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Abstract 

The network representation of word templates is presented. Using the network method, words are 
divided into segments, and same or different word templates can share segments. This not only 
reduces storage required, but also enables the system to focus on acoustically dissimilar segments. 
Yet, by retaining multiple examples of the same word, it encapsulates variations of speech. A 
word recognition system has been designed and implemented to facilitate network training by 
providing (1) relatively reliable segmentation, (2) a segment-based warping algorithm that 
tolerates inexact segmentation, and (3) incremental network generation. Two network generation 
methods for isolated word recognition are presented, one of which achieved 99% accuracy for 
speaker-dependent alphabets, 92% for speaker-independent alphabets, and 99% for speaker-
independent digits. Several other methods of reference generation were implemented using the 
same system, and the incremental network technique proved to be superior to all of them. 
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1. Introduction 
In order for any template-based speech recognition system to perform well, it must have a well-chosen 

reference set against which input speech will be matched. While it is possible to select and modify templates 

manually (such as in HARPY [1]), a great amount of expertise and time is required. Consequently, many 

procedures for automatic reference set generation were developed. 

A reference generation procedure takes a number of repetitions of each word in the vocabulary, and 

produces a reference set consisting of one or more templates per word. A procedure generating exactly one 

template per word is a single-template training method, A procedure that could generate several templates per 

word is a multiple-template training method 

The simplest form of reference generation is Single-Template Casual Training [2]. Using it, a set of the 

training data is installed as the reference. It is the worst of all the methods because it is seriously impeded by 

unreliable templates. An improvement over Casual Training is Reference Selection [3], which considers 

multiple instances of each word, and selects the token that is most likely to lead to correct recognition. 

However, this technique requires a large amount of computation, and the improvement is limited. 

It is not necessary to use natural templates as in Single-Template Casual Training and Reference 

Selection. One simple method is Averaging Training [4], in which all replications of the same word are 

averaged to create a single template for that word. Another method, Simplified Clustering [2], selectively finds 

two templates for each word to be averaged as the reference template. 

All of the above methods yield a single template for each word. For the speaker-dependent case, this is 

usually adequate because within-speaker differences tend to be relatively small. For speaker-independent 

recognition, however, one single template cannot capture the between-speaker differences [5]. 

A simple but inelegant solution is to take multiple replications of each word, and use all of them as the 

reference set This is the Multiple-Template Casual Training. While this produces fine results, there is an 

enormous amount of duplication since many replications of the same word are similar. Treating each 

replication as a distinct reference template is very inefficient, since recognition of an input requires space and 

time proportional to the number of reference templates. 

Statistical Clustering [6] is a method that compares favorably with the results of Multiple-Template 

Casual Training, yet greatly reduces the space and time required. A clustering algorithm takes a large number 

of replications of the same word, and identifies clusters of similar tokens. Rather than using every token as in 
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Multiple-Template Casual Training, the tokens in a cluster arc collapsed into one template (typically by 

averaging). Since the tokens in a cluster arc similar to each other, there is no loss of information. 

Consequently, clustering eliminates much of the within-word duplications. 

This method, however, does not eliminate all the duplication of acoustic information. For example, the 

letters B and I) share the common vowel / i / . Clustering algorithms are incapable of generalizing betwecn-

word similarities by collapsing the two / i / segments into one. This type of generalization is perhaps more 

important than the within-word generalization because after averaging the / i / segments, the two templates 

share the same / i / part Now, any variations in the / i / of an input B or D is irrelevant because the match 

score for that segment will be the same against the two templates. Therefore an input would match B better 

than D if and only if its fricative portion matches / b / better than / d / . Furthermore, this will reduce time and 

storage requirements. 

It is with these goals in mind that we investigate the Network Representation of speech. Although these 

theoretically desirable properties are easy to visualize, in reality, the generation of the network is a non-trivial 

task. Two incremental network generation methods for isolated word recognition are presented in this study. 

The first method, the learning approach, treats training data as if they were input data. The system modifies 

the network for each word in the training data depending on whether the word was correctly recognized. The 

second method, the matching approach, tries to match every segment against every other, and combine similar 

ones. The matching approach produced results superior to all of the abovementioned systems in both 

speaker-dependent and speaker-independent recognition. 

There are two problems inherent in network training: (1) The network method seems to crucially 

depend on almost perfect segmentation, which is impossible with current knowledge and technology, and (2) 

standard dynamic programming (DP) of whole word templates is difficult to apply because we must align 

particular segments together so that the advantages of the network representation will materialize. Yet, DP 

alignments often do not completely agree with segmentation boundaries. 

Our solution is a word recognition system that uses: 

• Segment-based recognition over the entire utterance. 

• Modified Zapdash [7] segmentation. 

• A hybrid warping procedure that tolerates inexact segmentation. 

• Branch and bound exhaustive search. 

• The cepstrum distance metric with power and duration information. 

As shown below, this system is accurate as well as quite efficient 
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We begin this paper by presenting the word recognition system. Next, the two network generation 

approaches arc described and discussed in detail. Finally, we compare the results of network training with 

each of the other techniques discussed above. 



2. The Word Recognition System 

The word recognition system shown in Figure 2-1 can be used with any type of reference generation. 

To implement a new reference generation technique, it is only necessary to substitute the "Reference 

Generation" block. The same signal processing and segmentation arc applied to training as well as input data. 

Read 
input 

speech 

Signal Segment­

—> Processing — • ation 

Reference 
Generation 

Search references 

for best match 

Figure 2-1: The word recognition system. 

1 1 Database 

Three existing isolated word databases were used: 

1. Speaker Dependent Alphabets -15 tokens of each letter of the alphabet of one speaker were used. 
5 of the tokens were used to generate the reference set The remaining 10 served as test data. 

2. Speaker Independent Alphabets - 5 male and 5 female speakers each produced 4 tokens of each 
letter of the alphabet. To generate the reference set 2 tokens of each speaker were used (20 sets), 
and the remaining 2 tokens of each speaker (20 sets) were used as test data.1. 

3. Speaker Independent Digits - 5 male and 5 female speakers each produced 4 tokens of each of the 
10 digits (zero to nine). To generate the reference set 2 tokens of each speaker were used (20 
sets), and the remaining 2 tokens of each speaker (20 sets) were used as input data. 

The only exception to the above conventions is Single-Template Casual Training, which uses only one set of 

templates as its reference set. In that case, we used each of die 5 (or 20 for speaker-independent) sets, and the 

results shown are the average of the 5 (or 20) experiments. Other than this exception, the above conventions 

are stricdy followed in all systems to facilitate comparisons among them. 

W e that some literature refers to this as multiple speaker and not speaker independent because the same speakers arc used to train 

and test the system. 
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1 2 Signal Processing and Representation of Speech 

'I'he database was recorded using a high quality microphone in an office-like environment. The speech 

is sampled at 10 KHz. Hach speech waveform is multiplied by a hamming window, and 12 autocorrelation 

coefficients are computed using a window size of 24 milliseconds, incremented every 3 milliseconds. Each 24 

millisecond window is Uius represented as a frame of speech data. These autocorrelation coefficients arc 

precmphasized using a simple one zero filter with a prccmphasis factor of 0.7. LPC analysis is then 

performed, producing 24 LPC cepstrum coefficients. The power value for each frame is calculated and 

normalized by the maximum value in the utterance. Both the cepstrum coefficients and power are 

compressed into a 9-bit representation. 

2.3 Segmentation 

Although there are other network systems [1] [8] [9], none was totally segment-based 2. This is largely 

due to inaccuracies in segmentation. The network system presented here is segment-based, and we try to cope 

with imperfect segmentation by using (1) broad category segment labels, (2) a fast and relatively accurate 

segmentation algorithm, and (3) a warping algorithm tiiat does not crucially depend on perfect segmentation. 

In this section we discuss (1) and (2). (3) will be discussed in 2.4.2. 

The segmcnter used is a subset of the Zapdash segmenter [7]. The standard Zapdash segmenter works 

in 6 cycles that provide successively finer segments. For the purpose of this study, it was halted after 3 cycles, 

which provided sufficient information to generate the desired labels: Vocalic (voiced). Fricative (unvoiced), 

and Silence. Experiments showed that more precise labels lead to more segmentation errors, which negatively 

affect recognition. The Zapdash output is post-processed to eliminate unrealistically short segments. Figure 

2-2 shows an example of Zapdash-segmentation of the letter "X". The number under the segment label 

indicates the duration in milliseconds. 

VOC SIL FRC 
(160) (120) (320) 

Figure 2-2: Zapdash segmentation of the letter X. 

In this study, every input utterance (training or test) is segmented, and recognition, as well as matching, depends upon segmentation. 
In most other network systems, however, segmentation is only applied to the training data. 
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Although Zapdash sometimes misses weak fricatives, and occasionally detects noise as actual segments, 

its performance is satisfactory for the purpose of this study. In order to show its adequacy, 15 sets of the 

alphabet data were hand segmented into vocalic, fricative, and silence regions. A frame by frame comparison 

of the hand segmentation and the Zapdash segmentation showed different labels in only 3.56% of the 10 

millisecond frames. Using Single-Template Casual Training (See Section 5.1) for those 15 sets of one speaker, 

the recognition accuracies obtained were 91.98% and 91.59% for die hand segmentation and Zapdash 

segmentation respectively. This shows that Zapdash segmentation for coarse class labels is quite reasonable. 

2.4 Recognition 

The recognition module will be examined in a bottom up fashion: first, how die frame to frame 

distance is computed; second, how two words are aligned frame to frame; finally, how the best matching 

reference word for the input is found. 

2.4.1 The Cepstrum Distance Metric with Duration and Power 

The distance metric used in the system is a modified cepstrum distance that considers not only the 

spectral difference, but also power and duration differences. Many studies have dealt with the cepstrum 

distance [10] [11] [12]. The metric presented here is adopted from Shikano's study [12], with some variations. 

Standard cepstrum distance between two frames is defined by: 

where C[k and Cjk represent the lP cepstrum autocorrelation coefficient of the frame of the reference and 

the f1 frame of the test data. N ( = 24) is the order of LPC analysis. 

An enhancement takes power into consideration. Power is computed for every frame of the data, and 

combined into the equation as follows: 

k-l 

where / and j are the indices of the frame being compared, and P. and p are the power values for the reference 

and input frames. W is a weight applied to the power so that it does not become too prominent.. Our 

experiments have shown that optimal performance can be achieved when the average contribution of power 

(to the total distance) is about 6-7% in the speaker dependent recognition, and 11-12% in speaker independent 

recognition. 

