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Abstract

The network representation of word templates is presented. Using the network method, words are
divided into segments, and same or different word tempiates can share segments. This not only
reduces storage required, but also enables the system (o focus on acoustically dissimilar segments.
Yet, by retaining multiple examples of the same word, it encapsulates variations of speech. A
word recognition system has been designed and implemented to facilitate network training by
providing (1) relatively reliable segmentation, (2) a segment-based warping algorithm that
tolerates inexact segmentation, and (3) incremental network generation. Two network generation
methods for isolated word recognition are presented, one of which achieved 99% accuracy for
speaker-dependent alphabets, 92% for speaker-independent alphabets, and 99% for speaker-
independent digits. Several other methods of reference generation were implemented using the
same system, and the incremental network technique proved to be superior 1o all of them.
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I. Introduction

In order for any template-based speech recognition system to perform well, it must have & well-chosen
reference set against which input speech will be matched. While it is possible to sclect and modify templates
manually (such as in HARPY [1}). a great amount of expertise and time is required. Consequently, many

procedures for automatic reference sct generation were developed.

A reference generation procedure takes a number of repetitions of cach word in the vocabulary, and
produces a reference set consisting of one or more templates per word. A procedure generating exactly one
template per word is a single-template training method. A procedure that could generate several templates per

word is a multiple-template training method.

The simplest form of reference generation is Single-Template Casual Training [2]. Using it, a set of the
training data is installed as the reference. It is the worst of all the methods because it is seriously impeded by
unreliable templates. An improvement over Casual Training is Reference Selection[3], which considers
multiple instances of each word, and selccts the token that is most likely to lead to correct recognition.

However, this technique reguires a large amount of computation, and the improvement is limited.

It is not nccessary to use natural templates as in Single-Template Casual Training and Reference
Selection. Onc simple method is Averaging Training[4], in which all replications of the same word are
averaged to create a single template for that word. Another method, Simplified Clustering [2], sclectively finds

two templates for cach word to be averaged as the reference template.

All of the above methods yield a single template for each word. For the speaker-dependent case, this is
usually adequate because within-speaker differences tend to be relatively small. For speaker-independent

recognition, however, one single template cannot capture the between-speaker differences [5].

A simple but inelegant solution is to take multiple replications of each word, and use !l of them as the
reference set. This is the Multiple-Template Casual Training. While this produces fine results, there is an
enormous amount of duplication since many replications of the same word are similar. Treating each
replication as a distinct reference template is very inefficient, since recognition of an input requires space and

time proportional to the number of reference templates.

Statistical Clustering[6] is a method that compares favorably with the results of Muliiple-Template
Casual Training, yet greatly reduces the space and time required. A clustering algorithm takes a large number

of replications of the same word, and identifies clusters of similar tokens. Rather than using every token as in



Multipie-Template Cusual Training, the tokens in a cluster arc collapsed into one template (typically by
averaging).  Since the tokens in a cluster are stimilar 0 cach other, there is no loss of information.

Conscquently, clustering eliminates much of the within-word duplications.

This method. however, docs not eliminate all the duplication of acoustic information. For example, the
letters B and D share the common vowel /i/. Clustering algorithms are tncapable of generalizing between-
word similaritics by collapsing the two /i/ segments into one. This type of generalization is perhaps more
important than the within-word generalization because after averaging the /i/ segments, the two templates
share the same /i/ part. Now, any variations in the /i/ of an input B or D is irrelevant because the match
score for that segment will be the same against the two templates. Therefore an input would match B better
than D if and only if its fricative portion matches /b/ better than /d/. Furthermore, this will reduce time and

storage requirements.

It is with these goals in mind that we investigate the Network Representation of speech. Alihough these
theoretically desirable propertics are easy to visualize, in reality, the generation of the network is a noen-trivial
task. Two incremental network generation methods for isolated word recognition are presented in this study.
The first method, the learning approach. treats training data as if they were input data. The system modifies
the network for each word in the training data depending on whether the word was correctly recognized. The
second method, the matching approach, trics to match every segment against every other, and combine similar
ones. The matching approach produced results superior to all of the abovementioned systems in both

speaker-dependent and speaker-independent recognition.

There are two problems inherent in network training: (1) The network method seems to crucially
depend on almost perfect segmentation, which is impossible with current knowledge and technology, and (2)
standard dynamic programming (DP) of whole word templates is difficult to apply because we must align
particular segments together so that the advantages of the network representation will materialize. Yet, DP

alignments often do not completely agree with segmentation boundaries.

Qur solution is a word recognition system that uses:
o Segment-based recognition over the entire utterance.
o Modified Zapdash [7] segmentation.
e A hybrid warping procedure that tolerates inexact scgmentation.
e Branch and bound exhaustive search.

o The cepstrum distance metric with power and duration information.

As shown below, this system is accurate as well as quite efficient.



We begin this paper by presenting the word recognition system.  Next, the two network generation
approaches are described and discussed in detail. Finally. we comipare the results of network training with

cach of the other technigues discussed above.



2. The Word Recognition System

‘e word recognition system shown in Figure 2-1 can be used with any type of reference gencration.
To implement a new reference gencration technique, it is only nccessary to substitute the "Reference

Generation” block. The same signal processing and segmentation arc applicd to training as well as input data.

< Start )

::\%?3 , Signal N Segment- @ v | Search references
speech Processing ation for best match
b N
Reference
Generation

Figure 2-1: The word recognition system.

2.1 Database

Three existing isolated word databases were used:

1. Speaker Dependent Alphabets - 15 tokens of each letter of the alphabet of one speaker were used.
§ of the tokens were used to generate the reference set. The remaining 10 served as test data.

2. Speaker Independent Alphabets - 5 male and 5 female speakers each produced 4 tokens of each
letter of the alphabet. To generate the reference set, 2 tokens of each speaker were used (20 sets),
and the remaining 2 tokens of each speaker {20 sets) were used as test data.l,

3. Speaker Independent Digits - 5 male and 5 female speakers each produced 4 tokens of each of the
10 digits (zero to nine). To generate the reference sct, 2 tokens of each speaker were used (20
sets), and the remaining 2 tokens of each speaker (20 sets) were used as input data.

The only exception to the above conventions is Single-Template Casual Training, which uses only one set of
templates as its reference set. In that case, we used each of the 5 (or 20 for speaker-independent) sets, and the
resulis shown are the average of the 5 (or 20) experiments. Other than this exception, the above conventions

are strictly followed in all systems to facilitate comparisons among them.

lNotc that some literature refers to this as multiple speaker and not speaker independent because the same speakers are used (o train
and test the system.



2.2 Signal Processing and Representation of Speech

The database was recorded using a high quality microphone in an office-like environment. The speech
is sampied at 10 KHz. Fach speech waveform is multiplicd by a hamming window, and 12 autocorrclation
cocfficicnts are computed using a window size of 24 milliscconds, incremented cvery 3 milliscconds. Each 24
millisecond window is thus represented as a frame of speech data. These autocorrelation coefficients are
preemphasized using a simple one zero filter with a precmphasis factor of 0.7. LLPC analysis is then
performed, producing 24 LPC cepstrum coefficients. The power value for cacl frame is calculated and
normalized by the maximum valuc in the utterance. Both the cepsirum coefficients and power are

compressed into a 9-bit representation,

2.3 Segmentation

Although there are other network systems [1]{8] {9], none was totally segment-based?. This is largely
due to inaccuracies in segmentation. The network system presented here is segment-based, and we try to cope
with imperfect segmentation by using (1) broad category segment labels, (2) a fast and relatively accurate
segmentation algorithm, and (3) a warping algorithm that does not crucially depend on perfect segmentation.

In this section we discuss (1) and {2). (3) will be discussed in 2.4.2.

The segmenter used is a subset of the Zapdash segmenter [7]. The standard Zapdash segmenter works
in 6 cycles that provide successively finer segments. For the purpose of this study, it was halted after 3 cycles,
which provided sufficient information to generate the desired labels: Vocalic (voiced), Fricative (unvoiced),
and Silence. Experiments showed that more precise labels lead to more segmentation errors, which negatively
affect recognition. The Zapdash output is post-processed to eliminate unrealistically short segments. Figure
2-2 shows an example of Zapdash-segmentation of the letter “X". The number under the segment label

indicates the duration in milliseconds.

SIL FRC
(120) (320)

Figure 2-2: Zapdash segmentation of the letter X.

In this study, every input utterance (training or test) is scgmented, and recognition. as well as matching, depends upon segmentation.
In most other network systems, however, segmentation is only applied to the training data.



Although Zapdash sometimes misses weak fricatives, and occasionally detects noise as actual segments,
its performance is satisfactory for the purpose of this study. In order to show its adequacy, 15 scts of the
alphabet data were hand scgmented into vocalic, fricative. and silence regions. A frame by frame comparison
of the hand scgmentation and the Zapdash scgmentation showed different labels in only 3.56% of the 10
millisccond frames. Using Single- Template Casual Training (Sec Section 3.1) for those 15 scts of onc speaker,
the recognition accuracies obtained were 91.98% and 91.59% for the hand segmentation and Zapdash

scgmentation respectively. This shows that Zapdash segmentation for coarse class labels is quite reasonable.

2.4 Recognition

The recognition module will be cxamined in a bottom up fashion: first, how the frame to frame
distance is computed; second, how iwo words are aligned frame to frame; finally, how the best matching

reference word for the input is found.

2.4.1 The Cepstrum Distance Metric with Duration and Power

The distance metric used in the system is a modified cepstrum distance that considers not only the
spectral difference, but also power and duration differences. Many studies have dealt with the cepstrum
distance [10] {11} [12]. The metric presented here is adopted from Shikano's study [12], with some variations.

Standard cepstrum distance between two frames is defined by:

N
2
Z(Cik— jk)
k=1
where Cl.k and Cix represent the kT cepstrum autocorrelation cocfficient of the ' frame of the reference and
the f"’ frame of the test data. N (= 24)is the order of LPC analysis.

An enhancement takes power into consideration. Power is computed for every frame of the data, and

combined into the equation as follows:

N
W, x =+ 22 (Cym )
where i and j are the indices of ’tc.l;—-el frame being compared, and P, and p;are the power values for the reference
and input frames. Wp is a weight applied to the power so that it does not become (0o prominent. Our
experiments have shown that optimal performance can be achieved when the average contribution of power
(to the total distance) is about 6-7% in the speaker dependent recognition, and 11-12% in speaker independent

recognition.

