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This paper describes a model based vision system for bin picking tasks . The system 
contains three components: a dual photometric stereo systems, a CAD model S O L V E R , 
and an interpretation tree. The system has two modes: a compile mode, and a run mode. 

In the compile mode, S O L V E R is used to generate apparent shapes of an object under 
various viewer directions. Representative att i tudes are extracted from the shapes. Then, 
an interpretation tree is generated to classify an observed attitude into one of the 
representative attitudes, and to determine the attitude precisely by matching features 
from S O L V E R with observed ones. 

In the run mode, intensity maps , needle maps , and a depth map are obtained by the dual 
photometric stereo. Then, the interpretation tree determines maps , areas, and features to 
be examined for att itude determination. The final representation is expressed in the world 
of S O L V E R . 
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INTRODUCTION 
Sensory capabilities will extend the functional range of robots. Without sensing the 

outer world, robots can only repeat pre-programmed tasks. Thus , the task is very rigid; 

such a system cannot overcome any small disturbance. Therefore, sensory capability is an 

essential component of a flexible robot. 

Vision could be the most important type of robotic sensor. Since a vision sensor is a 

non-contact sensor, information can be obtained without disturbing the environment. 

Also, vision can acquire global information about a scene; this is not the case for a tactile 

sensor. 

There are basically three tasks where the vision feedback can play an essential role: 

1. finding the target object and determining the grasping points, 

2. bringing the object from its initial point to a destination point while avoiding 
collision with other objects, and 

3. assembling something using the object. 

This report explores a method for visual guidance of a manipulator in the first task 

domain: finding an object. A manipulator without vision can only pick up an object whose 

position and attitude are pre-determined. Such a system needs the help of another 

machine or a human for feeding objects at a pre-determined place in a pre-determined 

att itude. Since this feeding job is tedious, it is quite unsuitable for a human being. 

Traditional mechanical feeding methods rely on a known part geometry to orient the part 

by forcing it through a sequence of gates rails and stops. Besides being inflexible and 

capable of dealing with a very limited number of part types, these methods, including 

vibration, may cause defects in the objects due to collision. 

Historically, bin-picking tasks have been attacked by detecting brightness changes [Tsuji 

and N a k a m u r a 75, Baird 77, Perkins 77, Bolles and Cain 82]. Detecting brightness changes 

gives boundaries between regions corresponding to the objects. The boundaries obtained 

are compared with internal models to determine the attitude of the object. These edge-
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based approaches work particularly well with isolated objects lying on a uniform 

background provided the objects only rotate in the plane of support. In other words, these 

algorithms work well on binary images. However, such methods cannot extract the 

contour of an object from the image of a set of overlapping objects, which is typical in 

bin-picking. 

We [Ikeuchi etal. 84, 86, Horn and Ikeuchi, 84] have presented techniques for using 

photometric stereo and an extended gauss ian image to determine object attitude. The 

photometric stereo determines surface orientations from the images under three different 

illumination conditions. A brightness triple at each point determines the surface 

orientation there. Distortions in brightness values due to mutual illumination or 

shadowing between neighboring objects are detected by the method as impossible 

brightness triples. The locations of these triples are used to segment the visual scene into 

isolated regions corresponding to different objects . The distribution of surface 

orientations—an orientation histogram—measured over one of these isolated regions is 

used to identify the shape from a catalogue of known shapes. The object 's attitude in 

space is also obtained as a by-product of the matching process. This system can pick up 

such a simple object as a doughnut successfully. This method, however, has three 

problems: 

1. It is often difficult to express a complicated object such as a machine part with 
a mathematical function from which the extended Gauss ian image is derived. 

2. The extended Gaussian image is sometimes not powerful enough to determine 
the att i tude of a machine part due to self occlusion, narrowness of observable 
areas, or scatter of observable regions of the object due to self shadows. 

3. The previous system lacks a general representation of the outer world from 
which a planner can easily make a grasp plan. The purpose of robot vision is 
to provide the outer world information to task-acheiving parts . The 
representation can serve as the start ing point to the task-acheiving module. 
Thus , the representation should be somehow a copy of the outer world and be 
in a convenient form to operate with it. 

This paper resolve these problems using a CAD model. This system has following 

characteristics: 

1. The system uses a depth map, a needle map, and edge maps . 
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2. An interpretation tree controls the process of determining attitude by using 
the most appropriate features derived from these maps at each determining 
process. 

3. The interpretation tree classifies a target region into a representative att i tude, 
and then determines the attitude more precisely over the attitude range of the 
representative att i tude. 

4. The attitude and the position obtained is represented in the world in S O L V E R . 

DERIVING THE I N T E R P R E T A T I O N T R E E 
(Compile Mode) 

S O L V E R 

S O L V E R is a Solid modeler developed by Koshikawa [Koshikawa 84] for object 

recognition at the Electrotechnical Laboratory (ETL) in Tsukuba . The origin of S O L V E R 

comes from a solid modeler G E O M A P [Kimura and Hosaka 77]. Since G E O M A P is a 

modeler not for object recognition but for object display, G E O M A P lacks some of the 

essential recognition facilities. Thus , Koshikawa revised G E O M A P into S O L V E R for 

object recognition purposes. 

Both S O L V E R and G E O M A P share common da ta structures. Since S O L V E R comes 

from G E O M A P , the basic part of S O L V E R is the same as that of G E O M A P . For 

example, both S O L V E R and G E O M A P represent an object as links of vertices, edges and 

faces. The relationships between them are expressed using the winged-edge 

representations [Baumgart 72]. While this winged-edge representation expresses the 

topological relationship between faces, edges, and vertices, a vertex cell contains the 

positional information. Transformation of an object can be realized by multiplying a 

transformation matrix by the positional information of the vertex cells. Complex objects 

can be synthesized from simple primitive objects using unification or subtraction. 

S O L V E R has the following three new features for object recognition. 

1. E x p o s u r e i n f o r m a t i o n An exposure means one visible part of one face 
under one particular viewer direction. G E O M A P has a property called a 
region to express a face projected under one viewer direction. Each region is 
enclosed with some visible arcs or "some invisible arcs occluded by some other 
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faces. G E O M A P , however, has no direct information of visible parts of a 
region. S O L V E R has the following information of visible parts as exposure 
information. 

a. area size of an exposure 

b. arc list which encloses an exposure, and 

c. neighboring exposures of a visible arc 

2. O r i g i n a l f a c e s o f un i f i ed o b j e c t S O L V E R constructs a complicated 
object unifying simpler objects. During this operation, S O L V E R keeps the 
information to be able to identify the original face from a unified face. 

