
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A TUTORIAL OIJ RELATIONAL DATABASES USING
STRUCTURAL ENGINEERING EXAMPLES

by

H.J. Schaafer, D.R. Rshak 4 S.J. Fsnves

Dasambar, 1^82

DRC-12-09-82

A TUTORIAL ON RELATIONAL DATABASES

USING STRUCTURAL ENGINEERING EXAMPLES

By Michael J. Schaefer1, Daniel R. Rehak,2

and Steven J. Fenves,3 M.ASCE

KEYWORDS:

Database; Relational database; Centralized control; Data integrity; Data independence;

Information retrieval; Queries; Normalization; Normal forms; Partial dependencies;

Transitive dependencies; Multi-valued dependencies; Join dependencies; Anomalies;

Structural engineering; Engineering design; Civil engineering

ABSTRACT:

An introduction to the basic issues of database management and to the concepts

of the relational database model are presented. Structural engineering examples are

used to describe the principal relational operations for data retrieval. Examples of an

available relational data retrieval language developed for a current database

management system are provided. Also, the process of normalization is discussed,

which includes the description of six different normal forms, to provide guidelines

for database design.

Research Assistant. Department of Civil Engineering. Carnegie-Mellon University. Pittsburgh. PA 15213.

2
Assistant Professor of Civil Engineering. Carnegie-Mellon University. Pittsburgh. PA 15213.

3
University Professor of Civil Engineering. Carnegie-Mellon University. Pittsburgh. PA 15213.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

A TUTORIAL ON RELATIONAL DATABASES

USING STRUCTURAL ENGINEERING EXAMPLES

By Michael J. Schaefer1, Daniel R. Rehak,2

and Steven J. Fenves, M.ASCE

1. INTRODUCTION

During the design and construction of any civil engineering project, large amounts

of information pertaining to all aspects of the project must be stored, accessed and

operated upon. One way to store this information is in a database. A database

offers two main advantages. First, it provides centralized control of the data [6] ,

allowing all users to access the same data. Instead of each user having his own

private files, which would probably store data similar to other user's files, all files

can be integrated into one database, thus eliminating redundancy. Since the data are

stored in only one place, centralized control also insures that the data are consistent.

Once a piece of data is changed, all users access the most recent value. Centralized

control also eases the process of insuring data integrity, that is, that all updates of

the data are valid. Whenever an update is attempted, a predefined checking

procedure can be invoked to determine the validity of the update.

A second advantage that a database provides is data independence. The way in

which data is stored or accessed in the database is independent from its use. The

user's view of the data is defined by the conceptual schema which provides the

definition of information content only. No references to storage/access details are

included in the schema [6] . The user need only specify which data items are

needed, not how to find them or where to look for them. Therefore, even if one

user needs the data in one form and another user needs the same data in a different

form, the data is stored only once. It is then the database system's responsibility

to supply the data in the appropriate form. The user specifies what data is needed

through a retrieval language. An example of such language is shown in Section 3.2.

Research Assistant Department of Civil Engineering. Carnegie-Mellon University, Pittsburgh. PA 15213.

Assistant Professor of Civil Engineering. Carnegie-Mellon University. Pittsburgh. PA 15213.

3
University Professor of Civil Engineering. Carnegie-Mellon University. Pittsburgh. PA 15213.

Most database systems offer access to the retrieval operations from two different

modes. First, the standalone mode provides the user with interactive access to the

data. The second mode is the application program mode. It supplies the retrieval

operations as a data sublanguage which can be called by a host programming

language in an application program.

One type of database is based on the relational model. A relational database

stores information in a set of relations, which are basically two-dimensional tables.

All information about each aspect of the project can be stored in a set of one or

more relations. An example of a relational database, used throughout this paper, is

shown in Figure 1-1. This database is made up of three relations; BEAMS,

DESIGNATIONS and GRADES. The BEAMS relation is similar to a beam schedule for

a construction project; it lists the LENGTH, DESIGNATION, GRADE of steel and quantity (QTY)

of each specific shape and grade in the project. The DESIGNATIONS relation is

similar to the structural shape tables in the AISC manual [1] and contains the

DESIGNATION, SECTION MODULUS, AREA, moment of inertia (i) and depth (D) for each shape.

Finally, the GRADES relation lists the GRADE and yield stress (FY) for different grades

of steel.

