Given the requirements we have just discussed, we can state the conditions under which twa LINC
control patterns, call them pat? and pat?, may be marged into one pattern. The conditions for

merging two patterns are as follows:

e The pipelined register file shift fields of pat? and pat2 must match exaclly (either both
shift or both not shift) for each datapath.

e The crossbar fields and pipelined register file output fields of pat ! and pat2 must match
for each datapath. In this case, a match occurs if either both patterns contain the same
value for the field, or at least one pattern contains a default value for the field,

The new pattern pat3 will contain:

» For the pipelined register file shift field, pat3 will get the same value for the field that both
patl and pat2 contain, for each datapath,

e There are two cases for the value of the crossbar and pipelined register file outnut tields
in pat3. If pat? and pat? both contain the same value for a fieid {including the dcfault
valug), pat3 gats that vaive for the field. If one of pat7 and pat? ccnizin the defauli value
tor the field, pat3 gets the non-default value for the field from the pattarn not containing
the default value,

Of course, if we merge pat? and pat2 into one new pattern patd, any WarpJr micreinstructions which
address either of the two merged patterns must be updated to address the new pattern. If two control
patterns satisfy the above conditions so that they may be merged, we call them compatible. From the
discussion above, we can see that if we only merge compatible LINC control patterns, we will not
affect the computation performed, but will decrease the total number ¢f control patterns by one gach

time we merge two control patterns.

6.2. An algorithm for merging control patterns

Given a set of controi patterns, we would like to find the sequence of merges which minimizes the
total number of control patterns and provides the same functionality as the original set of patterns.
Unfortunately, the problem is equivalent to the clique partition problem for graphs, which is NP-
complete [5]. This is easily seen by modeling each control pattern as a node in a graph, and inserting

an edge into the graph between each pair of control patterns that are compatible. Then the problem

27

of minimizing the number of control patterns is equivalent to finding the minimum number of cliques
which cover the graph. Since it is highly unlikely that we will find an optimal algorithm that runs in
polynomiat ime to solve the control pattern merging prablem, we must find 2 good heuristic for

deciding which control patterns to merge.

The algorithm that we have implemented is quite simple. It makes a single pass through the array of
control patterns, and for each pattern p attempts to find an already considered (and possibly merged)
pattern ¢ to merge with. In the original array, each control pattern is used by exacHy one
microinstruction, because that is how the list scheduling algorithm generates the microcode. The
search for a pattern g is done in reverse order, from pattern p to the first control pattern in the array.
This helps to ensure that a pattern gets merged most often with ones that were close to it in the
original set of control patterns. The algorithm runs in time O(#?), where # is the number of control
patterns we start with (and also the number of microinstructions). This ensures reasonable running
times for the algorithm on programs compiled for WarpJr, which has at most 4K microinstructions.
The results of applying this simpie algorithm to the set of benchmark programs described in the

section on pipelined register file performance are presented in Table 6-1.

initial # compacted average times
of patterns # patterns pattern used
binop 140 27 5.2
colorseg 374 58 6.4
conv £80 57 10.2
fft 154 37 4.2
lup 252 32 7.9
mandel 120 38 3.2
pgen 202 52 3.9
rgbnorm 426 25 17.0
sobel 580 31 18.7

Table 6-1: LINC control pattern compaction

The statistics clearly support our contention that the control patterns generated by the list scheduling
algorithm are sparse, allowing us to merge a large number of initial patterns into many fewer patterns
that must be stored in the LINC control pattern memory. For the benchmark programs, we were able
to compact the patterns generated by the list scheduling algorithms so that they atways fit into the 64
control patterns (in two banks) provided by LINC, even though the benchmarks include sample
programs of fairly large size, generating several hundred microinstructions. The results imply that our

compaction aigorithm should work well even on much larger programs than the benchmarks,

28

because the algorithm appears to be doing a good job of minimizing the number of control patterns

needed to execitte programs.