3. O r i g i n a l f a c e , e d g e or v e r t e x o f a p r o j e c t e d r e g i o n , a r c or p o i n t 
S O L V E R can generate an image of an object under one viewer direction. 
During this operation, S O L V E R keeps the information to be able to identify an 
original face, edge, and vertex from a region, arc, and point of the image, 
respectively. 

S O L V E R is used for deriving representative att itudes of an object, extracting work 

models for the interpretation process, and representing the interpretation results in our 

system. 

R E P R E S E N T A T I V E A T T I T U D E 

A three-dimensional object varies its apparent shape depending on the viewer direction 

and rotation. These apparent shapes of an object fall into groups such that each group 

consists of roughly the same shapes. Here, "roughly the s a m e " means that the same faces 

can be observed in almost the same condition. Some researchers explore this 

characterization with visible lines; this paper explores the characterization with faces 

observable by photometric stereo. 

The number of observable regions of a non-convex object depends on the viewer 

direction. The photometric stereo can determine the surface orientation at the place 

where the three light sources project their light directly. A non-convex object is often 

observed as a few detectable regions which are isolated from each other by shadowing or 

mutual illumination between neighboring faces. The number of the isolated regions and 

their corresponding faces depends on the viewer direction. Thus , we can characterize the 

viewer direction based on the observable faces. (Note that we use the terms "object 
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a t t i tude" and "viewer configuration " interchangeably. The object attitude and the viewer 

configuration have three degrees of freedom; two degrees of freedom in the viewer 

direction, and one degree of freedom in the viewer rotation. While the viewer rotation 

does not affect the number of observable regions, the viewer direction does. 

Each viewer direction can be characterized by those faces visible from that direction. 

Let us suppose that 

(1 face i is visible 

1 10 face i is not visible 
(Xp-X^ , . . . , -^ ) denotes one label of an apparent shape based on the detectable faces under 

the photometric stereo. We can characterize each viewer direction with this label, and 

The set of viewer directions that have the same visible face label becomes an attitude 

group. There are two ways to generate attitude groups: an analytic method, and an 

exhaustive method. If the target object is a convex object, then the analytic method is 

easy. Because the face visibility is determined by the relationship between the viewer 

direction and the surface orientation. The viewer direction has two degrees of freedom 

and can be described as a point on the Gauss ian sphere at whose center a target object is 

located. The visible viewer directions of a surface is described as a circle on the Gaussian 

shpere. The circle center corresponds to the surface orientation, and the radius of the circle 

is 7 r / 2 . Inside area of the circle corresponds to the viewer directions visible to the surface. 

Drawing these visible circles on the Gaussian sphere, att itude groups can be determined 

from combination of the circle covers on the sphere. 

If the target object is non-convex, then the visible circle is distorted due to the self 

occlusion and the analytic method becomes difficult. Thus , the exhausted method is 

applyed. Essentially, the exhausted method generates all possible viewer directions and its 

apparent shapes of the object, and then examining face labels of the generated shapes 

gives the attitude groups. First task is to sample the Gaussian sphere evenly; A geodesic 

dome is used to tesselate the Gaussian sphere evenly [Brown 79]. Each tessellated triangle 

corresponds to a particular viewer direction. Thus , at each sampled viewer direction a 

observable shape of the object is generated using S O L V E R . The observable shape gives a 
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face label, X.,X,y,...,X . After obtaining all face labels of all generated shapes, att itude 

groups are generated based on the face labels. 

One representative att i tude will be selected from each attitude group and each att itude 

group is represented by its representative att itude. T h a t is, the viewer directions over one 

particular range are represented by one representative att i tude. Usually, the viewer 

direction which gives the largest sectional area within the group is selected as the viewer 

direction for the representative att i tude. The viewer rotation for the representative 

att i tude is determined so that the maximum inertia direction agrees with the x axis on the 

image plane. 

Figure 1 shows an example of this process. Figure l a is a picture of an object. Figure l b 

is a model synthesized using S O L V E R . Figure l c shows apparent shapes of the object 

observed from sixty different viewer directions, where the faces enclosed with bold lines 

are observable by the photometric stereo. These shapes are fallen into 7 att i tude groups as 

shown in Figure Id . Through face group 1 to group 5, five representative att i tudes are 

generated as shown in Figure l e . Since group 6 corresponds to a hole region of the object 

and group 7 has too small a visible area, no representative att i tudes are generated from 

the groups 6 and 7. 

W O R K M O D E L S 

The work models consist of original face information such as the original face inertia, the 

original face shape, the original face relationship, the original edge relationship, the 

surface characteristic distribution, and the extended Gaussian image. These work models 

will be used to classify one target region into a representative att i tude, and to determine 

the attitude of an object observed as the target region. These work models are derived 

from S O L V E R in the modeling process, and are derived from needle maps and/or edge 

maps in the determining process. 

The work models are generated at each representative att i tude. Since the surface 

orientation is available at each region from the needle map , the original face information 

can be recovered from the observed region information using an affine transform. For 

example, when the surface orientation, the affine matrix, and the observed region shape 
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F i g u r e 1. An object and its representative att i tude. 
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Figure lc Sixty apparent attitudes of the object. 

F i g u r e 1 ( c o n t i n u e d ) . 



Figure Id Seven attitude groups. 

F i g u r e 1 ( c o n t i n u e d ) . 
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Representative Attitude 5 uo 
Representative Attitude 4 

Representative Attitude 3 

Representative Attitude 2 

Representative Attitude 1 

Figure le Five representative attitudes. 

F i g u r e 1 ( c o n t i n u e d ) . 
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are known, the original face shapes can be recovered from the skewed region shape with 

the affine transform. Information for only one attitude is necessary at each attitude group 

in which detectable faces are the same and they are reachable from each other by the 

affine transformation. The work models are, thus, generated at each representative 

attitude which represents one attitude group. 

Let p,q be surface orientation of one face. 

T= (1) 
i + P 2 (P? ) / ( I+P 2 ) 

o ( i + p 2 + g 2 ) / ( i + P 2 ) 

gives the affine matrix to recover the original face information from the observed face 

information. 

O r i g i n a l F a c e I n e r t i a 

One work model is the original face inertia. The original face inertia gives the rough 

shape information of a face. In order to obtain the inertia, we have to convert a needle 

m a p into a binary map . Here, the binary map has 1 at each pixel where the surface 

orientation can be obtained, and 0 at each pixel where the surface orientation cannot be 

obtained. The obtained binary map is represented as m(x ,y) . From this m(x,y) and the 

affine matrix T, 

Ixx=J m(x',i/)dx'dx' 

I =J m{x',y r)dx'dy' (2) 

I 
yy =J m{x',T/)dy'dy> 

where 

and (x,y) is the observed mass center of the face. From these I J J we can determine 
xx 1 xy J yy 

the maximum inertia / and the direction a as follows: 
max 

IrrMXMrxx+IyyW(Ixx+I) 2-4(II -I I ) ) / 2 (3) 
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a = ( t a n - 1 { ( 2 y / ( I x x - I y y ) } ) / 2 (4) 

O r i g i n a l F a c e R e l a t i o n s h i p 

A non-convex object often appears as multiple isolated regions under the photometric 

stereo. In this case, the relationships between regions are used as a work model. 