Another improvement is to consider the durational difference between the reference and the input 

After the frame-wise distances have been computed and summed, we add to that the durational difference 
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between the two segmental groups [Sec next section) multiplied by some constant, expanding the above 

equation to: 

where Wd is the weight for duration, D is the number of frames in this group of die reference, and d is the 

number of frames in tliis group of the input. Experiments show that optimal performance can be achieved 

when die average contribution of duration is 3% in speaker dependent recognition, and 4% in speaker 

independent recognition.-

To show the contribution of power and duration, three Single-Template Casual Training (See Section 

5.1) experiments were run for both die speaker-dependent and speaker-independent alphabet databases using 

distance measurements obtained from simple cepstrum distance, cepstrum distance with power, and cepstrum 

distance with power and duration. Table 2-1 shows the results. It is evident that adding power and duration 

has improved die recognition, particularly for speaker-independent data. This is because spectral information 

is less reliable between different speakers. 

Distance Measurement Speaker Dependent Speaker Independent 

Cepstrum Distance 90.00% 47.69% 
Cep. Dist. + power 90.76% 50.76% 
Cep. Dist + power + duration 91.53% 52.30% 

2.4.2 Hybrid Warping Algorithm 

Warping is the alignment of the input and the reference (mapping each frame in the reference to a 

corresponding frame in the input, so that they can be compared). The most simplistic kind of warping, linear 

warping, simply takes the two samples and matches them according to the ratio of their lengths. An example 

of linear warping is shown in Figure 2-3. 

Many speech recognition systems use some variation of dynamic programming (DP) [13], which involves 

the stretching and shrinking of the templates to find the minimal distance. This is illustrated in Figure 2-4. 

DP is known to produce better results than linear warping [14]; however, it is far more time consuming than 

linear warping. 

Figure 2-1: Alphabet recognition results using single template training 
with three variations of cepstrum distance. 

In order to obtain accurate results while reducing recognition time, a hybrid warping algorithm that 



Reference 

Input 

Figure 2-3: A linear warp frame alignment. 

Figure 2-4: A possible dynamic warp frame alignment. 

Reference 

Input 

combines bodi techniques is formulated. This algorithm utilizes the segment boundaries produced in the 

segmentation phase. Using this algorithm, speech segments are dynamically aligned into groups; within each 

group, the frames are linearly aligned. In other words, we are looking for the way to group together the 

segments of the input with the segments of the reference such that the distance between the input and the 

reference is minimal. This is shown in Figure 2-5. We will use the term alignment to indicate a particular way 

to align the segments of the two words, such as Figure 2-5; and we will use group to mean a grouping of 

segments from the two words. An alignment consists of one or more groups. 
* 

Seg 1 Seg 2 S e g 3 Seg 4 

Reference 

Seg 1 Seg 2 

Group 1 Group 2 
Figure 2-5: A hybrid warp frame alignment. 

Input 
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The above algorithm still may result in many improbable alignments. Thus, we impose four constraints 

upon this algorithm: 

1. Sequential Constraint - Both utterances arc processed beginning to end, with the exception of 
allowing skipping of segments up to 10 frames (30 milliseconds) in the beginning or the end (with 
some penalty). 

2. Alignment Constraint - All groups are one (segment) to many (segments), or one to one. No many 
to many mappings arc allowed. 

3. Durational Constraint - Two groups of segments can be aligned only if die following relation 
holds for Lj (total group length from utterance 1) and L2 (total group length from utterance 2): 

L^i^US + lO) and L 2 < (1^1 .75+ 10) 

4. Phonetic Constraint - It is not permissible to match any segment against scgment(s) that have a 
large percentage (set at 50%) of frames with a different coarse phonetic label. 

Constraints 1 and 3 are similar to boundary and slope constraints in DP [15]. Constraint 2 is necessary 

because if we consider many to many mappings, many more alignments must be considered, and the 

contribution of segmentation is reduced. Constraint 4 is simply an exploitation of information available from 

segmentation. 

Figure 2-6 shows two examples of the letter X, and dieir Zapdash segmentation. Figure 2-7 shows the 

number of possible alignments after applying constraint 1. Each rectangle shows a possible alignment; the 

circles represent die segments; and each partition is a group of the alignment. For example, alignment 14 

aligns segments 2 and 3 of the first X with segment 1 of the second X; segment 4 of the first X with segments 2 

and 3 of the second X. Segment 1 of the first X is ignored by not aligning it with any segments in die second 

X. The effect of constraints 2, 3, and 4 are shown in Table 2-2. 
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VOC SIL FRC 
(160) (120) (320) 

Figure 2-6: Zapdash segmentations of two examples of the letter X. 

o o o o 
o o o 

o\o o o 
o\o o 

o o/o o 
o/oo 

o o o/o 
o/o o 

( 1 ) ( 2 ) ( 3 ) ( 4 ) 

o\o o o 
o o\o 

o o\p o 
o o\o 

o o o/o 
o o/o 

o\o\o o 
o\o\o 

( 5 ) ( 6 ) ( 7 ) ( 8 ) 

o\o o/o 
o\o/o 

o o/o/o 
o/o/o 

o/o o o 
/ooo 

o/o/o o 
/op o 

( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) 

o/o\o o 
/o o\o 

o/o o/o 
/o/oo 

o/o o/o 
/oo/o 

o/o/o/o 
/o/o/o 

( 1 3 ) ( 1 4 ) ( 1 5 ) ( 1 6 ) 

Figure 2-7: Possible alignments of the 2 X's in figure 2-6 after constraint 1. 

After applying all 4 constraints, we can see that alignments 10 and 16 are indeed the only plausible 

alignments of the two X's. Given alignments 10 or 16, the DP should not outperform the Hybrid Warp since 

DP is likely to have similar frame to frame alignments. 



11 

After Applying Constraint Alignments Not Pruned 

1 Sequential 1 2 3* 4 5 6 7 8 9 10 11 12 13 14 15 16 
2 Alignment 4 5 8 9 10 13 14 16 
3 Durational 4 10 14 16 
4 Phonetic 10 16 

Figure 2-2: The constraint propagation process in the hybrid warp. 

These constraints are powerful enough to reduce the search to significantly less than that required by 

DP, yet are sensitive enough to produce results comparable to DP. In order to demonstrate this, the Itakura 

asymmetric warp [15] and linear warp were implemented within the system structure. For this experiment, 

the Matching Approach Network Training (see Section 3.2) was applied to speaker-independent and speaker-

dependent alphabet data. The results in Table 2-3 demonstrate that the Hybrid Warp Procedure achieves 

accuracy very close to DP, yet uses only slightly more time than linear warping. 

Speaker Dependent Speaker Independent 
Warp Procedure % Rccog. Scc./Recog. % Recog. Sec./Recog. 

Itakura Warp 99.23 4.80 92.20 35.49 
Linear Warp 96.92 0.72 89.96 2.99 
Hybrid Warp 99.23 0.78 91.92 3.57 

Figure 2-3: Comparison of warping algorithms using matching approach 
network generation and the alphabet database. 

When each frame is considered a segment, the outcome of Hybrid Warp is identical to dynamic 

programming; when the utterances arc one segment long, it is identical to linear warp. Thus, while the hybrid 

warping algorithm is able to cope with considerable segmentation errors, it does rely on segmentation to 

acquire the power of DP. Nevertheless, when segmentation is inaccurate, one should expect degraded, but 

not unreasonable results. Appendix I describes the Hybrid Warp in more detail. 

2.4.3 Search 

The recognition phase is a search for the reference pattern which best matches the input. The search 

technique used here is a branch and bound exhaustive search. [16] Although other systems [8] [1] have 

performed well without searching exhaustively, the word recognition system here is sufficiently fast, and the 

vocabulary sufficiently small, for exhaustive search to be feasible. The speed of the system is further 

enhanced by branch and bound pruning. Simply stated, branch and bound means: whenever the distance of 
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a partial alignment has exceeded the current minimum complete alignment distance, it could not possibly be 

die best match; therefore, there is no need to complete the matching and distance computation for this 

alignment. After the computation of each frame-wise distance, we check if the current minimum distance has 

been exceeded. If so, abandon the current alignment. It is important to understand diat the use of branch 

and bound affects only the speed, not the accuracy, of recognition. 

In order to illustrate the savings of branch and bound pruning, we modified die recognition routine to 

search exhaustively. The savings of branch and bound is shown in Table 2-4 were obtained by Matching 

Approach Network Technique (sec section 3.2). The time given is seconds per recognition. This experiment 

shows that branch and bound requires only 20-25% of die dme used by exhaustive search. 

SECONDS PER RECOGNITION OF ALPHABETS 
Search Algorithm Speaker Dependent Speaker Independent 

Exhaustive Search 3.18 
Branch-and-Bound 0.78 

Figure 2-4: Savings by branch and bound using matching approach 
network generation. 

16.57 
3.57 
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3 . Network Training 

Using the network representation, the reference set is encoded as a network of nodes linked with paths. 

A node is a basic unit of speech, and is equivalent to a segment. A path is a sequence of one or more nodes, 

and corresponds to a word. For example, a path for "B" could be represented as in Figure 3-1, and a network 

with three paths ("B", "D", and "V") and 4 nodes ( /b / , / d / , / v / , and / i / ) is shown in Figure 3-2. 

B 1 B 1 B 1 

Figure 3-1: A path for "B" using the network representation. 

B 
1 

B 
1 B 1 B 1 B 1 

w w 

Vi 

w 

Vi - W" 

Figure 3-2: A network of 3 paths. 

The network in Figure 3-2 is very effective and compact. If the three words were stored as three 

templates, when we match them against an input, random variations in the / i / part will dominate the total 

distance because the vocalic segment is much longer than the fricative. With the above network, however, the 

/ ! / segment of an input B, D, or V will have the same match score against each of the three paths. This 

between-word generalization leads to the ability to discriminate important ( / b / / d / / v / here) from 

unimportant ( / i / here) segments. Furthermore, the above network requires less than half the space of three 

full templates because two long / i / segments are eliminated. The savings could be more significant with 

larger vocabulary and larger number of training data per word. 

It is easy to see the advantages of the network representation; however, it is far from clear how to 

generate such a network from sets of training data. In this chapter, we examine two methods of network 

generation. Unlike traditional network systems, we use an incremental network approach. The first 

technique, the learning approach, is modeled after NEXUS [8] with some modifications. It tries to recognize 

each training data, and is positively reinforced for correct recognition, and learns from its mistakes. Although 
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this technique seems very elegant, a more compact network resulting in better recognition can be constructed 

using a simpler method, the matching approach. The matching approach matches words against each other to 

collapse similar segments. The following sections describe dicsc techniques and the results in detail. 

3.1 The Learning Approach 

The Learning Approach attempts to recognize each token in the training data as if it were input data. 

Depending on the outcome of the recognition, the network is modified accordingly. 

If die recognition is positive (the path in die network that best matches the input has die same identity 

as the input), then the system invokes die positive exemplar learning module. This module looks at each 

group in the best alignment between the input and die best matching same-word template. If every group 

distance is within a distance threshold, then each group of the input is averaged with its counterpart in the 

template. If any group distance is too large to average, a new network path is created, averaging the input 

with the template when die group distance is below die direshold, and using input nodes otherwise. In nearly 

all cases, there is no need to add another path (every group distance is below Ts). 