Since, as stated by Codd [5] , "relational database technology offers dramatic

improvements in productivity", relational databases are of great interest to the

developers of engineering design databases. Therefore, using examples similar to the

database in Figure 1-1, this article wil l provide an introduction to the relational

database approach by discussing some of the basic concepts involved, including

guidelines for database design through normalization.

2. NOMENCLATURE

This section will describe a few of the basic terms in the relational database

model.

The columns of the relations in Figure 1-1, such as LENGTH, DESIGNATION, SECTION

MODULUS and GRADE, are called attributes. The actual values for each attribute are

taken from the domain of the attribute. A domain is the set of all allowable values

for a specific attribute. For example, the quantity (QTY) attribute in the BEAMS

relation (Figure 1-1) has for its domain all integers greater than zero. In any given

relation, the ordering of the columns is arbitrary.

BEAMS LENGTH

! 20

! 20

! 20

! 20

! 40

! 40

! 20

! 35

! 20

DESIGNATION

W36X300

W36X300

W33X241

W33X241

W30X211

W30X211

W27X114

W16X57

1 W27X114

GRADE

A36

A514

A514

A36

A588

A242

A36

A36

, A514

QTY !

15 !

9 !

5 i

5 !

8 !

4 !

2 !

3 !

1 7 1

DESIGNATIONS DESIGNATION

W36X300

W33X241

W30X211

W27X114

W16X57

SECTION

MODULUS

1110

1 829

, 663

299

92.2

AREA

88.3

70.9

62.0

33.5

16.8

i
i
i

i
i
i

i

i

i

i
i

i i D
i

20300136.74

14200134.18

10300130.94

4090|27.29

758 116.43

GRADES GRADE Fy

A36

A514

A588

A242

i

i

36

100

50

50

Figure 1-1: Example of a Relational Database.

The individual rows of a relation are called tuples. No tuple is duplicated within

any relation. A tuple thus represents some unique object or entity with its

properties (attribute values). As is the case with domains, the ordering of the tuples

within a relation is also arbitrary.

In each relation, a group of one or more of the attributes uniquely identifies each

tuple. This group of attributes is called the key for the relation. The key for the

BEAMS relation in Figure 1-1 is the attribute combination of LENGTH, DESIGNATION and

GRADE: with these attributes specified, a specific tuple is uniquely determined. For

the DESIGNATIONS relation, the key is DESIGNATION. The key for the GRADES relation

is GRADE.

The overall configuration of the database is referred to as the schema. The schema

is the layout of the relations themselves, without the data. The description of an

individual relation is called the relation schema. Once all relations are described, such

as the attribute names and types in each relation, the database schema is completely

defined.

A constraint is a tool used to control the integrity of a relation. As stated above,

the quantity (QTY) attribute in the BEAMS relation must be greater than zero.

Therefore, the following constraint is specified:

QTY > 0

Also, if the value of one attribute is dependent upon another, a constraint can be

specified to insure this dependency. For example, if a relation contains the height,

width and area of a solid rectangular beam, the user may want to specify the

following constraint:

AREA = WIDTH X HEIGHT

If a user tries to change one of these attribute values for a tuple without changing

any other value, the database system would disallow the change and warn the user

of the constraint violation.

3. DATA RETRIEVAL

Once a database is created, any authorized user must be able to access the data.

Section 3.1 wil l discuss the three basic relational operators that support this process:

SELECT, PROJECT and JOIN. Section 3.2 wil l demonstrate the implementation of

these basic operators in a current relational database management system query

language.

The examples in this section show the DBMS commands in BOLD FACE, the relation

names in UPPER CASE and the attribute names in lower case letters.

3.1. BASIC OPERATORS

This section presents the three basic relational operators. These three operators

can be used individually or in any combination to retrieve data from the database.

The PROJECT and JOIN operators wil l be used in Section 4 to describe the

normalization process.

3.1.1. SELECT

The SELECT operator is used to produce a new relation from the rows of an

existing relation for which a specified selection criterion is satisfied. The criterion

is specified by attaching a boolean predicate to the SELECT command through the use

of a WHERE clause. All tuples for which the WHERE clause evaluates to true are

retrieved. For example, the following command forms a new relation from the

BEAMS relation of Figure 1-1, containing all beams whose length equals 40 feet.

SELECT BEAMS WHERE length = 40

The result is:

LENGTH

40

40

i DESIGNATION

! W30X211

i W30X211

! GRADE !