For each region, the relative position of other regions are stored. The relative position is 

described by a vector whose length corresponds to the distance between the mass centers 

of the two regions and whose direction indicates the direction from the mass center of the 

region to the other mass center based on the maximum inertia direction and the surface 

orientation of the region. If the region has no unique inertia direction, for example, a 

circular region, only the distance is stored. 

O r i g i n a l F a c e S h a p e 

The original face shape is also used to characterize a region. The face shape is described 

as the distance from the mass center of the face to the boundary of the face as a function of 

the angle round the mass center, d—d(6). The rotation angle 9 is calculated with respect 

to the maximum inertia direction. This is a two dimensional well-tessellated surface 

representation of the shape [Brown 79]. 

O r i g i n a l E d g e R e l a t i o n s h i p 

Some of the prominent edge information is also used. In some cases the needle map from 

the photometric stereo cannot determine the object attitude uniquely. In this case some of 

the prominent edge information is used to reduce this ambiguity. Thus , some of the edge 

information is stored if necessary. 

The edge information is described by the starting position and the ending position. 

These positions are denoted relative to the mass center of the face and the maximum 

inertia direction. In application, a position is converted into the position on the image 

plane using the affine matrix. Then, the connecting place between the converted start ing 

position and the converted ending position will be searched on the edge map to determine 

whether there is an edge or not. 
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E x t e n d e d G a u s s i a n I m a g e 

Roughly speaking, the extended Gaussian image of an object is a spatial histogram of its 

surface orientation distribution [Smith 79, Horn 79, Ikeuchi 81, Horn 84, Brou 84, Little 

85]. Let us assume that there is a fixed number of surface patches per unit surface area, 

and that a unit normal is elected on each patch. . These normals can be moved so that their 

u t a i l s n are at a common point and their " h e a d s " lie on the surface of a unit sphere. This 

mapping is called the Gauss map; the unit sphere is called the Gaussian sphere. If we 

attach a unit mass to each end point, we will observe a distribution of mass over the 

Gaussian sphere. The resulting distribution of mass is called the extended Gaussian image 

(EGI) of the object. 

The E G I has the following properties: 

1. Neither the surface normal nor, the Gauss map depend on the position of the 
origin. Thus , the resulting EGI is not affected by translation of the object. 

2. When an object rotates, its E G I also rotates. However, the E G I rotates in the 
same manner as the object. In other words,, this rotation does not effect the 
relative E G I mass distribution over the sphere. 

S u r f a c e C h a r a c t e r i s t i c D i s t r i b u t i o n 

The surface characteristic distribution is available from the surface orientation 

distribution. A surface patch has a characteristic such as planar, cylindrical, elliptic, or 

hyperbolic. The first and the second fundamental forms can be obtained from the surface 

orientation and its derivatives, and from these the Gaussian curvature and the mean 

curvature are obtained [do Carmo 76, Brady etal 85]. The characteristic, defined in terms 

of the Gaussian curvature and the mean curvature are independent of the viewer direction 

and the rotation. 

Let us denote surface orientation as (p,q), where p=zx and 9 = ^ y - Then, the first 

fundamental forms EjF,G are 

E = ( 1 + p 2 ) 

F = pq (5) 
G = ( 1 + q 2 ) -

The second fundamental forms e,/,g are 
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f=py/Vl+p 2+q 2  

g=gy/Vl+p 2+q 2  

(6) 

These coefficients give the Gaussian curvature K and the mean curvature of the surface 

as follows: 

Gaussian curvature K and mean curvature H determine the surface characteristic as 

follows: 

1. K=0 and H=0 then planar surface 

2. K=0 and H 7 ^ 0 then cylindrical surface 

3. K > 0 and H > 0 then convex elliptic surface 

4. K > 0 and H < 0 then concave elliptic surface 

5. K < 0 t/ien hyperbolic surface 

The surface characteristic distribution is stored at each representative att i tude. A 

subregion is generated based on a surface characteristic, and described by the surface 

characteristic and the rectangular existence area whose vertices are referenced to the 

coordinate of the mass center and the maximum inertia direction. In application, the 

vertex positions are converted to image plane coordinates using the affine matrix. Then, 

the corresponding area is examined to determine whether surface patches having the 

characteristic exist or not. 

An interpretation tree determines the viewer direction and the rotation of an object 

observed as one target region. The interpretation tree reduces the freedom step by step by 

comparing the most appropriate feature in work models with the feature obtained from 

the observed da ta over one target region. The interpretation tree consists of three parts . 

The first part classifies an unknown region into one of the representative attitudes. This 

operation reduces some of the freedom in the viewer direction. At this point, non-linear 

K^eg-fyiEG-F 2) 

(7) 

I N T E R P R E T A T I O N T R E E 
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shape changes have been solved; after this point, visiblity of each face does not change 

depending on the viewer direction within each attitude group. The second part 

determines the viewer direction uniquely. The third part determines the viewer rotation 

around the viewer direction uniquely. 

The interpretation tree is derived by the extraction rules before execution of the 

determining process. Each extraction rule is examined to determine whether the rule can 

constrain some of the freedom in the viewer direction and the rotation. If the rule can 

constrain some of the freedom, the rule is adopted into the interpretation tree. This 

adoption operation generates an interpretation tree to determine the viewer direction and 

the viewer rotation completely. 

C l a s s i f y i n g into R e p r e s e n t a t i v e A t t i t u d e 

The first step to derive the interpretation tree is to generate branches from the root to 

the attitude groups. Branches are generated using the face labeling. The leaves of the tree 

correspond to the attitude groups, while the root corresponds to the unclassified stage.* 

The att itude group depends on the face groups which generate the face labeling. At first 

we will put faces of an object in area order; / p / 2 > >/n- Then, we will consider the 

subsets of the face groups ff1={/1},g2={/1,/2},..., g f l = = { / 1 , / 2 f — f / ^ } -

is a subset which consists of only one face fy which is the largest among the faces of 

the object. This subset generates a face label Xy Using this label the general att itude 

space is divided into two sub-attitude groups. Under any attitude in the attitude group 

which has x 1 = l , the photometric stereo can observe the largest face 1; under any attitude 

in the attitude group which has x^=0, the photometric stereo cannot observe the largest 

face 1. 