If the recognition is negative (a word template with idenuty different from the input was determined to 

be the best match), the learning process is more complex. There are two possible causes for a negative 

recognition. The first cause is that the training token had not appeared before. In this case, we match the 

token against each of the exisdng paths, and when partial alignments are found to be similar, the 

corresponding segments (but never the whole word) are averaged together. Otherwise, the input segments are 

added. 

In case of a real error (there exists at least one padi whose idenuty is the same as the input token), the 

learning module is invoked to attempt to add a new path that is more similar to the input than the wrong-word 

match. This new path may use 

• Segments from the input 

• Segments from the input averaged with segments from the wrong word match. 

• Segments from the input averaged with segments from a same word template. 

Next, we describe the exact algorithm that constructs this path. 

The first step is to recover all groups that constitute the best alignment of the wrong template to the 

input, and of each template of the correct word to the input Table 3-1 shows the groups and the scores for 

the inidal network and input in Figure 3-3. (Note, however, that there could be other same-word (B) 

. templates in the pool) 
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B 1 B 1 

CO
 

B. B. i CO
 

Input 

Partial Network 
Figure 3-3: A partial network and a training input "B" before network 
modification. 

Path Node 
/ b / (length = 5) 
Node Distance 

A/ (length = 100) 
Node Distance Path Distance 

D i 
N 

90 
20 

2450 

N 
30 

30 
3150 

Figure 3-1: Table of distances between every segment of die input and 
every node in the pardal network in figure 3-3. 

Table 3-1 shows that / b x / is a much better match than / d j / for / b 7 , and that / i j / is only slightly better 

than / i 2 / for / iV. However, because of the dominant length of /iV, template D r yielded a smaller distance 

than B r causing an incorrect recognition. The network approach tries to avoid this error in the future by 

adding a new path with identity B in the network. That new path must match B. better than D t matches B.. 

In order to modify the network with most accuracy, we introduce a distance threshold: 7^. If any group 

between segments of the different word template that was incorrectly "recognized" and segments of the input 

has a distance greater than 7"̂ , it is not considered as a candidate to be averaged with the input Similarly, Ts 

is the distance threshold for the same word templates, and any same-word groups with distance greater than 

7^ are eliminated. Note that 7^> TD because it is never more desirable to average into a different word than 

into a same word. Using the above example, if 7^=60 and 7 ^ = 3 0 , dien ( d r fy) is eliminated. The pool of 

the remaining groups and the distance of each group (S) are: 

8(b. f \) = 30 5(v y = 20 S(L, i 2 ) = 30 

Next all possibilities of combining these segments are considered, and the combination with the 



16 

minimal total distance is the new path 3. The following shows the computation of the new path: 

8(brbx)-5 + S(/./,)• 100 = 30-5 + 20-100 = 2150 

8( bfbx)- 5 + 8( if i2y 100 = 30- 5 + 30-100 = 3150 

This indicates that b{ and ij are the best matches for the input segments, and that they should be used in the 

modification of die network. Thus, the new path is the two segments: (1) b 1 averaged with b., and (2) \ l 

averaged with I. Figure 3-4 shows the modified network. 

In the network algorithm, when network nodes are found to match the input segments well, they are 

averaged together to create a more reliable template. Segments that are averaged into a network node in this 

fashion are weighted equally. 

B 1 B 1 CD
 

B 2 

Figure 3-4: Modified network given Figure 3-3 and Table 3-1. 

If 5 (b 1 , bj) were equal to 80 (there is no good match for the /b. / ) , then there will be no path that 

averages network nodes with every segment of the input Therefore, each segment of the input is also 

included in the pool with the 5 value of that segment set to Setting 5 of each input segment to 7^ results 

in using input segments only when it is impossible to find segments from different-word or same-word 

templates to average segments of the input into. In this case, the possible combinations are: 

8(bfb)- 5 + 5(/ /,/ 1)-100=60-5 + 20-100=2300 

S(bfb ) • 5 + S(ifi2y 100=60- 5 + 30-100=3300 

The system will correctly choose to add the input segment /b j / , average A^/ with / i j / , and add a new path 

with these two nodes. Figure 3-5 shows the resulting network. 

The only case where this learning scheme will fail is when the new path consists entirely of segments 

corresponding to a different word (for example, if 5(b 1 , d x ) = 20). When this occurs, there are two possible 

causes: 

Actually not all combinations are considered completely. This problem is equivalent to finding the shortest path r. 
weighted graph. Dijkstra's shortest single-source path algorithm [17] is used, and many impossible partial paths are pruned. 
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Figure 3-5: Figure 12: Modified network given Figure 10 and Table 5 
when no existing nodes provide a good match to / b 7 , so diat it is necessary 
to create new. 

paths and nodes.) 

1. The entire input is too similar to the incorrect different word template. 

2. The endre input is too different from the templates for the same word that are already in the 
network. 

The first case is characterized by small distance between the input and the different-word template. The 

second is characterized by large distancc(s) between the input and the same-word templatc(s), and between 

the input and different-word template. The systems tries to decide which case is valid, and if it is die first 

case, the input is ignored (no adjustment of network), and if it is the second case, die worst group from the 

different-word template is removed from the pool and a new path is recomputed. 

This concludes the description of the learning approach. The results and discussions of this approach 

will appear in later sections. 

3.2 The Matching Approach 

While the learning approach seems elegant and appeals to cognitive modeling, we believe the network 

generation process should be more general. Given an input, the best match for any of its scgment(s) may not 

be part of a same-word template or the wrong-word match, beyond which the learning approach does not 

consider. For example, a template C may match an input B very poorly because of the difference in the 

duration of the frication; however, they may have very similar / i / segments, which we want to average 

together, as shown in figure 3-6A. With the learning approach, no segments from C will be considered, and 

this results in the inferior network shown in Figure 3-6B. 

In another example, the / s / part of an input C may match the / s / of an S template very well; however, 

the two / s / sounds will never be aligned against each other in any sequential warping algorithm. The 
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B 1 B 1 CD
 

(A) Correct Network 

B 1 B 1 CD
 1 

B 2 

(B) Network Generated by 
Learning Approach 

Figure 3-6: Two possible networks after modifications given the input ( B 2 

was added). 

network should be modified as in Figure 3-7A; however, the learning approach will result in the network 

shown in Figure 3-7B. 

J 
1 _0

 

s 1 
J/^h)\—J/s2/} 

(A) Correct Network (B) Network Generated by 
Learning Approach 

Figure 3-7: Two possible networks after modifications given the input ( C 2 

was added). 

In each of these two cases, we would like to make generalizations, but cannot do so because of positional 

or durational differences between a template and the input The learning approach does not allow for these 

generalizations. Potential candidates for the learning approach are summarized in Table 3-2. The learning 

approach excludes most of the templates in the network (such as Figure 3-6), and all groups in non-optimal 

alignment (such as Figure 3-7). 
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Same-Word Templates Different-Word Templates 
Best Match Others Best Match Others 

Correct Recog. Yes No No No 
Incorr. Recog. Yes Yes Yes No 

Figure 3-2: Potential contributors to new path for learning approach 
network generation. 

Thus, we introduce an alternative approach, the matching approach. The matching approach is a much 

simpler approach that applies die same algorithm to every token in the training set. It permits usage of groups 

from any alignment between the input and any reference template. 

Similar to the learning approach, the network is built incrementally. The matching approach consists of 

two steps: 

1. Construction of a pool of groups. 

2. Network modification. 

In the first step, every padi in die current network is matched against the current training word template 

to identify similar groups. The Hybrid Warp constraints (Section 2.4.2) are not all applicable because 

somehow we must match similar sounds in different positions against each other. This can be accomplished 

by removing the sequential constraint in the Hybrid Warp. In other words, match any sequence of segments 

in the token against any sequence of segments in every template. This modified warp that computes all 

plausible groups between two words W and W is outiined as below: 

For each segment Sj in W1 

For each segment s2 in W2 

Match Sj a g a i n s t s2 i f other c o n s t r a i n t s are s a t i s f i e d . 

For each segment s1 in IVj 
For each sequence of two or more segments S2 in W2 

Match Sj a g a i n s t S2 i f other c o n s t r a i n t s are s a t i s f i e d . 

For each segment s2 in W2 

For each sequence of two or more segments S2 in W2 

Match s2 a g a i n s t Sj i f other c o n s t r a i n t s are s a t i s f i e d . 

All of the matches above and their distances are saved in the pool of groups. Next, we delete from the 

pool: (1) each group with distance greater than TD if the group is from a word with identity different from W, 

and (2) each group with distance greater than Ts if the group is from a word with the same identity as W 

(Note that TD and Ts serve conveniently as branch and bound cut-off s for the group distance computation). 
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Then, we add each of the input segments with the group distance score equal to 7 ,̂ (so that an input segment 

is used in the path only if no similar segment is found in the network). 4 

In the second step, we examine all combinations of the groups in die pool, and select the best path 

(smallest total distance) of groups that covers every input segment once. For each group in the best path that 

uses network segments, we average the appropriate input segments into the network scgment(s). If the group 

consists of an input segment only, it is used in isolation because no similar segment from the network can be 

used. 

If the best path is equivalent to a same-word existing path, then no padis need be added. If the best 

path is equivalent to a different-word existing path, we either ignore the input (when it is too close to the 

different-word) or eliminate the worst group of the match from consideration and recompute the best path. If 

the best path uses segments from more than one template, diey are linked together to form a new path. 

Like the Hybrid Warp, this algorithm is designed to deal with inaccurate segmentation. A simpler 

method would be to match each segment of the input against each existing segment of the same type in the 

network; however, as Zapdash sometimes misses a segment, or creates an extra segment, that method would 

not find as many alignments that can be averaged. 

Figure 3-8 shows a portion (the E-set - B, C, D, E, G, P, T, V, Z) of the actual network generated by this 

approach after 5 sets of speaker-dependent training data. This partial network requires less space than a 

single set of the 9 letters. This shows the potential for savings in space when words in the vocabulary are 

similar. 

This completes the description of the matching approach. It is similar to the learning approach. In fact, 

the bulk of the two algorithms is the same, with three notable exceptions: (1) the matching approach makes no 

distinction between correct and incorrect recognition, (2) the matching approach allows any template to 

contribute to the new path, and (3) the matching approach permits non-sequential alignment when searching 

for a good match through a relaxed hybrid warp. 

