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Abstract 

In stereo navigation, a mobile robot estimates its position by tracking landmarks with on-board 
cameras. Previous systems for stereo navigation have suffered from poor accuracy, in part because 
they relied on scalar models of measurement error in triangulation. This paper shows that using 3-D 
gaussian distributions to model triangulation error leads to much better performance. The paper 
describes how to compute the error model from image correspondences, estimate robot motion 
between frames, and update the global positions of the robot and the landmarks over time. 
Simulations show that compared to scalar error models the 3-D gaussian reduces the variance in 
robot position estimates and better distinguishes rotational from translational motion. A short indoor 
run with real images supported these conclusions and computed the final robot position to within 2% 
of distance and one degree of orientation. These results illustrate the importance of error modelling 
in stereo vision for this and other applications. 
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1 . Introduction 
Consider a robot given the task of going from A to B. At a coarse level its route is planned from a 

pre-stored map, while at a fine level the route is determined by sensor information gathered along the 

way. Incremental motion estimates are integrated to keep track of the robot's position in the map, 

which in turn is used to predict upcoming landmarks, hazards, or arrival at the destination. 

To realize this scenario, a robot needs sensors that can measure its position and detect the 

presence of 3-D objects nearby. Stereo vision can provide both kinds of information. Stereo 

matching at one point in time provides a local 3-D model for route planning and obstacle avoidance. 

Selected points in this model become landmarks that are tracked by the stereo system to monitor the 

robot's progress. Using stereo in this way, to detect nearby objects and to estimate the motion of the 

robot, is what we refer to as stereo navigation. 

We are interested in stereo in this scenario for a number of reasons. First, other motion sensors can 

be in error, such as shaft encoders when wheels slip or lose contact with the ground. Second, other 

sensors, such as sonar and radar, can be inappropriate for reasons of concealment, possible 

confusion with the broadcasts of other robots nearby, or because color and reflectivity information 

are important. Lastly, we are interested in stereo per se and believe that methods developed for this 

domain can be transferred to other applications. 

Methods for extracting shape and motion information from image sequences can be classified as 

correspondence-based or flow-based. Correspondence methods [ 7 , 1 1 , 18, 24] track distinct 

features such as corners and lines through the image sequence and compute 3-D structure by 

triangulation. Flow-based methods [1,25] treat the image sequence as function l (x,y, t ) of row, 

column, and time, restrict the motion between frames to be small, and compute shape and motion in 

terms of differential changes in I. This paper deals with error modelling issues in the correspondence 

paradigm. 

One of the first systems for correspondence-based stereo navigation was that built by Moravec [18]. 

This system moved a robot in a stop-go-stop fashion, digitizing and analyzing images at every stop. 

Features were matched in stereo images to build a world model consisting of 3-D points. After 

moving and acquiring more images, the points in the world model were matched in the new images to 

find their coordinates relative to the new robot location. A least squares procedure was applied to the 

differences between the new and old point locations to infer the actual motion of the robot. The 

contribution of each landmark point to this motion estimate was multiplied by a scalar weight that 

varied inversely with the distance to the point. 
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In earlier work with Moravec [17], we found the motion solving part of this system to be somewhat 

inaccurate and unstable. This has been a common experience with visual motion solving algorithms 

in general. In the case of correspondence-based algorithms, this can partly be attributed to 

inadequate modelling of measurement error in triangulation. In triangulation, 3-D coordinates are 

computed by intersecting rays projected through corresponding points in two images. Errors in 

locating the image points induce errors in the 3-D coordinates, which in turn cause errors in motion 

estimates based on the 3-D information. Modelling the measurement errors can reduce their effect on 

motion estimates. However, we will demonstrate that using scalar weights to model uncertainty in 3-D 

coordinates leads to poor performance. 