Next we will consider the relationship between the attitude group from < J N + 1 and the 

attitude group from g N . The attitude group of ^ is obtained by dividing the attitude 

group of g. based on the visibility of / - , « . This division sequence generates a tree 

structure which gradually reaches the final attitude groups. This tree structure will be 

used as the structure of the interpretation tree. 
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Let us consider the relationship between E G I and the face-labelling. Among three 

degrees of freedom in object att itude, the viewer rotation does not affect the visibility of 

the surface. The viewer direction has two degrees of freedom and can be expressed as a 

point on the Gaussian sphere. The surface orientation and its E G I mass can be also 

expressed as a point on the Gaussian sphere. We will express both in the same sphere. 

The photometric stereo determines a visible disk on the Gaussian sphere. The center of 

the disk locates at the point corresponding to the surface orientation of the surface; the 

center of the disk is the point of E G I mass of the surface. The radius of the disk is 

determined depending on the characteristic of the photometric stereo, (in our system, 

7 r / 4 . ) The surface is visible from any viewer direction within this.visible disk. Thus , any 

viewer direction inside of this disk has the label x = = l , where the face is / . . 

The viewer directions having x ^ l are contained in the disk whose center is the heaviest 

E G I mass . Since the faces are sorted in area order, the labelling operation described 

previously sections the Gauss ian sphere sequentially with the visible disks of the E G I 

masses in weight order. 

Figure 2 shows the branch obtained from the object shown in Figure 1. In the 

application, it often occurs that two faces have the same area. In this case, at the first s tep, 

we will divide the attitude groups into sub-attitude groups; any one of the faces are 

observable (xx), and none of the faces are observable (00). Then, (xx) attitude groups are 

divided on the visibility of the faces. This is because we will divide the resembling 

attitudes at the later stage. The BO branch corresponds to the two cylindrical surfaces, B l 

corresponds to the wide planar surface, B2 corresponds to the hole region, B3 corresponds 

to the two circular surfaces, and B4 and B5 correspond to the side planar surfaces. These 

branches divide the attitude groups into seven attitude groups. 

C l a s s i f i c a t i o n r u l e s 

This section gives rules to generate the classification part of the interpretation tree. 

Each branch examines whether one of the rules can discriminate the attitude groups. If 

one of the rules can discriminate, the the rule is registered at the branch. The decision 

whether the rule can divide them or not is made by human at present. 
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F i g u r e 2 . Branches based on face labelling. 
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L l : Comparison based on the original face inertia. 

L 2 : Comparison based on the original face shape. 

L 3 : Comparison based on the extended Gaussian image. 

L 4 : Comparison based on the surface characteristic distribution. 

L 5 : Comparison based on the edge distribution. 

L 6 : Comparison based on the region distribution. 

L 7 : Comparison based on the relationship between a particular edge and a particular 
surface characteristic distribution. 

If the observed shape of an object cannot be classified into a representative att itude with 

these rules, it means that the object is observed with the same number of regions whose 

area sizes, inertia moments, edge distributions, and surface characteristic distributions are 

identical in two different att i tudes. Such objects are beyond the scope of our technique. 

D e r i v i n g t h e c l a s s i f i c a t i o n p a r t o f t h e t r e e 

The classification part of the interpretation tree, Figure 3, is generated for the object 

shown in Figure l a . At the BO branch, the rule L l (original face inertia) can divide the all 

att itude groups into two att itude groups. At the B l branch, rule L l can divide the 

attitude groups. Both B2 and B3 have branches at which the attitude groups are not 

visible. Thus , these branches are pruned. 

A t branch B4, none of L l (inertia), L2 (shape),L3 (EGI) , L4 (characteristic), L5 (edge) 

can divide the attitude groups. L6 (topology) can divide the branch. L7 (edge-region) can 

discriminate the att itude groups at the branch. 

Thus , BO-LI, B l - L l , B2-pruned, B3-pruned, B4-L6, B5-L7 are adopted into the 

interpretation tree. Since BO and B l branches have the same rule and they are 

consecutive, they are joined into a three-branch node. 
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D e t e r m i n i n g V i e w e r D i r e c t i o n a n d V i e w e r R o t a t i o n 

D e t e r m i n a t i o n r u l e s 

This section gives the rules to generate the part of the interpretation tree which 

determines the viewer direction and the rotation. If one rule can reduce some of the 

remaining freedom in the viewer direction and rotation, the rule will be adopted into the 

tree. The decision whether the rule can reduce the freedom or not is made by human at 

present. 

A l : Using the mass center of EGI mass distribution. 

A 2 : Using the extended Gaussian image. 

A 3 : Using the position of observable areas distribution. 

A 4 : Using the inertia direction of original face. 

A 5 : Using the rotation of original face shape. 

A 6 : Using the position of the surface characteristics distribution. 

A 7 : Using the position of the edges. 

A 8 : Using the position of the edges with respect to the position of the surface 
characteristics distribution. 

If we cannot determine the viewer direction and the rotation with these rules, it means 

that the object is observed with the same number of regions whose area sizes, inertia 

moments , edge distributions, and the surface characteristic distributions are identical in 

two different att itudes. Such objects are beyond the scope of our technique. 

The viewer direction and rotation are determined at each representative attitude using 

the most effective feature at each step. The most powerful rule for determining the viewer 

direction and rotation depends on the representative attitude and the stage of the 

determining process. Thus , we will discuss which rule will be used for generating the 

determination part of the interpretation tree at each representative att i tude. 
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R e p r e s e n t a t i v e A t t i t u d e S i 

The main visible part of this representative attitude is a planar surface. A l (EGI mass 

center) can determine the viewer direction, while viewer rotation can be constrained with 

neither A l nor A2. More precisely, since the observable region of representative att i tude 

S i is a planar surface, both the E G I and the E G I mass center position [Ikeuchi 83] can 

determine the viewer direction uniquely. However, neither the E G I distribution nor E G I 

mass center over the planar surface can constrain the viewer rotation around the viewer 

direction. Thus , the other rules should be applied to determine the viewer rotation. 

Since the representative attitude has only one observable region, A3 (region distribution) 

cannot be applied to this S i representative at t i tude. A4 (inertia direction) can constrain 

the viewer rotation up to two directions. Between the two directions, A5 (original face 

shape) can determine the viewer rotation uniquely. Thus , A l (EGI mass center), A4 

(inertia direction), and A5 (original face shape) are adopted into the tree to determine the 

viewer direction and the rotation at representative att i tude S I . 

R e p r e s e n t a t i v e A t t i t u d e S 2 

This representative attitude has two observable regions of cylindrical surfaces. A l (EGI 

mass center) can determine viewer direction, while the viewer rotation cannot be 

constrained with A l . 