1 A588 i

I A242 |

QTY

8

4

3.1.2. PROJECT

The PROJECT operator is used to produce a new relation containing one or more of

the columns of an existing relation. For example, the following command forms a

new relation from the BEAMS relation in Figure 1-1, by eliminating the GRADE and

quantity (QTY) columns.

PROJECT BEAMS OVER length AND designation

The result is:

LENGTH

20

20

40

20

35

DESIGNATION j

W36X300 !

W33X241 !

W30X211 !

W27X114 |

W16X57 !

Notice that the duplicate tuples created by the projection are removed.

3.1.3. JOIN

The JOIN operator is used to produce a new relation by combining two or more

relations over a comparison between attributes with common domains. Therefore,

the relations to be joined must contain a common domain. For example, the

following command forms a new relation containing the attributes LENGTH DESIGNATION,

GRADE and quantity (QTY) from the BEAMS relation in Figure 1-1 and the attributes

GRADE and FY from the GRADES relation in Figure 1-1.

JOIN BEAMS AND GRADES OVER grade

The result is:

LENGTH

20

20

20

20

40

40

20

35

20

DESIGNATION

W36X300

W36X300

i

W33X241

W33X241

W30X211

W30X211

W27X114

W16X57

W27X114

GRADE

A36

A514

A514
-+-

-+-

-+-

-+-

-+-

-+-

A36

A588
+

A242
+

A36

A36
+

A514

QTY

15

9

5

5

8

4

2

3

7

GRADE

A36

Fy
sssss:

36

A514

A514

100

100

A36

A588

A242

A36

A36

A514

1 36

i 50

! 50

! 36

! 36

! 100

This is an example of an equijoin; the two relations are joined where the grade

values are equal. Other types of joins are possible, such as, greater than and /ess

than joins. These joins combine the relations where a specific attribute in one

relation is greater than (or less than) an attribute in another relation.

Also, notice that the equijoin produces a relation with two identical columns. This

redundancy must be eliminated by projecting out one of the duplicate attributes.

However, since the removal of the duplicate attribute is a very common operation

after a join, a natural Join can be specified, which is the same as an equijoin with

the duplicate attribute eliminated.

3.2. IMPLEMENTATION OF RELATIONAL OPERATORS

Many languages have been developed to ease the data retrieval operations for the

inexperienced user. One such language is called SEQUEL (Structured English QUEry

Language) [3] . After many extensions and improvements, SEQUEL 2 was developed

[4] and implemented in the Database Management System (DBMS) entitled SYSTEM

R [2] . This language is used in the following examples to query, manipulate, define

and control the database in Figure 1-1.

3.2.1. QUERYING THE DATABASE

The query facility of SEQUEL 2 allows the user to ask the database questions

about the data. The SELECT command is used to specify which attributes are to be

returned. The FROM command is used to specify the relation to use for the SELECT

command. The WHERE command is used to compare attributes to values or to other

attributes. The comparisons may be connected by the operators AND and OR to form

more complex comparisons. Also, the result of a query may be used in the WHERE

command of another query. The following examples are typical queries.

1. List the DESIGNATION, depth (D) and SECTION MODULUS of all beams with a
depth less than 34 inches, sorted in order of increasing section modulus.

SELECT designation, D, section modulus
FROM DESIGNATIONS
WHERE D < 34
ORDER BY section modulus

The result is:

SECTION

W16X57

W27X114

W30X211

i
i

i
i

i
i

16.

27,

.43!

.29!

30.94!

92.2

299

663

The ORDER BY command orders the tuples of a relation by the attribute
specified. However, the ordering is done specifically for the user and
does not effect the actual storage of the relation, since the order of
tuples is completely arbitrary.

2. List the average area of the 20 foot beams.

SELECT AVERAGE(area)
FROM DESIGNATIONS
WHERE designation IN

SELECT designation
FROM BEAMS
WHERE length = 20

The result is:

AREA

64.2

This command is the same as the following list of operations using the
basic operators, defined in Section 3.1.

• SELECT BEAMS WHERE (length.EQ.20)

• JOIN RESULT AND DESIGNATIONS OVER designation

• PROJECT RESULT OVER area

• Compute average area using the result of the above command.

3. Find all beams in the project made of A514 steel.

SELECT UNIQUE designation
FROM BEAMS
WHERE grade = 'a514'

The result is:

DESIGNATION

W36X300

W33X241

W27X114

Notice that the word 'unique' follows the select command. This is
because SEQUEL 2 allows duplicate tuples and only removes them upon
request.

