
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

AN EVENT DRIVEN APPROACH FOR MIXED GATE
AND CIRCUIT LEVEL SIMULATION

Karen A. Sakallah & Stephen W. Director

DRC-18-45-82

April, 1982

An Event Driven Approach for
Mixed Gate and Circuit Level Simulation1

K. A. Sakallah and S. W. Director

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract '

A new algorithm for mixed gate and circuit level simulation is
described. I he algorithm* is b.ised on n modular view of electronic
networks in which individuri modules nuiy be described cillicr al die
ciicuil or at the lo^ic level. Consistency is ensured by employing a
novel logic gate model which is derived by abstraction from the
underlying (and more detailed) circuit model. Computational
efficiency is achieved'by exploiting temporal sparsencss - both for
circuit and logic level modules - through the use of event driven
techniques. The implementation of the algorithm in the SAMSON
program is briefly described and a sample simulation example is
presented.

1. Introduction
Computer simulation has become an indispensable tool in the

design of very large scale integrated (VLSI) circuits. Traditionally a
number of levels ranging from higlvlcvcl behavioral to low-lcvcl
electrical descriptions have been'successfully used to model and
simulate digital electronic networks. In the past modeling and
simulation were restricted to a single level of description at any one
time. More recently, however, an emerging need for the
simultaneous representation of an electronic network at more than
one level of description has spawned an intense research ctlbrt in
multi-level modeling and simulation. Mixed-level simulation, i.e.,
simulation which simultaneously combines circuit- and logic-level
descriptions, has been particularly prominent in this Hist evolution
H.2).

2. Overview of SAMSON
SAMSON (S>stcm for Activity-directed M«xcd Simulation Qf

Networks) is a new mixed-level simulator which harmoniously
combines the seemingly disparate techniques of circuit and logic
simulation. Two complementary premises help achieve this
harmony. ITic first is dint temporal sparscness |3J, as an attribute of a
dynamic system. K levcl-indepcndcnl. This led to the adoption of
event-driven simulation techniques, previously limited to the logic-
level, as a common framework for mixed-level simulation, 'the
second premise is that the logic and circuit models arc different
representations of the same entity and as such have to be compatible.
This resulted in the development of a new logic-level model which
permits a smoother interface between the circuit and logic parts in a

Ihi* rocarrh u:rs Mippurkfl m 'part by the Intel CorpuMlirai and by Ihc Army
K0C.111I1 Ollkf UIKKT yranl iw» DAAG/2O//9/D2IJ.

mixed-level network.

2 .1 . Network Model in SAMSON
SAMSON operates on a network which is modeled as a set of n

interconnected subnetworks. Individual subnetworks may be
described either at the circuit or at the Ionic level. Circuit-lo-logic
and logic-to-circuil signal conveners arc automatically inserted at the
appropriate interfaces. Hath subnetwork is considered a dynamic
entity whose liinc-domain response can be represented by a sequence
of events. Hvcnts arc associated with those instants of time at which
the subnetwork equations have to be solved. For circuit-level
subnetworks, such events correspond to the instants at which the
subnetwork equations arc discrcti/cd (with an appropriate
integration formula) and solved (using an iterative scheme such as
Ncwton-Raphson). For logic-level subnetworks, such events
correspond to the instants at which the discrete-valued logic
equations (which express the subnetwork outputs in terms of its
inputs) arc evaluated.

2.2. Temporal Sparseness and Exclusive Simulation of
Activity

Large networks tend to be temporally as well as spatially sparse.
\ Spatial sparseness reflects the low level of connectivity among distant

parts of a network, whereas temporal sparscness reflects die low level
of activity in a network at any given point in time. Both types of
sparseness can be advantageously exploited in simulation algorithms

; in order to increase simulation speed. Spatial sparscness is exploited
by applying sparse-matrix methods. Temporal sparscness. on the
other hand, is exploited by using event scheduling techniques. The
exploitation of temporal sparscness. frequently referred to as
exclusive simulation of activity (MSA), has been identified with logic
simulation in the past |4|. 'ITic association of logic simulation with
ESA stems, in part, from the simplicity of the logic-gate model
which, in turn, allows a simple event-driven implementation. 'ITIC
ESA principle, however, is applicable to large networks regardless of
the complexity of their models. In particular, it can be applied to
networks described with circuit-level models as we show in the next
section. In SAMSON, logic as well as circuit level events arc
scheduled in precisely the same manner using a nonintcger-timc
indcxcd-list scheduler [5].