3.3 Results 

Performance of the two network systems are displayed in table 3-3. As stated in section 2.1, the 

speaker-dependent results the letters of the alphabets were obtained using 5 sets of one speaker to train, and 

10 other sets of the same speaker to test; and the speaker-independent results (both letters and digits) were 

obtained using 2 sets each of 10 speakers to train, and another 2 sets each of the 10 speakers to test. 
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"Recognition" is the percentage correctly recognized utterances out of a possible total of 260 

recognitions for speaker dependent letters, 520 for speaker independent alphabets, and 200 for speaker 

independent digits. "Megabytes used" accounts for the data space used by the program. It is dominated by 

the cepstrum coefficients. Also included are the power values, network maintenance information, and the 

data structures for paths and nodes. "Total time for generation" is the time die network algorithm took to 

generate the network, and "Time per recognition" is the time used for one recognition. 
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Speaker Dependent 
Alphabets 

Learning Matching 

Speaker Independent 
Alphabets Digits 

Learning Matching Learning Matching 

Recognition 
MBytes used for network data 
Total Time for generation (sec.) 
Time per recognition (sec.) 

98.08% 99.23% 89.23% 91.92% 98.00% 99.00% 
0.18 0.17 1.58 1.15 0.61 0.30 
121 93 1581 902 230 119 
0.82 0.78 4.36 2.85 0.63 0.53 

Figure 3-3: Recognition accuracy, space 
requirements of the two network approaches. 

requirements, and time 

3.4 Discussion 

Traditionally, network-based systems [1] [9] use some form of compiled network. Neither of the 

approaches described belongs in this category. They are both incremental network systems. Compared to the 

compiled network, the incremental approach has a number of advantages: 

1. Language and vocabulary independence. 

2. Easy addition of new words by learning. 

3. Does not require phonetic description and alternate pronunciations of each word. 

4. Does not require accurate and fine labeling. 

However, it is likely to use more space and may yield inferior performance. 

Nevertheless, the results in the previous section are very encouraging. In particular, the matching 

approach attained high recognition accuracy. The main reason that it produced better results is that it has a 

greater pool from which to select the candidates for averaging. It can be thought of as an incremental 

segment-level clustering process. Its superiority is predicated upon its ability to find more suitable clusters for 

the input segments. 

Moreover, the matching approach is easier to implement because of its use of a uniform procedure for 

network incrementation. For the same reason, it is easier to understand. 

The matching approach is superior in both time measurements. It is faster in network generation 

because the recognition phase in the learning approach could take considerable time. Also, the matching 

approach allows the use of the thresholds as branch and bound cut-off s, which eliminates the need to 

compare most of the dissimilar groups. Its smaller network accounts for the faster recognition time. 
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One disadvantage of die matching approach is when the vocabulary size grows larger, the matching 

approach may require a large amount of time (because of the larger pool of groups). Hut if better or finer 

segmentation were available, it may not be necessary to consider matching sequences of segments, and we 

could simply look for one-to-one groups. Furthermore, since reference generation occurs only ones, and the 

network can be easily modified later, this is not a serious problem. 

One common problem to both approaches is the need of considerable space and time for speaker 

independent recognition. Figure 3-9 shows recognition rate vs. space usage (space usage is adjusted by tuning 

the distance thresholds TQ and Ts) for speaker independent alphabet recognition. The learning approach is 

clearly inferior because it requires almost over 1.5 megabytes to reach its optimal accuracy - 89.23%, which 

matching approach can attain with only 0.5 megabyte. But even the matching approach requires 1 megabyte 

(about the size of 10 data sets) for its optimal performance (91.92%). This reduces the storage requirements 

by only 50% from using all the training tokens. 

A comparison between Figure 16 and Figure 17 shows diat speaker-dependent recognition reaches 

asymptotic recognition performance with a much smaller amount of required storage. In fact, the asymptotic 

storage required only 50% more storage than what is needed for just one set of data. This is die ideal behavior 

diat we seek. Unfortunately, a comparably efficient representation is not possible for speaker independent 

recognition. 

One might expect recognition rate to increase monotonically with additional storage. In Figure 3-10, 

that is clearly not the case. Also in Figure 3-9, the slope is negative after 1 MB for the matching approach. 

The local fluctuations are caused by imperfect choice of thresholds. Our choice of TD and 7^ are not always 

optimal for any allowed space. An bad choice may cause a drop in accuracy while a good choice may cause an 

increase. 

The general non-monotonic shape of the curves can be explained as follows: the variations in speech 

cannot be represented using one template or very few per word; thus, there is an increase in accuracy when 

we provide some additional storage. However, when we start adding unreliable templates, recognition rate 

will drop. For example, consider the case where the stabilized network has a template for B and another for 

D, each of which has been averaged into many times. A training input B that is slightly closer to D may be 

ignored or averaged if space is limited (by low thresholds). Ignoring is ideal, and averaging is unlikely to be 

disastrous (since averaging is weighed by number of components already averaged into the template). But if 

that input is added as a template; more B-D confusion will occur during recognition. Thus, recognition rate 

will decline with superfluous additional storage. 
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Figure 3-9: Speaker-independent recognition accuracy vs. space usage for 
network training. 
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Figure 3-10: Speaker-dependent recognition accuracy vs. space usage for 
network training. 
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4. Comparison of Network Systems with Nexus 

NEXUS [8] is a word recognition system using a network representation similar to the systems in this 

paper, and a learning strategy similar to die learning approach. Many underlying theories and concepts 

discussed in this paper were motivated by NEXUS. However, there arc many differences in die 

representation of speech, the generation of die network, and recognition using a network-structured reference 

set These differences, as well as how they effect the performance of the systems, will be discussed in die 

subsequent sections. In this Chapter, the two approaches will be abbreviated as LEARN and MATCH. 

4,1 Speech Representation 

In NEXUS, spectral coefficients from Fast Fourier Transform are used to represent the speech signal. 

NEXUS encodes every 12 milliseconds of speech with 26 8-bit coefficients. In contrast, die word recognition 

system in this study encodes every 3 milliseconds of speech with 24 9-bit LPC cepstrum coefficients. Both 

NEXUS and die system in this study use the Euclidean distance to measure the distance between two frames 

of speech. In addition, we also use power and duration information to enhance the distance measurement. 

Although it has been shown that cepstrum coefficients arc more accurate than FFr coefficients [18], and 

NEXUS uses less storage, these factors cannot completely account for the difference in performance to be 

shown later. 

Segmentation in NEXUS is based on a segmenter written by Bradshaw for NEXUS [8]. The 

segmentation algorithm we used is the Zapdash segmenter. The Bradshaw segmenter uses parameters quite 

similar to Zapdash, but uses a different strategy for segmentation. The details of that segmenter is beyond the 

scope of this paper. Nevertheless, it should be noted that Bradshaw's segmenter produces four broad category 

segment labels: Vocalic, Fricative, Silence, and Unknown; thus, another difference between it and Zapdash is 

that unlike Zapdash, it does not try to label segments with uncertain identity. 

In a recent evaluation on a large database from multiple speakers, Waibel [19] showed that Zapdash is 

somewhat better, yet takes less time than the Bradshaw segmenter in classification of vocalic, silence, and 

fricative when compared to hand segmentation. This is the case even if all the Unknown segments (very few) 

are classified correctly by the Bradshaw segmenter. From examining many outputs of both segments, it 

appears that Zapdash is a more robust segmenter, and the Bradshaw segmenter worked well for the two 

speakers it was trained on. For these two speakers (the only two used in NEXUS), the Bradshaw segmenter 

was as good as, if not better than, the Zapdash segmenter. Therefore, in spite of Waibel's results, we cannot 

attribute the inferior performance of NEXUS to segmentation. 
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4.2 Network Representation 

Although NKXUS has more complex data types, retaining more information about the network 

structure and the speech, there is no fundamental difference in the representation of die network. Both 

systems maintain a list of paths that represent words, and each patii consists of nodes that represent segments. 

4.3 Network Generation 

NEXUS uses a learning paradigm quite similar to LEARN to generate its network incrementally. For 

each training token, NEXUS first tries to recognize it using the existing network, and on: 

• Correct Recognition - Always average into die same-word token that matched. This is similar to 
the LEARN, except the LEARN allows for adding instead of averaging segments that are not really 
good matches. 

• Unknown Word - A new path is added to die network, averaging segments into well-matching 
network nodes, or adding the segments themselves. This is identical to both LEARN and 
MATCH. 

• Incorrect Recognition - NEXUS computes a similarity analysisby: 

o Find the network paths with the same identity as the input, and identify the best same-word 
match. 

o Match all network paths that have the same identity as die input word against the input 
word and the best same-word match. 

o Match all network padis that have the same identity as the incorrect best-match against the 
input word and the best same-word match. 

o Sum the above distances as two vectors, one of which shows a frame-by-frame total distance 
between the two different words, and another between different examples of the same 
words. Then, the two vectors are subtracted to produce a profile. At any frame of the 
profile where the value is positive, the between-word match is less similar than the within-
word match. 

If either no matching same-word path is found or the profile does not correspond with 
segmentation, the input is added. Otherwise, parts of the input may be averaged into the best 
same-word match, the incorrect best match, or simply added. LEARN's error recovery process 
also locates good segments to average, but it does not need to make this correspondence. MATCH 
uses a totally different strategy. 

Furthermore, NEXUS uses network maintenance heuristics to eliminate "unnecessary" or "harmful" 

paths. An "unnecessary" path is one that has not been used to correctly recognize an input in five recognition 

cycles. A "harmful" path is one that was incorrectly used over 40% of the time. The systems in this study are 

not equipped with these heuristics. 



28 

4.4 Network Recognition 

The greatest difference in network recognition is diat NKXUS docs not distinguish recognition from 

generation. With NKXUS, a recognition is always followed by learning and network adjustments. On the 

other hand, learning always requires recognition first. LEARN is similar, except for practical purposes, we 

have separated generation from recognition. MATCH docs not require recognition in the generation stage. 

Another difference is in search. NEXUS uses bcamsearch, which expands potential padis in parallel. 

However, because of the similarity in the vocabulary, the beam size is set at a large value to minimize pruning 

of the correct path. Because of diis, the exhaustive search used by the systems here actually uses less time for 

search than the beamscarch in NEXUS. 

Although NEXUS segments input speech, that information is not used in the matching. Instead, it uses 

a standard DP matching algorithm to match the input word against every path in die network. Although DP 

is slightly more accurate than the Hybrid Warp, it is very time consuming. Furthermore, useful information 

from segmentation was not used. 

4.5 Comparison of Results 

Nexus was tested on speaker-dependent alphabet data of two speakers. The first half of the same data 

for one of these speakers (mgb) was used throughout this study as the "speaker dependent alphabet 

database". It is, therefore, possible to direcdy compare the performance of NEXUS and the systems here. 

Bradshaw [8] used 30 sets of the mgb speaker-dependent alphabets to generate a network, and reported 

results for every 5 sets in a continuous 30-trial experiment (Recall that NEXUS does not distinguish between 

training and testing). Table 4-1 shows the performance of NEXUS: 

Trials Recognition % 

2-5 90.38% 
6-10 94.61% 
11-15 93.84% 

16-20 93.84% 
21-25 95.38% 
26-30 90.76% 

Figure 4-1: Nexus recognition results. 