Another improvement is to consider the durational difference between the reference and the input

After the frame-wise distances have been computed and summed, we add to that the durational difference



between the two segmental groups {See next section] multiplicd by seme constant, expanding the above

cquation to;

D N
Wd|D-d|+Z{ pr(l”.—pj)z-i-Z(Cik—cjk)z}
where W p is the weight for’;i:zralion. D is the nurflgclrr of frames in this group of the reference, and & is the
number of frames in this group of the input. Experiments show that optimal performance can be achieved
when the average contribution of duration is 3% in speaker dependent recognition, and 4% in speaker

independent recognition.

To show the contribution of power and duration, three Single-Template Casual Training (See Section
5.1) experiments were run for both the speaker-dependent and speaker-independent alphabet databases using
distance mcasurements obtained from simple cepstrum distance, cepstrum distance with power, and cepstrum
distance with power and duration. Table 2-1 shows the results. [t is evident that adding power and duration
has improved the recognition, particularly for speaker-independent data. ‘This is because spectral information

is less reliable between different speakers,

Distance Measurement Speaker Dependent Speaker Independent
Cepstrum Distance 90.00% 47.69%
Cep. Dist. 4+ power 90.76% 50.76%
Cep. Dist + power + duration 91.53% 52.30%

Figure 2-1: Alphabet recognition results using single template training
with three variations of cepstrum distance.

2.4.2 Hybrid Warping Algoritlim

Warping is the alignment of the input and the reference (mapping each frame in the reference to a
corresponding frame in the input, so that they can be compared). The muost simplistic kind of warping, linear
warping, simply takes the two samples and matches them according to the ratio of their lengths. An example

of linear warping is shown in Figure 2-3.

Many specch recognition systems use some variation of dynamic programming (DP) [13], which involves
the stretching and shrinking of the templates to find the minimal distance. This is illustrated in Figure 2-4.
DP 1s known to produce better results than linear warping {14]; however, it is far more time consuming than

linear warping.

In order to obtain accurate results while reducing recognition time, a hybrid warping algorithm that



Reference
input
Figure 2-3: A lincar warp frame alignment.
Reference
Input

Figure 2-4: A possible dynamic wafp frame alignment.

combines both techniques is formulated. This algorithm utilizes the segment boundaries produced in the
segmentation phasc. Using this algorithm, speech segments arc dynamically aligned into groups: within cach
group, the frames are linearly aligned. In other words, we are looking for the way to group together the
segments of the input with the segments of the reference such that the distance between the input and the
reference is minimal. This is shown in Figure 2-5. We will use the term alignment to indicate a particular way
to align the segments of the two words, such as Figure 2-5; and we will usc group to mean a grouping of

segments from the two words. An alignment consists of one or more groups.

Seg1 Seg2 Seg 3 Seq 4

Referencé

Input

Seg i Seg 2 Seg 3
TN SRR E PR S YRR T

Group 1 Group 2 Group 3

Figure 2-5: A hybrid warp frame alignment.



‘The above algorithm still may reselt in many improbable alignments. Thus, we impaose four constraints
upon this algerithm:
1. Sequential Constraint - Both utterances are processed beginning to end, with the exception of

allowing skipping of segments up to 10 frames (30 milliseconds) in the beginning or the end (with
some penalty).

[2%)

. Alignment Constraint - All groups are one (segment) o many (scgments), or one to one. No many
to many mappings are allowed.

3. Durational Constraint - Two groups of segments can be aligned onty if the following relation
holds for L ; (total group length from utterance 1) and Lz (total group length from utterance 2):

L <(L;175+10) and L,<(L-1.75+10)

4. Phonctic Constraint - It is not permissible to match any segment against segment(s) that have a
large percentage (set at 50%) of frames with a different coarse phonetic label.

Constraints 1 and 3 are similar to boundary and slope constraints in DP [15]. Constraint 2 is necessary
because if we consider many to many mappings, many more alignments must be considered, and the
contribution of scgmentation is reduced. Constraint 4 is simply an exploitation of information available from

segmentation.

Figure 2-6 shows two examples of the letter X, and their Zapdash scgmentation. Figure 2-7 shows the
number of possible alignments after applying constraint 1. Each rectangle shows a possible alignment; the
circles represent the segments; and each partition is a group of the alignment. For example, alignment 14
aligns segments 2 and 3 of the first X with segment 1 of the second X; segment 4 of the first X with segments 2
and 3 of the second X. Scgment 1 of the first X is ignored by not aligning it with any segments in the second

X. The effect of constraints 2, 3, and 4 are shown in Table 2-2.
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Figure 2-6: Zapdash segmentations of two cxamples of the letter X.

0000 dgoo o7bo o?gb
o000 || 0oo || 00O || 00O
(1) (2) (3) (4)
o@%o odYo O 0 0/0||0\0\0 O
oo || 000 || 000 || O\O\O
(5) (6) (7) (8)
d?oo o0 o/o/o||lo/o o 0||0/0/0 0
oo/ || oo/ ||/000O ||/00O0
(9) (10) (11) (12)
c/o? o) 70 0/0 70 70 70 c/o
ooo ||/0P0 ||/00/0 || /0/0/0
(13) (14) (15) (16)

Figure 2-7: Possible alignments of the 2 X's in figure 2-6 after constraint 1.

After applying all 4 constraints, we can see that alignments 10 and 16 are indced the only plausible

alignments of the two X’s. Given alignments 10 or 16, the DP should not outperform the Hybrid Warp since
DP is likely to have similar frame to frame alignments.
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After Applyving Constraint Alignments Not Pruned

V Sequemtial 1 2 3-4 5 6 7 8 910 11 12 13 14 15 16
2 Alignment 4 5 8 9 10 13 14 16

3 Durational 4 10 14 16

4 Phonetic 10 16

Figure 2-2: 'The constraint propagation process in the hybrid warp.

These constraints are powerful enough to reduce the scarch to significantly less than that required by
DP, yet are sensitive enough to produce results comparabie to DP. In order to demonstrate this, the Itakura
asymmetric warp [15] and linear warp were impiemented within the systemn structure. For this experiment,
the Matching Approach Network Training (see Section 3.2) was applied to speaker-independent and speaker-
dependent alphabet data. The results in Table 2-3 demonstrate that the Hybrid Warp Procedure achieves

accuracy very close to DP, yet uses only slightly more time than linear warping.

Speaker Dependent Speaker Independent
Warp Procedure % Recog. Sec./Recog. % Recog. Sec./Recog.
Itakura Warp 99.23 480 92.20 3549
Linear Warp 96.92 0.72 89.96 299
Hybrid Warp 99.23 0.78 91.92 3.57

Figure 2-3: Comparison of warping algorithms using matching approach
network generation and the alphabet database.

When each frame is considered a segment, the outcome of Hybrid Warp is identical to dynamic
programming; when the utterances arc one segment long, it is identical to lincar warp. Thus, while the hybrid
warping algorithm is able to cope with considerable segmentation errors, it does rely on segmentation 10
acquire the power of DP. Nevertheless, when segmentation is inaccurate, one should expect degraded, but

not unreasonable results. Appendix 1 describes the Hybrid Warp in more detail,

2.4.3 Search

The recognition phase is a search for the reference pattern which best matches the input. The search
technique used here is a branch and bound exhaustive search.[16] Although other systems [8] [1] have
performed well without searching exhaustively, the word recggnition system here is sufficiently fast, and the
vocabulary sufficiently small, for exhaustive search to be feasible. The speed of the system is further

enhanced by branch and bound pruning. Simply stated, branch and-bound means: whenever the distance of
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a partial alignment has cxceeded the current minimum complete alignment distance, it could not possibly be
the best match: therefore. there is no need to complete the matching and distance computation for this
alignment. After the computation of cach frame-wise distance, we check if the current minimum distance has
been exceeded. If s, abandon the current alignment. It is important to understand that the use of branch

and bound affects only the speed, not the accuracy, of recognition.

In order to illustrate the savings of branch and bound pruning, we modifted the recognition routine to
scarch exhaustively. The savings of branch and bound is shown in Table 2-4 werc obtained by Marching
Approach Network Technigue (sce section 3.2). The time aiven is seconds per recognition. This experiment

shows that branch and bound rcquifcs only 20-25% of the time used by exhaustive search.

SECONDS PER RECOGNITION OF ALPHABETS

Search Algorithm Speaker Dependent Speaker Independent
Exhaustive Search 3138 16.57
Branch-and-Bound 0.78 357

Figure 2-4: Savings by branch and bound using matching approach
network generation.



3. Network Training

Using the network representation, the reference st is encoded as a network of nodes linked with paths.
A node is a basic unit of speech, and is equivalent to a segment. A path is a sequence of one or more nodes,
and corresponds to a word. For example, a path for "B” could be represented as in Figure 3-1, and a network
with three paths ("B", "D”. and "V") and 4 nodes (/b/, /d/, /v/. and /i/) is shown in Figure 3-2.

B |7 B, @ B,
Figure 3-1: A path for "B" using the network representation.
1 B, 1
o [+
1 D D

1 1

vi

Yol

Figure 3-2: A network of 3 paths,

The network in Figure 3-2 is very effective and compact. If the three words were stored as three
templates, when we match them against an input, random variations in the /i/ part will dominate the total
distance because the vocalic segment is much longer than the fricative. With the above network, however, the
/i/ segment of an input B, D, or V will have the same match score against each of the three paths, This
between-word generalization leads to the ability to discriminate important (/b/ 7d/ /v/ here) from
unimportant (/i/ hére) segments. Furthermore, the above network requires less than half the space of three
full templates because two long /i/ segments are climinated. The savings could be more significant with

larger vocabulary and larger number of training data per word.

It is easy to see the advantages of the network representation; however, it is far from clear how to
generate such a network from sets of training data. In this chapter, we examine two methods of network
generation.  Unlike traditional network systems, we use an incremental network approach. The first
technique, the learning approach, is modeled after NEXUS [8] with some modifications. It tries to recognize

cach training data, and is positively reinforced for correct recognition, and learns from its mistakes. Although
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this technique seems very elegant, a more compact network resulting in beteer recognition can be constructed
using a simpler method, the matching approach, ‘I'e marching approach matches words against cach other to

coliapse similar scgments. ‘The following sections describe these techniques and the results in detail.

3.1 The Learning Approach

The fearning Approach atiempts to recognize each token in the training data as if it were input data.

Depending on the outcome of the recognition, the network is modified accordingly.