Ancther concon we have discussed with respect to compacting control patterns is that no inner loop
should require more than 32 LINC control patterns, hecause of the expense incurred in switching
between banks during execution of a loop. The easiest way to lock at the performance of the
compaction algorithm in this respect is to look at the maximum number of merged contro! patterns
used by any basic block in a compiled program. In general, the inner loops of a program perform
most of the computation so they should generate the most microinstructions, and hence use morg
control patterns than any other basic block. In any case, looking at the worst case block can give us
no better results than only looking at inner toops. Table 6-2 shows the greatest number of control

patterns needed by a basic block for each of the benchmark programs.

Max. # patterns

binop 19
colorseg 42
conv 45
fft 25
lup 27
mandel 18
pgen . 23
rgbnorm 16
sobel 24

Table 6-2: Greatest number of control patterns for a basic block

In general, the results are encouraging. In ail cases except two (colorseg and conv), the control
patterns for the longest basic block in each program fit into ane bank of the LINC control memary.
The apparently costly exceptions for the benchmark programs colorseg and conv are really not as
great of a problem as it may seem. The patterns for all basic blocks in colorseg and conv, except
those for the inner loop, do fit into one bank of the LINC control pattern memory. The inner lcop
control patterns for both programs, which do not fit into one bank, do fit into both banks easily. The
inner loop of colorseg requires 98 microinstructions to execute and the inner loop of conv requires
128, and we can partition the control patterns for either loop into two sets so that we only have to
switch between banks once during execution of the inner loop. Therefore the overhead for switching
banks in both cases is approximately 1%, so that we really do not pay that much of a penaity for not

fitting all the control patterns into one bank.

29

The results of our compaction algorithm are quite good, and we do not think the effort and
computational rasources reguired to obizin better results will pay off in much better compacted scts
of control patterns. The only blocks for which we hava seen that our compaction algorithm fails to
adequately minimize the numier of controd patterns, so that they fit into one bank of the LING control
memaory, require many microinstructions. Therefore, so long as the patterns fit into both contral
pattern banks, the penalty paid for having to switch banks in the middle of a basic block is not all that

greal.

7.System issues

While the WarpJr processcr is designed to be an element in a systolic array, we have only discussed
problems related to compiling programs for a single processor. We have been able to use this
approach because the high-level source language W2 is designed to allow the precgrammer to
partition his problem onto the cells of a systolic array by writing a program for each cell {or perhaps
using the same program on several cells). The language and its compilers do not attempt to solve the
difficult problem of partitioning an arbitrary algorithm onto a parallel machine solely from its
sequential description in a high-tevel language. There are, however, several problems related to
compiling W2 programs for a systolic array machine that we must address to be able to generate
working microcede The problems include generating local cell data memary addresses efficiently,

generating cell loop contrel, and synchronizing data transfers betwean cells.

The Warp systolic array machine, from which the Warp!r machine was derived, consists of ten Warp
processors connected in a lincar array, a host machina which provides the user interface to the array,
and an inlerface processor between the host and the processor array which provides data caching
and address generation capabilities . The WarpJdr processor was designed to interface cleanly to the
same system configuration, and uses the same interface processor as Warp with only minor hardware
modifications. The W2 compiler for Warp generates a host program, an interface unit program and

cell programs for each processor in the array from a singfe complete W2 program,

We use the Warp W2 compiler to generate the program far the Warpdr interface unit, using the
information the WarpJr scheduler produces from scheduling the code for the WarpJr processors.
The interface unit provides both local data memory addresses and loop controt information for the
cells in the WarpJr array. Local memory addresses are not generated by the WarpJr processor cells
themselves because the processors do not contain an integer arithmetic unit, and it is expensive to
calculate addresses in floating point arithmetic and convert to integer addresses. Address generation

by the interface unit is also efficient for algorithms that step through iarge data arrays on many cells,

30

because often an address can be used by more than one cell as it passes through the processor
array. This saves calculating the same address severat times, once for each cell. Loop controi is
done by the interface unit because it is expensive to maintain a loop counter in the cell, and loop
control and address generation are closely related functions. The interface unit dees have integer
arithmetic capability, and can easily calculate the time at which loop control is necessary irom the

information provided by the WarpJr code generator.

