
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 6 - 1 2 4

A Survey of Language Support for
Programming in the Large

Thomas D. Newton

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

8 May 1986

Abstract

import/export mechanisms, s e p t n T ^ p S ^ ^ n T " ? '° d e c ° " " > ° s i t ™ <" * system,
is made using this categorization S t a l ! ^ C " * 1 1 ™ 1 " C O n , r 0 ' ' A «»"pari»n

Copyright © 1986 Thomas D. Newton

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

i

1. Introduction
Table of Contents

2. Definitions 1
2
3
3
3
4
4
5
5
6
7
7
8
8
9
9

3. The Languages
3.1. FORTRAN
3.2. ALGOL-60
3.3. Simula-67
3.4. BCPL
3.5. BLISS-11
3.6. Pascal and three variants
3.7. C a n d C + +
3.8. PROTEL
3.9. Mesa
3.10. Modula and Modula-2
3.11. TARTAN
3.12. CHILL
3.13. Ada

4. The Language Features
4 .1 . A word about words
4.2. Decomposition of a system

1
4.2.1. Functional decomposition 1J
4.2.2. Data-oriented decomposition 1(
4.2.3. Thread-of-control decomposition 1*
4.2.4. Override mechanisms 1(
4.2.5. Overall program structure 16

4.3. Import/export mechanisms 1£
4.3.1. Gathering information about imported entities 1S
4.3.2. Controlling exports 21
4.3.3. Controlling exported types 24
4.3.4. Controlling imports 27
4.3.5. Controlling imported types 30
4.3.6. Handling naming conflicts 30

4.4. Separate compilation 32
4.4.1. Safety and order of compilation 33
4.4.2. Recompilation strategies 33

4.5. Version/configuration control 34
5. Summary 35
6. Conclusions

39

ii

List of Figures
Flgu re 4 - 1 : Pathological Ada Overloading Example

Ill

List of Tables
Tab le 5 - 1 : Facilities for Decomposition of a System
Tab le 5 -2 : Mechanisms for Importing and Exporting Whole Entities
Tab le 5 -3 : Information Hiding, Compilation, and Configuration Facilities

1

les.

1 . Introduction
Modular programming plays an important role in modern software engineering methodolog

Although modular programs can be written in any language, the full benefits of modular programming

cannot be gained without at least some support from the programming language(s) in use. This

paper examines the facilities provided by several languages with respect to the issues of

"programming-in-the-large".

The particular languages chosen for study in this report are all typically compiled (as opposed to

languages such as APL or Lisp) and include FORTRAN, ALGOL-60, BCPL, BLISS-11, Moduia,

Modula-2, Pascal, three extended Pascals, C, C + + , TARTAN, Simula-67, PROTEL, CHILL, Mesa,

and Ada. These are by no means the only "compi led" languages, but they illustrate several types and

levels of support for the development of large programs. Except for cases where a language is

strongly tied to a particular implementation, the features of any one compiler will not be discussed;

however, the interaction between language features and implemention-level details may be discussed

where it seems appropriate.

Several papers have presented comparisons that are similar in some ways to the one done in this

report. Shaw et al ([Shaw 81]) compared FORTRAN, COBOL, Jovial, and the proposed (at the time)

" I ronman" standard in the light of modern software engineering ideas. Their paper clearly identifies a

number of issues that address the logical structure of large programs; however, the only "modern"

language it covers is the preliminary version of Ada. Tichy ([T ichy 79]) categorized several

languages with respect to the order in which they require type checking and compilation. His paper

does not describe any language features that support modularization and information-hiding because

he feels that these mechanisms belong in separate modular interconnection languages like the one

described in his report. Applebe and Hansen ([Applebe 85]) surveyed a number of current

programming languages with regards to their utility for systems programming. Although their report

addresses the issues of encapsulation and environment support, it does not go into much detail,

presumably since it also covers topics such as types and hardware environment specification.

The remainder of this paper is divided into four major sections. Section 2 contains definitions of

some of the terms used in this paper together with some background information. Section 3 briefly

describes each surveyed programming language. Section 4 categorizes and describes the

mechanisms provided by the surveyed languages which are related to the support of programming-in-

the-large; its results are briefly summarized in several tables which comprise section 5. Finally,

section 6 wraps up the paper.

