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Abstract - The Han-Powell algorithm has proved to be
extremely fast and robust for small optimum power flow
problems (of the order of 100 buses). However, it balks
at full size problems (of the order of 1000 buses). This
paper develops a class of decompositions to break large
problems down to sizes the Han-Powell algorithm can
comfortably tackle. From this class we select one mem-
ber - called the Super Hybrid - that seems to work best
and describe it in detail.

I. INTRODUCTION

I.I. Optimum Power Flows
The general form of an optimum power flow problem is:

(OPF): Min f(u,x)
u,x

st: g(u,x) >_ 0 (1)

h(u,x) » 0 (2)

where:

f is some cost of running the power system
U eR* is a vector of variables whose values are con-

trolled by regulators. The set points of these
regulators can be adjusted by the system opera-
tor, u consists largely of the real power out-
puts and voltage magnitudes of generators, trans-
former tap positions and loads that can be con-

n tinuously managed, m is typically of order 100.
x eR is a set of state variables consisting largely

of the reactive powers and voltage angles of
generators and the voltages (magnitudes and an-
gles) at non-generator buses, n is typically

^f order 1000.
g: R +Rq. The inequalities in (1) represent the

systems operating constraints - equipment rat-
ings and recommended practices. Typically g
contains strongly nonlinear elements.

H: R™** -*n# The equalities in (2) are the system's
power flow equations. They are nonlinear but
only mildly so.

For further details on Optimum Power Flows see [1],

1.2 More Notation
T denotes transpose

T r T T,
z - [u ,x ]

Au and Ax are changes in u and x.
Au and Ax are values of Au and Ax that define a local

direction-of-movement that would be profitable to
pursue in seeking an improvement to the incumbent
estimate of the solution of (OPF).

f
u>

 f
x»

 Gu» Gx» Hu
 a n d Hx a r e f i r s t derivatives of f,

g and h with respect to uT and xT.
a is a step length
y and X are vectors of Lagrange multipliers
£ - f-yig-XTh,is the Lagrangian of (OPF)
fz and £2

 a? e fi«t derivatives of f and £ with res-
pect to zT.

Vu£ is the reduced gradient of £ with respect to u
T.

Q is a positive definite approximation to the second

derivative of £ with respect to z.

^uu'^ux' %ni aDd %x a r e P a r t i t i o n s of Q corresponding
to u and x.

w (.) is a formula for updating the value of Q.
T T

fu*» x*l *• a Decomposition Point - a point used in
converting a large quadratic programming problem
to a smaller one.

a, B, C, d are coefficients of the reduced quadratic
programming problem.

<J>(.) Is a test function used in linear searches
N is the number of iterations needed to reach an opti-
mal solution.

N is the value of N for the Han-Powell algorithm.

Subscripts: In dealing with iterations and the seq-
uences of estimates they produce, we will primarily
be concerned with a window from which one can see
three successive estimates - the incumbent estimate,
its immediate predecessor and its immediate succes-
sor. No subscript will be attached to the incumb-
ent estimate. Its immediate predecessor will be
identified by a "-" subscript, its immediate suc-
cessor by a M+M. For example, the three estimates
of u in order are: u ,u and u

V
X.3 The Han-Powell Algorithm

This is a Quasi Newton (Variable Metric) algorithm
that was suggested by Han [3], [4] and refined by
Powell [51, [61. As we shall see, it has some feat-
ures that make it attractive for optimum power flows.
First, however, we will outline the algorithm's steps.

In each iteration of the Han-Powell algorithm, the
Incumbent estimate , [uT,xT], to the solution of (OPF),
is Improved by taking a step of length a in a direct-
ion-of-movement, [AuT, AxT]. The new a
estimate is given by:

and Improved

" * ] - [uT,xT] a[AuT,AxT]

The direction-of-movement is found by solving a
Quadratic Programming Problem. The objective of this
problem is a second order approximation of f. The
constraints are first order approximations to g and
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h. Specifically, this problem i s :

(QPP): Min f Au + f Ax + ?5[AuT,AxT] Q [AuT,AxT]T (3)
Au,Ax U X

st: g

h +

Au

Au + H Ax

(4)

(5)

In the first iteration Q is set equal to unity. Sub-
sequently its yalue is updated with derivative infor-
mation and a formula that maintains Q's positive def-
itnetness. The formula is given in detail in the
Appendix. It has the form:

- w(Q, z, z_, (6)

The step size, a, is chosen so that it produces a
decrease in a test function, •(o), along the direction-
of-movement. One form that this test function can
take is given in the Appendix.