More sophisticated methods have been used in a number of places. In photogrammetry [20], 2-D 

and 3-D normal distributions are used to model error in image coordinates and 3-D point locations, 

respectively. Gennery[11] has used 2-D normal distributions of image coordinates in camera 

calibration for computer vision. Hallam [15] used normal error models in conjunction with Kalman 

filters to track points and estimate robot motion from sonar data. Broida and Chellappa [5] used 

similar methods to track a known object in monocular image sequences, and recently Faugeras 

[9] has discussed the application of these methods to stereo in work similar to ours. 

old loc* l model : P1 

new local model 

old global pos i t ion : Tg 

Position Update 
(sect ion 5) 

new global posit ion 

Figu re 1 -1 : System block diagram 

This paper shows how these methods can be applied to stereo navigation and demonstrates by 

results with real images that they lead to markedly better performance. The system we will describe 
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has evolved from Moravec's [18] and is shown in figure 1-1. The main data structures are a set of 3-D 

points P., called the local model and described in robot-centered coordinates, and the robot's current 

estimate of its position in some fixed, global reference frame. The points in the local model are 

obtained by stereo matching and are used as landmarks. When a new stereo pair is digitized, points 

from the local model are matched in the images to determine their current locations Q. relative to the 

robot. A motion solving algorithm estimates the rotation and translation (R and T) relating the new 

and old coordinates. The model updating system transforms the old local model into the current 

coordinate frame and combines it with the new points to create a new local model. Finally, the motion 

estimate is used to update the robot's global position. The cycle then repeats with the acquisition of a 

new pair of images. 

Section 2 shows how to model triangulation error in the stereo matcher with 3-D normal 

distributions. In section 3 this is incorporated in an algorithm for finding the rotation and translation 

between successive stereo pairs. The covariance matrix of this transformation is used in section 4 to 

update the local model with Kalman filters and in section 5 to estimate the robot's global position 

uncertainty. Simulations described in section 6 show that compared to scalar error models this 

system reduces the variance of position estimates and better distinguishes rotational motion from 

translation. An experiment with real images, using 54 stereo pairs covering 5.4 meters and fully 

automatic feature tracking, supported these conclusions and computed the final robot position to 

within 2% of distance and one degree of orientation. Conclusions are summarized in section 7. 

2. Modelling stereo triangulation error 
The geometry of stereo triangulation is shown in figure 2 -1 . For the moment we consider just the 

case of 2-D points projecting onto 1-D images. Two cameras are placed at offsets of ±b from a 

coordinate system centered between the cameras. Suppose point P projects onto the left image at xl 

and the right image at xf. Because of errors in measurement, the stereo system will determine ^ a n d 

xr with some error. The error can come from many sources, including quantization of the image, 

photometric and geometric distortion in the camera, and the effects of perspective distortion on the 

matching algorithm. This error in turn causes the true location of P to be inferred with some error. 

Figure 2-1 illustrates this for errors caused by image quantization; because of resolution limits, the 

estimated location of P can lie anywhere in the shaded region surrounding the true location [22]. 

Additional random effects will cause this region to have less sharp boundaries, but the general shape 

will be similar. We want to take this uncertainty into account in any reasoning based on 

measurements of P. 



Figu re 2 - 1 : Stereo geometry showing triangulation uncertainty 

Three approaches to modelling such uncertainty are discrete tolerance limits, scalar weights, and 

multi-dimensional probability distributions. Tolerance regions aro often used in object recognition 

and motion planning [4, 6,14] ; however, they are inappropriate for our application because of the 

combinatorial nature of the algorithms they require, the stochastic nature of matching errors, and the 

need to filter time sequences of data. 

The idea behind scalar weights is that uncertainty grows with distance, so it can be modelled by 

weighting points inversely with distance [18]. However, as figure 2-1 shows, the uncertainty induced 

by triangulation is not a simple scalar function of distance to the point; it is also skewed and oriented. 

Nearby points have a fairly compact uncertainty, whereas distant points have a more elongated 

uncertainty that is roughly aligned with the line of sight to the point. Scalar error measures do not 

capture these distinctions in shape. 