2

2. Definitions
There is a large body of literature supporting the idea that developing large programs is an activity

that is both qualitatively different from and harder than developing small programs. As the number of

programmers working on a project grows, communication and coordination costs consume an ever-

increasing amount of the work effort, until a point is reached at which adding more programmers

actually delays the project's completion ([Brooks 79]). Maintaining large programs is more difficult

than maintaining small ones because humans have only a limited capacity to keep track of details.

As noted by Shaw et al ([Shaw 81]), modern software engineering methodologies share the view

that it must be possible to decompose a project into smaller pieces that can be completed

independently, assemble the results into a consistent, working system, and maintain the resulting

system over a fairly long period of time. Programming languages and their compilers can provide

support for these tasks in the form of support for modularization, information hiding, interface

checking, separate compilation, reduction of recompilation costs, and version/configuration control.

The idea of modular programming, or breaking a system into modules which communicate through

well-defined interfaces, dates back at least as far as 1970. Parnas ([Parnas 71a]) introduced the idea

of information hiding in 1971. At the time, information hiding was often accomplished by hiding

system documentation, but today the term is more commonly used when describing language

features useful for producing the same effect of isolating design decisions and making them easier to

change. DeRemer and Kron ([DeRemer 76]) introduced the terms programming-in-the-large,

programming-in-the-small, and modular interconnection language (or MIL) to refer to the activity of

putting together a collection of modules to form a system, the activity of programming each module,

and the language used to describe the structure of a system, respectively.

Although some people take the point of view that modular interconnection languages should be

independent of normal programming languages, it seems obvious that at least some of an

environment's support for programming-in-the-large can only be feasibly provided by its compilers,

and preferably should be provided by the programming language(s) in use. Tichy ([T ichy 79]) claims

that it is "inappropriate to burden the languages for programming-in-the-small with them

[information-hiding features]," but admits that "nevertheless, features like opaque record fields and

write-protection must be supported by the languages themselves so that a compiler can enforce the

restrictions on the required resources." Thus, languages which attempt to address the problems of

programming-in-the-large (such as Mesa and Ada) are likely to be more suitable for writing large

programs whether their modular interconnection facilities are used directly by the programmer or

indirectly through a specialized tool.

3

3. The Languages
This section briefly describes each language surveyed for this report. The intent of each

description is to provide the reader with an impression of the general ."f lavor" of a language, the

special features of the language, and the circumstances surrounding its design. Thus, the

descriptions may mention some features that are not directly relevant to programming-in-the-large;

features which are relevant to programming-in-the-large are discussed in more depth in section 4.

For more information on any of these languages, see the reference work(s) cited under the

appropriate description.

3 . 1 . FORTRAN

FORTRAN was one of the first "high-level" languages. It was designed to be able to express

numeric computations symbolically. While it provides a set of numeric types and a way to declare

multi-dimensional arrays of numeric values, it does not provide records, pointers, or any other method

of declaring new types. In the way of control structures, it supplies a d o loop, a g o t o statement, a

computed g o t o , and an i f statement (limited to executing one statement if its condition is satisfied).

FORTRAN provides subroutines and functions, but they may not be recursive. A FORTRAN program

consists of one or more separately-compiled subroutines; communication between them is done

through subroutine calls or through c o m m o n blocks. FORTRAN was and still is widely used. Over the

years it has evolved; the latest version (FORTRAN-77) has several features which are not in the

version just described (the commonly-used FORTRAN IV).

Re fe rence : FORTRAN and WATFIV Language Manual, by C. William Gear, Science Research

Associates, Inc., 1978.

3 .2 . ALGOL-60

ALGOL-60 is an early programming language which has, directly or indirectly, influenced many of

the programming languages in common use today. ALGOL was designed by an international

committee with the intent that it would serve as an international standard. The preliminary report

(prepared by committees of the ACM and the GAMM) appeared in 1958, the initial language report (by

IFIP) in 1960, and a revised report in 1962. Although ALGOL-60 was never widely used, it is important

because of its influence on other languages.

ALGOL-60 is a fairly sparse language. Like FORTRAN, it supplies a few predefined types and allows

the declaration of multi-dimensional arrays,.but doesn't support enumeration types, records, pointers,

or dynamic allocation of memory. However, its control structures are much better than FORTRAN'S.