3. Event-Driven Circuit Simulation
The application of the I-SA principle to a network composed of n

circuit-level subnetworks proceeds by allowing each subnetwork to
be integrated with an individually Utiloicd sequence of integration
steps. Iliis forces the network equations to IK tcm|>orally decoupled.

UNIVERSITY tlBRARtf S
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

Previous efforts in c\cnt-dri\cn circuit simulation curry out such
decoupling in ;»n ad hoc m-inncr. generally by assuming that the
coupling, between adj:ivht subnetworks is weak |(\ 2|. Iliis approach
may Icail to erroneous simulation results or even to instability |7|. In
SAMSON, the decoupling of the network equations is based on a
rigorous model which takes into account the resulting decoupling
errors. Hie accuracy of event-driven circuit simulation in SAMSON
is. therefore, comparable to thai of tradititm.il circuit simulation
regardless of the amount of coupling among different subnetworks.
IV basic steps of the e\cm-dri\cn circuit simulation algorithm in
SAMSON at a given instant of time t" arc as follows. Let A denote
the set of subnetworks which ha\c pending circuit-level events at t,
and I) denote the set of subnetworks which have events in the future
(t > I*). Subnetworks in the set A wilt be referred to as alert and
those in the set I) as dormant.

1.1-lxtrapolatc the outputs of dormant subnetworks.

2. Discreti/c the equations of alert subnetworks.

3. Assemble and solve the equations of alert subnetworks.

4. Check the status yf dormant subnetworks. If any
dormant subnetwork should be alerted, transfer it from
set D to set A. discrcti/.c its equations and go to Step 3.

5. Calculate, for each alert subnetwork, the truncation
errors (TF). If the TF arc smaller than a given tolerance,
calculate the size of the next step, and schedule a
corresponding event in the future.

Assuming that a k^-ordcr integration formula is used to integrate
a dormant subnetwork, the extrapolation of c;ich output signal in
Step 1 is done using a (k-I-1)*-order polynomial which depends on
the previous (k +1) computed solutions as well as the List computed
truncation error [8]. Prediction-1Jascd Differentiation [9] formulae
arc used for discretization in Step 2. I "he equations in Step 3 arc
solved using a Ncwion-Kaphson iteration and Block I.U factorization
(10]. The status check in Step 4 is equivalent to a truncation error
check on the inputs of dormant subnetworks.

4. The Logic Simulation Model
Ilic logic-level models used in many existing logic simulators arc

essentially the result of a I op-down refinement process. Stalling from
the concept tif an "ideal" zero-delay boolean gale, such processes
typically involve the incorporation of extra signal Mates and various
delay assumptions in order to adequately represent "rcaP gates, i.e.
gale; which arc constructed from physical devices. It can he argued,
however, that htttom-up abstraction is a. more natural approach to
logic-level iruidciing. especially in the context of mivcd-lcvcf
simulation. Using this appioach. the ideal lojjic model is augmented
with elements inferred from its underlying circuit-level realization.
This is in contrast to the top-down process in which such additional
elements .ire postulated. •

Hie logic-gate model used in SAMSON, which results from such
an abstraction process is characterized by 4 signal states and a 4-
paramcter back-end delay operator. Two of the suites (I I and L) arc
static and correspond to logical truth and falsehood respectively. The
other two states (R anfl K) arc d\namk and correspond to a signal in
transition between the static states. The delay parameters arc two
set-up times (A,, and AL) and two transition times (AR and A | :) as
defined in Figure I. In addition to the pure-delay action
character}/cd by these 4 delay parameters, the delay operator has an

incrtial component which fillers out a small class of narrow spikes.
'11K most noteworthy feature of the above logic-level model is the

absence of an ambiguous or unknown state X commonly employed
in logic simulators, liy replacing X with the more descriptive R and
F transition states many anomalies in existing logic simulators
disappear. Furthermore, spikes which arc treated as error conditions
in simulators using an X state arc given the more natural
interpretation of incomplete transitions.