4. Find the yield stress for all W36x300 beams in the project.

SELECT UNIQUE Fy
FROM GRADES
WHERE grade IN

SELECT grade
FROM BEAMS
WHERE designation = 'W36x300'

The result is:

FY

36

100

5. List the DESIGNATION, SECTION MODULUS and the values of 2*I/D for all beams
with a 2*I/D value less than 830. Notice that the derived value of 2*I/D is
calculated by the database system.

SELECT designation, section modulus, 2*I/D
FROM beams
WHERE 2*I/D < 830

The result is:

10

DESIGNATION

W30X211

W27x114

W16X57

|
i
i

i
i

i
i

i

SECTION

MODULUS

663

299

92.2

!
i
i
i

i
i

2*I/D

665.

i 299.

i
i 92.

• 8 0

.74

.27

6. How many different beam designations are in the project?

SELECT COUNT (UNIQUE designation)
FROM BEAMS

The result is:

3.2.2. MANIPULATION OF THE DATABASE

The manipulation aspect of SEQUEL 2 allows the user to change, add and/or delete

values in the database, as shown in the following examples.

1. Insert a new beam into the BEAMS relation with a length of 60 feet, a
designation of W27x114 and a grade of A36, leaving the quantity null until
it can be determined.

INSERT INTO BEAMS (length, designation, grade);
<60, W27x114, A36>

This command causes the system to create a new tuple in the BEAMS
relation with the given data in the appropriate attribute columns.

2. Create a new relation called SMALL DEPTHS, with the same attribute
names as DESIGNATIONS, that includes beams from the DESIGNATIONS
relation that have depth values less than 30.

ASSIGN TO SMALL DEPTHS (designation, section modulus, area, I, DE-
SELECT designation, section modulus, area, I, D>
FROM DESIGNATIONS
WHERE D < 30

The following relation is created by this command:

11

SMALL DEPTHS DESIGNATION

W27X114

W16X57

[SECTION

! MODULUS

! 299

! 92.2

! AREA

i 33.5

! 16.8

| I |

i 4090!

! 758 !

D

27.

16.

29

43

3. Add to the SMALL DEPTHS relation all beams in the DESIGNATION
relation with depths less than 34 (for this example it is assumed that the
beams with depths less than 30 are already contained in the SMALL
DEPTHS relation).

INSERT INTO SMALL DEPTHS
SELECT (designation, section modulus, area, I, D)
FROM DESIGNATIONS
WHERE D < 34 AND D > 30

The result is:

SMALL DEPTHS DESIGNATION
i
i

! W27X114

W16X57

! W30X211

SECTION |
i

MODULUS |
AREA

i
i

i i
i

i
i
i
i

D

299 ! 33.5 ! 4090127.29

92.2 ! 16.8 ! 758 |16.43

663 ! 62.0 110300130.941

4. Delete all beams in the SMALL DEPTHS relation with depths greater than
30.

DELETE SMALL DEPTHS
WHERE D > 30

This command would return the SMALL DEPTHS relation to its original
form.

5. Update the BEAMS relation by adding 10 feet to the beams with a length
equal to 35 feet.

UPDATE BEAMS
SET length = length + 10
WHERE length = 35

This command changes the eighth tuple in the BEAMS relation to:

12

I 45 | W16X57 ! A36 ! 3 !

3.2.3. DATA DEFINITION

The data definition aspect of SEQUEL 2 allows the user to create, delete and/or

change the structure of relations in the database.

1. The following command would be used to define (create) the
DESIGNATIONS relation:

CREATE TABLE DESIGNATIONS (designation(CHAR(7), NONULL),
section modulus(DECIMALd)), area(DECIMALd)),
KDECIMAL(D), D(DECIMAL(2»)

The CHAR(n) specification means that the value for the appropriate
attribute is always a character string of at most n characters. NONULL
means that the attribute must always be specified for each tuple.
DECIMAL(n) means that the value for the attribute is a real number with at
most n decimal places.

2. Add an attribute (column) to the designation relation to store the web
thickness (TW).

EXPAND COLUMN TW(DECIMAL(3))

3. Delete the GRADE relation.

DROP TABLE GRADE

3.2.4. CONTROL OF THE DATABASE

This aspect of SEQUEL 2 allows the users to control the access of their data to

other users and to exercise control over the integrity of data values. Access is

controlled by the GRANT and REVOKE commands. Data integrity is controlled by

specifying assertions on the data, using the ASSERT command. Each assertion is

given a name by the user who specifies it and is referenced by this name whenever

it is violated.