If the recognition is positive (the path in the network that best matches the input has the same identity
as the input), then the system invokes the positive exemplar learning module. This module looks at cach
group in the best alignment between the input and the best matching same-word template. If cvery group
distance is within a distance threshold, TS, then each group of the input is averaged with its counterpart in the
template. If any group distance is too large to average, a new network path is created, averaging the input
with the tempfate when the group distance is below the threshold, and using input nodes otherwise. In nearly

all cases, there is no need to add another path (every group distance is below TS).

If the recognition is negative (a word template with identity different from the input was determined to
be the best match), the learning process is more complex. There are two possible causcs for a negative
recognition. The first cause is that the training token had not appeared before. In this case, we maich the
token against each of the existing paths, and when partial alignments are found to be similar, the
corresponding segments (but never the whole word) are averaged together. Otherwise, the input scgments are
added.

In case of a real error {there exists at least one path whose identity is the same as the input token), the
learning module is invoked to attempt to add a new path that is more similar to the input than the wrong-word
match. This new path may use

¢ Segments from the input
e Segments from the input averaged with segments from the wrong word match.
e Scgments from the input averaged with segments from a same word template.

Next, we describe the exact algorithm that constructs this path.

The first step is to recover all groups that constitute the best alignment of the wrong template to the
input, and of each template of the correct word to the input. Table 3-1 shows the groups and the scores for
the initial network and input in Figure 3-3. (Note, however, that there could be other same-word (B)

. templates in the pool)
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Figure 3-3: A partial network and a training input “B" before network
modification.

b/ (length = 5) 1/ (length = 100)

Path Node Node Distance Node Distance Path Distance
D1 /dy/ 90 - 2450

/i - 20
B, /bl/ 30 - 3150

fiy/ - 30

Figure 3-1: Table of distances between every segment of the input and
every node in the partiat network in figure 3-3.

Table 3-1 shows that /b,/ is a much better match than /d,/ for /b/, and that /i;/ is only slightly better
than /i,/ for /ii/. However, because of the dominant length of /i, template D, yielded a smaller distance
than B,, causing an incorrect recognition. The network approach tries to avoid this error in the future by

adding a new path with identity B in the network. That new path must match Bi better than Dl matches Bi.

In order to medify the network with most accuracy, we introduce a distance threshold: TD. If any group
between segments of the different word template that was incorrectly "recognized" and segments of the input
has a distance greater than 7, it is not considered as a candidate to be averaged with the input. Similarly, TS
is the distance threshold for the same word templates, and any same-word groups with distance greater than
TS are eliminated. Note that Tsa TD because it is never more desirable to average into a different word than
into a same word. Using the above example, if T s=60 and 7, =30, then (d,, b)) is eliminated. The pool of

the remaining groups and the distance of each group (8) are:

. 8(5, b)) = 30 8(i, i) = 20 801, ip) = 30

Next, all possibilitics of combining these segments are considered, and the combination with the
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minimal total distance is the new palh} . "T'he following shows the computation of the new path:

8(b.b)5+ 8.0 ) 160 = 30-5+20-100=2150

8(b.b)y5+ B(ir.il)-100=30-5+ 10-100=3150
This indicates that b, and i, arc the best matches for the input segments, and that they should be used in the
modification of the network. Thus, the new path is the two segments: (1) b, averaged with b, and i

averaged with i.. Figure 3-4 shows the modified network.

In the network algorithm, when network nodes are found to match the input segments well, they are
averaged together to create a more reliable template. Segments that are averaged into a network node in this

fashion are weighted equally.

D |-
B |~
B, |

Figure 3-4; Modified network given Figure 3-3 and Table 3-1.

If B(bl, bi) were equal to 80 (there is no good match for the /bi/)' then there will be no path that
averages network nodes with every segment of the input. Therefore, each segment of the input is also
included in the pool with the § value of that segment set to TS Setting 8 of each input segment to TS results
in using input segments only when it is impossible to find segments from different-word or same-word

templates to average segments of the input into. In this case, the possible combinations are:
8(b,b 9-5 + 8(:",1‘1)- 100 =60-5+ 20-100=2300
8(bl.b >3+ 8(:’i.i2)- 100=60-5+ 30-100=3300
The system will correctly choose to add the input segment /b,/, average /i/ with fiy/, and add a new path

with these two nodes. Figure 3-5 shows the resulting network.

The only case where this learning scheme will fail is when the new path consists entirely of segments
corresponding to a different word (for example, if 8(b,, dl) = 20). When this occurs, there are two possible

Causes:;

3Ac1ually. not all combinations are considered completely. This problem is equivalent to finding the shortest path in a directed
weighted graph. Dijkstra’s shortest single-source path algorithm [17] is used, and many impossible partial paths are pruned.



Figure 3-5: TFigure 12: Modified network given Figure 10 and Table §
when no existing nodes provide a good match to /by/, so that it i necessary
to create new.

paths and nodes.)

1. The entire input is too similar to the incorrect different word template.

2. The entire input is too different from the templates for the same word that are alrcady in the
network,

The first case is characterized by small distance between the input and the different-word template. The
second is characterized by large distance(s) between the input and the same-word template(s), and between
the input and different-word template. The systems tries to decide which case is valid, and if it is the first
casc, the input is ignored (no adjustment of network), and if it is the second case, the worst group from the

different-word template is removed from the pool and a new path is recomputed.

This concludes the description of the learning approach. The results and discussions of this approach

will appear in later sections.

3.2 The Matching Approach

While the learning approach seems clegant and appeals to cognitive modeling, we believe the network
generation proc-ess should be more general. Given an input, the best match for any of its scgment(s) may not
be part of a same-word template or the wrong-word match, beyond which the learning approach does not
consider. For example, a template C may match an input B very poorly because of the difference in the
duration of the frication; however, they may have very similar /i/ scgménts. which we want to average
together, as shown in figure 3-6A. With the learning approach, no segments from C will be considered, and

this results in the inferior network shown in Figure 3-6B.

In another example, the /s/ part of an input C may match the /s/ of an S template very well; however,

the two /s/ sounds will never be aligned against each other in any scquential warping algorithm. The
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B, |/ B, |/
{(A) Correct Network (B) Network Generated by

Learning Approach

Figure 3-6: Two possible networks after modifications given the input (B,
was added).

network should be modified as in Figure 3-7A; however, the Jearning approach will result in the network

shown in Figure 3-7B.

C, c,
S1 S‘l
C, C,

{(A) Correct Network (B) Network Generated by

Learning Approach

Figure 3-7: Two possible networks after modifications given the input (C2
was added).

In each of these two cases, we would like to make generalizations, but cannot do so because of positional
or durational differences between a template and the input. The learning approach does not allow for these
generalizations. Potential candidates for the learning approach are summarized in Table 3-2. The learning

approach excludes most of the templates in the network (such as Figure 3-6), and all groups in non-optimal

alignment (such as Figure 3-7).
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Same-Word Temphates Different-Word Templates

Best Match Others Best Match Others
Correct Recog. Yes No No No
Incorr. Recog. Yes Yes Yes No

Figure 3-2: Potential contributors to new path for learning approach
network generation.

Thus, we introduce an alternative approach, the matching approach. The maiching approach is a much
simpler approach that applies the same algorithm to every token in the training set. [t permits usage of groups

from any alignment between the input and any reference template.

Similar to the learning approach, the network is built incrementally. The mdtch:’ng approach consists of

two steps:

1. Construction of a pool of groups.

2. Network modification.

In the first step, every path in the current network is matched against the current training word template
to identify similar groups. The Hybrid Warp constraints (Section 2.4.2) are not all applicable because
somehow we must match similar sounds in different positions against each other. This can be accomplished
by removing the sequential constraint in the Hybrid Warp. In other words, match any sequence of segments
in the tken against any sequence of segments in every template. This modified warp that computes all

plausible groups between two words W and W is outlined as below:

For each segment s, in W,
For each segment s, in W
Match s, against s, if other constraints are satisfied.

For each segment 5, in W,
For each sequence of two or more segments 52 in W
Match 5, against Sz if other constraints are satisfied.

For each segment s, in W,
For each sequence of two or more segments S, in W
Match s, against S, if other constraints are satisfied.

All of the matches above and their distances are saved in the pool of groups. Next, we delete from the
pool: (1) each group with distance greater than TD if the group is from a word with identity different from W,
and (2) each group with distance greater than TS if the group is from a word with the same identity as W

(Note that TD and TS serve conveniently as branch and bound cut-off's for the group distance computation).
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‘Then, we add each of the input segments with the group distance score equal to T (so that an input scgment

is uscd in the path only if no similar segment is found in the network). K

In the sccond step, we examine all combinations of the groups in the pool, and select the best path
(smallest total distance) of groups that covers cvery input scgment once. For cach group in the best path that
uses network segments, we average the appropriale input segments into the network segment(s). If the group
consists of an input scgment only. it is used in isolation because no similar scgment from the network can be

uscd.

If the best path is equivalent to a same-word existing path, then no paths need be added. If the best
path is equivalent to a different-word existing path, we either ignore the input (when it is too close to the
different-word) or climinate the worst group of the match from consideration and recomputc the best path. If

the best path uscs segments from more than one template, they are linked together to form a new path.

Like the Hybrid Warp, this algorithm is designed to deal with inaccurate scgmentation. A simpler
method would be to match each segment of the input against each existing segment of the same type in the
network: however, as Zapdash sometimes misscs a segment, or creates an extra segment, that method would

not find as many alignments that can be averaged.

Figure 3-8 shows a portion {the Eset- B, C, D, E, G, P, T, V., Z) of the actual network generated by this
approach after 5 sets of speaker-dependent training data. This partial network requires less space than a
single set of the 9 letters. This shows the potential for savings in space when words in the vocabulary are

similar.

This completes the description of the matching approach. It is similar to the Jearning approach. In fact,
the bulk of the two algorithms is the same, with three notable exceptions: (1) the matching approach makes no
distinction between correct and incorrect recognition, (2) the matching approach allows any template to
contribute to the new path, and (3) the mazching approach permits non-sequential alignment when searching

for a good match through a relaxed hybrid warp.

3.3 Results

Performance of the two nctwork systems are displayed in table 3-3. As stated in section 2.1, the
speaker-dependent results the letters of the alphabets were obtained using 5 sets of one speaker to train, and
10 other sets of the same speaker to test; and the speaker-independent results (both letters and digits) were

obtained using 2 sets cach of 10 speakers to train, and another 2 sets cach of the 10 speakers to test.
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Figure 3-8: A partial network generated by matching.