1.4 Strengths and Weaknesses
The advantages and most attractive features of the

Han-Powell algorithm are:
1. It is fast. In tests on difficult problems it

seems to converge much more quickly than competing
methods [7], [8]. It tends to be especially fast
on heavily constrained problems. In fact, as the
number of active constraints, M, approaches the
number of variables, m+n, the convergence approach-
es a quadratic rate. In the extreme circumstance
of M * m+n the algorithm devolves to Newton's meth-
od for solving the active constraints. This close
relationship to Newton's method is particularly
desirable in view of the success that Newton's
method enjoys in tackling power system equations.

2. It is robust. The Quadratic Programming Problem
in each iteration tends to force convergence even
under adverse circumstances such as profoundly
infeasible starting points or problems whose Lag-
rangians have second derivatives matrices with
large negative eigenvalves.

3. It is logically straightforward and therefore, is
easy to program.

4. As with other Quasi-Newton methods, it automatic-
ally provides the information with which to de-
termine the sensitivities of the optimal solution
to variations in arbitrary parameters. For de-
cision makers and analysts these sensitivities
can be as useful as the optimal solution.

The disadvantages of the algorithm are:

1. If, for some reason, the algorithm stops before
reaching an optimal solution, its last computed
estimate may not even be feasible. The reason is
that the algorithm often approaches the optimal
solution from outside the feasible region.

2. The square matrix Q, which is used in (QPP), is
nonsparse and its dimensions are equal to nr+n,
the number of variables in the problem. For pro-
blems with large numbers of variables (say 1000 or
more) the Q-matrix is difficult, if not Impossible,
to deal with in (QPP).

The first disadvantage can be serious if very large
amounts of computer time are involved. However, with
power system problems we envision running times that
are small enough so that the occasional need to rerun
a program is not a matter for great concern.

The second disadvantage, however, prevents the Han-
Powell algorithm from being used on full sized optimum
power flow problems. The rest of this paper will be
devoted to finding decompositions that eliminate the
second disadvantage.

II. DECOMPOSITIONS

II.1 A General Framework
We consider here a class of decompositions that re-

placs (QPP), the quadratic programming problem in m+n
variables, with a much smaller problem, (RQPP), in
only m variables. The reduction is achieved by using
the equality constraints in (OPF) to eliminate the
state variables, x. The reduction is repeated at each
iteration of the overall algorithm. Specifically, the
steps involved in each iteration are:

Step 1: Select a point [u^,x^] which will be called
the Decomposition Point. This point could,
but does not have to, be the same as the in-
cumbent estimate [uT,xT].

Step 2: Linearize the equality constraints about the
Decomposition Point and express changes in x
in terms of changes in u as follows:

Ax « - H*1 [HuAu + h] (7)

Step 3: Select the coefficients, a,B,C,d of the re-
duced quadratic programming problem:

(RQPP): Min
Au

aTAu

s t : CAu >_ -d

Step 4: Find the solution, Au, of (RQPP)

Step 5: Substitute Au in (7) to get Ax. The vector
[AuT, Ax ] is the direction-of-movement. Now
proceed to find a step length and a new esti-
mate to the overall solution as in the full
Han-Powell method.

Observe that variations among members of this
class of decompositions are confined to the manner In
which the Decomposition Point and the coefficients,
a,B,C,d are chosen.
In the remainder of this section we will examine two
existing decompositions and then proceed to synthesize
an improved decomposition.

II.2 The BLW (Berna, Locke and Westerberg)
Decomposition [8].