Normal distributions are commonly used in photogrammetry [20] and navigation [10, 26] to model 

uncertainty in two and three dimensional data. In computer vision, they have been used to model 

error in coordinates of image correspondences [11 ] , monocular object tracking [5,12] , navigation 

and tracking with sonar [15], and recently in stereo work similar to ours [9]. To model triangulation 

error, we begin by treating image coordinates as corrupted by 2-D, normally distributed (ie. gaussian) 

noise and derive from this a distribution of the error in the inferred 3-D coordinates. Because 

triangulation is a non-linear operation, the true 3-D distribution will be non-gaussian. We approximate 
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this as gaussian because it is simpler and gives an adequate approximation when the distance to 

points is not extreme. We will discuss shortly the cases where this breaks down. 

We will now show the details of the triangulation and error model calculation for the general case of 

3-D points projecting onto 2-D images. Let the image coordinates be given by l=[x[tyl] and 

r = [x ,y] in the left and right image, respectively. Consider these as normally distributed random 

vectors with means / i / and /x r and covariance matrices J^and Vf, From / and r we need to estimate 

the coordinates [X, Y,Z]J of the 3-D point P. We take the simple approach of using the ideal, noise-

free triangulation equations P = [Xt Y, Z ] 7 = / ( / , r) or 

X = b{Xl + xr)/{xt-xr) 

l r = 6 ( y / + y r ) / ( a f / - V (1) 

Z = 2b/(xl-xf) 

(assuming a unit focal length) and inferring the distributions of X, V, and Z as functions of random 

vectors / and r. If equation (1) was linear, P would be normal [8] with mean = / ( / * / . / * r ) and 

covariance 

V =J p 
V ! Q 

0 yf, 
JT (2) 

where J is the matrix of first partial derivatives of / or the Jacobian. Since / is nonlinear these 

expressions do not hold exactly, but we use them as satisfactory approximations. 

The true values of the means and covariances of the image coordinates needed to plug into (1) and 

(2) are unknown. We approximate the means with the coordinates returned by the stereo matcher 

and the covariances with identity matrices. This is equivalent to treating the image coordinates as 

uncorrelated with variances of one pixel. Better covariance approximations can be obtained by 

several methods [2,11] . 

What does this error model mean geometrically? Constant probability contours of the distribution of 

P describe ellipsoids about the nominal mean that approximate the true error distribution. This is 

illustrated in figure 2-2, where the ellipse represents the contour of the error model and the diamond 

represents quantization error of figure 2-1. For nearby points the contours will be close to spherical; 

the farther the points the more eccentric they become. A covariance matrix with structure K = w/ , 

equal to a scalar times the identity matrix, describes only spherical contours. This is the difference 

between attaching scalar weights to 3-D coordinate vectors and using the full 3-D distribution; that is, 
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scalar weights are equivalent to spherical covariances whereas the full distribution permits ellipsoidal 

covariances. In the balance of the paper we will often refer to scalar weights as a spherical error 

model and the full distribution as an ellipsoidal error model. 

Where the gaussian approximation breaks down is in failing to represent the longer tails of the true 

error distribution. The true distribution is skewed not unlike the diamond in figure 2-2, whereas 

normal distributions are symmetric. The skew is not significant when points are close, but becomes 

more pronounced the more distant the points. A possible consequence is biased estimation of point 

locations, which may lead to biased motion estimates. We will return to these issues section 6. 

3. Solving for robot motion 
The previous section showed how to model measurement error in stereo triangulation. In this 

section we show how to incorporate the error model into an algorithm for estimating the motion 

between successive stereo pairs. We will begin by showing how motion is computed with scalar 

weights, then derive an algorithm based on the 3-D gaussian error model, and finally give this 

algorithm a geometric interpretation. 

Refering back to figure 1-1, at this stage in the cycie the robot has two sets of 3-D points that have 

been obtained by stereo matching: a local model of points /V defined relative to its previous position 

and the coordinates Q. of these points relative to its current position. The correspondences between 

P. and Q. are known, but the motion between them is not. Parameterizing the rotation in terms of 

Euler angles, we have a set of equations 

F igure 2 -2 : Quantization error with normal approximation 

Ô , = RP.+ T 

in which P and Q. are known point vectors, R is the matrix of the unknown rotation, and T is the 

unknown translation. 
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Using scalar weights, one finds R and Tby expressing the errors of fit by 

e . = Q. - RP. - T 

and minimizing the weighted sum of squares 

(3) 
n 

12 v/*/ 
/ = i 

where w. are the weights. Although the rotation makes this optimization problem nonlinear, it has a 

closed form solution [19]. A solution for case where the rotation is parameterized by quaternions is 

given in [16]. 