1. Allow Smith complete access (read, insert and change) to the BEAMS
relation, including the option to give access to someone else.

GRANT READ, INSERT, UPDATEdength, designation, grade, qty)
ON BEAMS TO Smith WITH GRANT OPTION

2. Disallow Smith's access to the BEAMS relation.

REVOKE ALL RIGHTS ON BEAMS FROM Smith

13

The ALL RIGHTS command can always be substituted by a list of rights as
seen in the above example.

3. Require that all quantities in the BEAMS relation are greater than zero.

ASSERT A1 ON BEAMS: qty > 0.0

4. Require all beam lengths in the BEAMS relation to be greater than 5 but
less than 100.

ASSERT A2 ON BEAMS: length BETWEEN 5 AND 100

5. Require each beam in the BEAMS relation to have a designation equal to
one of the designations in the DESIGNATIONS relation.

ASSERT A3:
(SELECT designation FROM BEAMS)
IS IN
(SELECT designation FROM DESIGNATIONS)

4. NORMALIZATION

Normalization is a method for insuring that the organization of the database has

certain desirable properties. It is a tool for determining the best possible

arrangement of the data in the database. Six different normal forms will be

discussed; first, second, third fourth, fifth, and domain-key normal form. The

description of first, second, third, fourth and f i f th normal forms is based on the

discussion of normalization by Date [6] .

4.1. FIRST NORMAL FORM

All relations in a relational database must be in first normal form (1NF). There are

two reasons for this: first, storage is easier, and second, the data manipulation

operators are not as complicated as they would be for unnormalized relations. A

relation not in 1NF is called an unnormalized relation. Figure 4-1 is an example of

an unnormalized relation.

The key for this relation, beam information, is made up of the sub-attributes

LENGTH, DESIGNATION and GRADE. This relation is considered unnormalized, because not

all rows and columns contain single values. Figure 4-2 shows an equivalent

normalized relation. The key for this relation is a composite key consisting of

LENGTH, DESIGNATION and GRADE. Notice that all values are simple, that is, they are all

single valued.

14

! BEAM INFORMATION

! LENGTH

1111
 O

1
CM

111

! 20
i
i

! 40
j

! 35

! 20
1
1

DESIGNATION j

W36X300

W33X241

W30X211

1 W16X57

1 W27X114
i
i

GRADE

A36
A514

A514
A36

A588
A242

A36

A36
A514

Fy

36
100

100
36

50
50

36

36
100

SECTION

MODULUS

1110

829

663

92.2

299

AREA

88.3

70.9

62.0

16.8

33.5

I

20300

14200

10300

758

4090

D

36.74

34.18

30.94

16.43

27.29

QTY

15
9

5

Q

4

3

2
7

Figure 4-1: Relation BEAM: an unnormalized relation.

!
! LENGTH

to
 i

O
 1

! 20

O
 1

 O
CM

1
CM

! 40

! 40

! 35

! 20

! 20

DESIGNATION

W36X300

W36X300

W33X241

W33X241

W30X211

W30X211

W16X57

W27X114

W27X114

GRADE

A36

A514

A514
h H

A36

A588

A242

A36

A36

A514

Fy

36

100

100
1- -1

36

50

50

36

36

100

SECTION

MODULUS

1110

1110 '

829
1- -i

829

663

! 663

! 92.2

i 299

! 299

AREA

88.3

88.3

70.9

70.9

62.0

i 62.0

! 16.8

! 33.5

! 33.5

I

20300

20300

14200

14200

10300

! 10300

! 758

! 4090

! 4090

D

36.74

36.74

34.18

34.18

30.94

30.94

16.43

27.29

27.29

QTY

15

9

5
h

5

8

, 4

i 3

2

! 7

Figure 4-2: Relation Beami: first normal form.

15

This leads to the definition of a normalized relation:

A relation whose attributes or tuples cannot be broken down into
two or more attributes or tuples is considered normalized.

4.2. SECOND NORMAL FORM

After examining the relation in figure 4-2, one may observe that certain problems

arise because of the partial dependency of the non-key attributes on the attributes in

the composite key. As shown in figure 4-3, Fy is uniquely determined by GRADE.

Also, SECTION MODULUS, AREA, I and D are uniquely determined by DESIGNATION. These

partial dependencies exist even though the entire key of LENGTH, GRADE and DESIGNATION

is necessary to identify a specific tuple. Notice also that section modulus is

determined by I and D. This is called a transitive dependency and wil l be described

in Section 4.3.