The systems in this study used sets 1-5 to train, and 6-15 to test, and LEARN attained 98.08% recognition 

accuracy and MATCH reached 99.23%. In contrast, with continuous learning, NEXUS recognized 94.23% of 

the alphabets in sets 6-15. 



29 

In terms of storage, each system used somewhat less dian the size of 2 full SCLS of the alphabets, although 

NKXUS required considerably fewer bytes to represent each set. No time measurements for NKXUS are 

available, but based on experience, it is much slower than the systems here because of DP matching. 

4.6 Summary of Differences 

Fable 4-2 displays the differences and similarities between NEXUS and the two systems described in 

tliis paper. 

Nexus Learn Match 

Representation 
Speech 
Network 

FFT Coefficients 
Path = Word 
Node = Segment 

Cepstrum Coefficients 
Path = Word 
Node = Segment 

Cepstrum Coefficients 
Path = Word 
Node = Segment 

Algorithms 
Distance Measurement 
Segmentation 
Warping 
Search 

Euclidean 
Bradshaw 
DP 
Beam Search 

Euclidean + PD 
Zapdash 
Hybrid Warp 
Exhaustive Search 

Euclidean + PD 
Zapdash 
Hybrid Warp 
Exhaustive Search 

Network Generation 
General Strategy 
Different Situations 

Options Available 
Number of Network 

Nodes Usable* 

Incremental Learning 
Correct Recognition 
Incorrect Recognition 
Network Maintenance 
Add, average 
Few 

Incremental Learning 
Correct Recognition 
Incorrect Recognition 

Add, average, ignore 
More than NEXUS 

Incremental Modification 
Uniform Method 

Add, average, ignore 
All 

Recognition % 94.23% 98.08% 99.23% 

Figure 4-2: Summary of differences between NEXUS, LEARN, and 
MATCH. 

4.7 Discussion 

Although NEXUS, LEARN, and MATCH are all incremental network systems, they have many 

fundamental differences. The most salient one is the motivation behind each system. NEXUS was designed 

to substantiate the Property Integration Theory of speech learning. This theory of the development of human 

For averaging into the input See Table 3-2. 
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speech perception postulates that speech is learned by integrating properties from examples. On die other 

hand, the systems here were designed with the goal of creating an accurate and efficient computer recognizer 

of human speech. 

NEXUS makes no distinction between learning (generation) and recognition. Every learning trial 

requires recognition first, after which the network is adjusted depending upon the outcome of the recognition. 

This was intended to model human learning, and can (1) learn new words at any time, and (2) continuously 

improve perceptual accuracy. This concept was partially inherited by LEARN, but not used at all in 

MATCH. However, LEARN and MATCH bodi distinguish learning from recognition. This is because it was 

felt diat (1) learning new words at recognition time is not an important concern for a small and novel system, 

and can be implemented easily, (2) results indicate diat prolonged learning does not improve accuracy, and 

most importantly, (3) continuous learning is very time consuming; thus, it contradicts our goal of an efficient 

system. 

LEARN inherits the NEXUS strategy of applying different algorithms depending upon the outcome of 

recognition. When recognition is positive, LEARN and NEXUS only differ in diat LEARN can avoid using 

the best same-word match. This is a very minor improvement. All direc systems behave similarly when 

presented with a new word (add the word using existing nodes whenever possible). 

However, NEXUS and LEARN are quite different in their strategies of error-recovery from true 

recognition errors. NEXUS creates a profile by making a large number of comparisons, and then 

corresponding that with the segmentation to find where the correct word and the incorrectly recognized word 

differ. Next, it averages the segments of the input with any same-word node that is a best-matching node for 

that segment. Then, it uses nodes from the mismatched path if the corresponding segments were determined 

to be similar (Similarity is measured by a threshold value). Finally, segments from the input may be added. 

If either the profile or the correspondence is unsuccessful, the input is simply added. 

The error recovery mechanism in LEARN has a more local view. Instead of attempting to find where 

the two words differ, it tries to find good segments in either the mismatch, or in any same-word path to 

average into, and, failing that, input segments are added. Instead of searching "best matching" node for each 

node only as in NEXUS, LEARN uses Dijkstra's algorithm that examines the entire space of segments from 

usable words. This is more likely to find a better averaging path. Furthermore, no correspondence need be 

created. In LEARN, the correspondence is implicit in the alignment of segments in the Hybrid Warp. 

Therefore, it does not suffer from the inability to find a correspondence. 

However, because of the locality of its analysis, the error recovery procedure of LEARN is .more likely 
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to average two different sounds together. If two different sounds have a lower distance than the same sounds, 

and that distance is below a threshold, they will be averaged together. (Note that die learning mechanism 

knows die identity of each word, but not that o f each segment). Nevertheless, by setting Td at a sufficiently 

low level, this can be minimized. Furthermore, NEXUS is prone to the same problem in the early stages of 

network generation when it must rely on die information of only very few paths per word. 

In terms of compactness and efficiency, LEARN is superior to NEXUS. In its error recovery process, 

NEXUS has a tendency to: 

1. Fail to find a correspondence. 

2. Add the enure token. 

3. The created path is pruned later by network maintenance heuristics. 

The net result is a wasted training token, and deceleration of the learning process. This anomaly is avoided by 

LEARN and MATCH with the implicit correspondence in the Hybrid Warp. 

Unlike either NEXUS or LEARN, MATCH has a generation procedure well characterized by its name. 

For each input, it simply finds network nodes that match its segments well, and determines the optimal way to 

link them (or segments of the input when nothing matches well) together using Dijkstra's algoridim. Because 

of the greater number of candidates considered, it is likely to build a more compact network, aldiough it too 

may average different sounds together. 

One feature found in NEXUS, but not in the two systems here is network maintenance heuristics. 

NEXUS prunes paths that have not been used for successful recognition in 5 sets of training trials, and paths 

that have over 40% misidentification rate. For a speaker dependent system, the pruned paths are likely to be 

unusual or ambiguous tokens; however, we believe diat this cannot be generalized for speaker independent 

recognition. In speaker independent recognition, many paths may be unsuccessful or unused for some 

speakers, yet very successful and used often for other speakers. Pruning of these paths will cause degraded 

performance. But since NEXUS was intended to be a speaker dependent system, these heuristics were 

helpful to reduce the amount of computation. 

NEXUS uses full dynamic programming matching of templates with beam search. However, because of 

the inherent ambiguity of the alphabets, the size of the beam must be set at a large value to minimize the 

pruning of the correct path. Thus, NEXUS takes substantially more time than LEARN or MATCH even 

with the network maintenance heuristics. This is another impediment in extending NEXUS to speaker-

independent recognition. 

The Hybrid Warping Procedure introduced in this paper is a good compromise between linear and 
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non-linear alignment. It is able to achieve accuracy close to DP, yet reducing the amount of computation 

considerably. It is an important factor in making the network systems here almost real time. With the Hybrid 

Warp, it is not necessary to make correspondences between the alignment and die segmentation, which avoids 

the loss of information when correspondence cannot be found. MATCH uses four times as much storage as 

NKXUS for speech data, and uses exhaustive search rather than beam search. Yet it is much faster and 

considerably more accurate than NEXUS. This is largely due to the use of die Hybrid Warp instead of 

dynamic programming. 

In conclusion, aldiough the parametric reprcsentadon and the distance measurement were helpful to 

LEARN and MATCH, it is die Hybrid Warp, the reliable segmentation, and the new algorithms diat enabled 

LEARN and MATCH to produce the superior results. In particular, the simple algorithm in network 

generation used by MATCH produced compact, efficient, yet accurate networks. 
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5. Comparison with Other Techniques 

In the last two chapters we considered the theoretical soundness of network training and compared the 

performance of die learning and the matching approaches. In this chapter, we assess the practical soundness 

of network training by comparing its results with several known techniques. Each subsequent section 

discusses a technique, leading to the final section which compares die performance of these systems in terms 

of recognition, space, and time. In order to make valid comparisons, all of the techniques were implemented 

using the same word recognition system described in Chapter 2. In many cases, the performance of these 

systems depend upon selecting a number of thresholds. The results displayed reflect those obtained with the 

optimal thresholds. These methods are described and discussed in more detail in Appendix III. 

5.1 Casual Training 

Casual Training is the simplest and most natural reference generation technique. It uses one or more 

sets of training data as the reference set without any processing. Both Single-Template Casual Training (1 set 

of training data as template) and Multiple-template Casual Training (5 sets of training data were used for 

speaker-dependent recognition, and 20 sets were used for speaker-independent recognition) were 

implemented. 

5.2 Template Selection 

The Template Selection technique selects the "best" template for each word from the available training 

sets and uses it as the reference [3]. The basic algorithm is as follows: 

1. Match every word in the training sets against every other word. 

2. Select 2 best candidates for each word based on minimization of distance against same words and 
maximization of distance against different words. 

3. Examine all combinations among them to find the best template for each word. 

5.3 Averaging Training 

Averaging Training takes different tokens of the same word and averages them together to create 

reference templates. The averaging technique used here averages all of the tokens together (assuming that the 

Hybrid Warp is able to align them). These tokens are averaged into the token whose duration is closest to the 

average duration. 
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5.4 Simplified Clustering Training 

Simplified Clustering Training [2] begins with two tokens of each word. If the distance between the 

tokens is below a distance dircshold, they are averaged to create the reference template for that word, and the 

generation process for this word terminates. Otherwise, another token of that word is introduced, and it is 

matched against all examined tokens for that word. This process continues for each word until cither a pair 

with distance below die threshold is found, or if we run out of training data, in which case the first template is 

added. The tokens are processed in order of durational proximity to die average duration of all tokens widi 

the same identity. 

5.5 K-Means Clustering 

For speaker-independent recognition, we have sufficient templates for statistical clustering. The 

algorithm selected here is K-Means Iteration [6]. An outline of the algoridim (to be iterated for each word in 

the vocabulary) is as follows: 

1. Initialization - Select N (optimal = 3 for speaker-dependent and 9 for speaker-independent) 
random templates as initial cluster centers. 

2. Classification - For each replication of the word, find the cluster center that is closest to it, and 
categorize, that replication in that cluster. 

3. Recomputation - Recompute the center for each of the N clusters. The cluster center is the 
template in the cluster that has the smallest maximal distance to any otiier template in the cluster. 