"Recognition” is the percentage correctly recognized utterances out of a possible total of 260
recognitions for speaker dependent letters, 520 for speaker independent alphabets, and 200 for speaker
independent digits. "Megabytes used” accounts for the data space used by the program. It is dominated by
the cepstrum coefficients. Also included are the power values, network maintenance information, and the
data structures for paths and nodes. "Total time for generation” is the time the network algorithm took to

generate the network, and "Time per recognition” is the time used for ore recognition.
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Speiker Dependent Speaker Independent
Alphabets Alphabets Iigits
Learning Matching  lLearning Matching  Leanting Matching
Recognition 98.08% 99.23% 89.23% 91.92% 98.00%  99.00%
MBytes used for network data 0.18 0.17 1.58 .15 0.61 0.30
Total Time for generation {sec)) 121 93 1581 902 230 119
Time per recognition (scc.) 0.82 0.78 436 2.85 0.63 0.53

Figure 3-3: Recognition accuracy, space requirements, and time
requirements of the two network approaches.

3.4 Discussion
Traditionally, network-based systems {1][9] use some form of compiled network. Neither of the
approaches described belongs in this category. They are both incremental network systems. Compared to the
compiled network, the incremental approach has a number of advantages:
1. Language and vocabulary independence.
2. Easy addition of new words by learning.
3. Docs not require phonetic description and alternate pronunciations of each word.

4. Does not require accurate and fine labeling.

However, it is likely to use more space and may yield inferior performance.

Nevertheless, the results in the previous section are very encouraging. In particular, the matching
approach attained high recognition accuracy. The main reason that it produced better results is that it has a
greater pool from which to select the candidates for averaging. It can be thought of as an incremental
segment-level clustering process. Its superiority is predicated upon its ability to find more suitable clusters for

the input segments.

Morcover, the maiching approach is easier to implement because of its use of a uniform procedure for

network incrementation. For the same reason, it is easier to understand.

The matching approach is superior in both time measurements. It is faster in network éeneration
because the recognition phase in the learning approach could take considerable time. Also, the matching
“approach allows the use of the thresholds as branch and bound cut-off’s, which eliminates the need to

compare most of the dissimilar groups. Its smaller network accounts for the faster recognition time.
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One disadvantage of the marching approach is when the vocabulary size grows larger, the marching
appreach may require a large amount of time (because of die larger paol of growps). But if better or finer
segmentation were available, it may not be necessary w consider matching sequences of scgments, and we
could simply look for one-to-one groups. FFurthermore, since reference generation occurs only oncs, and the

network can be casily mouified later, this is not a serious problem.

One common problem to both approaches is the need of considerable space and time for speaker
independent recognition. Figure 3-9 shows recognition rate vs. space usage (space usage is adjusted by tuning
the distance thresholds Ty and TS) for speaker independent alphabet recognition. The fearning approach is
clearly inferior because it requires almost over 1.5 megabytes to reach its optimal accuracy - 89.23%, which
matching approach can attain with only 0.5 megabyte. But even the maiching approach requires 1 megabyte
(about the size of 10 data scts) for its optimal performance (91.92%). This reduces the storage requirements

by only 50% from using all the training tokens.

A comparison between Figure 16 and Figure 17 shows that speaker-dependent recognition reaches
asymptotic recognition performance with a much smaller amount of required storage. In fact, the asymptotic
storage required only 50% more storage than what is nceded for just one set of data. This is the idcal behavior
that we seek. Unfortunate]y, a comparably efficient representation is not possible for speaker independent

recognition.

One might expect recognition rate to increase monotonically with additional storage. In F igure 3-10,
that is clearly not the case. Also in Figure 3-9, the slope is negative after 1 MB for the malching approach.
The local fluctuations are caused by imperfect choice of thresholds. Our choice of TD and TS are not always
optimal for any allowed space. An bad choice may cause a drop in accuracy while a good choice may cause an

increase.

The general non-monotonic shape of the curves can be explained as follows: the variations in speech
cannot be represented using one template or very few per word; thus, there is an increase in accuracy when
we provide some additional storage. However, when we start adding unreliable templates, recognition rate
will drop. For example, consider the case where the stabilized network has a template for B and another for
D, each of which has been averaged into many times. A training input B that is slightly closer to D may be
ignored or averaged if space is limited (by low thresholds). Ignoring is ideal, and averaging is unlikely to be
disastrous (since averaging is weighed by number of components already averaged into the template). But if
that input is added as a template; more B-D confusion will occur during recognition. Thus, recognition rate

will decline with superfluous additional storage.
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Figure 3-9: Speaker-independent recognition accuracy vs. space usage for
network training.
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4. Comparison of Network Systems with Nexus

NEXUS [8] is a word rccognition system using a network rcprcscnta[ioﬁ similar to the systems in this
paper, and a lcarning strategy similar to the learning approach. Many underfying theories and concepts
discussed in this paper were motivated by NEXUS. However, there are many differences in the
representation of speech, the gencration of the network, and recognition using a network-structured reference
set. These differences. as well as how they effect the performance of the systems, will be discussed in the

subsequent sections. [n this Chapter, the two approaches will be abbreviated as LEARN and MATCH.

4.1 Speech Representation

In NEXUS, spectral coefficients from Fast Fourier Transform are usced to represent the speech signal.
NEXUS encodes every 12 milliscconds of speech with 26 8-bit coefficients. In contrast, the word recognition
system in this study encodes every 3 milliseconds of speech with 24 9-bit LPC cepstrum coefficients. Both
NEXUS and the system in this study use the Euclidean distance to measure the distance between two frames
of speech. In addition, we also use power and duration information to enhance the distance measurement.
Although it has been shown that cepstrum coefﬁcientﬁ are more accurate than FFT cocfficients [18], and
NEXUS uses less storage, these factors cannot completely account for the difference in performance to be

shown later.

Segmentation in NEXUS is based on a segmenter written by Bradshaw for NEXUS [8]. The
segmentation algorithm we used is the Zapdash segmenter. The Bradshaw segmenter uses parameters quite
similar to Zapdash, but uses a different strategy for segmentation. The details of that segmenter is beyond the
scope of this paper. Nevertheless, it should be noted that Bradshaw's segmenter produces four broad category
segment labels: Vocalic, Fricative, Silence, and Unknown; thus, another difference between it and Zapdash is

that unlike Zapdash, it does not try to label segments with uncertain identity.

In a recent evaluation on a large database from multiple speakers, Waibe! [19] showed that Zapdash is
somewhat better, yet takes less time than the Bradshaw segmenter in classification of vocalic, silence, and
fricative when compared to hand segmentation. This is the case even if all the Unknown segments (very few)
are classified correctly by the Bradshaw segmenter. From examining many outputs of both segments, it
appears that Zapdash is a more robust segmenter, and the Bradshaw scgmenter worked weli for the two
speakers it was trained on. For these two speakers (the only two used in NEXUS), the Bradshaw segmenter
was as good as, if not better than, the Zapdash segmenter. Therefore, in spite of Waibel's results, we cannot

attribute the inferior performance of NEXUS to segmentation.



4.2 Network Representation

Although NEXUS has more complex data types. retaining more information about the network
structure and the speech, there is no fundamental difference in the representation of the network. Both

systems maintain a list of paths that represent words, and cach path consists of nodes that represent segments.

4.3 Network Generation

NEXUS uses a learning paradigm quite similar to LEARN to generate its network incrementaily. For

cach training token, NEXUS first tries to recognize it using the existing network, and on:

o Correct Recognition - Always average into the same-word token that matched. This is similar to
the LEARN, except the LEARN allows for adding instead of averaging scgments that are not really
good maiches.

o Unknown Word - A new path is added to the network, averaging segments into well-matching
network nodes, or adding the segments themselves. This is identical to both LEARN and
MATCH.

o Incorrect Recognition - NEXUS computes a similarity analysis by:

o Find the network paths with the same identity as the input, and identify the best same-word
match,

o Match all network paths that have the same identity as the input word against the input
word and the best same-word match.

o Match alf network paths that have the same identity as the incorrect best-match against the
input word and the best same-word match.

o Sum the above distances as two vectors, one of which shows a frame-by-frame total distance
between the two different words, and another between different examples of the same
words. Then, the two vectors are subtracted to produce a profile. At any frame of the
profile where the value is positive, the between-word match is less similar than the within-
word match.

If either no matching same-word path is found or the profile does not correspond with
segmentation, the input is added. Otherwise, parts of the input may be averaged into the best
same-word match, the incorrect best match, or simply added. LEARN's error recovery process
also locates good segments 10 average, but it does not need to make this correspondence. MATCH
uses a totally different strategy. '

Furthermore, NEXUS uscs network maintenance heuristics to eliminate "unnecessary” or "harmfuf"
paths. An "unnecessary” path is one that has not been used to correctly recognize an input in five recognition
cycles. A "harmful” path is one that was incorrectly used over 40% of the time. The systems in this study are

not equipped with these heuristics.



4.4 Network Recognition

The greatest difference in network recognition is that NEXUS docs nat distinguish recognition from
generation.  With NEXUS, a recognition is always followed by lcarning and network adjustments. On the
other hand, learning always requires recognition first. 1.EARN is similar, cxcept for practical purposes, we

have scparated generation from recognition. MATCH does not require recoguition in the gencration stage.

Another difference is in search. NEXUS uses beamscarch, which expands potential paths in parallel,
However, because of the similarity in the vocabulary, the beam size is set at a large value to minimize praning
of the corrcct path. Because of this, the exhaustive scarch used by the systems here actually uscs less time for
search than the beamsearch in NEXUS.

Although NEXUS segments input speech, that information is not used in the matching. Instead, it uses
a standard DP matching algorithm to maich the input word against every path in the network. Although DP
is slightly more accurate than the Hybrid Warp, it is very time consuming. Furthermore, useful information

from segmentation was not used.

4.5 Comparison of Results

Nexus was tested on speaker-dependent alphabet data of two speakers. The first haif of the same data
for one of these speakers (mgb) was used throughout this study as the "speaker dependent alphabet
database”. Itis, therefore, possible to directly compare the performance of NEXUS and the systems here.

Bradshaw [8] used 30 scts of the mgh speaker-dependent alphabets to generate a network, and reporied
results for every 5 sets in a continuous 30-trial experiment (Recall that NEXUS does not distinguish between

training and testing). Table 4-1 shows the performance of NEXUS:

Trials Recogoition %
2-5 90.38%
6-10 94.61%
11-15 93.84%
16-20 . 93.84%
21-25 95.38%
26-30 90.76%

Figure 4-1: Nexus recognition results.