4

It has an IF..THEN..ELSE statement, a FOR statement (which provides both counted loops and while

loops), and a somewhat arcane way of selecting between multiple alternatives using GOTO and arrays

of SWITCH (label) expressions. It supports blocks which consist of sequences of local declarations

followed by sequences of statements. Procedures and functions can be called recursively, although

ALGOL'S call-by-name mechanism has proven to be less popular (in terms of the number of later

languages which adopted it) than FORTRAN'S call-by-reference mechanism.

Re fe rence : Introduction to ALGOL Programming, by Torgil Ekman and Carl-Erik Froberg,

STUDENTLITTERATUR, Lund, Sweden, 1967. (One appendix in this book is the Revised Report on

the Algorithmic Language ALGOL 60, by Backus et al, IFIP, 1962.)

3 .3 . S imu la -67

Simula-67 is a general-purpose programming language which was designed by O-J. Dahl,

B. Myhrhaug, and K. Nygaard while they were staff members at the Norwegian Computing Centre in

Oslo. It is meant to be of special use in writing simulation programs, and is "based on ALGOL 60 with

the addition of record-oriented dynamic memory allocation, reference (pointer) structures, sets and

queues, text- and character handling, sequential and direct access input-output, quasi-parallel

sequencing (coroutines) and process (event) oriented simulation capabilit ies." One of Simula's most

important features is its CLASS facility, which is useful for defining abstract data types and which has

influenced other languages such as Smalltalk and C + + . The DECSystem-10 implementation of the

language includes a separate compilation facility based around PROCEDURES and CLASSES.

Refe rences : DECsystem-10 SIMULA Language Handbook Part I (second edition), by Graham

Birtwistle and Jacob Palme, Swedish National Defense Research Institute, Sweden, 1975. Simula

Begin, by G. M. Birtwistle et a/, AUERBACH Publishers Inc., Philadelphia, Pa., 1973.

3 .4 . BCPL
BCPL was designed by Martin Richards as a compiler-writing tool and has been used for systems

programming in general. It is much more "machine-oriented" than Simula-67 or FORTRAN; the

machine word is its only data type, and the meaning of an expression depends only upon the context

in which it is used. BCPL provides a number of bit-level operators, operators for taking the address of

a variable and for indirectly accessing a memory location, and STRUCTURE declarations for

associating names with "partial-word fields of variables, and individual words and partial-words of

vectors." It also has a set of control structures similar to those in ALGOL.

Re fe rences : BCPL Reference Manual, compiled by James E. Curry and the PARC staff, Computer

5

Sciences Laboratory, Xerox PARC, 1979. BCPL The Language and its Compiler, by Martin

Richards and Colin Whitby-Strevens, Cambridge University Press, New York, 1979.

3 .5 . BL ISS-11

BLISS-11 is a systems programming language for the PDP-11. It is related to BLISS-10, and is very

similar to BCPL; the basic data type is a 16-bit word, and the language has a number of bit-level

operators, a way of imposing "higher-level" structures on memory by associating names with address

calculations, and a simple separate compilation facility. The most important contribution of the BLISS

effort was not the language itself, but several optimization techniques which were used in its compiler

(BLISS had a very highly optimizing compiler) and documented in technical reports.

Re fe rences : BLISS-11 Programmer's Manual, published by Digital Equipment Corporation,

Maynard, Massachusetts, 1972. The Design of an Optimizing Compiler, by Wulf et al, American

Elsevier Publishing Company, Inc., New York, 1975.

3 .6 . Pasca l and t h r e e va r i an t s

Pascal is a teaching language designed by Wirth which was influenced by Algol-60 and Algol-W,

and which in turn has influenced several more recently developed languages. It postdates Algol-60

by about ten years; the first publication of the language was in 1971, and a revised report came out in

1973. Like ALGOL-60, Pascal is block-structured and has structured control statements. However,

Pascal offers much more in the way of user-defined data types than ALGOL-60: in addition to arrays,

it offers subranges, enumeration types, sets, records, and pointers (with dynamic storage allocation).

Unlike almost all of the other surveyed languages, Pascal does not support separate compilation.