4. Convergence Test - If each center remains unchanged, we're finished with this word. Otherwise 
go back to step 2. 

5.6 Comparison 

5.6.1 Results 

Table 5-1 shows the recognition results of all 8 systems. All experiments were run with the database 

described in Section 2.1, and the recognition system description in Chapter 2. Table 5-2 shows the space 

requirements for speech data in megabytes required by each of the systems. This includes the coefficient, 

power, and data structures. Table 5-3 shows the total time for reference generation. This is the CPU seconds 

used to generate the entire reference set More importantly, it also shows the time required for each 

recognition given the generated reference set 
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Speaker Dependent Speaker Independent 
Training Method Alphabets Alphabets Digits 

Casual single template 91.53% 52.30% 74.50% 
Casual multiple template 96.92% 89.23% 97.00% 
Selection 94.23% 60.21% 82.00% 
Averaging 96.92% 65.77% 90.50% 
Simplified Clustering 95.38% 57.88% 82.00% 
K-Means Clustering 98.08% 90.19% 98.00% 
Network learning 98.08% 89.23% 98.00% 
Network matching 99.23% 91.92% 99.00% 

Figure 5-1: Recognition accuracy for 8 systems. 

Speaker Dependent Speaker Independent 
Training Method Alphabets Alphabets Digits 

Casual single template 0.12 0.11 0.04 
Casual multiple template 0.59 1.93 0.69 
Selection 0.12 0.11 0.04 
Averaging 0.12 0.11 0.04 
Simplified Clustering 0.12 0.11 0.04 
K-Mcans Clustering 0.35 0.95 0.34 
Network learning 0.18 1.58 0.61 
Network matching 0.17 1.15 0.30 

Figure 5-2: Network size (in megabytes) for 8 systems. 

Speaker Dependent 
Alphabet 

Total Gen. Time per 
Training Method Time Recog. 

Casual single template 2 0.34 
Casual multiple template 11 1.45 
Selection 654 0.40 
Averaging 38 0.32 
Simplified Clustering 11 0.32 
K-Means Clustering 49 0.72 
Network learning 121 0.82 
Network matching 93 0.78 

Speaker Independent 
Alphabet Digit 

Total Gen. Time per Total Gen. Time per 
Time Recog. Time Recog. 

2 0.40 1 0.17 
55 6.17 14 1.70 
3704 0.53 370 0.16 
139 0.55 47 0.15 
13 0.51 5 0.16 
424 2.15 111 0.42 
1581 4.36 230 0.63 
902 2.85 119 0.53 

Figure 5-3: Time requirements (in seconds) for 8 systems. 
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5.6.2 Discussion 

The techniques Single-Template Casual Training, Selection, Averaging, and Simplified Clustering arc 

single-template techniques. As such, they perform satisfactorily on speaker-dependent data because a single 

template can represent the characteristics of one speaker reasonably well. However, in the speaker 

independent case, their recognition accuracies are unacccptably low because bctwccn-speakcr differences are 

too diverse to be encapsulated in one template. 

The four multiple-template techniques - Multiple-Template Casual Training, K-Means Clustering, 

Learning Network, and Matching Network performed reasonably for both speaker-dependent and speaker-

independent data. Among the four, the matching approach of network generation stands out as the best 

In the introduction, we conjectured that Multiple-Template Casual Training is very wasteful, that 

Clustering reduces much of this wastage, and that Network representation increases the ability to discriminate. 

The results in the previous section confirm this conjecture. Clustering yielded better results than using all 

templates, and also used less storage and time. Network (matching) yielded results even better than 

Clustering, and could potentially use less space (by sacrificing some accuracy). 

In summary, the results in this chapter showed that: 

1. Single-templates cannot capture between-speaker differences. 

2. For speaker-dependent recognition, single template systems (in particular, Averaging) are 
adequate, and multiple template systems are not needed. 

3. For speaker-independent recognition, clustering adds the ability to generalize. It has a more 
compact representation than using all of the templates, yet attains higher accuracy. 

4. For speaker-independent recognition, the network representation provides the ability to 
discriminate through the generalization of similarities between tokens with different identity. 
Thus it achieves the best results. 
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6. Future Work 

Although the matching approach has produced satisfactory results, tiicrc arc still a number of problems: 

Recognition One obvious method to improve recognition accuracy of the system is to incorporate 
phonetic knowledge into die system. We could label the segments, and average only those 
with the same label. This need not be done manually, but can be done automatically with 
a dictionary of plausible segmentations of each word. This, however, would sacrifice die 
property of vocabulary independence for higher accuracy. Another possibility is to have 
finer segment labels so that the Hybrid Warp can yield accuracy even closer to dynamic 
programming. It is possible to produce segmentation with 5 or 6 labels with reasonable 
accuracy. We will try to use a more complete set of the Zapdash [7] outputs. Hopefully, 
this will cause the network to be more compact, as well as yield better results. 

Space As Figure 3-9 illustrates, die network requires much space in order to achieve high 
accuracy for speaker-independent recognition. In view of the small vocabulary and 
number of speakers, this could become a serious limitation when applied to a large 
vocabulary. The cause of the inability to build a compact network may be (1) The group of 
speakers is a very diverse one, (2) the segmentation algorithm yielded segments that were 
too long (too many one-segment words), or (3) The distance measurement or warping 
method is imperfect. These must be investigated. Furthermore, vector quantization is a 
new method that reduces the space usage dramatically. Its use with incremental network 
will be the subject of another study. Finally, it is also quite possible that network 
techniques, as well as other template-matching techniques are limited to speaker 
dependent recognition. If this unfortunate possibility were true, speaker adaptation may 
be combined widi the network approach to deal with speaker independent recognition. 

Time To reduce the time requirements for recognition, we could adopt beamsearch [1] or branch 
and bound with pruning [16], bodi of which look at several padis concurrently, and avoids 
repeated comparisons between nodes. It is not known, however, whether this will reduce 
recognition accuracy considerably. 
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7. Conclusion 

In this paper, the network representation of speech is presented. It was shown diat the network 

structure has die desirable properties of 

1. Savings of time and space. 

2. Encapsulation of variations in speech. 

3. Ability to discriminate and generalize. 

The major impediment to the network representation is its dependence on good segmentation. This 

dependence is minimized by: 

1. Modified Zapdash segmentation with coarse phonetic labels. 

2. A Hybrid Warp that tolerates imperfect segmentation. 

The incremental network approach is examined as an alternative to the traditional compiled network 

method. Generating the network incrementally has a number o f advantages: 

1. Language and vocabulary independence. 

2. Can add and learn new words easily. 

3. Does not require phonetic description and alternate pronunciations of each word. 

4. Does not require accurate and fine labeling. 

Two methods of network generation are introduced. Using an alphabet database, the matching 

approach network generation attained 99% for speaker dependent alphabet recognition, 92% for speaker 

independent alphabet recognition, and 99% for speaker independent digit recognition. These results are 

superior to all other methods implemented using the same database and recognition system, confirming the 

abovementioned properties of the network representation and the incremental network approach. 
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M 1 , 1 M 2 , 1 M 3 , 1 

M 1 , 2 M 2 , 2 M 3 , 2 

X X X M 4 , 3 

Figure M : DP matrix of matching a 4-segment reference against a 3-
segment input The crossed out cells are unusable. 

Each cell of the matrix can be computed as follows: 

M = i 1 o r j ' ~ 1 C o s t ^ ' l f b V \ 
Otherwise MIN ( A / M k + Cost (/, /, k+1,;)) j> k> 1 

MIN ( ' ) 
MIN (M k J _ x + Cost (Jfc + 1 , /. j , j)) i>k>\ 

where Cost(r, r, / f Q is die distance obtained by aligning segments r through r2 of the reference against 

segments / through / of the input 

I. The Hybrid Warp 

The Hybrid Warp is a novel warping algorithm introduced in this paper. It is outlined and justified in 

Section 2.4.2. In tliis Appendix, we will describe die Hybrid Warp in more detail. 

The Hybrid Warp aligns die segments dynamically, and within each group of die alignment, the frames 

arc aligned linearly. The linear alignment of the frames is trivial; it is done simply by taking the ratio of die 

lengdis of the two segment sequences, and corresponding each frame of the reference to a frame of the input. 

Thus, each frame of die reference corresponds to at least one frame in die test input while certain frames of 

the input may be skipped or repeatedly used. 

To align the segments dynamically, we formulated a specialized DP matching procedure. Recall the 

example in Section 2.4.2 that matches a reference of 4 segments against an input of 3 segments. Using tliis 

example, we can generate a standard DP matrix as shown in Figure 1-1. In diis matrix, M.. means : die best 

way to match the 1 s t through segments of the reference against the 1 s t through /** segments of die input 

Thus, Afl means the best way to match the first segment of the reference against the first two segments of the 

input, and A/4 3 is the best way to match the endre reference against the entire input 
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The first column and die first row of die matrix can be calculated immediately because they satisfy the 

alignment constraint (matching one against many or one against one). These values of these cells could be 

computed as follows: 

1. Reject (set to infinity) if other constraints are not satisfied. This could be due to: 

• One group is much longer than the other (Durational Constraint). 

• The aligned segments are too phonetically different (Phonetic Constraint). 

• The remaining length (after this segment) of one word is much longer than diat of the other 
word (indirect application of Durational Constraint). 

2. Linearly match the frames involved otherwise. 

The remaining cells depend upon an L-shapcd group of previous cells as shown in Figure 1-2. This is 

because to compute the M.. cell, we must use some previously computed cell and add a legal alignment to 

that (for example, we could use and add CostU u j,;)). The choice for this previously computed cell 

is limited to MHlk» where k<j, and where k<i. Any other cell would force a many-to-many 

alignment, which violates the alignment constraint. 

Figure 1-2: Dependence of a DP cell on the other cells. 

Because of this dependence relationship, except for the solution cell (the lower-right cell in the matrix), 

the last column and last row need not be computed since nothing depends on them. For example, M in 

Figure 1-1 is impossible as it leaves the segments 2 to 4 of the reference unaligned. The useless cells are 

crossed out in Figure 1-1. 

To compute the entire matrix, we first compute the cells in the first row and column. The remaining 

cells can be computed horizontally or vertically. Whenever an alignment is not possible due to other 

constraints, the value of the cell is set to infinity. Moreover, the best path distance can be used to terminate 

partial computations (branch and bound). Thus, in reality, many cells were never computed since they 
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correspond to implausible alignments. As in standard DP, the path taken is also remembered, and when the 

final /V/.. is reached, the best alignment can be recovered with a backtrace. 

The sequential and alignment constraints were implicitly built into this DP matching scheme. The 

durational and phonetic constraints were taken into consideration in the cell computation in that any cell diat 

forces illegal durational or phonetic alignments is set to infinity. 
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Number of RECOGNITION % 
Matching Coefficients Casual Average K-Mcans Learning Matching 

oo 51.15% 63.65% 87.31% 88.27% 89.81% 

10 50.76% 64.04% 87.50% 88.85% 89.81% 

12 51.15% 64.42% 88.08% 88.85% 89.62% 

14 51.53% 64.81% 88.08% 88.65% 90.38% 

16 52.30% 65.00% 88.65% 88.27% 90.58% 

18 52.15% 65.38% 88.65% 88.46% 90.77% 

20 52.30% 65.58% 88.27% 89.23% 91.15% 

22 52.30% 65.77% 88.27% 89.23% 91.54% 

24 52.30% 65.77% 90.19% 89.23% 91.92% 

Figure II-l: Recognition effected by the number of cepstrum coefficients 

used. 