The mechanism by which the interface unit program is created is quite simple. The WarpJr code
generator, in addition to generating microcode for the WarpJr processors, generates the framework
for the interface unit program by specifying several characteristics of the compiled microcode,
including the size of each basic block (in number of microinstructions), the microinstructions in which
local memory addresses are required (and the variable name associated with the access), and the
micreoinstructions in which loop control are required. The Warp W2 compiler then uses this
information to assign variakles to data memory locations and produce an interface unit pragram that
both generates memory addresses at the correct times {the ones at which the cell program expects
them) and also generates the systolic control codes necessary to decide when the cell program
should terminate a loop. The loop control scheme can be simple because W2 only allows simple
counting locps, so the compiter can tell in advance how many times the loop will execute. With that
information, and knowledge of the length of all basic blocks (in microinstructions), the Warp W2
compiler can easily create the interface unit program to generate hoth local data memory addresses

ang cell loop control.

The last major system problem we must address involves synchronization of data transfers between
WarpJr cells. 1n the Warp machine, data queues provide the buffering capability between celis
necessary to synchronize data transfers. The queues provide an ordering relationship between the
data sends from one cell and the receives in the corresponding cell. In other words, the receiver
acquires data in the same order that the sender transfers the data {4]. In WarpJr, the FIFOs in LING
provide properties similar to the queues in Warp. The FIFOs are written under control of the sending
processor, and read under control of the receiving processor, which then routes the data through the

LINC crossbar to the desired datapath and its corresponding pipelined register file,

Unfortunately, the WarpJr processor does not provide microcode contral for the three FIFOs needed
to implement the Warp architecture (X, Y, and address/systolic controf), but only for one FIFO. In
addition, the normai composition of the LINCs in WarpJr configures all the input buffers as fixed
length programmable delays. Programmable delays force the relationship between a data send and

the corresponding receive to be perfectly timed, in that the receiving cell must know the exact time

31

the data will arrive. Perfect timing is necessary so that the data can be routed correctly through the
crosshar when it leaves the prograrimable dsilay a fited number of cycles zfter it arrives.
Programmabla delays are not o viable solution to the preblam of transierring data hetween cells,
Because they rostrict the code generation problem so much that it becomes virtuaily ireposaible to
compile efficient, correct code for multiple cells [4]. With programmable delays, every data receive
must be exactly synchronized with the corresponding send, allowing the code generator little
flexibitity in scheduling operations efficiently. FIFOs are a much more desirable buffering mechanism,
because of their floxible read/write capdbilities. The reason for the differances in buffeiing capability
between the Warp and WarpJr processors is that there were design changes in Warp, after the

WarpJdr design was complete, that were not carried over to Warpdr.

Another major problem with implementing the Warp architecture on the WarpJr machine is that each
LINC only provides twe FIFOs, instead of the three required. Currently, each LINC in Warpdr is
programmed with exactly the same control patterns, with each of the four LINCs in a processor
containing four bits of each sixteen bit datapath. The approach is simple, but not powerful enough to
implement the desired architecture with three FIFOs. To successfully implement the architecture with
FIFOs, the datapaths must bc physically distributed across LINCs, with the three FIFOs realized by
programming the-d-code registers on each LINC differently and aiso suitably programming the
control paiterns in each LING to conform to ihe datapath distribution. None of these difficultics would
be apparent to the W2 programmaer, but would complicate the task of the sssembler which generates

the actual microcede to be run in \he processors,

There is another minor charnge to WarpJdr that would help the compiler to generite efficient
microcode, In the present design, the only method for implementing blocking data transfers between
cells, using the LINC FIFOs, is for the programmer to check the FIFOQ full and FiFO empty status
signals LINC provides and block accordingly. A hardware solution to the problem would be to
automatizally block a processor that tries to send to a full FIFO (or receive from an empty FIFQ}, until
the FIFQ is not tull (or not empty). This hardware change would significantly simplify the problem of
programming the Warpdr machine, both for humans and for the compiler, singe the program would
not have to expticitly check for the relatively infrequent occurrences of FIFO error cenditions. The

printed circuit board version of the Warp machine will provide this hardware capability.