This has been a motivating factor behind many efforts to extend the language; three extended

versions of Pascal are described below.

Re fe rence : Pascal User Manual and Report (second edition), by Kathleen Jensen, Springer-
Verlag, New York, 1978.

PERQ Pascal is a variant of Pascal that runs on the PERQ workstations formerly manufactured by

PERQ Systems, Inc. Unlike standard Pascal, it supports separate compilation -- programs always

contain one PROGRAM file and may contain any number of separately-compiled MODULES. Each

MODULE consists of a set of publically-readable declarations followed by the bodies of exported

subroutines and all private declarations. PERQ Pascal also provides an exception-handling facility

and a STRING data type.

6

Re fe rence : PERQ Pascal Extensions, Spice Programmers' Manual, Department of Computer

Science, Carnegie-Mellon University, 1984.

Celentano et al describe a variant of Pascal which supports a different style of separate compilation.

Under their scheme, each MODULE declares the imported items which it uses and can thus be

compiled independently of all other MODULES. The position of a particular MODULE within the tree

representing a program is determined entirely at link time; this is meant to enhance reusability. In

addition, it is possible to "partially specify" imported items (declaring objects to be of unknown type,

or types to be of unknown representation) so long as the union of all the declarations for a given item

form a complete, consistent declaration.

- Re fe rence : Separate Compilation and Partial Specification in Pascal, by Augusto Celentano et al,

IEEE Transactions on Software Engineering, vol. SE-6, no. 4, July 1980.

Le Blanc and Fischer report on a modification to the UW-Pascal (University of Wisconsin Pascal)

compiler to make it support separate compilation. The modification allows the top-level declaration of

procedure stubs and separate compilation of procedure bodies. The scheme involves saving the

compiler's run-time state to disk when processing a main program and restoring it when processing

separately-compiled bodies, and the authors suggest that the technique might be of use in other

compilers for block-structured languages. The choice to modify an existing Pascal compiler rather

than to switch to a language with separate compilation facilities seems to have been driven by a need

for backwards compatability.

Re fe rence : A Simple Separate Compilation Mechanism for Block-Structured Languages, by

Richard J. Le Blanc and Charles N. Fischer, in IEEE Transactions on Software Engineering, vol.

SE-10, no. 3, May 1984.

3 .7 . C and C + •

C is a general-purpose programming language which was originally designed by Dennis Ritchie for

Unix on the PDP-11. Its major features are its terseness, its rich set of operators, the ease with which

" low-level" operations can be done, and the ease with which it can be compiled into efficient machine

code. C is not a very "high-level" language; it inherits many ideas indirectly from the language BCPL

through the language B (by Ken Thompson). Unlike BCPL, C does have types, although its type-

checking mechanism is weak and has a major hole (it isn't possible to declare a function's parameters

and thus C doesn't check the number and types of expressions in function calls).

7

C + + is an extended version of the language created with the objective of giving C facilities for

structuring medium-sized programs. It has a CLASS facility inspired by the one in Simula-67 and

allows the declaration of function parameters so that a compiler can check function calis. Its design

was subject to the constraint of not imposing any "hidden costs" which might tend to discourage its

use within the C community; CLASSES are a compile-time facility, and programs using them suffer no

loss of run-time efficiency.

Re fe rences : The C Programming Language, by Brian Kernighan and Dennis Ritchie, Prentice-

Hall, New Jersey, 1978. Adding Classes to the C Language: An Exercise in Language Evolution, by

Bjarne Stroustrup, in Software: Practice and Experience, volume 13, pp. 139-161, 1983. C+ +

Release E - November 1984, AT&T Bell Laboratories, Murray Hill, New Jersey.

3 .8 . PROTEL

PROTEL is a modular, typed language which was designed by Bell-Northern Research in 1975 to

support the development of software for a family of telephone switches. Since telecommunications

applications are usually highly customized, one requirement for the language and its environment

was the ability to configure many slightly differing systems easily and at low cost. PROTEL offers both

MODULES and a separate compilation facility based around subdivisions of MODULES which are called

SECTIONS. The tools in its environment include an incremental, on-line loader and a library system

with facilities for handling multiple versions of a program.