QTY

composite key

GRADE

! LENGTH

Figure 4-3: Dependencies in BEAM1 relation.

The partial dependencies cause the following problems:

• There is no way to store the yield stress (Fy) of a grade A529 steel since
none of the beams are made of grade A529 steel.

• If the W 16x57 beam is deleted, the relation no longer contains the I, D,
area or section modulus for this shape.

• If it was discovered, after the data was entered, that the area of the
W36x300 beam is not 88.3, then all tuples would have to be searched to
find all occurrences of W36x300 to correct the error.

These problems are eliminated by creating three new relations from the BEAM1

relation. As shown in Section 3.1.2, this can be done by the PROJECT operator.

16

BEAM2

DESIGNATION

! LENGTH

! 20

! 20

! 20

! 20

! 40

! 40

! 20

! 35

20

DESIGNATION

W36X300

W36X300

W33X241

W33X241

W30X211

W30X211

W27X114

W16X57

W27X114

GRADE

A36

A514

A514

A36

A588

A242

1 A36

! A36

! A514

QTY !

H

1
cn

I

Q |

5 !

5 !

8 !

4 !

2 !

3 i

7 !

! DESIGNATION
i
i

! W36X300

! W33X241

! W30X211

! W27X114

! W16X57

SECTION

MODULUS

1110

829

663

299

92.2

AREA

88.3

70.9

62.0

33.5

I

20300

14200

1 10300

! 4090

16.8 ! 758

D

36.74

34.18

30.94

27.29

16.43

GRADE GRADE

A36

A514

A588

A242

|

!

i
i
i

i

Fy

36

100

50

50

Figure 4-4: BEAM2, DESIGNATION and GRADE relations: second normal form.

17

Figure 4-4 shows these new relations. With the database in this form, all of the

previous problems are solved.

• Any beam designation or grade can be stored, even if those designations
or grades are not currently in the BEAM2 relation.

• A particular beam occurrence can be deleted, without losing its related
dimensions.

• Information about any designation or grade can be changed without having
to search for multiple occurrences.

By eliminating the partial dependencies on the key, the relations in figure 4-4 are

now considered to be in at least second normal form4 (2NF). The definition of

second normal form is then as follows:

A 1NF relation is in second normal form if all attributes depend on
the entire key.

4.3. THIRD NORMAL FORM

Problems can also arise in a relation in second normal form, due to the possibility

of transitive dependencies of two or more non-key attributes. An example of a

transitive dependency is shown in Figure 4-5 for the DESIGNATION relation in Figure

4-4.

key

Figure 4-5: Transitive dependencies between I, D and section modulus.

Although all attributes depend on the key, DESIGNATION, another dependency exists

between SECTION MODULUS, I and D, since, theoretically, section modulus equals l/(D/2).

4
Actually, the BEAM2 and GRADE relations are also in third and fourth normal forms.

18

This kind of transitive dependency can cause problems similar to the ones in a

relation in 1NF. However, in this case none of these problems are present. This is

because a SECTION MODULUS relation containing SECTION MODULUS (as the key for the

relation), I and D could not stand alone; two beam designations could have the same

section modulus even if the I's and D's were different, thus forcing the key of

SECTION MODULUS to be non-unique. Ignoring the lack of an actual problem in this

particular relation, normalization would force it to be split, so that the transitive

dependency is removed. Figure 4-6 shows two new relations that remove this

dependency. These new relations are in at least third normal form.

DESIGNSA ! DESIGNATION

! W36X300

! W33X241

! W30X211

i W27X114

! W16X57

SECTION

MODULUS

1110

829

663

299

92.2

AREA

88.3

70.9

62.0

33.5

16.8

DESIGNID DESIGNATION \

W36X300 |

W33X241 !

' W30X211 |

W27X114 !

W16X57 |

I i

20300 !

14200 !

10300 ,'

4090 j

758 !

D

36.74

34.18

30.94

27.29

16.43

Figure 4-6: DESIGNSA and DESIGNID relations: third normal form.

This leads to the definition of third normal form.

A 2NF relation is in third normal form if all attributes depend on
the key and no other attribute.

Actually, these relations are also in fourth normal form, as explained in Section 4.4.