As will be shown in section 6, the scalar model of uncertainty embodied in equation (3) leads to poor 

performance. Using the 3-D gaussian error model the solution takes a similar, but more complicated 

form. For simplicity we begin with the case of translational motion. The simplified motion equation is 

application of the maximum likelihood method leads to minimizing the following expression over 

possible values of T[8]: 

which we may rewrite as 

to emphasize the role of M = Q - P. as measurements of T. From section 2, P. and Q. are modelled 

as normally distributed random vectors with covariances U. and K., respectively. Therefore, M. will 

also be normally distributed with covariance U.+ V.. Now if we consider A/, to be a sequence of 

noisy measurements of T, each corrupted by noise with zero mean and covariance U.+ Vf, 

n 

(4) 

and the covariance matrix of the estimation errors is 

- 1 
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The covariance matrix can be analyzed to assess the quality of the motion estimate. It is also used 

later in modelling the uncertainty of the robot's global position estimate. 

F igure 3 - 1 : Interpretation of equation (4): scales 
the residual vectors, lengthening them parallel to the line of sight and 

shortening them perpendicularly to it. 

An intuitive interpretation of equation (4) is shown in figure 3-1. The weight matrices function as 

norms that measure distance differently for each point. Error vectors making equal contributions to 

the total error of fit lie on ellipsoidal contours. For example, in figure 3-1, residuals zQ and zb 

contribute equally to the total error but e contributes more because z TWz = zJWz, < e TWz . 
c a a o o c c 

This effectively gives more weight to errors perpendicular to the line of sight than parallel to it, which, 

given the nature of stereo, is what we would like to do. The "spher ical" error model obtained by 

using the scalar weights of equation (3) has the obvious mnemonic meaning that residual vectors 

making equal contributions to the total error lie on spherical contours. This distinction is what gives 

the ellipsoid model its power. 

Generalizing this method to handle rotation is complicated by the fact that the equations become 

nonlinear. The function to be optimized takes the form 

n 

/ = 1 

with e. = Qf- RPt- T 

andW^iRUfiT+Vf1 

(5) 
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We have not been able to find direct solutions to this problem or even to approximations in which W. 

is not a function of R. Our approach has been to use the direct solution for scalar weights to get an 

initial approximation, then to iterate on linearizations of equation (5). Linearization methods for 

solving least squares problems are described in [13]. 

To recap, this section incorporated the error model of section 2 in an algorithm for finding the 

rotation and translation between two 3-D points sets. The algorithm replaces the scalar weights of 

equation (3) with weight matrices based on the covariances of corresponding points. When the 

motion is purely translational, the problem is linear and has a direct solution, but when the motion 

involves rotation we resort to an iterative solution. The error covariance of the motion solution will be 

used in the following two sections in updating the robot's local model and global position estimate. 

4. Updating the local model 
So far we have described how to model error in triangulation and how to solve for the motion 

between two successive stereo pairs. This section deals with how to process a long sequence of 

stereo pairs. At issue is how to average information from successive images to achieve more 

accurate landmark localization and consequently more accurate estimates of robot position. 

An appropriate tool for this is the Kalman filter [10]. In filtering terminology the quantity to be 

estimated is called the "state", and when a measurement is taken the filter updates the current 

estimate of the state. Kalman filters incorporate known statistical properties of the measurements 

into the update process and produce error covariances for the state estimate. They are widely used 

in terrestrial and aerospace navigation and guidance applications [10, 26]. In computer vision they 

have been used in object recognition [3], tracking of known objects with monocular image sequences 

[5 ,12] , and for robot navigation and object tracking with sonar data [15]. 