These results show that the ranks of these generation techniques are preserved when the number of 

coefficients are varied. Moreover, they indicate that recognition accuracy varies directly with the number of 

cepstrum coefficients, and that 24 coefficients were necessary to retain the level of accuracy. This apparent 

disagreement with the results reported by Shikano [12] might be due to the fact that the original 32-bit 

coefficients were compressed into 9 bits in this study, while they- were retained as 32-bit floating point 

numbers in [12]. Thus, the loss of information from the compression might be recovered by increasing the 

number of coefficients. 

II. System Tuning Experiments 

A number of decisions were made about die word recognition system, such as die number and the size 

of the coefficients, the distance metric, warp parameters, and the search method. These decisions were 

derived by tuning tiircsliolds and parameters and selecting the ones that optimize die recognition results. This 

Appendix describes these tuning experiments in detail. 

It should be noted that these experiments used different data and different generation methods. But in 

no case was the digit database used. The digit recognition experiment was run using the parameters derived 

from speaker-independent alphabet recognition. 

II.l Number of Cepstrum Coefficients 

24 9-bit coefficients were used initially. Later, Shikano[12] showed that 16 coefficients and 24 

coefficients produced equivalent results. Thus, an experiment was conducted for five systems using 8 to 24 

coefficients. In this experiment five reference generation methods were applied to speaker-independent 

recognition of alphabets. The results are shown in table II-l. 
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II.2 Size of the Cepstrum Coefficients 

Initially, a VAX 11/750 was used for this research. On the 11/750, floating point arithmetic is 

considerably slower than fixed point; dicrcforc", the 32-bit floating point cepstrum coefficients were converted 

to integers. There is one problem with tliis compression, namely, there is no theoretical upper or lower bound 

on the value of the cepstrum coefficients, yet any effective compression process requires tight bounds. 

However, in practice, almost all cepstrum coefficients were found to lie within a certain range (-2.54 to 

+ 2.54). An early experiment was conducted to compare 32-bit and 9-bit representation using casual training. 

This limited experiment was run using 15 sets of the speaker-dependent alphabet database. The task was 

recognition of B, D, V (the most confusable triple in die alphabets) using Single-Template Casual Training. 

This resulted in a 67.38% recognition accuracy for die 9-bit representation, and 67.59% for the 32-bit 

representadon. This result encouraged the compression of the coefficients. 

Another more detailed experiment compared the performance of representations of different sizes from 

4 to 16 bits using five types of training for speaker-independent recognition of die alphabet The results are 

shown in Table II-2. From this table, it can be seen that a 9-bit representation is a reasonable compromise. 

Again, the reladve ranks of the generation methods are not disturbed by changing the number of bits per 

coefficient 

Number of RECOGNITION % 
Bits Casual Average K-Means Learning Matching 

4 51.92% 64.96% 87.88% 88.65% 91.08% 
5 52.30% 65.19% 87.88% 90.35% 91.58% 

52.30% 65.77% 88.65% 90.35% 91.54% 
7 52.69% 66.15% 88.27% 90.00% 91.73% 
8 52.69% 65.77% 88.27% 89.23% 92.31% 

52.30% 65.77% 90.19% 89.23% 91.92% 
10 52.30% 65.77% 90.19% 89.23% 91.92% 
12 52.30% 65.77% 90.19% 89.23% 92.31% 
14 52.30% 65.77% 90.19% 89.23% 91.92% 
16 52.30% 65.77% 89.23% 89.23% 91.92% 

Figure II-2: Effect of number of bits per coefficient on recognition. 

II.3 Distance Measurements 
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II.3.1 W U t vs.CKP 

Initially, tlic Wl.R distance metric [12] was used. The WI.R distance is defined as 

N 

E<circjMk-Pji) 

where Cjk and cjk represent the k^ cepstrum autocorrelation coefficient of the frame of die reference and 

the / h frame of the input, and Pjk and pk represent die k^ LPC autocorrelation coefficient of the / 4 h frame of 

the reference and die frame of die input. iV ( = 24) is die order of LPC analysis. 

Sugiyama and Shikano showed that WLR is superior to CEP [11]; however, Noccrino[10] presented 

evidence to the contrary. Shikano [12] attributes the cause of this difference to vocabulary, claiming that 

WLR is more sensitive to voiced speech (more useful for Japanese recognition) while CEP is more sensitive to 

the unvoiced speech (more useful for English recognition). 

An early experiment was conducted to compare these two distance measures. Both WLR and CEP were 

augmented with power and duration information, and were applied to alphabet recognition. Both single 

speaker and multiple speaker databases were used, but diat speaker-independent recognitions were based on 

only 4 speakers (2 male and 2 female). Table II-3 shows die results of both Single-Template Casual Training 

and Averaging Training: 

Speaker-Dependent Speaker-Independent (4 speakers) 
Distance Measurement Casual Averaging Casual Averaging 

WLR + Power + Duration 91.19% 95.54% 78.54% 86.31% 
CEP + Power + Duration 91.53% 96.92% 81.62% 89.43% 

Figure II-3: Comparison of performance of WLR and CEP. 

Recognition of the English alphabets requires far more sensitivity in unvoiced regions than voiced 

(consider the E-set and the Eh-set, by far the most confusing subsets of the alphabets). Thus, these results 

uphold Shikano's claim of the sensitivity of the cepstrum distance to unvoiced speech. 

Another merit of the cepstrum distance is that it required only the cepstrum coefficients while the WLR 

distance required both the cepstrum and the LPC autocorrelation coefficients, which doubles the storage 

needed. Based on this superior performance with 50% storage, the cepstrum distance was adopted. 
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II.3.2 Power and Duration Weight 

Table 11-4 shows the results of modification of W' and W^ die weights multiplied by the power and 

duration in the computation of distance. (Sec Section 2.4.1) In tliis study, Wp was tuned first without duration 

information. Then, IVd was tuned with the optimal IV . 

Speaker-Dependent Alphabet Database Speaker-Independent Alphabet Database 
Percent Contribution Power Duration Power Duration 

0% 90.00% 90.76% 47.69% 50.76% 
3% 90.00% 91.53% 48.07% 52.30% 
5% 90.76% 90.76% 48.85% 52.30% 
10% 90.76% 90.00% 50.76% 51.92% 
15% 89.23% 90.00% 50.00% 50.76% 
20% 86.15% 87.69% 48.07% 47.69% 

Figure II-4: % contribution of power and duration and effect on 
recognition accuracy. 

II.4 Hybrid Warp Parameters 

The Hybrid Warp requires several parameters to eliminate unlikely matches, and many choices were 

considered. Table 11-5 illustrates the parameters and the actual choices tried: 

Parameter Choices considered 

Maximum number of frames that can be skipped 
in the beginning and end of the utterance 5 ,10 ,15,20 
Penalty assigned for each frame skipped 5000,10000,15000,20000 
Percentage of equal-labels required in a group 10, 20, 30,40,50, 60,70% 
Length Differences 1.5X + {0, 5 ,10,15}, 1.75X + {0, 5 ,10,15}, 

2X + {0, 5 ,10 ,15} , 2.25X + {0, 5 ,10 ,15} 
2.5X + {0, 5 ,10,15} 

Figure II-5: Hybrid warp parameter choices considered in deriving the 
final procedure. 

Almost all combinations were tried using casual training to determine the final parameters. These 

experiments showed that the parameters did not effect recognition accuracy significandy (± 3%), but they 

eliminated much of the unnecessary computation. 

The number of frames skipped is handled by adding null segments with the assigned length. Since the 
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Hybrid Warp allows for one group to be as much as 1.75X 4- 10 frames longer than die other group, a null 

segment of 10 frames allows for skipping segments up to 17.5 frames (In diat case, we have a group of 10 

frames null node matched against 10 frames-of null node and the skipped segment of 17.5 frames. The 

distance of diis group is the penalty dmes 17.5 frames length). 

Another experiment compared three ways of summing the group distances between two words: 

1. Weigh each group according to its length. (Simple addition, most common) 

2. Weigh each group equally. (Giving a short segment as much weight as a long one) 

3. Weigh each group according to die logarithm of its length. 

Results showed that the first way is the most effective. 

II.5 Search 

The only search implemented in this study is exhaustive full search. Although beam search or branch 

and bound with pruning can reduce the computation, they were not used for several reasons: 

1. They may reduce the accuracy; we would like to push the accuracy to the limit 

2. Beamsearch is very difficult to implement given the Hybrid Warp with DP as described in the 
previous section. 

3. For a small vocabulary system, the speed we achieved is satisfactory. 
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III. Detailed Description and Results of the Systems in 
Chapter 5 

In Chapter 5, a number of reference generation techniques were discussed briefly. This Appendix 

provides additional information about these techniques, including, 

• More detailed description. 

• Tuning experiments. (Note that only the alphabets were tuned for speaker dependent and 
independent recognition; die parameters derived in the speaker independent experiments were 
used in digit recognition) 

• Additional discussions. 

111.1 Casual Training 

Little more need be said about Casual Training because of its simplicity. Single-Template Casual 

Training installs one set of the training data as the reference set; Multiple-Template Casual Training installs 

multiple sets of templates (5 for speaker-dependent and 20 for speaker-independent) as the reference set. No 

processing other than this is required for network generation. 

The results obtained with Casual Training are relatively high [20] [21]. Several factors contribute to this: 

1. The use of more precise coefficients (24 9-bit coefficients for every 3 milliseconds of speech). 

2. The use of cepstrum coefficient and modified cepstrum distance. 

3. The use of Casual Training to tune the initial word recognition system (size and number of 
coefficients, warp parameters, and weights for the power and duration in distance calculation). 

111.2 Selection 

Selection is a generation technique that does not create synthetic templates. Instead, natural templates 

are used. There are two types of selection: 

1. Consider tokens for one word at a time. Then choose the most appropriate one for that word. 
This is a clustering technique. 

2. Consider the entire set of training tokens. Choose an appropriate token for each word. 

The generation technique used in this study is that of the second type. The task is more complex than 

simply clustering. For each token, we must consider: 

1. How alike is it to tokens of the same identity? 

2. How different is it from tokens of different identities? 
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The selection algorithm in this study uses these two criteria to choose the final set of reference tokens. 

Bach token is assigned a score, and a higher score indicates that it is a better representation for that word. The 

score for each token is calculated as follows: 

• If a different-word token matches a same-word token better than this token does, subtract 1. 

• If this token matches a different-word token better dian another different-token docs, subtract 1. 

This score is, of course, only heuristic since some of die matches arc immaterial. But it docs provide a 

reasonable guideline as to which tokens cause more confusion. 