Theoretically, the E G I distribution can determine the viewer direction and the rotation 

uniquely in this representative att i tude. However, the determined rotation is very noisy. 

Thus , we will use the other features to determine the viewer rotation. 

Since this representative att i tude has two observable regions, A3 (region distribution) is 

applicable and can constrain the viewer rotation up to two directions. None of A4 (inertia 

direction), A5 (original face shape), nor A6 (surface characteristic) can constrain the 

remaining freedom of the viewer rotation. A7 (edge distribution) can determine the viewer 

rotation uniquely. Thus , A l (EGI mass center), A3 (region distribution), and A7 (edge 

distribution) are adopted into the tree. 
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R e p r e s e n t a t i v e A t t i t u d e S 3 

Representative attitude S3 has one observable region which mainly consists of three 

parts : a planar surface patch and two cylindrical surface patches. A l (EGI mass center) 

can determine the viewer direction, while the viewer rotation is difficult to determine in 

practice due to the same reason as with representative att i tude S2 . 

A3 (region distribution) cannot be applied to this representative att i tude due to the 

single observable region. A4 (inertia direction) can constrain the viewer rotation up to two 

directions. Neither A5 (original face shape) nor A6 (surface characteristic) can constrain 

the remaining freedom. A7 (edge distribution) can determine the viewer rotation 

uniquely. Thus , A l (EGI mass center), A4 (inertia direction) and A7 (edge distribution) 

are adopted into the tree. 

R e p r e s e n t a t i v e A t t i t u d e S 4 

The features used to determine the viewer direction and the rotation are the same as 

those of the representative attitude A3 . 

R e p r e s e n t a t i v e A t t i t u d e S 5 

Representative attitude S5 has two regions observed separately which come from two 

planar surfaces. Thus , A l (EGI mass center) can determine viewer direction, while the 

viewer rotation is difficult to constrain with A l for the same reason as with representative 

attitude S i . Since this representative att i tude has two observable regions, A3 (region 

distribution) is applicable and can constrain the viewer rotation up to two directions. 

None of A4 (inertia direction), A5 (original face shape), nor A6 (surface characteristic) can 

constrain the remaining freedom of the viewer rotation. A7 (edge distribution) can 

determine the viewer rotation uniquely. Thus , A l (extended Gaussian image), A3 (region 

distribution), and A7 (edge distribution) are adopted into the tree. 
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APPLYING THE I N T E R P R E T A T I O N T R E E 
(Run Mode) 

A t t i t u d e D e t e r m i n a t i o n b y t h e I n t e r p r e t a t i o n T r e e 

The system can use three kinds of maps: edge maps , needle maps , and one depth m a p . 

Three maps can be obtained by differentiating three intensity maps also to be used for the 

photometric stereo. A needle map can be obtained by the photometric stereo system. A 

depth map can be obtained by comparing a pair of needle maps which are generated by a 

dual photometric stereo system [Ikeuchi 85]. The edge maps , the needle map, and the 

depth map are represented in the same coordinate system; that is, all pixels having the 

same X-Y coordinates correspond to the same physical point. 

The highest region is determined from the depth map. This highest region will be sent to 

the interpretation tree as the target region. The interpretation tree extracts necessary 

features from the region. These features will be transformed according to the procedures 

defined in the interpretation tree. These transformed features will be compared with 

features in the work models defined in the interpretation tree. Following this procedure, 

the target region will be classified into one of the attitude groups, and then the precise 

att itude and position determined. 

D e t e r m i n i n g A C o l l i s i o n - F r e e G r a s p C o n f i g u r a t i o n 

The obtained attitude and position of an object will be registered in the world of 

S O L V E R . The object model will be placed in this world under the obtained position and 

att itude. The regions around the target object will be expressed as dodecahedral prisms 

whose heights correspond to the heights of the regions and whose shapes correspond to the 

approximations of the regions. 

By using this representation, we can get a collision-free configuration to grasp the target 

region. A t each representative att itude, stable grasp configurations are defined prior to 

execution. These grasp configurations are transformed into the world coordinates using 

the obtained attitude. Based on this transformed configuration, the gripper work space is 

generated from the swept out volume of the fingers. 
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Using S O L V E R ' s intersection-check mechanism, collisions between the work space and 

obstacle dodecahedral prisms is examined. If none of the prisms intersects the workspace 

prism, then that stable grasp configuration is a collision-free configuration. If any of the 

prisms intersects the workspace prism, then one of the fingers collides with the prism, and 

we cannot take that configuration. 

E x p e r i m e n t 

C a s e 1: A t t i t u d e g r o u p 1 

Figure 4 shows one of the input scenes, where the white arrow indicates the highest 

region. F rom this scene, the edge map shown in Figure 4b is obtained. The photometric 

stereo system gives the needle map shown in Figure 4c. Further, the depth m a p shown in 

Figure 4d is obtained by the pair of the photometric stereo systems. 

This highest region will be given to the interpretation tree. The interpretation tree 

calculates the inertia moment of the original face observed as the region ( L l ) . The mass 

center and the region distribution can be obtained over the binary m a p which has Seen 

converted from the needle map to have 1 at the place where the surface orientation is 

determined, and to have 0 at the place where the surface orientation is not determined. 

Then, the affine matrix is obtained from the the surface orientation distribution over the 

region using Equation 1. Finally, the interpretation tree can determine the inertia 

moment of the original face using the affine matrix and the region distribution with 

Equation 2 through Equation 4. Figure 5a shows the region distribution and the square 

which is displayed by the interpretation tree. The square has the same inertia and 

direction as the original face. The interpretation tree determines that this region belongs 

to the representative att i tude S i based on the inertia value. 

The interpretation tree uses the E G I mass center to determine the viewer direction ( A l ) . 

This E G I mass center is obtained from the surface orientation distribution over the target 

region by the interpretation tree. 

The interpretation tree determines the viewer rotation up to two directions using the 

inertia direction (A4). Branch A5 in the interpretation tree requires the original face shape 

to determine the viewer rotation uniquely. Figure 5b shows the original face shape 
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Figure 4a. Input scene.The white arrow indicates the highest region. 

Figure 4b. The edge map obtained from the scene. 

F i g u r e 4. Input scene and maps . 
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Figure 4e. The depth map obtained by the dual photometric stereo system. 

F i g u r e 4 ( c o n t i n u e d ) . 
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obtained from the target region. In this case, however, the interpretation does not 

measure the difference between the observed shape and the shape from the models in all 

directions, but only checks the crack direction of the observed region with respect to the 

inertia direction under the two possible rotations. Since the viewer rotation is constrained 

up to the two directions, the interpretation tree determines the object attitude in the 

space by this comparison. 

