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Abstract 

Camelot provides flexible and high performance transaction management, disk management, and 
recovery mechanisms that are useful for implementing a wide class of abstract data types, including 
large databases. To ensure that Camelot is accessible outside of the Carnegie Mellon environment, 
Camelot runs on the Unix-compatible Mach operating system and uses the standard Arpanet IP 
communication protocol. Camelot is being coded on RT PC's, is being frequently tested on 
MicroVaxes, and it will also run on various shared-memory multiprocessors. This paper describes 
Camelot's functions and internal structure. 
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1. Introduction 
Distributed transactions are an important technique for simplifying the construction of reliable and 

available distributed applications. The failure atomicity, permanence, and serializability properties 

provided by transactions lessen the attention a programmer must pay to concurrency and 

failures [Gray 80, Spector and Schwarz 83]. Overall, transactions make it easier to maintain the 

consistency of distributed objects. 

Many commercial transaction processing applications already use distributed transactions, for 

example, on Tandem's TMF[Helland 85]. We believe there are many more algorithms and 

applications that will benefit from transactions as soon as there is a widespread, general-purpose, 

and high performance transaction facility to support them. For example, there are a plethora of 

unimplemented distributed replication techniques that depend upon transactions to maintain 

invariants on the underlying replicas. 

A few projects have developed systems that support distributed transaction processing on abstract 

objects. Argus, Clouds, and TABS [Liskov and Scheifler 83, Allchin and McKendry 83, Spector et al. 

85, Spector 85] are a few examples. These systems permit users to define new objects and to use 

them together within transactions. While the interfaces, functions, and implementation techniques of 

Argus, Clouds, and TABS are quite different, the projects' goals have been the same: to provide a 

common transactional basis for many abstractions with the ultimate goal of simplifying the 

construction of reliable distributed applications. 

Building on the experience of these and other projects, we have designed and are now 

implementing an improved distributed transaction facility, called Camelot (Carnegie Mellon Low 

Overhead Transaction Facility). Camelot provides flexible and efficient support for distributed 

transactions on a wide variety of user-defined objects such as databases, files, message queues, and 

I/O objects. Clients of the Camelot system encapsulate objects within data server processes, which 

execute operations in response to remote procedure calls. Other attributes of Camelot include the 

following: 

# Compatibi l i ty with standard operating systems. Camelot runs on Mach, a Berkeley 
4.3 Unix™-compatible operating system [Accetta et al. 86]. Mach's Unix-compatibility 
makes Camelot easier to use and ensures that good program development tools are 
available. Mach's support for shared memory, message passing, and multiprocessors 
makes Camelot more efficient and flexible. 

• Compatibi l i ty with Arpanet protocols . Camelot uses datagrams and Mach 
messages, both of which are built on the standard Arpanet IP network layer [Postel 82]. 
This will facilitate large distributed processing experiments. 
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Machine- independent implementation. Camelot is intended to run on all the 
uniprocessors and multiprocessors that Mach will support. We develop Camelot on IBM 
RT PC's, but we frequently test it on DEC MicroVaxes and anticipate running it on 
multiprocessors such as the Encore and Sequent machines. 

• Powerful funct ions. Camelot supports functions that are sufficient for many different 
abstract types. For example, Camelot supports both blocking and non-blocking commit 
protocols, nested transactions as in Argus, and a scheme for supporting recoverable 
objects that are accessed in virtual memory. (Section 2 describes Camelot's functions in 
more detail.) 

• Efficient implementation. Camelot is designed to reduce the overhead of executing 
transactions. For example, shared memory reduces the use of message passing; multiple 
threads of control increases parallelism; and a common log reduces the number of 
synchronous stable storage writes. (Section 3 describes Camelot's implementation in 
more detail.) 

• Careful software engineering and documentation. Camelot is being coded in C in 
conformance with careful coding standards [Thompson 86]. This increases Camelot's 
portability and maintainability and reduces the likelihood of bugs. The internal and 
external system interfaces are specified in the Camelot Interface Specification [Spector et 
al 86], which is then processed to generate Camelot code. A user manual based on the 
specification will be written. 

To reduce further the amount of effort required to construct reliable distributed systems, a 

companion project is developing a set of language facilities, called Avalon, which provide linguistic 

support for reliable applications [Herlihy and Wing 86]. Avalon encompasses extensions to C + +, 

Common Lisp, and ADA and automatically generates necessary calls on Camelot. Figure 1-1 shows 

the relationship of Camelot to Avalon and Mach. 