To improve the final selection, the top one or two candidates for each word are saved, and all 

possibilities of choosing the reference set from them arc considered. For each set, we compute how many of 

the training tokens would have been recognized correctly. Finally, the set producing the highest recognition 

accuracy is used. 

The heuristic score computation part is not very dme consuming; however, the second part which 

computes all possible reference sets faces combinatorial explosion. This problem, together with the inferior 

results, seriously limits the usefulness of the selection method. 

A similar method leading to similar results is given by [3]. 

III.3 Averaging 

In order to average a group of tokens together, we must resolve one problem - which token do we 

average these tokens into? If we select the token with the longest length, it is possible that an input may be 

too short to be matched against it. Conversely, if we select the token with the shortest length, it may not 

match against a long input Furthermore, if we select a token with an "abnormal" segmentation, it may not 

match against an input of another "abnormal" segmentation. (For example, if the word has a fricative and a 

vocalic segment we select a token with a particularly long fricative, and the input has a particularly short 

fricative) Thus, it is very important that we select a token that is likely to match against input of any 

reasonable length and segmentation. In order to do this, we compute two important properties for each 

token: (1) the number of other tokens of the same identity that it can match, i.e., an alignment exists after 

applying all four constraint of the Hybrid Warp. (2) the difference between its length and the length of all 

tokens of this identity. The token that can match most other tokens is selected. 5 In case of a tie, we use the 

one closest to the average length. 

5Bccause the thresholds in the Hybrid Warp were carefully chosen, most tokens can be warped against all other tokens in the same 

word. 
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Table 111-1 shows the difference in recognition between the above method (as shown in Chapter 5) and 

averaging into the first token. The results show that this ordering process is helpful in selecting the most 

appropriate token to average into in the speaker independent case, but not for speaker-dependent case. This 

is because there are few, if any, "abnormal" tokens within one speaker's data, so choosing an arbitrary one is 

just as good. 

Alphabets Digits 
Average into Speaker-Dependent Speaker-Independent Speaker-Independent 

Best Token 96.92% 65.77% 90.50% 
First Token 96.92% 60.13% 87.00% 

Figure 1IM: Averaging training recognition by averaging into best or first 
token. 

Two types of Averaging Training were implemented. The first is the non-discriminating type described 

in Chapter 5. The results in Chapter 5 and Table III-l reflect averaging of this type. All tokens of die same 

word (except the very few cases where they cannot be aligned) are averaged together. This method is simple 

and fast; however, the final reference may be adversely affected by averaging abnormal tokens into it. 

To add a discriminating factor in the averaging process, we introduce a second method. This 

discriminating averaging uses a threshold. All tokens of the same word are aligned and matched against each 

other. The largest group within which every distance is less than the direshold is averaged together to create 

the single reference template for that word. This may be thought of as a clustering technique with only one 

cluster. 

A number of possible thresholds were tried for discriminating averaging. As the threshold is relaxed, 

more training tokens can be averaged. Table III-2 shows percentage recognized vs. percentage of tokens 

averaged into the final template. 

Adding discrimination was not very helpful in the speaker-dependent case. It improved recognition by 

less than half percent, and the optimal recognition accuracy was obtained by averaging 95% of all tokens 

together. In the speaker-independent case, the improvement is almost 5%, and optimal accuracy is obtained 

by averaging 80% of all tokens together. This is intuitively correct because it is far more likely that there are 

tokens very different from each other in a speaker-independent database. 
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Approximate 
Percent Averaged 

RrXOGNITION% 
Speaker-Dependent 

OK ALPHABETS 
Speaker-Independent 

5% 91.21% 47.50% 

10% 91.99% 48.08% 

20% 92.21% 50.19% 

35% 92.69% 55.00% 

50% 93.22% 60.96% 

70% 94.32% 67.50% 

80% 94.62% 70.58% 

85% 94.62% 70.00% 

90% 95.64% 68.08% 

95% 97.31% 65.96% 

100% 96.92% 65.77% 

Figure III-2: Percentage recognized vs. percentage of tokens used to create 
the final token. 

1II.4 Simplified Clustering 

Simplified clustering is simply discriminating averaging that finds a cluster of only two tokens. A 

threshold is used to determine whether two tokens are "similar". The first two tokens found to be similar are 

averaged togedier to create the reference template for that word. 

Initially, die first two tokens are tested. If their distance is under a threshold, they arc averaged and the 

training stage for this word terminates. If their distance is above the threshold, the remaining tokens are 

introduced one by one. Each time, the current token is matched against all previous tokens, and the process 

terminates for the word as soon as the first match below the threshold is found. If all tokens in the training 

trial are exhausted without finding a pair, the first token is added as the reference. 

Similar to the discriminating averaging, it is important to select a token to average into. Yet, unlike 

averaging where only one or few maximal size clusters can be found, simplified clustering may have many 

possible pairs with distance less than the threshold. In order to minimize the chance of averaging into a "bad 

token", all tokens are sorted 6 according to (1) how many other tokens of the same word they can match, and 

(2) how close they are to the average length for the word. Using a greedy algorithm, we process from the best 

to the worst, and when a pair is found, we always average the "worse" token into the "better" token. This 

effectively eliminates "unlikely" tokens. Table III-3 shows the difference between results obtained by first 

6 In averaging, sorting is not necessary. We only needed to find the best one in the cluster. 
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sorting the tokens according to goodness and those obtained by using random ordering, both using the 

optimal parameters for sorted ordering. 

Alphabets Digits 
Ordering Speaker-Dependent Speaker-Independent Speaker-Independent 

Sorted 95.38% 57.88% 82.00% 
Unsortcd 93.08% 50.77% 80.00% 

Figure III-3: Simplified clustering recognition with and without sorting. 

Again, a number of possible thresholds were tried. Table III-4 and III-5 show how percentage 

recognized is affected by percentage averaged after 2, 3, and 4 tokens have been considered for speaker 

independent and dependent recognition of alphabets. 

Percent Averaged After Processing Percent 
2 tokens 3 tokens 4 tokens Recognized 

4% 8% 8% 43.08% 
27% 50% 62% 47.50% 
23% 50% 69% 44.42% 
46% 73% 96% 45.58% 
62% 85% 96% 47.31% 
77% 96% 100% 50.77% 
85% 100% 100% 55.77% 
92% 100% 100% 54.81% 
96% 100% 100% 55.77% 
100% 100% 100% 57.88% 

Figure III-4: Simplified clustering tuning for speaker independent 
alphabet recognition. 

Surprisingly, for both speaker independent and dependent recognition, the best results were obtained 

by making the averaging threshold arbitrarily large, which always averages the first two tokens. This result 

differed from that of Rabiner [2], who used a threshold that allowed averaging of 62.1% of the first 2 tokens. 

The system in [2] is different from that described in a few minor places, but it is unlikely to result in such a 

significant difference. 

We conjectured that the cause of this difference is the sorting process that took place. To confirm this 

hypothesis, the clustering algorithm was run on the same data without the "goodness sorting". The results are 

shown in Table III-6 and Table III-7. 
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Percent Averaged After Processing 
2 tokens 3 tokens 4 tokens 

Percent 
Recognized 

30% 42% 42% 91.23% 

50% 73% 73% 91.92% 

77% 89% 93% 90.77% 

96% 97% 100% 93.08% 

96% 100% 100% 94.62% 

100% 100% 100% 95.38% 

Figure I1I-5: Simplified clustering tuning for speaker dependent alphabets. 

Percent Averaged After Processing Percent 
2 tokens 3 tokens 4 tokens Recognized 

0% 
10% 
45% 
60% 
77% 
92% 
92% 
97% 
100% 

0% 0% 45.19% 
23% 23% 51.73% 
58% 77% 56.92% 
66% 82% 53.65% 
89% 100% 51.73% 
93% 100% 53.65% 
100% 100% 54.23% 
100% 100% 54.23% 
100% 100% 54.23% 

Figure III-6: Simplified clustering tuning without sorting for speaker 
independent alphabet recognition. 

Percent Averaged After Processing Percent 
2 tokens 3 tokens 4 tokens Recognized 

12% 
40% 
72% 
96% 
100% 

14% 23% 91.23% 
53% 73% 93.08% 
81% 89% 95.38% 
97% 100% 93.08% 
100% 100% 93.08% 

Figure III-7: Simplified clustering tuning without sorting for speaker 
dependent alphabets. 

This experiment produced results more similar to Rabiner's [2]. It also confirms our conjecture that the 

sorting process that took place is quite similar to the simplified clustering technique. Results in Table III-4 
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and 111-5 show that when the tokens are sorted, we can simply match the first two without the simplified 

clustering process. Moreover, we see that given their optimal thresholds, sorted and unsortcd ordering yield 

approximately the same results. 

'Hie sorting and clustering processes arc similar in that they both try to find reliable tokens that can be 

averaged. The difference between them is that the sorting process has a more global view by examining the 

relationship between all pairs, but die information is less reliable because only alignability and duration are 

considered. The simplified clustering has a more local view by stopping when two tokens are found, but uses 

full distance calculation. Discriminating averaging in the previous section is a technique that uses global 

information with full distance calculation, and as expected, attained superior results. Neverdieless, results 

show diat all single template techniques are limited to speaker dependent recognition. 

III.5 K-Means Clustering 

Section 5.5 explains this simple but effective clustering method in sufficient detail, so we will not 

reiterate here. Compared against other clustering techniques, K-Means Iteration has a number of advantages: 

• It is free of thresholds, except for A'(the number of clusters per word). 

• There is no need of interactive supervision. 

• It reliably finds A'clusters. 

• It is very simple. 

Table III-8 shows recognition rate as a function of K. In the speaker dependent case where there are 5 

training tokens for each word, recognition accuracy saturates when AT=3. In speaker independent recognition 

where there are 20 training tokens for each word, K=9 is required to obtain the maximal accuracy. 

One disadvantage of the K-Means Iteration is that it is not guaranteed to converge. It is possible for the 

method to oscillate between two or more cluster center configurations. This will occur if and only if a 

configuration is repeated. Therefore, we added a check for repeating configurations. In that case, the 

repeating configuration is used as the final cluster centers. This correction, of course, requires additional time. 

But it eliminates the need for supervision and intervention. 

Levinson noted that generally convergence does occur [6]. Likewise, our experiments never resulted in 

repetitive configurations. Thus, we removed the check for repetition, and the time usage shown in Chapter 5 

were obtained without the repetition check. 
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K (Number of Clusters) Speaker-Dependent Alphabets Speaker-Independent Alphabets 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
16 

97.50% 77.88% 

98.08% 79.81% 
96.54% 82.31% 
96.92% 82.50% 

83.27% 
84.62% 
88.27% 
90.19% 
88.27% 
88.27% 
89.23% 
89.23% 
89.62% 
88.65% 

Figure III-8: K-Means recognition rate using different values for K. 
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