S O L V E R represents the object in the world model using the object position and the 

attitude obtained by the interpretation tree. The object position can be obtained from the 

depth map . Around the target region, there are a few regions which have not been 

processed by the interpretation tree at this time. These neighboring regions are expressed 

as dodecahedral prisms in the world model. The height of a prism agrees with the height 

of the corresponding region, and the cross section of the prism is an approximation of the 

region shape by the dodecagon. These dodecahedral prisms are also represented in the 

world model in S O L V E R . 

The stable grasp configurations of representative attitude S i are the following ones. 

1. The center of the griper exists on either the maximum axis of inertia or the 
minimum axis of inertia 

2. The normal direction of the griper agrees with either the maximum axis of 
inertia or the minimum axis of inertia. 

3. The approach direction of the griper agrees with the average surface 
orientation of the target region. 

At each stable configuration, a corresponding sweep-out volume of the fingers is 

generated. The intersections between this generated volume and the obstacle pyramids 

are examined by S O L V E R . In this scene, all stable configurations are collision-free 

configurations. Figure 5e shows two representative collision-free configurations of the 

griper. 

C a s e 2 : A t t i t u d e g r o u p 2 

Figure 6a shows a second example. The white arrow in the picture indicates the highest 

region. The interpretation tree calculates the original face inertia of the region from the 
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Figure 5a the target region and the original face inertia. 

Figure 5b The original face shape recovered by the Affine transformation. 

The shape is represented using 2D WTS. 
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Figure 5c The decision path in the interpretation tree. 

Figure 5 An interpretation example: attitude group 1. 
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The obtained position, the obtained attitude, and the neighboring regions. 

Figure 5e Two collision-free configurations. 

F i g u r e 5 ( c o n t i n u e d ) . 
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binary map converted from the needle map and the affine matrix obtained from the needle 

map over the target region. Figure 6b shows the square which has the same inertia 

direction and inertia value as the obtained inertia moment. The interpretation tree 

determines this region to belong to the group of representative att itude (S2, S3 , S4) from 

the inertia value ( L l ) . 

The interpretation tree makes the distinction between the representative attitude (S2) 

and the group (S3, S4) by determining whether a brother region exists having the same 

inertia direction and the inertia value around the target region. The interpretation tree 

tries to find such a brother region; it succeeds, as shown in Figure 6b, where the target 

region and the brother region are connected with a solid line. From this evidence, the 

interpretation tree determines that the target region and the brother region come from the 

same object and belong to representative att i tude S2 (L6). 

The interpretation tree makes an EGI-mass center comparison to determine the viewer 

direction ( A l ) . From the direction of the brother region, the viewer rotation is determined 

up to the two directions (A3). 

The edge distribution is necessary to determine the viewer rotation uniquely (A7). The 

interpretation tree only examines the existence of the edge distribution whose direction 

agrees with the edge direction under one of the two possible rotations, at the place where 

one of the two rotations is supposed to make the edge distribution. This predicted place 

and the predicted direction can be obtained by applying the affine transform to the edge 

representation in the work models. In Figure 6c, the dotted lines indicate the distribution 

of edges over the target region and the broken lines indicate the search areas for the edge 

distributions. The solid lines in Figure 6c indicate the edges found to have the supposed 

directions at the supposed places under two possible rotations of the object. One of the 

two rotations is determined by the comparison of the edge distributions. The 

interpretation tree determines the object attitude in the space uniquely up to this point. 

The decision flow on the interpretation tree is expressed as the bold line in Figure 6d. 

Representative attitude S2 has the stable grasp configuration whose normal direction 

corresponds to one of the two principal inertia axes, and whose approach direction 
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corresponds to the average surface orientation of the target region. According to 

S O L V E R , one of the stable configurations whose normal direction agrees with the 

minimum inertia direction hit one of the obstacle prisms (indicated by the arrow) as shown 

in Figure 6e. Thus , we cannot use this configuration. On the other hand, the stable 

configurations corresponding to the maximum inertia direction are collision-free. Thus , 

we can pick up the object using one of these configurations. One of the collision-free 

configurations is shown in Figure 6e. 

C a s e 3: A t t i t u d e g r o u p 4 

Figure 7a shows the third example classified into att itude group 4. The white arrow 

indicates the highest region. The interpretation tree determines that the target region 

belongs to the group of the representative attitude (S2, S3 , S4) based on the original face 

inertia. Figure 7b shows the target region and the obtained moment-compatible square of 

the original face. 

The interpretation tree makes the distinction between the representative attitude S2 and 

the group (S3, S4) based on the existence of a brother region (L6). Since there are no 

brother regions around this target region, the region is determined to belong to the group 

(S3, S4) . 

The surface characteristic distribution with respect to the edge distribution resolves the 

ambiguity between S3 and S4 (L7). The interpretation tree examines which attitude has 

the more consistent surface characteristic distribution. First , the interpretation tree 

searches the existence of the edge distribution at the supposed places at the supposed 

directions from the inertia direction as in the S2 case. Figure 7c indicates the edge 

distribution found as the solid lines. Second, the interpretation tree generates both the 

surface characteristic distribution of S3 and that of S4 based on the inertia direction and 

the edge distribution. 

Representative attitude S3 has the planar surface at the left region and the cylindrical 

surface at the right region with respect to the edge distribution shown in Figure 7c. Figure 

7d shows the surface characteristic distribution which agrees with the distribution of the 

representative attitude S3. Note that since no distributions agree with the observed 
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Figure 6a Input scene, 
region. 

The white arrow indicates the highest Figure 6b The target region and its brother region found 
algorithm. 

v the 

Figere 6c Obtained edges. The interpretation tree only examines the existence of the edge distribution whose direction 
agrees with the edge direction under one of the two possible rotations, at the place where one of the two rotations is 
supposed to make the edge distribution. The dotted lines indicate the distribution of edges over the target region and 
the broken lines indicate the search areas for the edge distributions. The solid lines indicate the edges found to have 
the supposed directions at the supposed places under two possible rotations of the object 

Figure 6 An interpretation example: attitude group 2. 
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Figure 6d The decision flow on the interpretation tree. 

(CRSE9 INTERFERENCE R219) 

Figure 6e Collision configuration and safe configuratation. This representative attitude has the stable grasp 
configuration whose normal direction corresponds to one of the two principal inertia axes, and whose approach 
direction corresponds to the average surface orientation of the target region. According to SOLVER, one of the stable 
configurations whose normal direction agrees with the minimum inertia direction hit one of the obstacle prisms 
(indicated by the arrow). The stable configurations corresponding to the maximum inertia direction are collision-free. 

F i g u r e 6 ( c o n t i n u e d ) . 