Re fe rence : Experience With a Modular Typed Language: PROTEL, by Cashin et al, in the

proceedings of the International Conference on Software Engineering, IEEE, 1981.

3 .9 . Mesa

Mesa was developed at XEROX PARC as "one component of a system intended for developing and

maintaining a wide range of systems and applications programs." It is a strongly-typed, block-

structured language which has a number of features: a MODULE construct with separate specification

and implementation parts which is the basis for separate compilation, a specialized configuration

language for building systems, a facility for handling error conditions, and facilities to handle both

coroutines and parallel processes. Mesa also served as a basis for the Cedar language, which

provided automatic garbage collection, a feature normally found in Lisp systems but not in

"compi led" languages.

Re fe rence : Mesa Language Manual (version 5.0), by James Mitchell, William Maybury, and

Richard Sweet, Xerox PARC, 1979.

8

3 .10 . Modu la and Modu la -2

Modula is a special-purpose language designed by Wirth for experimenting with multiprogramming

and device-handling. It is a rather small language in the same family as ALGOL and Pascal. Modula's

name is derived from its MODULE facility, which provides a way of grouping sets of declarations for the

purpose of restricting the visibility of names, and which served as a basis for the facility of the same

name in Modula-2. Modula also provides process and device control facilities.

Modula-2 was designed by Wirth as a systems programming language for minicomputers. It is a

strongly typed language belonging to the same family as ALGOL, Pascal, and Modula, and draws

many of its features from the latter two. Modula-2 provides several features which have no

counterpart in Pascal. It has a MODULE construct for grouping sets of declarations with initialization

code and controll ing the visibility of identifiers across group boundaries. It has a separate

compilation facility based upon libraries of MODULES. The language also provides a coroutine

mechanism and allows the declaration of procedure variables (a generalization of procedure

parameters).

Re fe rences : Modula, a Language for Modular Multiprogramming, by N. Wirth, in Software-

Practice and Experience, vol. 7, pp. 3-35, 1977. Design and Implementation of Modula, by N. Wirth, in

Software- Practice and Experience, vol 7, pp. 67-84, 1977. The Programming Language Modula-2,

by N. Wirth, edited reprint of Report No. 36, Ifl, ETH Zurich, 1980.

3 . 1 1 . TARTAN

TARTAN is a research language which was designed by Shaw, Hilfinger, and Wulf in an effort to

determine whether or not a "s imple" language could satisfy the " I ronman" requirements set down by

the Department of Defense as part of the process that eventually led to the adoption of Ada. It is a

strongly-typed language that in some ways is similar to Modula-2 and in some ways is similar to Ada.

TARTAN provides a MODULE construct similar to the one in Modula-2 and facilities for defining

GENERIC procedures or MODULES, overloading the names of procedures, and working with multiple

processes. However, as a research language, it was never implemented or used.

Re fe rence : TARTAN: Language Design for the Ironman Requirement: Reference Manual, by Mary

Shaw, Paul Hilfinger, and Wm. A. Wulf, Technical Report CMU-CS-78-133, Department of Computer

Science, CMU, 1978.

9

3 . 1 2 . CHILL

CHiLL is a language which was designed for programming telephone exchanges in accordance

with goals set down by a CCITT committee. The goals included enhancing the reliability of programs,

allowing the generation of efficient machine code, covering a wide range of hardware, and

encouraging structured, modular programming ([CCITT 80]). From the materials gathered for this

report, it is not clear whether or not the language has been completely standardized; there are

indications that there have been several meetings on extending the 1980 draft recommendation in

several areas. For the purpose of comparing CHILL with the other surveyed languages, it will be

assumed that the proposals described in the paper referenced below form part of the language.

CHILL is a block-structured language in the same family as ALGOL with many additional features. It

has data types similar to those in Pascal and facilities for working with dynamic arrays. It also

provides procedure variables, MODULES for restricting the visibility of names, PROCESSES for

concurrent execution, and several ways for PROCESSES to communicate.

Re fe rences : Draft Recommendation Z.200: Proposal for a Recommendation for a CCITT High

Level Programming Language (CHILL), Geneva, 1980. Separate Compilation and the Development of

Large Programs in CHILL, by Bishop et al, in Proceedings IEE Fifth International Conference on

Software Engineering for Telecommunications Systems, Lund, Sweden, 1983.