In our application, the state consists of the locations of the landmark points in the local model. A 

question arises as to whether the landmarks should be represented in a global, stationary frame of 

reference or in a local, moving, robot-centered frame. In either case, the update involves 

transforming coordinates from one frame to the other and applying the filter. If a fixed number of 

landmarks are being tracked, there is no difference in cost between the two. There will be a 

difference in the uncertainty of the resulting model; this difference depends on the relative 

uncertainties of the old model, the new measurements, and the intervening motion. We have not 

completed an analysis of this situation, but are currently keeping the landmark model in robots 

centered coordinates. 
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The update involves transforming the old local model to the current coordinate frame, inflating its 

uncertainty to account for the uncertainty of the transformation, and filtering the old model with the 

new measurements to create the updated model. Let P be the coordinate vector of a single point in 

the old local model at time (/ - 1) and let be its covariance. For purely translational motion, P 

is transformed to the current frame by 

where T is the translation from time (/ — 1) to time t. The translation has an error covariance matrix 

VT so the transformed point has covariance 

r„=Vt_x+VT . (7) 

Equation (6) introduces some correlation between points that is not accounted for in (7), but we 

assume this is small enough to ignore. To extend this to rotation, we rewrite equation (6) as 

= RP^ + T (8) 

This is nonlinear, so to compute we proceed by analogy to equation (2); that is, we pre-multiply 

the covariance of R, T, and P by the Jacobian of the transformation and post-multiply by the 

Jacobian transposed. Since we treat P as uncorrelated with R and 7, this leads'to 

r = / V J T + RV. RT 

r - i m m m r - i 

where J contains the derivatives of (8) with respect to the motion parameters and Vm is the 

covariance of the motion parameters. 

Now let Q be the measurement of the same point at time t and let Uf be the covariance of this 

measurement. Some manipulation of the basic Kalman filter equations leads to the following 

estimates of the updated point location and covariance: 

(9) 

The intuition behind equation (10) is as follows. The second term takes the difference ( C ? , - * ^ ) of 

the new measurement from the old estimate, weights the difference by and applies the result 

as an update to the old estimate 9 . Matrix C/" 1 will be " larger" the more precise the new 

measurement, giving it more weight in the update, and smaller the less precise the measurement 
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giving it less weight. Conversely, V' will be small if the old estimate is precise and large otherwise. 

Hence if the old estimate is already good, the new measurement receives little weight; if it is poor, the 

new measurement receives more weight. 

The procedure we have described assumes that the error in the motion estimate is uncorrelated 

with the error in the landmark points. When the motion estimate is obtained by using the methods of 

the previous section this will not be true, although if other sensors are also contributing to the motion 

estimate it will be approximately true. This is an issue we are investigating. 

5. Updating the global robot position 
By using the modules discussed in the previous sections, the robot computes estimates of its 

motion between successive stereo pairs. Combining these to estimate its global position is a simple 

matter of concatenating the transformation matrices. It may also be desirable to estimate the 

uncertainty of the global position, which can be done by propagating the covariance matrices of the 

incremental motions into a covariance of the global position. For translation this is also very simple. 

If the the global position at time (/ - 1) is T and the next incremental translation is T. then the next 
gt-i 

global position is 

T' = T + Tt (11) 

Since this is linear, if the incremental translation estimates have uncorrelated, zero mean gaussian 

errors, then T will also have zero mean, gaussian error with covariance given by 
gt 

V = V +U 

where V and U the covariances of T and 7 \ respectively. The case of motion in the plane, 

where there are two parameters for translation and one for rotation, has been dealt with by Smith and 

Cheeseman [21]. In summary, one obtains an equation analogous to (11) in which the three 

parameters of the global position are expressed as functions of the previous position and the 

incremental motion. These are nonlinear and error propagation is done by linearization. For general 

motion in three dimensions, this is not straightforward with the Euler angle representation of rotation 

we have used here. In this case other parameterizations of rotation, such as quaternions, may be 

preferable [9, 26]. We are exploring this further. 
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6. Performance 
Our evaluation to date has concentrated on comparing the use of the spherical and ellipsoidal error 

models in the motion solving methods of section 3. Results of tests with simulated and real data are 

described below. 