The necessary conditions for a solution of (QPP)
are:

ira ux

0

0

T

u
T
X

Au

Ax •

-V

-X

-

>

-

- f
U

- f

- g

-h (8)

0

y >̂  0

If we eliminate Ax and X from (8) we get:

FB CIL"

Lc ° J k -d

where:

a T - f -
u

B m Q

f H-1H - h
X X U

- HX\o -

(9)

(10)

Hu (11)



C - G - G
u x

d « g -

(12)

(13)

Notice that (9) has the sane structure as (8).
Thus, (9) can be thought of as a set of necessary con-
ditions for another and smaller quadratic programing
problem, namely, (RQPP). This observation is the
basis of the BLW Decomposition. Specifically, the
Decomposition Point is chosen to be the same as the
incumbent estimate and (BQPP)'s coefficients are cal-
culated from expressions (10) - (13).

In exact arithmetic the BLV Decomposition produces
the same results, iteration by iteration, as does the
full Han-Powell algorithm. Most other decompositions
converge more slowly, especially from distant start-
ing points.
The main disadvantage of the BLV Decomposition is
that it reduces but does not completely eliminate the
usage of the Q-matrix. While this matrix does not ap-
pear in (RQPP), it is used in its entirety in calcul-
ating the coefficients of (RQPP). It would be better if
one did not have to deal with the Q-matrix at all.

II.3 The Reduced Gradient Decomposition
This decomposition has been widely used in a vari-

ety of ways and with a variety of nonlinear program-
ming methods, e.g. [10], 111]. In our context, the
decomposition has two key features:

(a) The Decomposition Point is chosen to satisfy
the equality constraints. This is done by
setting u^*u and finding xA so that

h(u,x*) - 0 (14)

(b) The coefficients of (RQPP) are calculated dir-
ectly from reduced gradient information. The
Q-matrix is not used.

The reduced gradients that we speak of here are
first derivatives.with respect to u in an m-dimension-
al sub space of R**11. Specifically, the subspace is
the m-dimensional hyperplane that is tangent to the
equality constraints at the Decomposition Point.

The intent of using reduced gradients is to effect
a reduction in the size of (QPP) by projecting (QPP)
into the hyperplane.

Points in the hyperplane are given by x • x^ + Ax
and y * y* + Ay where:

H Auu Ax - 0 (15)

where Hu and Hx are evaluated at the Decomposition
Point. The projection of (QPP) into the hyperplane
is done in two steps. First, (15) is used to elimin-
ate Ax from all but the quadratic term in (QPP)• Se-
cond, the quadratic term is replaced with the term:
h Au*BAu. B is a positive definite approximation to
the second derivative of £ in the hyperplane. How-
ever, instead of first calculating -Q and then pro-
jecting it into the hyperplane, B is obtained by dir-
ect updating with formula (6) and reduced gradient
information. The results of these two steps yield
expressions for the coefficients of (RQPP). The ex-
pressions are given below (except where otherwise sp-
ecified, the quantities in the right hand sides must
be evaluated at the Decomposition Point).

" fu * fx Hu ~ fx

- fu -f x H*
1 Hu because h«0

B « w(B_, u, u_, V u £,

C - Gu - Gx

(16)

(16a)

(17)

(18)

s -
g because h - 0

(19)

(19a)

The advantage of the Reduced Gradient Decomposition
is that it eliminates all need to deal with the Q-
matrix. However, it has two major disadvantages:

It expends a good deal of effort in attempting
to find Decomposition Points

It can be slow to converge. Occasionally, it
will fail to converge on problems that the full
Han-Powell handles with ease. Consider, for in-
stance, a problem in two variables with the con-
straint:

u + x «4 and a starting point of u«5, x-5.

The first Decomposition Point sought by the
Reduced Gradient Decomposition does not exist so
the decomposition fails. Another example in
five variables is given below [5]:

X
(EX): Min e

st: x +

- 5

x 2 + u 2 + u 2 - 10

+ 1

with a starting point of x- » -2, x« 2, 2, u..
-1, u~ " -1. This is a difficult problem to solve

and so is useful in testing methods. The Han-Powell
algorithm solves it quite easily but the Reduced Gra-
dient Decomposition fails.