The systems in this study used sets 1-5 to train, and 6-15 to test, and LEARN autained 9%.08% recognition
accuracy and MATCH reached 99.23%. In contrast, with continuous learning, NEXUS recognized 94.23% of
the alphabets in sets 6-15.
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[ terms of storage, cach system used somewhat tess than the size of 2 full sets of the alphabets, although

NEXUS required considerably fewer bytes w represent cach set.  No time measurements for NEXUS are

available, but based on experience, it is much slower than the systems here because of 1P tatching.

4.6 Summary of Dilfeiences

Table 4-2 displays the differences and similarities between NEXUS and the two systems described in

this paper.
Nexus Learn Match
Representation
Speech FFT Coefficients Cepstrum Coefficients  Cepstrum Coefficients
Network Path = Word Path = Word Path = Word
Node = Segment Node = Segment Node = Segment
Algorithms
Distance Measurement  Fuclidean Euclidean + PD Euclidean + PD
Segmentation Bradshaw Zapdash Zapdash
Warping DP Hybrid Warp Hybrid Warp
Search Beam Search Exhaustive Search Exhaustive Search

Network Generation
General Strategy
Different Situations

Incremental Learning
Correct Recognition

Incorrect Recognition
Network Maintenance

Incremental Learning
Correct Recognition
Incorrect Recognition

Incremental Modification
Uniform Method

Options Available Add, average Add, average, ignore Add, average, ignore
Number of Network Few More than NEXUS Alt
Nodes Usable*
Recognition % 94.23% 98.08% 99.23%

Figure 4-2: Summary of differences between NEXUS, LEARN, and

MATCH.

4.7 Discussion

Although NEXUS, LEARN, and MATCH are all incremental network systems, they have many

fundamental differences. The most salient one is the motivation behind each system. NEXUS was designed

to substantiate the Property Integration Theory of speech learning. This theory of the development of human

4For averaging into the input. See Table 3-2.
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speech perception postulates that speech is learned by integrating properties from cxamples. On the other
hand, the systems here were designed with the goal of creating an accurate and efficient computer recognizer

of human speech.

NEXUS makes no distinction between Icarning (gencration) and recognition. Every learning trial
requires recognition first, after which the network is adjusted depending upon the outcome of the recognition.
‘This was intended to model human learning, and can (1) learn new words at any time, and {2} continuously
improve perceptual accuracy. This concept was partially inherited by LEARN, but not used at all in
MATCH. However, LEARN and MATCH both distinguish learning from recognition. This is because it was
felt that (1) lcarning new words at recognition time is not an important concern for a small and novel system,
and can be implemented casily, (2) results indicate that prolonged learning does not improve accuracy, and
most importantly, (3) continuous learning is very time consuming; thus. it contradicts our goal of an efficient

system,

LEARN inherits the NEXUS strategy of applying different algorithms depending upon the outcome of
recognition. When recognition is positive, LEARN and NEXUS only differ in that LEARN can avoid using
the best same-word match. This is a very minor improvement. All three systems behave similarly when

presented with a new word (add the word using existing nodes whenevcer possible).

However, NEXUS and LEARN are quite different in their strategies of error-recovery from true
recognition errors. NEXUS creates a profile by making a large number of comparisons, and then
corresponding that with the segmentation to find where the correct word and the incorrectly recognized word
differ. Next, it averages the segments of the input with any same-word node that is a best-matching node for
that segment. Then, it uses nodes from the mismatched path if the corresponding segments were determined
to be similar (Similarity is measured by a threshold value). Finally, segments from the input may be added.

If either the profile or the correspondence is unsuccessful, the input is simply added.

The error recovery mechanism in LEARN has a more local view. Instead of attempting to find where
the two words differ, it tries to find goéd segmen(s in either the mismatch, or in any same-word path to
average into, and, failing that, input segments are added. Instead of searching "best matching” node for each
node only as in NEXUS, LEARN uses Dijkstra’s algorithm that examines the entire space of segments from
usable words. This is more likely to find a better averaging path. Furthermore, no correspondence need be
created. In LEARN, the correspondence is implicit in the alignment of segments in the Hybrid Warp.

Therefore, it does not suffer from the inability to find a correspondence.

However, because of the locality of its analysis, the error recovery procedure of LEARN is more likely
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to average two different sounds together. 1M wo different sounds have a lower distance than the sane sounds,
and that distance is below a threshold, they will be averaged together, (Note that the fearning mechanism
knows the identity of cach word. but not that of cach segment), Nevertheless, by sctting T ga sufficiently
low level, this can be minimized. Furthermore, NEXUS is prone to the same problem in the carly stages of

network generation when it must rely on the information of only very few paths per word.

In terms of compactness and efficiency, LEARN is superior to NEXUS. In its error recovery process,

NEXUS has a tendency to:

1. Fail to find a correspondence.
2. Add the entire token.

3. The created path is pruned later by network maintenance heuristics.

The net result is a wasted training token, and deceleration of the learning process. This anomaly is avoided by
LEARN and MATCH with the implicit correspondence in the Hybrid Warp.

Unlike either NEXUS or LEARN, MATCH has a generation procedure well characterized by its name.
Fdr each input, it simply finds network nodes that match its segments well, and determines the optimal way to
link them (or segments of the input when nothing matches well) together using Dijkstra's algorithm, Because
of the greater number of candidates considered. it is likely to build a more compact network, although it too

may average different sounds together,

One feature found in NEXUS, but not in the two systems here is network maintenance heuristics,
NEXUS pruncs paths that have not been used for successful recognition in 5 sets of training trials, and paths
that have over 40% misidentification rate. For a speaker dependent system, the pruned paths are likely to be
unusual or ambiguous tokens; however, we believe that this cannot be generalized for speaker independent
recognition. In speaker independent recognition, many paths may be unsuccessful or unused for some
speakers, yet very successful and used often for other speakers. Pruning of these paths will cause degraded
performance. But since NEXUS was intended to be a speaker dependent system, these heuristics were

helpful to reduce the amount of computation.

NEXUS uses full dynamic programming matching of templates with bearm search. Howéver, because of
the inherent ambiguity of the alphabets, the size of the beam must be set at a large value to minimize the
pruning of the correct path. Thus, NEXUS takes substantially more time than LEARN or MATCH even
with the network maintenance heuristics. This is another impediment in extending NEXUS to speaker—

independent recognition.

The Hybrid Warping Procedure introduced in this paper is a good compromisc between linear and



non-lincar alignment. 1t is able to achieve accuracy close to DP, yet reducing the amount of computation
considerably. [t is an important factor in making the network systems here almost real time. With the Hybrid
Warp. it is not nceessary to make correspondences between the alignment and the segmentation, which avoids
the loss of information when correspondence cannot be found. MATCH uses four times as much storage as
NEXUS for spcech data, and uses exhaustive scarch rather than beam scarch. Yet it is much faster and
considerably morc accurate than NEXUS. This is largely duc to the use of the Hybrid Warp instcad of

dynamic programming.

In conclusion, although the paramctric representation and the distance measurement were heipful to
LEARN and MATCH, it is the Hybrid Warp, the rcliable segmentation, and the new algorithms that enabled
LEARN and MATCH to produce the superior results. In particular, the simple algorithm in network

generation used by MATCH produced compact, efficient, yet accurate networks.



13

5. Comparison with Other Techniques

In the last two chapters we considered the theoretical soundness of nelwork training and compared the
performance of the Jearning and the marching approaches. In this chapter, we assess the practical soundness
of network training by comparing its results with several known techniques. Each subsequent section
discusses a technique, leading to the final section which compares the performance of these systems in terms
of recognition, space, and time. In order to make valid comparisons, all of the techniques were implemented
using the sam¢ word recognition system deseribed in Chapter 2. In many cases, the performance of these
systems depend upon selecting a number of thresholds. The results displayed reflect those obtained with the

optimal thresholds. These methods are described and discussed in more detail in Appendix L.

5.1 Casual Training

Casual Training is the simplest and most natural reference generation technique. It uses one or more
sets of training data as the reference sct without any processing. Both Single-Template Casual Training (1 set
of training data as template) and Multiple-template Casual Training (5 sets of training data were used for
speaker-dependent recognition, and 20 scts were used for speaker-independent recognition) were

implemented.

5.2 Template Selection

The Template Selection technique selects the "best” template for cach word from the available training

sets and uses it as the reference [3]. The basic algorithm is as follows:

1. Match every word in the training sets against every other word,

2, Select 2 best candidates for each word based on minimization of distance against same words and
maximization of distance against different words.

3. Examine all combinations among them to find the best template for cach word.

3.3 Averaging Training

Averaging Training takes different tokens of the same word and averages them together to create
reference templates. The averaging technique used here averages all of the tokens together (assuming that the
Hybrid Warp is able to align them). These tokens are averaged into the token whose duration is closest to the

average duration.
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" 5.4 Simplified Clustering Training

Simplified Clustering Training [2] begins with two tokens of cach word. If the distance between the
tokens is below a distance threshold, they are averaged to create the reference template for that word, and the
gencration process for this word terminates. Otherwisc, another token of that word is introduced, and it is
matched against ail examined tokens for that word. This process continucs for cach word until cither a pair
with distance below the threshold is found. or if we run out of training data, in which case the first temptlate is
added. The tokens are processed in order of durational proximity to the average duration of all tokens with

the same identity.

5.5 K-Means Clustering

For speaker-independent recognition, we have sufficient templates for statistical clustering. The
algorithm selected here is K-Means Iteration [6]. An outline of the algorithm (to be iterated for each word in

the vocabulary) is as follows:

1. Initialization - Select N (optimal = 3 for speaker-dependent and 9 for speaker-independent)
random templates as initial cluster centcr;s.

2. Classification - For each replication of the word, find the cluster center that is closest to it, and
categorize that replication in that cluster.

3. Recomputation - Recompute the center for cach of the N clusiers. The cluster center is the
template in the cluster that has the smallest maximal distance to any other template in the cluster,

4. Convergence Test - If each center remains unchanged, we're finished with this word. Otherwise
g0 back to step 2.

5.6 Comparison

5.6.1 Results

Table 5-1 shows the recognition results of all 8 systems. All experiments were run with the database
described in Section 2.1, and the recognition system description in Chapter 2. Table 5-2 shows the space
requirements for speech data in megabytes required by each of the systems. This includes the coefficient,
power, and data structures. Table 5-3 shows the total time for reference generation. This is the CPU seconds
used to generate the entire reference set. More importantly, it aiso shows the time required for each

recognition given the generated reference set.
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Speiker Dependent

Speaker Independent

Training Method Alphabets Alphabets Digits

Casual single template 91.53% 52.30% 74.50%
Casual multiple tempiate 96.92% 89.23% 97.00%
Sclection 94.23% 60.21% 82.00%
Averaging 96.92% 65.77% 90.50%
Simplified Clustering 95.38% 57.88% 82.00%
K-Means Clustering 98.03% 90.19% 98.00%
Network Jearning 98.08% 89.23% 98.00%
Network marching 99.23% 91.92% 99.00%

Figure 5-1: Recognition accuracy for § systems.