34 

distributions, the result figure shows white space. On the other hand, if the target region 

is assumed to belong to representative att itude S4, the region should have the cylindrical 

surface at the left region and the planar surface a t the right region relative to the edge 

distribution. Figure 7e shows the characteristic distribution which agrees with 

representative attitude S4. The interpretation tree determines that the target region 

belongs to the S4 representative att i tude. 

The interpretation tree determines the viewer direction from the E G I mass center ( A l ) . 

The viewer rotation is determined up to the two directions from the inertia direction (A4). 

T o determine the viewer rotation uniquely, the edge distribution is necessary (A7); it had 

been obtained when the system used rule L7. The interpretation tree determines the object 

attitude from these comparisons, while the object position is obtained from the depth 

m a p . Figure 7f shows the decision flow on the interpretation tree. 

Using the object position and att i tude, the object is represented in the world model in 

S O L V E R . The collision-free configurations are obtained using this representation as 

shown in Figure 7g. 

CONCLUDING R E M A R K S 
This paper describes a vision system to localize an object by an interpretation tree using 

a depth map, needle maps , and edge maps . 

This system has the following characteristics: 

1. The system requires one depth map , needle maps , and edge maps . 

2. Representative attitudes are derived from a geometrical modeler, S O L V E R , 
automatically. 

3. The interpretation tree controls the localization process to use the most 
appropriate features at each stage of the localizatio. 

4. The obtained attitude and position are represented in the world model in 
S O L V E R for further use. 

This paper develops a flexible interpretation by an interpretation tree using multiple 



ure 7a Input scene. The white arrow indicates the highest region. 

Figure 7b The target region and its original face inertia. 

Figure 7 An interpretation-example: attitude group 4. 
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Figure 7c The edge distributions. The dot lines indicate output from an edge operator. The broken lines indicate search 
areas predicted from the model. The solid lines indicates the edges which corresponds to the model. 

Figure 7d No surface characteristic districutions agree with the 
distributions of the representative attitude 3. 

Figure 7e The characteristic distributions which agrees with 
representative attitude 4. The target region has the cylindrical 
surface at the left region and the planar surface at the right region 
relative to the edge distribution. This distributions correspond to 
the representative attitude 4. 

F i g u r e 7 ( c o n t i n u e d ) . 
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figure 7f The decision flow on the interpretation tree. 

Figure 7g Two collision-free configurations. 

F i g u r e 7 ( c o n t i n u e d ) . 
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sensory inputs. Recent work in image understanding has led to techniques for computing 

surface orientation or surface depth. We can take various sensory inputs from the same 

scene by these methods. Since each technique has some merits and demerits , we have to 

select one appropriate feature among many available features in each processing stage. 

This paper proposes to use the interpretation tree for this purpose. This flexible 

interpretation matching should be further explored. 

A geometrical modeler is used for the recognition problem. Models from a geometrical 

modeler possess rich geometrical features. Unfortunately however, the distance between 

the rich information and the information from the observed da ta is great . This paper uses 

the work models and the representative att itude to interface them. Effort is required to 

explore more convenient forms and methods to connect them. 

The task of a vision system is to generate a description of the outer world. Some of the 

representations are symbolic, others use mathematic representations such as extended 

Gauss ian imanges and generalized cylinders [Binford 71, Brooks 81 , Shafer and K a n a d e 

83]. However, since the representation is needed for manipulation by other modules such 

as planning and navigation, the representation must be easy to manipulate . This paper 

proposes to represent the outer world in the C A D model, because a C A D representation is 

an easy basis to achieving further tasks . Certainly there are many path finding programs 

that s tart from the polyhedral representations [Lozano-Perez 81]. How to express the 

outer world in such a representation should be explored more. 

A C K N O W L E D G M E N T 

The author thanks Satoru T o m u r a and Ichiro O g a t a of E T L , and Takeo K a n a d e , S.A. 

Shafer and R. Muller of C M U for their valuable comments and discussions. 

R E F E R E N C E S 

A y a c h e , N . , F a v e r j o n , B . , B o i s s o n n a t , J . , a n d B o l l a c k , B . ( 1 9 8 4 ) 
"Automat ic handling of overlapping workpieces" , Proc. International 
Conference on Pattern Recognition 84, pp.837-839. 

B a u m g a r t , B . G . ( 1 9 7 2 ) "Winged edge polyhedron representat ion" , STAN-CS-820, 
Stanford Univ. A.I . Laboratory . 

e 

B e s l , P . J . a n d J a i n , R . C . ( 1 9 8 5 ) "Intrinsic and extrinsic surface 



39 

characteristics 1 1 , Proc. Computer Vision and Pattern Recognition 
Conference, I E E E , San Francisco, pp . 226-233. 

B a i r d , M . L . ( 1 9 7 7 ) " Image segmentation technique for locating automotive parts on 
belt conveyers' 1 , Proc. 5th International Conference on Artificial 
Intelligence, pp.694-695. 

B i n f o r d , T . O . ( 1 9 7 1 ) "Visual preception by computer " , Proc. IEEE Systems Science 
and Cybernetics Confi. 

B i r k , J . R . , K e l l y , R . B . , a n d M a r t i n e s , H . A . S . ( 1 9 8 1 ) "An orienting 
robot for feeding workpieces stored in bins " , IEEE Trans., Vol. 
S M C - 1 1 , No.2 , pp.151-160. 

B o l l e s , R . a n d C a i n , R . A . ( 1 9 8 2 ) "Recognizing and locating partially visible 
objects : the local-feature-focus method J. Robotics Research, Vol. 1, 
No. 3, pp.57-82. 

B r a d y , M . , P o n c e , J . , Y u i l l e , A . , a n d A s a d a , H . ( 1 9 8 5 ) "Describing 
surfaces" , F*roc. 2nd International Symposium on Robotics Research, 
H. Hanafusa and H. Inoue (eds.) M I T Press , Cambr idge , MA. 

B r o u , P . ( 1 9 8 3 ) "Using the Gauss ian image to find the orientation of ob jec t " , The 
International Journal of Robotics Research, Vol.3, No.4, pp.89-125. 

B r o o k s , R . A . ( 1 9 8 1 ) "Symbolic reasoning among 3-D models and 2-D images " , 
Artificial Intelligence, Vol.17, Nos. 1-3, pp.285-348. 

B r o w n , C . M . ( 1 9 7 9 ) " F a s t display of well-tessellated surface " , Computer and 
Graphics, Vol. 4, No. 2. pp . 77-85. 

C h a k r a v a r t y , I . a n d F r e e m a n , H . ( 1 9 8 2 ) "Character i s t ic views as a basis for 
three-dimensional object recognition", Proc. The Society for Photo-
Optical Instrumentation Engineers Conference on Robot Vision, Vol. 
336, S P I E , Bellingham, Wash. , pp. 37-45. 

d o C a r m o , M . P . ( 1 9 7 6 ) Differential Geometry of Curves and Surfaces, Prentice-
Hall, Englewood Cliffs, New Jersey. 