19

4.4. FOURTH NORMAL FORM

A close look at the BEAM2 relation in figure 4-4 uncovers another problem. To

provide a clearer example of this problem, a new relation similar to BEAM2 is

created by removing the quantity attribute and changing a few tuples. The new

relation (BEAM3) is all key, since all attributes must be specified to uniquely identify

any specific tuple. Figure 4-7 shows the new relation.

BEAM3 LENGTH

20

20

20

20

40

40

20

20

20

20

DESIGNATION
============:===

W36X300

W36X300

W33X241

W33X241

W30X211

W30X211

W27X114

W27X114

W30X211

W30X211

GRADE

A36

A514

A514

A36

A588

A242

A36

A514

A36

A514

Figure 4-7: BEAM3 relation.

Assume that this relation is a list of all the possible types of beams that can be

provided. This means that only 20 and 40 feet lengths are allowed: that a 20 foot

beam can only have a grade of A36 or A514r and that the 40 foot beams can only

be made of A588 or A242 steel. This dependency between LENGTH and GRADE is

called a muIti-valued dependency (MVD). A multi-valued dependency is similar to the

transitive dependency: in a relation with a transitive dependency, one or more

attributes uniquely determine the value of another attribute, while in a relation with a

multi-valued dependency, one or more attributes determine a well-defined set of

values for another attribute.

This multi-valued dependency causes the following two problems:

• There is a large amount of redundancy in this relation. This redundancy
causes the same updating problem as before; if a designation is incorrect,
all occurrences have to be searched and changed.

20

• If a new grade of steel can be provided for 20 foot beams, three new
tuples must be entered, one for each distinct designation. This adds to
the redundancy.

The MVD is eliminated by creating two new relations. The new relations are shown in

Figure 4-8.

DESIGNATION!, ! LENGTH

I1II
o

1 (N
iII

! 20

! 20

! 40

! 20

DESIGNATION \

W36X300 !

W33X241 !

W27X114 |

1 W30X211 |

i W30X211 |

GRADEL LENGTH

20

20

40

40

! GRADE

! A36

! A514

! A588

! A242

Figure 4-8: DESIGNATIONL and GRADEL relations: fourth normal form.

These relations are now considered to be in fourth normal form (4NF), which is

defined in the following way:

A 3NF relation is in fourth normal form if, when a multi-valued
dependency exists, one attribute upon another, then all other
attributes depend on this same attribute.

4.5. FIFTH NORMAL FORM

After examining the discussion on fourth normal form in the previous section, it

could be decided to ignore the redundancy problem in the BEAM3 relation shown in

Figure 4-7. If this is done, the BEAM3 relation wil l remain intact and the user has to

be aware of the redundancy. This is a possible alternative, since any relation that is

at least in first normal form is a valid relation. However, there is a different type

of problem associated with a relation like the BEAM3 relation that could cause more

than just a redundancy problem. This new problem arises from the join dependency

of the attributes. To show this join dependency, assume that, at some time, the

BEAM3 relation is broken into its three projections: DESIGNATIONL(containing the

length and designation), GRADEUcontaining the length and grade) and

DESIGRADE(containing designation and grade). Then, at some other time, only two of

these relations, such as DESIGNATIONL and DESIGRADE, are joined to form the

original relation. Figure 4-9 shows that this process causes four new tuples to

appear in the new BEAM3 relation (called NBEAM3) that did not appear in the original

21

DESIGNATIONL

LENGTH

20

20
i

20

40

20

DESIGNATION

W36X300

W33X241

W27X114

W30X211

W30X211

GRADEL

LENGTH

20

20

40

40

i
i

!

1
1

!

1

GRADE

A36

A514

A588

A242

NBEAM3

JOIN OVER DESIGNATION

! LENGTH

20

! 20

! 20

! 20

! 40

! 40

! 20

! 20

! 20

! 20

! 40

! 40

! 20

! 20

DESIGNATION

W36X300

W36X300

W33X241

W33X241

W30X211

W30X211

W27X114

W27X114

W30X211

W30X211

W30X211

W30X211

W30X211

W30X211

GRADE j

A36 !

A514 |

A514 |

A36 !

A588 !

A242 !

A36 !

A514 !

A36 !

A514 !

A514 |

A36 !

A588 !
• i

A242 !

DESIGRADE

DESIGNATION

W36X300

W36X300

W33X241

W33X241

W30X211

W30X211

W27X114

W27X114

W30X211

W30X211

GRADE

A36

A514

A514 !