II.4 Towards More Efficient Decompositions -
The total effort expended in solving (OPF) is de-

termined by the product of J and N, where J is the
average effort expended per iteration and N is the

number of iterations needed to reach an optimal sol-
ution.

J can be kept small by ensuring that: (1) no ef-
fort is expended in separating the Decomposition Point
from the Incumbent Estimate and (2) the Q-matrix is
not used in calculating the coefficients of (RQPP).

N should not be much larger than _N, the number of
iterations required by the full Han-Powell. Other-
wise, the decomposition loses much of its appeal as an
alternative to the full Han-Powell.

In attempts to keep both J and N small, it has been
suggested [12], [13] that the Decomposition Point be
picked as in the BLV method (i.e. coincident with the
Incumbent Estimate) and the coefficients of (RQPP) be
calculated with expressions (16), (17), (18), (19)
from the Reduced Gradient method. We will call the
resulting decomposition the Hybrid. It works well on
some problems but poorly on others, including (EX).
The following observations provide some clues to why
this happens and also contain the ingredients for a
more robust decomposition.

(i) For the full Han-Powell algorithm to work well
Q must be positive definite [14].

(il) In exact arithmetic and beginning with the
same starting point, the full Han-Powell and
the BLV decomposition produce identical se-
quences of estimates to a solution of (OPF).

(iii) By comparing expressions (10) - (13) with (16)
- (19) we see that the BLV and Hybrid decom-
positions differ only in the values they use
for a and B. These differences disappear when
the following conditions are satisfied.



%u -
H H f H'

(20)

(21)

where B , ., is the value of B computed from

(17). Therefore, we can think of the Hybrid
Decomposition as being a BLW Decomposition in
which the Q-matrix has been chosen so that
(20) and (21) are satisfied. But it may not
be possible to make this Q-matrix positive
definite. This may be why the Hybrid Decom-
position sometimes performs poorly.

(iv) Both analysis [14] and empirical evidence [15]
suggest that some pieces of the second deri-
vative information in Q are more important
than others. Suppose that z is partitioned
into u' and x' so that the variables in x*
are used to satisfy all the active constraints
at the optimal solution of (OPF). Then the
dimension of u' is the degrees of freedom
left to minimize f. It happens that the dia-
gonal block Q t , contains the information

most important to the Han-Powell algorithm.
The information is Qu?xt and Q^,^, is less

important. The information in Qx»x» is un-
important. (This is partially illustrated by
the extreme case in which there are as many
equality constraints as variables in z. Then
x' * z; the Han-Powell algorithm devolves to
Newton's method for solving the equalities;
and Q exerts no influence on performance).

Since uf is a subset of u, we can arrange to pre-
serve the most important second derivative information
by retaining Q and discard the contents of the other
parts of Q andureplace them with entries that add no
computational burden but keep Q positive definite.
One way to do this is with a procedure we will call
the Super-Hybrid Decomposition and describe below.

II.5 The Super Hybrid Decomposition
The essential steps of this decomposition are:

(a) Choose the Incumbent Estimate as the Decomposition
Point.

(b) Set Q = 1

(c) Update Q u u with either gradient or reduced grad-
ient information (close to a solution the latter
seems to work a little better).

(d) Evaluate a, B, C and d from expressions (10) - (13)
and then proceed as with either the BLW or Reduced
Gradient Decompositions.

The details of an algorithm that incorporates this de-
composition are given in the Appendix.

The Super-Hybrid is attractive because its effort per
iteration is low - the reasons are summarized in Table
I - and because it seems to converge at least as fast,
often faster, than other decompositions that do not use
the full Q-matrix. For such decompositions, problem
(EX) provides a very severe test. Notice, from the
results given in Table II, that the Reduced Gradient and
Hybrid decompositions fail when applied to (EX), but the
Super-Hybrid manages to converge, albeit linearly. On
less demanding problems, including optimum power flows,
the Super-Hybrid seems to converge as fast as the full
Han-Powell•

Finally, we note that the performance of a decompos-
ition, particularly in regions far from a solution, seems
to be much more sensitive to the manner in which the a-

coefficient is calculated than the way in which B is up-
dated. The best performance is obtained by using the
BLW's expression, (10), for calculating a.