6 . 1 . S imu la t i ons 

Three sets of simulation data will be presented. The first set is a base case that compares the 

standard deviations of position estimates obtained with each error model for a single step of vehicle 

motion. That is, it considers motion between only two consecutive stereo pairs. It illustrates the 

difference in the variability of position estimates with each model and reveals different amounts of 

coupling between translation and rotation with each error model. The second set of data also 

considers only two consecutive stereo pairs and tests limiting performance by tracking progressively 

more distant points. The last set examines both long range performance over many images and the 

effect on performance of different stereo baselines. 

The simulations were generated as follows. The "scene" consisted of random points uniformly 

distributed in a 3-D volume in front of the simulated cameras. Typically this volume extended 5 meters 

to either side of the cameras, 5 meters above and below the cameras, and from 2 to 10 meters in front 

of the cameras. The cameras themselves were simulated as having 512x512 pixels and a field of view 

of 53 degrees. The stereo baseline for most simulations was 0.5 meters. Image coordinates were 

obtained by projecting the points onto the images, adding gaussian noise to the floating point image 

coordinates, and rounding to the nearest pixel. These coordinates were input to the triangulation and 

motion solving algorithms. For the ellipsoidal error model, covariance matrices were computed as 

described in section 2. In the scalar case, weights were derived by taking the Z variance from the 

covariance matrix. Scalars obtained by several other methods were tried and found to give very 

similar results. These include the volume and length of the major axis of the standard error ellipsoid 

and Moravec's half-pixel shift rule [18]. 

The first set of simulations determined the standard deviation of the estimated motion between two 

consecutive stereo pairs when the true motion was one meter. The results are shown in figures 6-1 

and 6-2 plotted against the number of points used to compute the motion estimate. In both figures, 

the top three curves were obtained with spherical modelling and the bottom three with ellipsoidal. Tilt 

implies rotation of the camera up or down, pan is the rotation about the vertical axis, and roll the 

rotation about the camera axis. The most significant thing to note is that the standard deviations 

obtained with the ellipsoidal model are considerably less than those obtained with the spherical 
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Number of points 
Figu re 6 - 1 : Standard deviation vs. number of points for rotations. 

Top three curves are for the spherical model, bottom three are for the 
ellipsoidal model. Use of the ellipsoidal model gave significantly lower 

variance in the estimates. 
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model. The size of this difference will vary; it will be larger when the 3-D points are further from the 

cameras and smaller when they are closer. This is because the spherical error model is a reasonable 

approximation to the triangulation error when points are close, but not when they are distant. 

Another thing to note is that with the spherical model roll and forward translation are estimated better 

than the other parameters, but with the ellipsoidal model all parameters are estimated equally well. 

This is because lateral translations and panning rotations have coupled effects on the errors of fit, as 

do vertical translations and tilting rotations. Using an ellipsoidal error model appears to reduce this 

coupling. Lastly, note that for a given level of performance fewer points are needed with the 

ellipsoidal model than the spherical, offseting the greater expense of the iterative motion solution 

needed in the ellipsoidal case. The exact relationship will depend on the camera configuration. 

The second set of simulations also dealt with the estimated motion between just two stereo pairs. It 

examined the effect of increasing the distance to points in the scene, or equivalents to reducing the 

maximum disparity in the image. Figures 6-3 and 6-4 illustrate the results. Twenty points were 

generated in a volume spanning 4 to 50 meters in front of the cameras, giving disparities ranging from 