One goal of the Camelot Project is certainly the development of Camelot; that is, a system of 

sufficient quality, performance, and generality to support not only our own, but others' development 

of reliable distributed applications. In building Camelot, we hope to demonstrate conclusively that 

general purpose transaction facilities are efficient enough to be useful in many domains. However, 

we are also developing new algorithms and techniques that may be useful outside of Camelot. These 

include an enhanced non-blocking commit protocol, a replicated logging service, and a facility for 

testing distributed applications. We also expect to learn much from evaluating Camelot's 

performance, particularly with respect to the performance speed-up on multiprocessors. 

2. Camelot Functions 
The most basic building blocks for reliable distributed applications are provided by Mach, its 

communication facilities, and the Matchmaker RPC stub generator [Accetta et al. 86, Cooper 

86, Jones et al. 85]. These building blocks include processes, threads of control within processes, 
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Figure 1-1: Relationship of Camelot to Other System Layers 
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shared memory between processes, and message passing. 

Camelot provides functions for system configuration, recovery, disk management, transaction 

management, deadlock detection, and reliability/performance evaluation1. Most of these functions 

are specified in the Camelot Interface Specification and are part of Camelot Release 1. Certain more 

advanced functions will be added to Camelot for Release 2. 

2.1. Configuration Management 

Camelot supports the dynamic allocation and deallocation of both new data servers and the 

recoverable storage in which data servers store long-lived objects. Camelot maintains configuration 

data so that it can restart the appropriate data servers after a crash and reattach them to their 

recoverable storage. These configuration data are stored in recoverable storage and updated 

transactionally. 

of Avalon's runtime support. 
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2.2. Disk Management 

Camelot provides data servers with up to 2 4 8 bytes of recoverable storage. With the cooperation of 

Mach, Camelot permits data servers to map that storage into their address space, though data servers 

must call Camelot to remap their address space when they overflow 32-bit addresses. To simplify the 

allocation of contiguous regions of disk space, Camelot assumes that all allocation and deallocation 

requests space are coarse (e.g., in megabytes). Data servers are responsible for doing their own 

microscopic storage management. 

So that operations on data in recoverable storage can be undone or redone after failures, Camelot 

provides data servers with logging services for recording modifications to objects. Camelot 

automatically coordinates paging of recoverable storage to maintain the write-ahead log 

invariant [Eppinger and Spector 85], 

2.3. Recovery Management 

Camelot's recovery functions include transaction abort, and server, node, and media-failure 

recovery. To support these functions, Camelot Release 1 provides two forms of write-ahead value 

logging; one form in which only new values are written to the log, and a second form in which both old 

values and new values are written. New value logging requires less log space, but results in 

increased paging for long running transactions. This is because pages can not be written back to 

their home location until a transaction commits. Camelot assumes that the invoker of a top-level 

transaction knows the approximate length of his transaction and specifies the type of logging 

accordingly. 

Camelot's two logging protocols are based on the old value/new value recovery technique used in 
TABS [Spector 85] and described by Schwarz [Schwarz 84]. However, they have been extended to 
support aborts of nested transactions, new value recovery, and the logging of arbitrary regions of 
memory. 

Camelot writes log data to locally duplexed storage or to storage that is replicated on a collection of 

dedicated network log servers [Daniels et al. 86]. In some environments, the use of a shared network 

logging facility could have survivability, operational, performance, and cost advantages. Survivability 

is likely to be better for a replicated logging facility because it can tolerate the destruction of one or 

more entire processing nodes. Operational advantages accrue because it is easier to manage high 

volumes of log data at a small number of logging nodes, rather than at all transaction processing 

nodes. Performance might be better because shared facilities can have faster hardware than could 

be afforded for each processing node. Finally providing a shared network logging facility would be 

less costly than dedicating duplexed disks to each processing node, particularly in workstation 
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environments. 

Release 2 of Camelot will support an operation (or transition) logging technique in which type 

implementors can log non-idempotent undo and redo operations. This type of logging increases the 

feasible concurrency for some types and reduces the amount of log space that they require. 

2.4. Transact ion Management 

Camelot provides facilities for beginning new top-level and nested transactions and for committing 

and aborting them. Two options exist for commit: Blocking commit may result in data that remains 

locked until a coordinator is restarted or a network is repaired. Non-blocking commit, though more 

expensive in the normal case, reduces the likelihood that a node's data will remain locked until 

another node or network partition is repaired. In addition to these standard transaction management 

functions, Camelot provides an inquiry facility for determining the status of a transaction. Data 

servers and Avalon need this to support lock inheritance. 