Speaker Dependent Speaker Independent
Training Method Alphabets Alphabets Digits
Casual single template 0.12 0.11 0.04
Casual nultiple template 0.59 1.93 0.69
Selection 0.12 0.11 0.04
Averaging 0.12 0.1 0.04
Simplified Clustering 0.12 0.11 0.04
K-Mcans Clustering 0.35 0.95 0.34
Network learning 0.18 1.58 0.61
Network matching 0.17 1.15 0.30
Figure 5-2: Network size (in megabytes) for 8 systems.
Speaker Dependent Speaker Independent
Alphabet Alphabet Digit
Total Gen. Time per Total Gen. Time per Total Gen. Time per
Training Method Time Recog. Time Recog. Time Recog.
Casual single template 2 0.34 2 0.40 1 0.17
Casual multiple template 11 1.45 55 6.17 14 170
Selection 654 0.40 3704 0.53 370 0.16
Averaging 38 0.32 139 0.55 47 0.15
Simplified Clustering 11 0.32 13 0.51 5 0.16
K-Means Clustering 49 0.72 424 2.15 111 042
Network [earning 121 0.82 1581 4.36 230 0.63
Network matching 93 0.78 902 2.85 119 0.53

Figure 5-3: Time requirements (in scconds) for 8 systems.
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5.6.2 Discussion

‘I'he techniques Single-Template Casual Training, Selection. Averaging, and Simplified Clustering arc
single-template techniques. As such, they perform satisfactorily on speaker-dependent data because a single
template can represent the characteristics of one speaker reasonably well. However, in the spcaker
independent case, their recognition accuracies are unacceptably low because between-speaker differences are

too diverse to be encapsulated in one template.

The four multiple-template techniques - Multiple-Template Casual Training, K-Means Clustering,
Learning Network, and Matching Network performed reasonably for both speaker-dependent and speaker-

independent data. Among the four, the marching approach of network generation stands out as the best

In the introduction, we conjectured that Multiple-Template Casual Training is very wasteful, that
Clustering reduces much of this wastage, and that Network representation increases the ability to discriminate.
The results in the previous section confirm this conjecture. Clustering yiclded better results than using all
templates, and also used less storage and time. Network (matching) yiclded results even better than

Clustering, and could potentially use less space (by sacrificing some accuracy).

In summary, the results in this chapter showed that:

1. Single-templates cannot capture between-speaker differences.

2. For speaker-dependent recognition, single template systems (in partcular, Averaging) are
adequate, and multipie template systems are not needed.

3. For speaker-independent recognition, clustering adds the ability to generalize. It has a more
compact representation than using all of the templates, yet attains higher accuracy.

4. For speaker-independent recognition, the network representation provides the ability to
discriminate through the generalization of similarities between tokens with different identity.
Thus it achieves the best results.
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6. Future Work

Although the yratching approach has produced satisfactory results, there arc still a number of problems:

Recognition

Space

Time

One obvious method to improve recognition accuracy of the system is to incorporate
phonetic knowledge into the system. We could label the segments, and average only those
with the same label. This nced not be done manually, but can be done automatically with
a dictionary of piausible segmentations of cach word. This. however, would sacrifice the
property of vocabulary independence for higher accuracy. Another possibility is to have
finer segment labels so that the Hybrid Warp can vield accuracy cven closer to dynamic
programming. It is possible to produce scgmentation with 5 or 6 labels with reasonable
accuracy. We will try to use a more complete set of the Zapdash [7] outputs. Hopefully,
this will cause the network to be more compact, as well as yield better results,

As Figure 3-9 illustrates. the nctwork requires much space in order to achieve high
accuracy for spcaker-independent recognition. In view of the small vocabulary and
aumber of speakers, this could become a serious limitation when applied to a large
vocabulary. The cause of the inability to build a compact network may be (1) The group of
speakers is a very diverse onc, (2) the segmentation algorithm yiclded segments that were
too long (too many one-segment words), or (3) The distance measurement or warping
method is imperfect. These must be investigated. Furthermore, vector quantization is a
new method that reduces the space usage dramatically. Its use with incremental network
will be the subject of another study. Finally, it is also quite possible that network
techniques, as well as other template-matching technigues are limited to speaker
dependent recognition. If this unfortunate possibility were true, speaker adaptation may
be combined with the network approach to deal with speaker independent recognition.

To reduce the time requirements for recognition, we could adopt beamsearch [1] or branch
and bound with pruning [16], both of which look at several paths concurrently, and avoids
repeated comparisons between nodes. It is not known, however, whether this will reduce
recognition accuracy considerably.
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7. Conclusion

In this paper, the network representation of speech is presented. Tt was shown that the network

structure has the desirable propertics of

1. Savings of time and space.
2. Encapsulation of variations in speech.

3. Ability to discriminate and generalize.

The major impediment to the network representation is its dependence on good segmentation. This
dependence is minimized by: |
1. Modificd Zapdash segmentation with coarse phonetic labels.
2. A Hybrid Warp that tolerates imperfect scgmentation.

The incremental network approach is examined as an alternative to the traditional compiled network

method. Generating the network incrementally has a number of advantages:

1. Language and vocabulary independence.
2. Can add and learn new words easily. .
3. Does not require phonetic description and alternate pronu nciations of each word.

4, Docs not require accurate and fine labeling.

Two methods of network generation are introduced. Using an alphabet database, the maiching
approach newwork generation attained 99% for speaker dependent alphabet recognition, 92% for speaker
independent alphabet recognition, and 99% for speaker independent digit recognition. These results are
superior to all other methods implemented using the same database and recognition system, confirming the

abovementioncd properties of the network representation and the incremental network approach.
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I. The Hybrid Warp

‘The Hybrid Warp is a novel warping algorithm introduced in this paper. It is outlined and justified in

Section 2.4.2. In this Appendix, we will describe the Hybrid Warp in more detail.

‘The Hybrid Warp aligns the scgments dynamically. and within cach group of the alignment, the frames
arc aligned lincarly. The lincar alignment of the frames is trivial: it is done simply by taking the ratio of the
lengths of the two segment sequences, and corresponding each frame of the reference to a frame of the input.
Thus, cach frame of the reference corresponds to at least one frame in the test input while certain frames of

the input may be skipped or repeatedly used.

To align the segments dynamically, we formulated a specialized DP matching procedure. Recall the
example in Scction 2.4.2 that matches a reference of 4 segments against an input of 3 segments. Using this
cxample, we can generate a standard DP matrix as shown in Figure I-1. In this matrix, MU means : the best
way to match the 1% through ™ segments of the reference against the 1% through /M segments of the input.
Thus, Mu means the best way to match the first segment of the refcrence against the first two segments of the

input, and M“ is the best way to match the entire reference against the entire input.

M M

1.1 21| M

3,1

Mia | Mas | M3,

My s

Figure I-1: DP matrix of matching a 4-segment refercnce against a 3-
segment input. The crossed out cells are unusable.

Each cell of the matrix can be computed as follows:

y ={i=lorj=1 Cost (L il
i
Otherwise MIN(M,_ + Cost (i i k+1.0) j>k21

MIN (
MIN (M, _ + Cost (k+1iji ) i>k>1

where Cosr(rl. Ty s iz) is the distance obtained by aligning scgments n through r of the reference against

segments i through { of the input.
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The first column and the first row of the matrix can be caleulated ininediately because they satisfy the
alignment constraint (matching one against many or one against one). These values of these ¢ells could be
computed as follows:

1. Reject (set to infinity) if other constraints are not satisfied. This could be due to:

¢ Onc group is much longer than the other (Durational C wnstraint).
o The aligned scgments are too phonctically different (Phonetic Constraint).

e The remaining length (after this segment) of one word is much longer than that of the other
word (indircct application of Durational Consiraint}. ‘

2. Linearly match the frames involved otherwisc.

The remaining cells depend upon an L-shaped group of previous cells as shown in Figure [-2. This is
because to compute the M‘.J. cell, we must use some previously computed cell, and add a legal alignment to
that (for example, we could use M_ 11 and add Cost(i § j /). The choice for this previously computed cell
is limited to M’._l‘k, where k<j, and M k-1 where k<i Any other ccll would force a many-to-many

alignment, which violates the alignment constraint.

oY

Uit St i e S .4

Figure I-2: Dependence of a DP ccll on the other cells,

Because of this dependence relationship, except for the solution cell (the lower-right cell in the matrix),
the last column and last row need not be computed since nothing depends on them. For example, M, 3 in
Figure I-1 is impossible as it leaves the segments 2 to 4 of the reference unaligned. The useless cells are

crossed out in Figure I-1.

To compute the entire matrix, we first compute the cells in the first row and column. The remaining
cells can be computed horizontally or vertically. Whenever an alignment is not possible due to other
constraints, the value of the cell is set to infinity. Moreover, the best path distance can be used to terminate

partial computatiohs (branch and bound). Thus, in reality, many cells were never computed since they
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correspond 1o implausible alignments. As in standard DP, the path tiken is also retmembered. and when the

final MiJ is reached, the best alignment can be recovered with a backtrace.

The scquential and alignment constraints were implicitly built into this DP matching scheme. The
durational and phonetic constraints were taken into consideration in the cell computation in that any cell that

forces illegal durational or phonetic alighments s st to infinity.
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I1. System Tuning I'xperiments

A number of decisions were made about the word recognition system, such as the number and the size
of the coefficicnts, the distance metric, warp parameters, and the scarch method. ‘These decisions were
derived by tuning thresho!ds and parameters and sclecting the ones that optimize the recognition results. This

Appendix describes these tuning experiments in detail.

It should be noted that these experiments usced different data and different gencration methods. Butin
no case was the digit database used. The digit recognition experiment was run using the parameters derived

from speaker-independent alphabet recognition.