III. TEST RESULTS

III.l The Importance of Full Scale Testing
How many iterations will a nonlinear programming

method take to solve a given problem? Usually, the
best that theory can do in attempting to answer this
question is tell us what the method's convergence rate
is and whether it has quadratic termination. (The Han-
Powell method is superlinearly convergent and does have
quadratic termination). Convergence rates tell us how
the method will behave close to a solution but not far
away. Methods with quadratic termination will take at
most M iterations to solve unconstrained problems with
quadratic objective functions in M variables. In other
words, we shouldn't be surprised if the number of iter-
ations increases with problem size, even for simple un-
constrained problems.
111.2 Some Results -

In [15] and [22] we demonstrated that the BLW De-
composition and certain variations on the Reduced
Gradient Decomposition work very well on small OPFs.
Since then we have developed the Super Hybrid Decomp-
osition and tested it on a number of small and large
systems. Some specimen results are shown in Table III.
It seems that the number of iterations is not strongly
affected by problem size. Infact, the Super-Hybrid of-
ten converges in about the same number of iterations as
a Newton method takes to find a load flow solution (both
procedures being started at the same point). Of course,
a Super Hybrid iteration contains a load flow iteration
and hence, involves more computations. Most of the addi-
tional effort goes into solving (RQPP). A rough estimate
is that a Super Hybrid iteration requires from 2 to 10
times the effort involved in a Newton-load-flow-iter-
ation. Numbers in the lower end of the range are ob-
tained when the dimension of u is small in comparison
to the dimension of x; numbers in the upper part of the
range are obtained when the two dimensions are compar-
able.

111.3 Remarks

(i) Table IV compares some of the Super Hybrid's sal-
ient features with those of other OPF methods.

(ii) Newton-load-flow iterations become cheap relative
to a Super Hybrid iteration when the number of
retained variables (i.e. variables in u) is com-
parable to the number of eliminated variables
(i.e. variables in x). In these circumstances,
it makes sense to use a few more Newton-load-flow
iterations wherever they can reduce the number
of Super-Hybrid iterations. It happens that the
greatest benefits from such additional iterations
are obtained towards the end of the overall pro-
cess, close to the optimal solution and not as
intuition would suggest, at the starting point.
The strategy governing additional iterations is
to use them to keep the linear approximation to
the eliminated variables at least as accurate as
the estimate to the solution of the retained
variables [22].

(iii) Suppose we want to consider not only the exist-
ing network configuration but also the configur-
ation that could result from the occurrence of
contingencies. This means that we would like to
expand the constraints in an OPF formulation to
include those of an existing configuration and
also several additional configurations. Since
the elimination of the state variables for each
configuration can proceed independently, the el-
iminations can be processed n parallel on sep-
arate processors.



IV. CONCLUSIONS

This paper has identified a class of decompositions
and from two of its existing members synthesized a
third - called the Super-Hybrid - that is well suited
to OPF problems. The algorithm obtained by combining
the Super-Hybrid decomposition with the Han-Powell
method of nonlinear programming has the following at-
tractive features.

. Nonlinear objective functions and constraints can
be accommodated directly, without tricks or intri-
cate manoeuvres. This makes it easy to add compli-
cated security constraints and to do real power dis-
patching, reactive power dispatching or both simu-
taneously. It also simplifies the coding, main-
tainance and updating of the algorithm.

. The decomposition works by eliminating some varia-
bles. It is convenient to choose these variables
to be the same as the ones calculated in a load flow
program. Then one iteration of a standard Newton-
Load-Flow can be used to make the elimination.

. In tests on large problems the algorithm has proved
to be fast. Often it will find an optimal solution
in about as many iterations as a Newton method takes
to find a load flow solution.

. The algorithm is robust. The starting point does not
have to be feasible. Infact, the algorithm will
force convergence from profoundly infeasible start-
ing points.

The information with which to calculate the sensiti-
vity of the optimal solution to parameter variations
is readily made available by the algorithm (though
we have not yet taken advantage of this feature in
the code we have written).