2.5. Support for Data Servers 

The Camelot library packages all system interfaces and provides a simple locking mechanism. It 

also contains routines that perform the generic processing required of all data servers. This 

processing includes participating in two-phase commit, handling undo and redo requests generated 

after failures, responding to abort exceptions, and the like. The functions of this library are subsumed 

by Avalon's more ambitious linguistic support. 

2.6. Deadlock Detection 

Clients of Camelot Release 1 must depend on time-out to detect deadlocks. Release 2 will 

incorporate a deadlock detector and export interfaces for servers to report their local knowledge of 

wait-for graphs. We anticipate that implementing deadlock detection for arbitrary abstract types in a 

large network environment like the Arpanet will be difficult. 

2.7. Reliability and Performance Evaluation 

Camelot Release 2 will contain a facility for capturing performance data, generating and distributing 

workloads, and inserting (simulated) faults. These capabilities will help us analyze, tune, and validate 

Camelot and benefit Camelot's clients as they analyze their distributed algorithms. The information 

returned by the facility could also be used to provide feedback for applications that dynamically tune 

themselves. We believe that, when properly designed, a reliability and performance evaluation facility 

will prove as essential for building large distributed applications as source-level debuggers are 

essential for traditional programming. 
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The reliability and performance evaluation facility has three parts. The first captures performance 

data and permits clients to gauge critical performance metrics, such as the number of messages, 

page faults, deadlocks, and transactions/second. Certain information is application-independent 

but other useful information depends on the nature of the application. Therefore, the performance 

evaluation facility will be extensible and capture application-specific data from higher level 

components. Once information is obtained from various nodes on the system, the facility combines 

and presents it to system implementors or feeds it back to applications for use in dynamic tuning. 

The second part of the performance and reliability evaluation facility permits the distribution of 

applications (or workloads) on the system. When many nodes are involved in a workload, this task 

can be very difficult unless it is possible to specify the nodes and workloads from a single node. We 

have built a prototype facility of this type for TABS, and we will extend it for use on Camelot. 

The third part permits simulated faults to be inserted according to a pre-specified distribution. This 

is crucial for understanding the behavior of a system in the presence of faults. For example the 

low-level communication software may be instructed to lose or reorder datagrams with a pre-specified 

probability. Or, a pair of nodes could greatly raise network utilization to probe the effects of 

contention. 

2.8. Miscellaneous Functions 

Camelot provides both a logical clock [Lamport 78] and a synchronized real-time clock. These 

clocks are useful, for example, to support hybrid atomicity [Herlihy 85] and replication using 

optimistic timestamps [Bloch 86]. Camelot also extends the Mach naming service to support multiple 

servers with the same name. This is useful to support replicated objects. 

3. Camelot Implementation 
The major functions of Camelot and their logical relationship is illustrated in Figure 3-1. Disk 

management and recovery management are at the base of Camelot's functions. Both activities are 

local to a particular node, except that recovery may require communication with the network logging 

service. Deadlock detection and transaction management are distributed activities that assume 

underlying disk management and node recovery facilities. Communication protocols and reliability 

and performance evaluation are implemented within many levels of the system. The library support 

for data servers rests on top of these functions. 

All of Camelot except the library routines is implemented by a collection of Mach processes, which 

run on every node. Each of these processes is responsible ior supporting a particular collection of 

functions. Processes use threads of control internally to permit parallelism. 
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Figu re 3-1: Logical Components of Camelot 
This figure describes the logical structure of Camelot. Camelot is logically hierarchical, except that communication and 
reliability and performance evaluation functions span multiple levels. 

Thus, calls to Camelot (e.g., to begin or commit a transaction), must be directed to a particular 

Camelot process. Some frequently called functions such as log writes are invoked by writing to 

memory queues that are shared between a data server and a Camelot process. Other functions are 

invoked using messages that are generated by Matchmaker. 

Figure 3-2 shows the seven processes in Release 1 of Camelot2: master control, disk manager, 

communication manager, recovery manager, transaction manager, and node server, and node 

configuration application. 

• Master Contro l . This process restarts Camelot after a node failure. 

• Disk Manager. The disk manager allocates and deallocates recoverable storage, 
accepts and writes log records locally, and enforces the write-ahead log invariant. For 
log records that are to be written to the distributed logging service, the disk manager 
works with dedicated servers on the network. Additionally, the disk manager writes 
pages to/from the disk when Mach needs to service page faults on recoverable storage 
or to clean primary memory. Finally, it performs checkpoints to limit the amount of work 
during recovery and works closely with the recovery manager when failures are being 
processed. 