11.1 Number of Cepstrum Coeflicients

24 9-bit cocfficients were used initially. Later, Shikano[12] showed that 16 coefficients and 24
coefficients produced cquivalent results. Thus, an experiment was conducted for five systems using 8 to 24
coefficients. In this cxperiment, five reference generation methods were applied to speaker-independent

recognition of alphabets. The results are shown in table 1I-1.

Number of RECOGNITION %
Coefficicnts Casual Average K-Means Learning Matching
8 51.15% 63.65% 87.31% 88.27% 89.81%
10 50.76% 64.04% 87.50% 88.85% 89.531%
12 51.15% 64.42% 38.08% 38.85% 89.62%
14 51.53% 64.81% 88.08% 88.65% 90.38%
16 52.30% 65.00% 88.65% $8.27% 90.58%
18 52.15% 65.38% 88.65% 88.46% 90.77%
20 52.30% 65.58% 88.27% 89.23% 91.15%
22 52.30% 65.77% 88.27% 89.23% 91.54%
24 52.30% 65.77% 90.19% 89.23% 91.92%

Figure [I-1: Recognition effected by the number of cepstrum coefficients
used. '

These results show that the ranks of these generation techniques are preserved when the number of
cocfficients are varied. Moreover, they indicate that rccognition accuracy varies directly with the number of
cepstrum coefficients, and that 24 coefficients were necessary to retain the level of accuracy. This apparent
disagreement with the results reported by Shikano [12] might be due to the fact that the original 32-bit
coefficients were compressed into 9 bits in this study, while they were retained as 32-bit ﬂoatin'g point
numbers in [12]. Thus, the Toss of information from the compression might be recovered by increasing the

number of coefficients.
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11.2 Size of the Cepstrum Cocllicients

taitially. a VAX T1/750 was used for this rescarch. On the 11/750. floating point arithmetic is
considerubly slower than fixed point; therctord, the 32-bit floating point cepstrum coefficients were converted
to integers. There is onc problem with this compression, namely. there is no theoreticat upper or lower bound
on the value of the cepstrum cocfficients, yet any cffective compression process requires tight bounds.
However. in practice, almost all cepstrum coefficients were found to lic within a certain range (-2.54 to
+2.54). An early experiment was conducted to compare 32-bit and 9-bit representation using casual training.
This limited experiment was run using 15 sets of the speaker-dependent alphabct databasc. The task was
recognition of B, D, V (the most confusable triple in the alphabets) using Single-Template Casual Training,
This resulted in a 67.38% recognition accuracy for the 9-bit representation, and 67.59% for the 32-bit

representation, This result encouraged the compression of the coefficients.

Another more detailed experiment compared the performance of representations of different sizes from
4 to 16 bits using five types of training for spcaker-independent recognition of the alphabet. The results are
shown in Table II-2. From this table, it can be seen that a 9-bit representation is a reasonable compromise.

Again, the relative ranks of the generation methods are not disturbed by changing the number of bits per

coefficient.

Number of RECOGNITION %

Bits Casual Average K-Means Learning Matching
4 51,92% 64.96% 87.88% 88.65% 91.08%
5 52.30% 65.19% 87.88% 90.35% 91.58%
6 52.30% 65.77% 88.65% 90.35% 91.54%
7 52.69% 66.15% 88.27% 90.00% 91.73%
8 52.69% 65.77% 88.27% -89.23% 92.31%
9 52.30% 65.771% 90.19% 89.23% 91.92%
10 52.30% 65.77% 90.19% £9.23% 91.92%
12 52.30% 65.77% 90.19% 89.23% 92.31%
14 52.30% 65.77% 90.19% 89.23% 91.92%
16 52.30% 65.77% 89.23% 89.23% 91.92%

Figure II-2:  Effect of number of bits per coefficient on recognition.

I1.3 Distance Measurements



(L1 WLR . CEP

Ini[iuliy the WI.R distance metric {12] was used. The WILR distance is defined as

-
Z (Co= X Py
where (" and i represcut the K™ cepstrum autocorrelation coetficicat of the M frame of the reference and

the fh framc of thc mput, and P and p & represent the KM 1PC autocorrelation coefficient of the i frame of

the refercnee and the J frame of the input. N{= 24)is the order of L. PC analysis.

Sugiyama and Shikano showed that WLR is superior to CEP [11]; howevcr, Nocerino [10] presented
evidence to the contrary. Shikano {12] attributes the cause of this differcnce to vocabulary, claiming that
WLR is more sensitive to voiced speech (more useful for Japanese recognition) while CEP is more sensitive to

the unvoiced speech (more useful for English recognition).

An early experiment was conducted to compare these two distance measures. Both WLR and CEP were
augmented with power and duration information, and were applied to alphabet recognition. Both single
speaker and multiple speaker databases were used, but that speaker-independent recognitions were based on
only 4 speakers (2 male and 2 female). Table 11-3 shows the results of both Single-Template Casual Training

and Averaging Training:

Speaker-Dependent Speaker-Independent (4 speakers)
Distance Measurement Casual Avcraging Casual Averaging
WLR + Power + Duration 91.19% 95.54% 78.54% 86.31%
CEP + Power + Duration 91.53% 96.92% 81.62% 89.43%

. Figure 11-3: Comparison of performance of WLR and CEP.

Recognition of the English alphabets requires far more sensitivity in unvoiced regions than voiced
(consider the E-set and the Eh-set, by far the most confusing subsets of the alphabets). Thus, these results

uphold Shikano's claim of the sensitivity of the cepstrum distance to unvoiced speech.

Another merit of the cepstrum distance is that it required only the cepstrum coefficients while the WLR
distance required both the cepstrum and the LPC autocorrelation coefficients, which doubles the storage

needed. Based on this superior performance with 50% storage, the cepstrum distance was adopted.
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1L.3.2 Power and Durition Weight
Table 11-4 shows the results of modification of Wﬂ and H’d. the weights multiplied by the power and
duration in the computation of distance. (Sce Section 2.4.1) In this study, WP was tuned first without duration

information. Then, W 4 as tuned with the optimal Wp.

Speaker-Dependent Alphabet Database  Speaker-Independent Alphabet Database

Percent Contribution Power Duration Power Duration
0% 90.00% 90.76% 47.69% 50.76%
3% 90.00% 91.53% 48.07% 52.30%
5% 90.76% 90.76% 48.85% 52.30%
10% 90.76% 90.00% 50.76% 51.92%
15% 89.23% 90.00% 50.00% 50.76%
20% 86.15% . 87.69% 48.07% 47 69%

Figure il-4: % contribution of power and duration and effect on
recognition accuracy.

1L.4 Hybrid Warp Parameters

The Hybrid Warp requires several parameters to eliminate unlikely matches, and many choices were

considered. Table II-5 illustrates the parameters and the actual choices tried:

Parameter Choices considered

“Maximum number of frames that can be skipped

in the beginning and end of the utterance 5.10,15,20

Penalty assigned for each frame skipped 5000, 10000, 15000, 20000

Percentage of equal-labels required in a group 10, 20, 30, 40, 50, 60, 70%

Length Differences 15X + {0, 5,10, 15}, L.75X + {0, 5, 10, 15},

2X + {0, 5, 10,15}, 225X + {0, 5, 10, 15}
25X + {0, 5,10, 15}

Figure II-5; Hybrid warp paramcter choices considered in deriving the
final procedure.

Almost all combinations were tried using casual training to determine the final parameters. These
experiments showed that the parameters did not effect recognition accuracy significantly (£ 3%), but they

eliminated much of the unnccessary computation.

The number of frames skipped is handled by adding null scgments with the assigned length. Since the
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Hybrid Warp allows for one group to be as much as 175X + [0 frames fonger than the other group. a nuli
scgment of 10 frames allows for skipping segments up o £7.5 frames (In that case. we have a aroup of 10
frames null node matched against 10 frames-of null node and the skipped segment of 17.5 frames. The

distance of this group is the penalty imes 17.5 frames length).

Another experiment compared three ways of summing the group distances between two words:
1. Weigh cach group according to its length. (Simple addition, most common)
2. Weigh cach group cqually. (Giving a short segment as much weightas a long one)
3. Weigh cach group according to the logarithm of its length.

Results showed that the first way is the most cffective.

I1.5 Search

The only search implemented in this study is exhaustive full search. Although beam search or branch

and bound with pruning can reduce the computation, they were not used for several reasons:

1. They may reduce the accuracy; we would like to push the accuracy to the limit.

2. Beamsearch is very difficult to implement given the Hybrid Warp with DP as described in the
previous section.

3. For a small vocabulary system, the speed we achieved is satisfactory.
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I1. Detailed Description and Results of the Systems in
Chapter 5

In Chapter 5, a number of reference generation technigues were discussed briefly.  This Appendix

provides additional information about these echniques, including,

* More detailed description.

¢ Tuning experiments.  (Note that only the alphabets were tuned for speaker dependent and
independent recognition; the parameters derived in the speaker independent experiments were
used in digit recognition)

¢ Additional discussions.

I11.1 Casual Training

Little more need be said about Casual Training because of its simplicity. Single-Template Casual
Training installs one set of the training data as the reference set; Multiple-Template Casual Training installs
multiple sets of templates (5 for speaker-dependent and 20 for speaker-independent) as the reference set. No

processing other than this is required for network generation.

The results obtained with Casual Training are rclatively high [20] [21]. Several factors contribute to this:
L. The use of more precise coefficients (24 9-bit coefficients for every 3 milliseconds of spcech).
2. The use of cepstrum coefficient and modified cepstrum distance.

3. The use of Casual Training to tune the initial word recognition system (size and number of
coefficients, warp parameters, and weights for the power and duration in distance calculation).

II1.2 Selection

Selection is a generation technique that does not create synthetic templates. Instcad, natural templates

are used. There are two types of selection:

L. Consider tokens for one word at a time. Then choose the most appropriate one for that word.
This is a clustering technique.

2. Consider the entire set of training tokens. Choose an appropriate token for each word.

The generation technique used in this study is that of the second type. The task is rnore complex than
simply clustering. For each token, we must consider:
1. How alike is it to tokens of the same identity?

2. How different is it from tokens of different identities?
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‘The selection algorithm in this study uses these two criteria to choose the finat set of reference tokens.
Each token is assigned a score, and a higher score indicates that it is a better representation for that word. “The

score for cach token is calculated as follows:

o If a different-word token matches a same-word token better than this token docs. subtract 1.

e If this token matches a different-word token better than another different-token does, subtract 1.

This score is. of course, only heuristic since some of the matches are immaterial.  But it docs provide a

reasonable guideline as to which tokens cause more confusion.