There are two principal factors that limit the
type of problems that can be effectively handled by
the algorithm. They are the numbers of retained vari-
ables (i.e. variables, in u) and inequality constraints.
These factors determine the size of the quadratic pro-
gramming problem that must be solved in each iteration
of the algorithm.

The number of equality constraints is not a limit-
ing factor because the equalities are eliminated by
the decomposition. The elimination can be done with
parallel processing when the equalities arise from sev-
eral different network configurations as happens in con-
tingency constrained optimum power flows [24], [25].

Available quadratic programming codes, e.g.[263»
can efficiently handle about 300 retained variables.
This is more than enough to accommodate all the regul-
ated generator variables for most networks. However*,
networks with large numbers of tap-changing transfor-
mers may boost the number of retained variables to 500
or so. Three possibilities for handling such situations
are: ignore the less important tap changers or handle
them in the second stage of a two-stage process; expand
the capabilities of quadratic programming codes; use
larger computers. We are not sure which of these pos-
sibilities is best. We suspect that the problem of how
to handle large numbers of tap-changing transformers
also remains to be suitably solved in other OPF pack-
ages.
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TABLE I: FEATURES AFFECTING THE EFFORT
PER ITERATION OF FOUR DECOMPOSITIONS

Features

Effort expended
to find DP

*
Is the Q-matrix
of the eauival-
ent Han-Powell
algorithm posi-
tive definite?

Is the Q-matrix
used in calcul-
ating the coeffi-
cients of (RQPP)?

Decompositions

BLW

NONE,

DP-IE

YES

YES

Reduced
Gradient

Considerable.
DP is the
solution of
the equalit-
ies

Equivalent
Han-Powell
doesn't exist

NO

Hybrid

NONE,
DP-IE

NO

NO

Super-
Hybrid

NONE,
DP-IE

YES

NO

DP: Decomposition Point
IE: Incumbent Estimate
*Even if the Q-matrix is not explictly used, it must
be positive definite for the decomposition to work
well.

Iteration
Number

0
1
2
3
4
5
6
7
8
9

TABLE II.

Euclidian

Han-
Powell

0.6205
0.1409
0.1080
0.0874
0.0046
0.0001
0.0000

RESULTS

Norm of

BLW

0.6205
0.1409
0.1080
0.0874
0.0046
0.0001
0.0000

FOR PROBLEM (EX)

Error in Estimate

Reduced
Gradient

0.6205

CO

Hybrid

0.6205

3
£

Super-
Hybrid

0.6205
0.1409
0.0972
0.0791
0.0634
0.0507
0.0406
0.0325
0.0260
0.0209

TABLE III: SPECIMEN RESULTS FOR THE
SUPER-HYBRID ALGORITHM

Problem

# of equalities
# of inequalities
# of elements in u

# of Newton Iterat-
ions to reach a
Load Flow Solut-
ion

# of Super-Hybrid
Iterations to
reach an Optimal
Power Flow Solut-
/ ion

AEP 30
Bus

60
44
12

5

7

APS 550
Bus

1110
160
42

5

6

Hypothetical
1110 Bus

2220
320
84

5

9



TABLE IV: A REPRESENTATIVE SAMPLING OF NONLINEAR PROGRAMMING ALGORITHMS FOR OPF PROBLEMS [2].

Algorithm
Retained
Variables

Directionrof
Movement

Techniques for
Handling Non-
Line ari ties Status Comments

Don ael-Tinney
[17]

Generalized
Reduced grad-
ient (GRG)
[18],[19]

Wu,Gross,
Luini,Look,
Gribik
[20],[21]

Super-Hybrid

Gradient

GradientChanged from
one itera-
tion to the
next

Changed from Gradient
one iter-
ation to
the next

Quasi-
Newton

Penalty Many Probably the most coded algorithm.
Functions Production Works well when carefully tuned

Programs to a system. Detection of infeasi-
bility is slow and the penalty
functions are a disadvantage.

Variable At least Appears to be more robust than
Switching one product- the Dommel-Tinney algorithm

ion Program but the intricate variable ex-
change mechanisms are a signifi-
cant disadvantage.