5. The Mixed-Level Interface
Logic-to-circuit and circuit-to-logic signal converters arc

automatically inserted by SAMSON at the appropriate interfaces in a
mixed-level network, l-ogic-lo-circuil conversion involves the
transformation of a 4-statc logic signal (a sequence of transitions
between the suites L, R. H, and I) into a continuous voltage signal.
The transformation is accomplished by emitting prc-storcd rising and
falling voltage waveforms in response to input state transitions into R
and F respectively. Spikes arc generated if the rising and falling
waveforms overlap. Circuit-to logic conversion is basically a
thresholding operation which transfroms a continous voltage
waveform into a discrete sequence of stile transitions. In addition to
thresholding, the slope of the voluigc signal in die transition region is
monitored to detect spikes and generate appropriate logic suite
transitions (R to F or F to R).

6. SAMSON - The User Interface
'ITic basic structure of the SAMSON software is shown in Figure

2. The description of a network to SAMSON consists of two parts:
model definitions and model instantiations. Basically, a model is a
parametcri/cd multi-terminal structure which serves as a template for
creating subnetworks of the' same structure but possibl) diHerein
parameters. Two kinds of models arc allowed in SAMSON:
logic- and tircuit-lcvcl. Within each category models can be
specified hierarchically, i.e.. "larger" models cm be constructed from
previously defined smaller models. At the lowest lex el, logic models
arc specified in terms of boolean equations which compute the value
of each output signal in the nuxlcl as a function of the values of its
input signals, and a 4-paiamctcr back-end propagation delay
operator. For circuit-level models, the primitive is a 2-tcnnin«i1
branch whose branch relationship may be specified by a user-
supplied procedure. The more common linear (resistance.

capacitance, voltage source etc.) and nonlinear (diode) branches
arc built-in. Circuit level models arc constructed from
interconnections of these primitive branches and any previously
defined circuit level models. Kxamplcs of model descriptions in
SAMSON arc shown in Figure 3.

Fvcry subnetwork model, whether it be a logic- or circuit-level
model is prcproccsscd by SAMSON resulting in a PASCAL2

solution procedure specific to the model. For a logic-level model the
solution procedure evaluates the 4-valued logic function of the input
signals for each output terminal. For a circuit-levcl model; the
solution procedure includes PASCAL code for loading the
coefficients of the Jacobian matrix, performing I.U factorization, and
forward and back substitution. 'Iticsc model solution procedures arc
then compiled and added to a model library.

written in PASCAL and currently runs cm a VAX-11/780 computer.

\hc actual network description consists of a sequence of
subnetwork declarations. Rich declaration refers to the name of a
model of which the subnetwork is an instance. Models can, of
course, be cither circuit- or logic-level. ITiis establishes an
asN(>cintk>n between the subnetwork and the model solution
procedure. Of course, different subnetworks which arc instances of
the same model share this solution procedure but maintain separate
data structures. Figure 4 shows an example network description
which references the three models defined in Figure 3. Figures S and
6 show sample simulation commands and simulation results for the
network described in Figure 4.

References

1. Do Man. H. and Arnout. C. " ITic Use of Boolean Controlled
FJcmcnts for Macro-Modeling of Digital Circuits," Pruc.
IEEE ISCAS. IR-K, IV>78. pp. 522-526.

2. Newton. A. R.. "Techniques fur the Simulation of l^irgc-
St.ilc Integrated Circuits." ILL'/.' Tunis, Circuits and Systems.
VoL CAS-26. No. 9. September 1979. pp. 741-749.

3. l)c Man. Hugo J., "Computer-Aided Design for Integrated
Circuits: Trying to Bridge the Gap," IEEE Juunial of Solid-
Shite Circuits. Vol. S C R No. 3. June 1979, pp. 613-621.

4. Ulrich. K G . . "Inclusive Simulation of Activity in Digital
Networks," CACM. Vol. 12, No. 2. February 1969, pp.
102-110.

5. Vauchcr, Jean G. and Duval. Pierre, "A Comparison of
Simulation Event List Algorithm*;,*' C ommunications of the
ACM. Vol. 18. No. 4, April 197S. pp. 223-230.

6. Chawla, Basant R., Gummcl. Hermann K. and Ko/.ak, Paul,
"MO I IS - An MOS Timing Simulator," IEEE Transactions
on Circuits and Systems. Vol. CAS-22, No. 12, Dec 1975, pp.
901-910.