To improve the final selection, the top one or two candidates for each word are saved, and all
possibilities of chovsing the reference set from them are considered. For each sct, we computc how many of
the training tokens would have been recognized correctly. Finally, the set producing the highest recognition

accuracy is used.

The heuristic score computation part is not very time consuming; however, the second part which
computes all possible reference sets faces combinatorial explosion. This problem, together with the inferior

results, scriously limits the usefulness of the selection method.

A similar method leading to similar results is given by [3].

111.3 Averaging

In order to average a group of tokens together, we must resolve one problem - which token do we
average these tokens into? If we select the token with the longest length, it is possible that an input may be
too short to be matched against it. Conversely, if we select the token with the shortest length, it may not
match against a long input. Furthermore, if we select a token with an "abnormal” scgmentation, it may not
match against an input of another "abnormal” segmentation. (For example, if the word has 2 fricative and a
vocalic segment, we select a token with a particularly long fricative, and the input has a particularly short
fricative) Thus, it is very important that we select a token that is likely to match against input of any
reasonable length and segmentation. In order to do this, we compute two important properties for each
token: (1) the number of other tokens of the same identity that it can match, i.e., an alignment exists after
applying ali four constraint of the Hybrid Warp. (2) the difference between its length and the length of all
tokens of this identity. The token that can match most other tokens is selected.’ In case of a tie, we use the

one closest to the average length.

5Because the thresholds in the Hybrid Warp were carefully chosen, most tokens can be warped against all other tokens in the same
word. .
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Table TH-1 shows the difference in recognition between the abave method (as shown i Chapter 5) and
averaging into the first oken. The resubts show that this ordering process is helpful in selecting the most
appropriate token o average into in the speaker independent case, but not for speaker-dependent case. This
is because there are few, if any, "abnormal™ tokens within one speaker's data, so choosing an arbitrary one is

just as good.

Alphabets Digits
Average into Speaker-1)ependent Speaker-Independent  Speaker-Independent
Best Token 96.92% 65.77% 90.50%
First Token 96.92% 60.13% 37.00%

Figure M1-1: Averaging training recognition by averaging into best or first
token.

Two types of Averaging Training were implemented. The first is the non-discriminating type described
in Chapter 5. The results in Chapter 5 and Table 111-1 reflect averaging of this type. A/ tokens of the same
word (except the very few cases where they cannot be aligned) are averaged together. This method is simple

and fast; however, the final reference may be adversely affected by averaging abnormal tokens into it

To add a discriminating factor in the averaging process, we introduce a sccond method. This
discriminating averaging uses a threshold. All tokens of the same word are aligned and matched against each
other. The largest group within which every distance is less than the threshold is averaged together to create
the single reference template for that word. This may be thought of as a clustering technique with only one

cluster.

A number of possible threshoids were tried for discriminating averaging. As the threshold is relaxed,
more training tokens can be averaged. Table I111-2 shows percentage recognized vs. percentage of tokens

averaged into the final template,

Adding discrimination was not very helpful in the speaker-dependent case. It improved recognition by
less than half percent, and the optimal recognition accuracy was obtained by averaging 95% of all tokens
together. In the speaker-independent case, the improvement is almost 5%, and optimal accuracy is obtained
by averaging 80% of all tokens together. This is intuitively correct because it is far more likely that there are

tokens very different from each other in a speaker-independent database.
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Approximate RECOGNITION % OF ALPHABYYS
Percent Averaged Speaker-Dependent Speaker-Independent
5% 91.21% 47.50%

10% 91.99% 48.08%

20% 92.21% 50.19%

35% 92.69% 55.00%

50% 93.22% 60.96%

70% 94.32% 67.50%

80% 94.62% 70.58%

85% 94.62% 70.00%

9% 95.64% 63.08%

95% 97.31% 65.96%

100% 96.92% 65.77%

Figure I1I-2: Percentage recognized vs. percentage of tokens used to create
the final token.

[11.4 Simplified Clustering

~ Simplified clustering is simply discriminating averaging that finds a cluster of only two tokens. A
threshold is used to detertnine whether two tokens are "similar”. The first two tokens found to be similar are

averaged together to create the reference template for that word.

Initially, the first two tokens are tested. If their distance is under a threshold, they are averaged and the
training stage for this word terminates. 1f their distance is above the threshold, the remaining tokens are
introduced one by one. Each time, the current token is matched against all previous tokens, and the process
terminates for the word as soon as the first maich below the threshold is found. If all tokens in the training

trial are exhausted without finding a pair, the first token is added as the reference.

Similar to the discriminating averaging, it is importart to select a token to average into. Yet, unlike
averaging where only one or few maximal size ctusters can be found, simplified clustering may have many
possible pairs with distance less than the threshold. In order to minimize the chance of averaging into a "bad
token", all tokens are sorted® according to (1) how many other tokens of the same word they can match, and
(2) how close they are to the average length for the word. Using a greedy algorithm, we process from the best
to the worst, and when a pair is found, we always average the "worse” token into the "better” token. This

effectively eliminates "unlikely” tokens. Table 111-3 shows the difference between results obtained by first

6ln averaging, sorting is not necessary. We only needed to find the best one in the cluster,
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sorting the tokens according o goodness and those obtained by using random ordering, both using the

opumal parameters for sorted ordering.

Alphabets Digits
Ordering Speaker-Dependent Speaker-Independent  Speaker-fudependent
Sorted 95.38% 57.88% 82.00%
Unsorted 93.08% 50.77% 30.00%

Figure l[-3:  Simplificd clustering recognition with and without sorting.

Again, a number of possible thresholds were tried. Table II-4 and I[I-5 show how percentage
recognized is affected by percentage averaged after 2, 3, and 4 tokens have been considered for speaker

independent and dependent recognition of alphabets,

Percent Averaged After Processing Percent
2 tokens 3 tokens 4 tokens Recognized
4% 8% 8% 43.08%
21% 50% 62% 47.50%
23% 50% 69% 44.42%
46% 13% 96% 45.58%
62% 85% 9%6% 47.31%
7% 9%% 100% 50.77%
85% 100% 100% 55.771%
92% 100% 100% 54.81%
96% 100% 100% 58.77%
100% 100% 100% 57.88%

Figure Ill-4: Simplified clustering tuning for speaker independent
alphabet recognition.

Surprisingly, for both speaker independent and dependent recognition, the best results were obtained
by making the averaging threshold arbitrarily large, which always averages the first two tokens. This result
differed from that of Rabiner [2], who used a threshold that allowed averaging of 62.1% of the first 2 tokens.
The system in {2} is different from that described in a few minor places, but it is unlikely to result in such a

significant difference.

We conjectured that the cause of this difference is the sorting process that tock place. To confirm this
hypothesis, the clustering algorithm was run on the same data without the "goodness sorting”. The results are
shown in Table I11-6 and Table Hi-7.



52

Percent Averaged Alter Processing Percent
2 tokens Jtokens 4 tokens Recognized
0% 42% 2% 91.23%
50% 13% 73% 91.92%
1% §9% 93% 90.77%
9%6% 97% 100% 93.08%
96% 100% 100% 94.62%
100% 100% 100% 95.38%

Figure I1I-5:  Simplified clustering tuning for speaker dependent aiphabets.

Percent Averaged After Processing Percent
2 tokens 3tokens 4 tokens Recognized
0% 0% 0% 45.19%
10% 23% 23% 51.73%
45% 58% 1% 56.92%
60% 66% 82% : 53.65%
1% 89% 100% 51.73%
92% 93% 100% 53.65%
92% 100% 100% 54.23%
9% 100% 100% 54.23%
100% 100% 100% 54.23%

Figure IiI-6: Simplified clustering tuning without sorting for speaker
independent alphabet recognition.

Percent Averaged After Processing ' Percent
2 tokens 3 tokens 4 tokens Recognized
12% 14% 23% 91.23%
0% 53% 73% 93.08%
2% 81% 89% 95.38%
%% 97% 100% 93.08%
100% 100% 100% 93.08%

Figure HI-7: Simplified clustering tuning without sorting for speaker
dependent alphabets.

This experiment produced results more similar to Rabiner’s [2]. It also confirms our conjecture that the

sorting process that took place is quite similar to the simplified clustering technique. Results in Table 11I-4
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and HI[-5 shew that when the wkens are sorted. we can simply mach the first two without the simplified
clustering process, Moreover, we see that given their optimal thresholds, sorted and unsorted ordering yicld

approximately the same results,

‘The sorting and clustering processes are similar in that they both try to find reliable tokens that can be
averaged. The difference between them is that the sorting process has a more global view by cxamining the
rclationship between all pairs, but the information is less reliable because only alignability and duration are
considered. Thie simplified clustering has a more local view by stopping when two tokens are found. but uses
full distance calculation. Discriminating averaging in the previous section is a technique that uses global
information with full distance calculation, and as expected, attained superior results, Nevertheless, results

show that all single template techniques are limited to speaker dependent recognition.

II1.5 K-Means Clustering

Scction 3.5 explains this simple but effective clustering method in sufficient detatl, so we will not

reiterate here, Compared against other clustering techniques, K-Means Iteration has a number of advantages:

o It is free of thresholds, except for K (the number of clusters per word).
¢ There is no need of interactive supervision.
e It reliably finds X clusters.

e It is very simple.

Table I1I-8 shows recognition rate as a function of X. In the speaker dependent case where there are §
training tokens for each word, recognition accuracy saturates when K'=3. In speaker independent recognition

where there are 20 training tokens for each word, K=9 is required to obtain the maximal accuracy.

One disadvantage of the K-Means Iteration is that it is not guaranteed to converge, It is possible for the
method to oscillate between two or more cluster center configurations. This will occur if and only if a
configuration is repeated. Therefore, we added a check for repeating configurations. In that case, the
repeating configuration is used as the final cluster centers. This correction, of course, requires additional time,

But it eliminates the need for supervision and intervention.

Levinson noted that generally convergence does occur [6]. Likewise, our experiments never resulted in
repetitive configurations. Thus, we removed the check for repetition, and the time usage shown in Chapter 5

were obtained without the repetition check.
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K (Number of Clusters) Speaker-Dependent Alphabets Speaker-Independent Alphahets
2 97.50% 77.88%
3 98.08% 79.81%
4 96.54% 82.31%
5 96.92% 82.50%
6 83.27%
7 84.62%
g $8.27%
9 90.19%
10 88.27%
11 38.27%
12 39.23%
13 89.23%
14 89.62%
16 88.65%

Figure 111-8: K-Means recognition rate using different values for K.
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