2 to 32 pixels or 0.5% to 6% of image width. The volume was gradually shrunk by moving the near 

limit from 4 meters back until all points were 50 meters away, so that all disparities were on the order 

of 2 or 3 pixels. Figure 6-3 shows the mean value of the forward translation estimate as a function of 

the minimum distance to the points and figure 6-4 the standard deviation. The true forward motion 

was one meter. Looking at the means, with the ellipsoidal error model there is a consistent 

underestimation of the true motion that gets worse as the disparity shrinks. With the spherical error 

model the behavior is erratic. The jagged nature of the curve for the spherical model is due to the 

contribution of image quantization to the noise in the image coordinates. As a 3-D point moves 

smoothly away from the cameras, image quantization will lead the triangulation to alternately under-

and overestimate the true distance to the point (see [22] for a good illustration). This in turn affects 

motion estimates based on tracking the point. Apparently the ellipsoidal model smooths out this 

effect. Figure 6-4 shows that the standard deviation of the motion estimates increases quite rapidly 

with shrinking disparity in the spherical case, but much less rapidly in the ellipsoidal case. On the 

whole, the breakdown with distance shown by the spherical error model is consistent with common 

experience in computer vision; this makes the stability shown with the ellipsoidal model come as quite 

a surprise. 

Whereas the first two sets of simulations looked at motion estimates between only two consecutive 

stereo pairs, the last set looked at motion over a long sequence of images. There were two purposes 

for these simulations. The first was simply to confirm the results of the single-step simulations. The 

second was to test a hypothesis suggested by the previous simulation: that for equivalent 
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performance, the ellipsoidal model may permit the use of a shorter stereo baseline than the spherical. 

This is an important consideration, because length of the baseline directly affects the difficulty of 

stereo matching. Figure 6-5 shows the standard deviation of the estimated distance as a function of 

the true distance. Here the simulated travel between images was 0.64 meters, so the figure 

represents about 90 simulated images. It shows curves for a 0.5 meter baseline with the spherical 

model and 0.125, 0.25, and 0.5 meter baselines for the ellipsoidal model. Comparing the curves for 

0.5 meter baselines, the ellipsoidal model does outperform the spherical. It appears that the curves 

may eventually run parallel, so that the difference between the methods would be an additive constant 

rather than multiplicative. Looking at the effects of different baselines, results with the ellipsoidal 

model are still better than the spherical model with a 0.25 meter baseline, though not with 0.125 

meters. Based on standard deviations of position, it does appear possible to use a shorter baseline. 

However, another factor involved is bias of the motion estimates. As seen in f igure 6-3, increasing the 

ratio of object distance to baseline tends to cause motion estimates with both error models to 

underestimate the true distance. In general we have found that the narrower the baseline, the more 

motion is underestimated. The same occurs when we increase the variance of the simulated noise in 

the image coordinates. 'This appears to result from a net underestimation of the distance to points in 

space. Simple compensation schemes appear to work when the only error in image coordinates 

comes from quantization, but are less adequate as the noise variance grows. This requires further 

investigation. For the moment we just note that bias can be a problem with short baselines or 

non-trivial noise levels. 

6 . 2 . Real images 

In order to verify the simulations on real images, we used both error models to estimate the position 

of a stereo-equipped robot travelling across the floor of our lab. The scene is pictured in figure 6-6. 

The robot was driven straight forward in 54 steps of slightly less than 10 centimeters each. The 

cameras were on a 20 centimeter baseline and had a 36-degree field of view. The FIDO feature-

tracking system [23] was used to track points through the image sequence and the resulting set of 

matched image coordinates were input to the algorithms described earlier to estimte the robot 's 

position at each step. We will briefly describe the operation of FIDO before discussing the results of 

the experiment. 

FIDO uses the Moravec interest operator and coarse-to-fine correlation algorithm to pick and match 

point features in stereo pairs. The interest operator is applied to one image of a stereo pair to pick 

points in where intensity varies in all directions; typically these are sharp corners or intersections of 

lines. The correlator finds these points in the other image of the stereo pair. To find the same points 
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Figu re 6-5: Standard deviation of estimated forward distance travelled vs. true distance. 



Figure 6-6: One image from lab sequence. 
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in subsequent stereo pairs, an a priori motion estimate Loused to predict the location of the point in 

the new images, a constraint window is defined around the predicted location based on the the 

uncertainty of the motion estimate, and the correlator is applied to find the position of best match 

within the constraint window. Incorrect matches are culled with a threshold on the correlation 

coefficient and with a 3-D error heuristic called the "3-D prune" stage. This heuristic uses the fact 

that under rigid motion the distance between two 3-D points does not change over time. Points which 

appear to violate this condition are discarded. The advantage of this test is that it does not require 

knowledge of the motion between stereo pairs. Points that survive this test become input to the 

motion solving algorithms. In the experiments to follow, between 30 and 40 points usually remained. 