7. Dc Michcii. Giovanni and Sangiovanni-Vinccntelli, Alberto,
"Numerical Properties of Algorithms for the Timing Analysis
of MOS VLSI Circuits,* / ' w . /W LX'CTD. The Hague, The
Netherlands, 198L pp. 387-392.

8. Sakallah, Karcm A., Mixed Simulation of Electronic
inu'Kraicd Circuits. PhD dissertation, Carnegie-Mellon
University, November 1981.

9. Van Bokhovcn. W. M. G., "Linear Implicit Differentiation
Formulas of Variable Step and Order," IEEE Trans. Circuits
and Systems. Vol. CAS-22, No. 2, February 1975, pp. 109-115.

10. Sakallah. K.and Director, S. W., "An Activity-Directed
Circuit Simulation Algorithm." l>roc. IEEE ICCC. IKK1-,
1VS0, pp. 1032-1035.

•i —X 1 \

U.U.I

Figure 1: Definition of tlic delay parameters

MODEL
DCFINmONS

i
MODEL

PROCESSOR

SOLUTION

PASCAL
COMPILER

SIMULATION
COMMADS

NETWORK

fl
ARCHIVE
UTILITY

MODEL
"LBRARY"

EVENT-ORTVEN
MIXED-LEVEL

SIMULATOR

Figure 2: Hie Structure of SAMSON

ll-
-w—

DATA

MODEL nMOS(Gaie,Drain:VINPUT;Source:VOUTPUT):CIRCUIT;
PARAMETER
ChLength « 6 { micron };
ChWidth = 12 { micron };
VTO = +0.9{volis};
Cox = 6.15E-4 { oxide capacitance - pf/micront2 };

PROCEDURE nMOSI(VAR R, JVGS, JVDS: REAL;
VAR JIDS: REAL: = 1.0; VGS. VDS, IDS: REAL;
PL, PW, PVTO, PCox: REAL);

BEGIN
CGS(Gate, Source) -= 0.5 • ChLength • ChWidth;
CGD(Gate. Drain) = 0.5 * ChLength • ChWidth;
DS(Drain, Source) ^ nMOSI(CGS.V,IDS.V,IDS.I,

ChLength.ChWidth.VTO.Cox)
END;

MODEL CINV(ln: VINPUT; Out: VOUTPUT): CIRCUIT;
PARAMETER
CLoad » 0.08 { pF };

BEGIN
VDD(Pwr, GND) = 5 { volts }
Load(Out,Pwr,Out) = nMOS(ChLength = 6,ChWidth = 6.VT0»
Driver(ln, Out, GND) = nMOS(ChLength = 6, ChWidth = 12);
CL(Out, GND) = CLoad
END;

-Out

MODEL LINV(ln: VINPUT; Out: VOUTPUT): LOGIC;
PARAMETER
TL * 3.75E 9 { sec };
TR = 3.4E 9 { sec };

fc TH = 1.9E-9 {sec} ;
TF = 1.4E9 {sec} ;

BEGIN
Out:« - In
END;

H;,:i»o 3: Model definitions

-5);

CTRL

NETWORK Pa33Gate(Data, Ctrl: VINPUT);
CINV(Load.ChLength « 8, Load.ChWkJth » 4, Load.VTO =

SP(W, X);
S4(Y, Z);

nMOS(Chl.ength = 4, ChWidth * 4) :
S3(Ctrl, X, Y);

UNV(TR = 5.2E9).:
Si(Data.W)

END.

-3):

Figure 4: Network Description

OATA"\^

CTRL

NETWORK PassGate;
EXCITATION

Data = {time/state pairs }
(0 H, 1E 9 F, 5E-9 Lt 55E 9 R, 59E 9 H);

Ctrl = {time/voltage pairs }
(0 5. 25E 9 5, 29E-9 0, 79E 9 0, 83E-9 5);

TRACES
PLOT Data, Ctrl, W, Xf Y, Z;

CONTROLS
FinishT.me = 100E-9{sec};
SampleStep = 1E-9{sec};
Low = 0.18{vo)ls};
High = 5 { volts };
LowThreshokJ = 1 { volt};
HighThreshokJ = 4 { volts };

END.

Figure 5: Simulation Commands

i-ta
»J0

\/7 r

Figure 6: Simulation results