32

8. Conclusion

Overall, we have established that pipelined register files supply good suppert for basic biock at a time
code generation for the Warpdr processor. In addition, we can state that global optirnization during
microcede generation would be dilficult in any processor containing pipelined register tiles, because
of the lack of explicit control over register allocation. We cannot perform giobal register allocation,
which provides performance enhancements in many compilers, but we have shown that we can
generate efficient code using only local pipelined register file allocation and a random access data
memaory for inare explicit memory allocation. Pipelined register files exhibit many characteristics that
make them easy for a compiler to manage, but also display features that cause great problems in

compiling efficient code.

We have shown that pipelined register files are an attractive implementation of local storage.
Pipelined register files create many constraints that the WarpJr code generator must enforce, but we
have succeeded in finding reasonably simple heuristics to solve the problems pipelined register files
create. We have effectively minimized the number of operands that must be written into pipelined
register files, which greatly enhances their performance. This has been accomplished both by using
the bypass mode cf the LINC pipelined register files and by using a good heuristic to assign operands
to register files. Qur aigorithms generate code with almost no overflow corrections, so that the
pipelined register files are not losing large amounts of live data. Also, our LINC control pattern
compaction algorithm does a good job of minimizing the number of control patterns that must be
stored in the ‘WarpJdr processor LINCs, thus the small size of the LINC control memory is not a majcr
difficulty in compiling programs. We can therefore state that while many of the abstract ;Sroblems that
arise in generating good code for the WarpJr processor are difficult, our heuristic solutions have

proved to be powerful enough to generate efficient microcode.

(3]

[4]

(5]

(6]

(7]

[&]

9]

(10]

(1]

33

References

Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D.
Compilers: Principies, Techniques, and Tools.
Addison-Weslay, 1988.

Advanced Micro Devices.
Bipolar Microprocessor Logic and Interface Data Book.
Advanced Micro Devices, Inc., 1985,

Analog Devices.
High-Speed 64-bit IEEE Floating Point Multiplier and ALU
Analog Devices, 19885.

Annaratone, M., Arnould, E., Gross, T., Kung, H.T,, Lam, M., Menzilcioglu, O., Sarocky, K, and

Webb, J.A.

Warp Architecture and Implementation.

In Proceedings of the 13th Annual International Symposiurm on Computer Architecture. June,
1986.

Garey, M.R., and Johnson, D.S.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979.

Gross, Thomas and Lam, Manica.
A Description of W2.
November, 1985.

Gross, T., and Lam, M.

Compilation for a High-performance Systolic Array.

In Proceedings of the ACM SICPLAN '86 Symposium on Conpiler Construction. ACM, June,
1986.

Hsu, F.H., Kung, H.T., Nishizawa, T., and Sussmar, A,

Architecture of the Link and Interconnection Chip.

in Fuchs, Henry (editor), Proceedings of the 1985 Chapel Hill Conference on Very Large Scale
Integration, pages 439-462. Computer Science Press, 1985.

Leighton, Frank Thomson.

A Graph Cotoring Algerithm for Large Scheduling Problems.

Journal of Research of the National Bureau of Standards 84(6):489-506, November-December
1979.

Nishizawa, T.
Overview of WarpJr.
April, 1986,

Rau, B.R., Glaeser, C.D. and Picard, R.L..
Efficient Code Generation for Horizontal Architectures: Compiler Techniques and
Architectural Support.

In Proceedings of the Ninth Annual Symposium on Computer Architecture, pages 131 - 139,
ACM, 1982,

[12] Woo, B., Lin. L. and Ware, F.
A High-Spead 32 Bit IEEE Floating-Point Chip Set for UDigital Signul Processing.
in Proceedings of ICASSP 84, pages 16.0.1-16.6.4, 1EEE, 1984,