F u k a d a , Y . ( 1 9 8 4 ) "Recognition of structural industrial par t s s tacked in b in " , 
Robotica, vol. 2. 

G o a d , C . ( 1 9 8 3 ) "Special purpose automatic programming for 3D model-based 
v i s ion" , Proc. Image Understanding Workshop, pp.94-104. 



40 

G r i m s o n , W . E . L . , a n d L o z a n o - P e r e z , T . ( 1 9 8 4 ) "Model-based recognition 
and localization from sparse range or tactile d a t a " , International 
Journal of Robotics Research, Vol. 3, No. 3. 

H e r m a n , M . a n d K a n a d e , T . ( 1 9 8 4 ) " T h e 3D M O S A I C scene understanding 
system: incremental reconstruction of 3D scene from complex images " , 
CMU CS Report, CMU-CS-84-102. 

H o r n , B . K . P . ( 1 9 7 9 ) "Sequins and Quills- Representations for surface topography" , 
MIT Al Memo 536, M I T Artificial Intelligence Laboratory . 

H o r n , B . K . P . ( 1 9 8 4 ) "Extended Gauss ian images " , Proc. of the IEEE, Vol.72, No.12, 
pp.1671-1686. 

H o r n , B . K . P . ( 1 9 8 6 ) Robot Vision M I T Press Cambr idge . 

H o r n , B . K . P . a n d I k e u c h i , K . ( 1 9 8 4 ) " T h e Mechanical Manipulat ion of 
Randomly Oriented P a r t s " , Scientific American, Vol .251, No.2 , 
pp.100-111. 

I k e u c h i , K . ( 1 9 8 1 ) "Recognition of 3-D objects using the extended Gauss ian i m a g e " , 
Proc. 7th International Joint Conference on Artificial Intelligence, 
pp.595-600. 

I k e u c h i , K . ( 1 9 8 3 ) "Determining att i tude of object from needle m a p using extended 
Gauss ian i m a g e " , AJ memo No. 714, MIT Artificial Intelligence 
Laboratory , Cambr idge , MA. 

I k e u c h i , K . , H o r n , B . K . P . , N a g a t a , S . , C a l l a h a n , T , a n d F e i n g o l d , 
O . ( 1 9 8 4 ) "Picking up an object from a pile of ob ject s " , 1st 
International Symposium on Robotics Research, M. Brady and 
R. Paul (eds.) MIT Press , Cambr idge , MA. 

I k e u c h i , K . ( 1 9 8 5 ) "Region-based stereo on needle m a p s " , Proc. '85 International 
Conference on Advanced Robot, pp.207-214, Robotics Society of 
J a p a n , Tokyo . 

I k e u c h i , K . , N i s h i h a r a , H . K . , H o r n , B . K . P . , S o b a l v a r r o , P . , a n d 
N a g a t a , S . ( 1 9 8 6 ) "Determining grasp points using photometric 
stereo and the P R I S M binocular stereo s y s t e m " , Robotics Research, 
Vol. 5, No. 1, pp.46-65. 

K i m u r a , F . a n d H o s a k a , M . (1977)Program Package GEOMAP Reference 
Manual, Computer Vision Section, Electrotechnical L a b . 



41 

K o e n d e r i n k , J . J . , a n d V a n D o o m , A . J . ( 1 9 7 9 ) "Internal representation of 
solid shape with respect to vis ion", Biological Cybernetics, Vol. 32, No . 
4, pp. 211-216. 

K o s h i k a w a , K . ( 1 9 8 4 ) SOLVER reference manual, RM-85-33J , Computer Vision 
Section, Electrotechnical L a b . (in Japanese) 

K o s h i k a w a , K . , a n d S h i r a i , Y . ( 1 9 8 5 ) " A 3-D modeler for vision research" , Proc. 
'85 International Conference on Advanced Robot, pp . 185-190, 
Robotics Society of J a p a n . 

L i t t l e , J . J . ( 1 9 8 5 ) "Determining object att idute from extended Gauss ian images " , 
Proc. of Intern. Joint Conf. on Artificial Intelligence", pp.960-963. 

L o z a n o - P e r e z , T . ( 1 9 8 1 ) "Automat ic Planning of Manipulator Transfer 
Movement s " , IEEE Trans. Sys. Man. Cyb., Vol .SMC-11 , No.10, 
pp.681-689. 

O s h i m a , M . a n d S h i r a i , Y . ( 1 9 8 5 ) " A model based vision for scenes with s tacked 
polyhedra using 3D d a t a " , Proc. '85 International Conference on 
Advanced Robot, pp.191-198, Robotics Society of J a p a n . 

P e r k i n s , W . A . ( 1 9 7 7 ) "Model-based vision system for scene containing multiple 
p a r t s " , F*roc. 5th International Joint Conference on Artificial 
Intelligence, pp.678-684. 

S h a f e r , S . A . a n d K a n a d e T . ( 1 9 8 3 ) "Using shadows in finding surface or ientat ion" , 
Computer Vision, Graphics and Image Processing, Vol.24, No .2 , 
pp.182-199. 

S m i t h , D . ( 1 9 7 9 ) "Using enhanced spherical images " , Al Memo J±51, MIT Artificial 
Intelligence Laboratory . 

S u g i h a r a , K . ( 1 9 7 9 ) " Automat ic construction of junction dictionaries and their 
exploitation for analysis for range d a t a " , Proc. 6th International Joint 
Conference on Artificial Intelligence, pp.859-864. 

T h o r p e , C , a n d S h a f e r , S . ( 1 9 8 3 ) "Topological correspondence in line drawings of 
multiple views of ob jec t s " , CMU-CS-88-113, Dept . of Computer 
Science, Carnegie-Mellon Univ., P i t t sburgh, Pa . 

T s u j i , S . a n d N a k a m u r a , A . ( 1 9 7 5 ) "Recognition of an object in a stack of 
industrial p a r t s " , Proc. jfih International Joint Conference on 
Artificial Intelligence, pp.881-818. 



42 

T s u j i , S . a n d M a t s u m o t o , F . ( 1 9 7 7 ) "Detection of elliptic and linear edges by-
searching two parameter s p a c e " , Proc. 5th International Joint 
Conference on Artificial Intelligence, pp.569-575. 

Y a c h i d a , M . a n d T s u j i , S . ( 1 9 7 5 ) " A machine learning capabi l i ty" , Proc. Jfih 
International Joint Conference on Artificial Intelligence, 
pp.819-826. 