2Camelot Release 2 will use additional processes to support deadlock detection and reliability and performance evaluation. 
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• Communication Manager. The communication manager forwards inter-node Mach 
messages, and provides the logical and physical clock services. In addition, it knows the 
format of messages and keeps a list of all the nodes that are involved in a particular 
transaction. This information is provided to the transaction manager for use during 
commit or abort processing. Finally, the communication manager provides a name 
service that creates communication channels to named servers. (The transaction 
manager and distributed logging service use IP datagrams, thereby bypassing the 
Communication Manager.) 

• Recovery Manager. The recovery manager is responsible for transaction abort, server 
recovery, node recovery, and media-failure recovery. Server and node recovery 
respectively require one and two backward passes over the log. 

Recoverable 
Processes 

Camelot 
System 
Components 

Th* »•„ K F , 9 U r e 3 " 2 : P r o c e s s e s ^ Camelot Release 1 
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• Transact ion Manager. The transaction manager coordinates the initiation commit, 
Ind a l o h o f locat and distributed transactions. It fully supports nested t r a n s a c t s . 

o Tho nnHo «prvpr is the repository of configuration data necessary for 

other servers. 

• Node Configuration Application. The node configuration aPP'^ation permits 
Camelofs human users to update data in the node server and to crash and restart 

servers. 

The organization of Camelot is similar to that of TABS and R* [Spector 85, Lindsay et al. 84]. 

Structurally, Camelot differs from TABS in the use of threads, shared memory interfaces, and the 

combination of logging and disk management in the same process. Many low-level algorithms and 

protocols have also been changed to improve performance and provide added functions. Camelot 

differs from R* in its greater use of message passing and support for common recovery facilities for 

servers. Of course, the functions of the two systems are quite different; R*'s transactions are 

intended primarily to support a particular relational database system. 

4. Discussion 
As of December 1986, Camelot 1 was still being coded though enough (about 20,000 lines of C) was 

functioning to commit and abort local transactions. Though many pieces were still missing (e.g., 

support for stable storage and distribution), Avalon developers could begin their implementation 

work. Before we begin adding to the basic set of Camelot 1 functions, we will encourage others to 

port abstractions to Camelot, so that we can get feedback on its functionality and performance. 

Performance is a very important system goal. Experience with TABS and very preliminary 

performance numbers make us believe that we will be able to execute roughly 20 non-paging write 

transactions/second on an RT PC or MicroVax workstation. Perhaps, it is worthwhile to summarize 

why the Camelot/Mach combination should have performance that even database implementors will 

like: 
• Mach's support for multiple threads of control per process permit efficient server 

organizations and the use of multiprocessors. Shared memory between processes 
permits efficient inter-process synchronization. 

• Disk I/O should be efficient, because Camelot allocates recoverable storage 
contiguously on disk, and because Mach permits it to be mapped into a server's memory. 
Also, servers that know disk I/O patterns, such as database managers, can influence the 
page replacement algorithms by providing hints for prefetching or prewriting. 

• Recovery adds little overhead to normal processing because Camelot uses write-ahead 
logging with a common log. Though Camelot Release 1 has only value-logging, 
operation-logging will be provided in Release 2. 
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• Camelot has an efficient, datagram-based, two-phase commit protocol in addition to its 
non-blocking commit protocol. Even without delaying commits to reduce log forces 
("group commit"), transactions require only one log force per node per transaction. 
Camelot requires just three datagrams per node per transaction in its star-shaped commit 
protocol, because final acknowledgments are piggy-backed on future communication. 
Camelot also has the usual optimizations for read-only transactions. 

• Camelot does not implement the synchronization needed to preserve serializability. This 
synchronization is left to servers (and/or Avalon), which can apply semantic knowledge 
to provide higher concurrency or to reduce locking overhead. 

Today, we would guess that Camelot's initial bottlenecks will be low-level disk code and the 

remaining message passing. For example, though the frequent calls by servers to Camelot are 

asynchronous and via shared memory, all operations on servers are invoked via message using the 

RPC stub generator. To further reduce message passing overhead, we might have to substitute a 

form of protected procedure call. This should not change Camelot very much since all inter-process 

communication is already expressed with procedure call syntax. 

In the course of our implementation and the subsequent performance evaluation, we expect to learn 
much about large reliable distributed systems. Once Camelot is functioning, we plan to perform 
extensive experimentation on multiprocessors and distributed systems with a large number of nodes. 
In particular, we will measure the actual availability and performance of various replication 
techniques. 

Our overall goal remains to demonstrate that transaction facilities can be sufficiently general and 
efficient to support a wide range of distributed programs. We are getting closer to achieving this goal, 
but much work remains. but much work remains 
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