Figure 6-7 compares the true motion to the position estimates obtained with the spherical and 

ellipsoidal error models. For this figure a "planar" motion solver was used that solved only for the 

parameters of motion in the plane, that is two degrees of translation and one of rotation. 

F igure 6-7: Position estimates obtained with 3 DOF algorithm and clean data. 

The line of heavy dots shows the true position at every step, the path marked with circles shows the 

positions estimated with the spherical model, and the path marked with diamonds shows the same for 

the ellipsoidal model. The final position estimated with the ellipsoidal model was correct to within 2% 

of the distance and one degree of orientation. Vvicn the spherical model the corresponding figures 

were 8% and seven degrees. 

In order to gauge the effect of noisier image m a t ^ U s , we adjusted the threshold of the prune stage 

so that progressive fewer points were discarded. The general effect was to increasingly 
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underestimate the distance travelled, which is consistent with the results of increasing the random 

noise level in the simulations. Figure 6-8 shows what happened when the prune stage was entirely 

disabled, leaving only the correlation threshold to detect matching errors. Estimates with the 

spherical model were initially very bad. We attribute this to matching errors caused by large depth 

discontinuities around the foreground objects. When these objects fell out of view, the estimates 

were better behaved. The behavior with the ellipsoidal model was much less erratic, though biased. 

Figu re 6-8: Results with noisy data. 

Finally, we repeated the first experiment (ie. clean data) with the algorithm that computes all six 

degrees of freedom of motion. The results were in accord with the planar case, with roughly the same 

levels of error in the final position estimate. It was notable that with the spherical model the error in 

roll was less than a degree, while in the other rotations it was between five and twelve degrees. This 

is consistent with the observation made from the first simulation about coupled rotation and 

translation. 

7. Conclusions 
Comparing motion estimates obtained with the spherical (scalar) and ellipsoidal (3-D gaussian) 

error models, under the relatively long object distance to baseline ratios we examined there is no 

question that the ellipsoidal model is preferred. Simulations showed that position estimates with the 

ellipsoidal model had less variance and live trials confirmed that they were more accurate and less 

influenced by matching errors. With short object distance to baseline ratios this distinction will 



23 

diminish, and applications that can engineer this situation may be able to obtain satisfactory 

performance with the cheaper, scalar error model. We suspect that many applications will be such 

that the 3-D gaussian model will be valuable. 

A caveat to the results we have described is the possibility of bias leading to underestimation of 

position. This results from high noise levels in image match coordinates and from large distances to 

objects. We attribute this effect to the non-gaussian nature of the true error distribution in these 

situations. This can be dealt with either by ensuring that the noise level is low or by explicitly 

modelling the non-gaussian error. The low noise level can probably be achieved in many situations 

with the use of matching constraints, calculating match coordinates to sub-pixel resolution, and 

effective error detection methods. Where this cannot be achieved, better modelling is an area for 

further research. 

There remains the question of whether use of ellipsoidal error models tolerates shorter baselines 

than use of spherical error models. To date we have only tested this in simulation. Based on variance 

of the position estimates, a shorter baseline is possible. However, the bias issue is unresolved. 

Perhaps the most valuable result is demonstrating that accurate position estimates can be achieved 

in a fully automatic system when an adequate error model is used. The true motion in the examples 

we showed was pure translation, but we believe that the results will hold for general motion and 

preliminary simulations bear this out. With matching to sub-pixel resolution, matching of extended 

features instead of points, and more sophisticated error detection, it may be possible to obtain much 

better performance than that quoted here. Another interpretation of our results is that they show the 

importance of error modelling in stereo and probably other aspects of vision. One area we plan to 

explore this is in shape from stereo, beginning with the local update paradigm of section 5. 
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