A36

A588

A242

A36

A514
u__ _

! A36

! A514

tuples not
present in
the original

BEAH3
relation

Figure 4-9: DESIGNATIONL, GRADEL, DESIGRADE and NBEAM3 relations: Example
of join dependency.

22

BEAM3 relation. This is called a join dependency. It is only when the third

projection is also joined that the NBEAM3 relation is the same as the original BEAM3

relation. Therefore, in order to eliminate this join dependency, the BEAM3 relation

should be broken into three new relations, each with a different key corresponding to

the number of possible or "candidate" keys in BEAM3, and left in this form.

Fifth normal form can be defined in the following way:

A relation is in f i f th normal form or projection-join normal form if
and only if all join dependencies are eliminated.

4.6. DOMAIN-KEY NORMAL FORM

After reading about all the other normal forms, one may wonder if there is a limit

to the number of possible normal forms. It is true that as long as new problems

are found, new normal forms could be defined. However, Fagin [7] has defined a

different normal form that encompasses all of the other normal forms described in

this article. It is called domain-key normal form (DK/NF). In order for a relation to

be in DK/NF all insertion and deletion anomalies must be removed. Insertion and

deletion anomalies are defined by Fagin [7] in the following way:

"An insertion anomaly occurs when a seemingly legal insertion of a
single tuple into a valid instance of the relation schema causes the
resulting relation to violate one of the constraints of the relation
schema. Here 'seemingly legal' means that every entry of the new
tuple is in the appropriate domain and that the new tuple differs
from all previous tuples".

"A deletion anomaly occurs when the deletion of a single tuple
from a valid instance of the relation schema causes a constraint to
be violated".

All of the problems described in this article for the other normal forms can be

described as an insertion and/or deletion anomaly, once the concept of domain

dependencies is included in their definitions. A domain dependency is the

dependency between the attribute and the domain. If the domain is infinite, there is

no domain dependency. A bounded domain creates a domain dependency. For

example, assume that the LENGTH domain in the BEAM3 relation in Figure 4-7 is

bounded by the values 0 and 100. The insertion of a beam of length 200 feet would

violate the domain dependency.- Therefore, this is a special case of a insertion

anomaly (a constraint is violated upon insertion).

Therefore, removal of these anomalies, by whatever means necessary, causes the

23

relation to be in DK/NF which implies that the relation is also in first, second, third,

fourth and fifth normal forms. The reader is directed to Fagin [7] for a proof of

this statement and a more detailed description of DK/NF.

5. CONCLUSION

This article has defined some of the basic concepts in the relational approach to

database management, using structural engineering examples. It has shown that

databases, especially relational databases, are of great potential benefit to the

engineering profession, due to increased data independence. Also, a detailed

description of normalization has been provided. Normalization can best be

summarized by the following statement:

Once the user decides on the configuration (schema) of the
database, he or she must also be sure that this schema guards
against all possible insertion and deletion anomalies (problems) that
might arise. If the schema does not do this, the user can choose
one of the following alternatives:

• Change the schema so that all possible problems are
eliminated. If this is done, the database is in the "best"
configuration.

• Use this schema and manually check for the occurrence
of the insertion and/or deletion problems. Under normal
circumstances this alternative should not be chosen,
since the insertion and deletion problems are usually
very difficult to detect.

It is hoped that this article has provided the reader with an informative summary of

database issues and has shown the importance of careful planning during the design

of a relational database for engineering.

24

REFERENCES

[1] American Institute of Steel Construction.
Manual of Steel Construction
Eighth edition, American Institute of Steel Construction Inc., Chicago, Illinois,

1980.

[2] Blasgen, M. W., et. al.
SYSTEM R: An Architectural Overview.
IBM Systems Journal 20(1):41-61, 1981.

[3] Chamberlin, D. D. and Boyce, R. F.
SEQUEL: A Structured English Query Language.
Proceedings of the ACM - SIGFIDET Workshop , May, 1974.

[4] Chamberlin, D. D., et. al.
SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and Control.
IBM Journal of Research and Development 20(6):560-575, November, 1976.

[5] Codd, E. F.
Relational Database: A Practical Foundation for Productivity.
Communications of the ACM 25(2): 109-117, February, 1982.

[6] Date, C. J.
An Introduction to Database Systems.
Addision-Wesley, Reading, Massachusetts, 1981.
Third Edition.

[7] Fagin, Roland.
' A Normal Form for Relational Databases That Is Based on Domains and Keys.

ACM Transactions on Database Systems 6(3), September, 1981.