Variable
Switching,Penalty
Functions and Aug-
mented Lagrangians

Linearization

One Product*- A modified GRG algorithm in which
ion Program the variable switching is made

compatible with a load flow pro-
gram. A two stage approach is
used. The solution of the first
stage relaxed problem is used as
a starting point for the second
stage.

Experi- Simpler to program than other
mental methods. Very fast and robust.

Sensitivity data is readily avail-
able. Can be decomposed for par-
allel processing.

Burchett-Happ-
Wirgau [23]

Changed from
one iter-
ation to
the next

Quasi-Newton
or Conjugate
Gradient

Linearization
and an Aug-

mented Lagrangian

One Product- The algorithm is similar to the Han-
ion Program Powell except that in determining

the direction-of-movement the Han-
Powell uses a quadratic objective
while the algorithm uses a more
nonlinear objective. It seems that
fhe algorithm requires about as many
Iterations but more work per iteration
than the Super-Hybrid.
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APPENDIX; A SUPER HYBRID ALGORITHM

Step 0: Initialization

i. Choose u and x so that Hx is nonsingular for all
values of u and x that are of interest. In the
case of power systems choose x to be the variables
solved for by a Newton-load-flow.

Choose the starting point [u ,x ]

1; Evaluate the first derivatives fu,fx,Gu,Gx,
u, H and the residues h and g. These evaluations

must be made at the incumbent estimate [uT,xT].

Step 2; Evaluate a, C and d, coefficients for (RQPP),
from:

c - GU -
d - g - Gx H

Step 3: Update B. In the first iteration set B-l
and E«l. (E is a dummy variable that makes writing
the formulas a little easier.) In subsequent iterat-
ions update B and E using the formulas:

ii. B - E + HT H~TH-1H

i. E E -

(These formulas were obtained by making two sets
of modifications to the BFGS updating formula [16].
The first modification was made by Powell [5] to'
ensure that the updates remained positive defin-
ite. The second modification was made by us to
adapt the formulas to updating only the Q u u part-
ition of the Q-matrix . We note that
the formulas given above update Q u u with gradient
information. Close to a solution, the use of re-
duced gradient information seems to work a little
better. To include reduced gradient information
one would replace YT with V I - V £_.

Step 4: Solve the reduced quadratic programming pro-
blem:

(RQPP): Min aTAu + *jAuT B Au

st:

Au

BAu - d

Let Au be the solution and y the Lagrange multiplier
associated with the inequality constraints.

Step 5: Calculate Ax and X from:

x [fx " x U + A x l

(These expressions are obtained by rearranging the
second and fourth equations in (8)).

Step 6: Find a step size, a, such that

0 < a _< 1

4>(a) < <K0)
and

where

, x(a)) + yT|g(u(a),x(a))|+XT|h(u(a),

u(a) • u + aAu

x(a) • x + aAx

|g| and |h| are vectors of the absolute values of

g and h

U - Max {|y|, hlW\ + Ilijj

where 6 » z -

X - Xu - u and 5
u - x
n - 6a + (1-0) E 6"

0 - 1 if 5Ty > 0.2 6TE 6

0.86TE 5
otherwise

[6TE_ 6- 6Ty]

is a vector of the last n elements of n

is a vector of the first m elements of n

Kz,V,\) - f - yTg - XTh

y and X are calculated in the previous iter-
ation in Steps 4 and 5.

X -Max {|X| J$[|X| + | X J ]

If no such a can be found stop. Otherwise set:

u • u + aAu

x+ • x + aAx

(The test function 4> used in this step has been given
the form of a penalty function. This is not the only
possibility. The Lagrangian works well too and other
as yet undiscovered forms may work even better. An-
other observation is that the algorithm seems to work
best when a is unity or close to it. Therefore, one
should not perform a line search to seek out the smal-
lest value of the test function along the direction-of-
movement. Rather, one should seek the largest value
of a that is unity or less and produces a decrease in
the test function.)

2 TIf a Au+ Au, + B >Step 7: Check for convergence.

where 6 is a norm of the constraint violations and \\f
is a tolerance, go to Step 1. Otherwise, stop.



 