3 . 13 . Ada

Ada is the result of an effort sponsored by the Department of Defense to design a standard

language suitable for programming both large systems and real-time systems. The requirements for

the language were developed during the period from 1974 to 1978; four major language designs were

produced, from which one served as the basis for Ada. Ada has undergone two revisions since the

first reference manual was issued in 1980: one in 1982, and one in 1983.

Ada is a strongly-typed, block-structured language in the same family as ALGOL and Pascal. Its

features include the ability to overload the names of procedures/funct ions/enumerat ion literals, a

PACKAGE construct which serves a similar purpose to the MODULE construct in Modula-2, the ability to

rename most entities, a tasking facility, separate compilation together with a library facility, the ability

to handle exceptions, the ability to define GENERIC units (parameterized by objects, types, and

subprograms), and the ability to affect the low-level representation of data types.

Re fe rence : American National Standard Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A-1983, ANSI, New York, 1983.

10

4. The Language Features
Now that all of the languages have been introduced, it is time to consider the role that they play in

the development of large programs. As mentioned previously, developing large programs is both

different from and harder than developing small ones. To overcome some of this difficulty, modern

software engineering methodologies rely upon breaking programs into modules, in an application of

the ancient principle of divide and conquer.

The development of a large program typically involves many overlapping life-cycles. Each life-cycle

starts with a design phase in which the specifications for the program are determined, either by

starting from scratch or by modifying previous designs. After (re-)design, work begins upon coding

the program's pieces. The coding of each piece usually involves a number of cycles which are similar

to the life-cycles of the overall development effort, but on a much smaller scale. The pieces of the

program are put back together into a system in an assembly phase; depending upon the cost of

assembly, this may happen every time a module is revised or only after many modules have been

changed. Finally, the assembled system must undergo testing and debugging. The bugs found

during this phase affect the amount of redesign needed in following life-cycles, which can range from

none (best case) to a complete redesign of the system (worst case).

The degree of support that programming languages and environments provide for the activities of

design, coding, assembly, and test ing/debugging can have a major effect on the difficulty of

developing a large program. Programming environments are beyond the scope of this report, but the

contribution of a language alone can be significant. As an extreme example, Pascal does not support

separate compilation; testing one small piece of a large program may require a day or more of

compilation time, and this leads to (a) time spent coordinating the use of compilers (which defeats the

goal of having teams work independently), and (b) a tendency to postpone testing pieces of code

(which leads to more errors). Languages provide support for these four life-cycle phases with

features that can be classified into one of the broad groups underlined below:

• Des ign . During the design phase, a system is decomposed into smaller pieces which
communicate through relatively narrow interfaces and which can be completed more-or-
less independently. If the pieces themselves are large, this process may continue
recursively, with the complete set of designs forming a heirarchy. We will discuss
decomposition fif a system in section 4 .1 , and related issues of import/export
mechanisms in section 4.2.

• Cod ing . During the coding phase, the pieces of a system are implemented in parallel by
single programmers or small teams of programmers. Typically, each piece goes through
several cycles of editing, compil ing, and testing before release. We will discuss separate
compilation in section 4.3.

11

• A s s e m b l y . During the assembly phase, individual pieces are put together to form a
system. It is important to make sure that all the pieces are compatable. One source of
incompatibility is errors made by programmers in the use of interfaces; another is the
accidental use of the wrong version(s) of some module or set of modules. When more
than one program is to be built from a set of pieces or some pieces have multiple
implementations, it becomes necessary to keep track of the various configurations of the
pieces. We will discuss version/configuration control in section 4.4.

• T e s t i n g / D e b u g g i n g . During the testing and debugging phase, a program is tested in
an effort to detect any bugs that have slipped through the design, coding, and assembly
phases. Testing and debugging are not covered in this report because support for them
is provided almost entirely by programming environments, rather than by languages.

Note that verification is not mentioned anywhere in the above list. While researchers have designed

a few languages with the specific goal of making verification easier (such as EUCLID), verification

techniques generally are not applied to large systems for at least two reasons. Producing formal

specifications for a large system can be rather difficult and is obviously an error-prone process. And

even if correct specifications are produced, verifying a large program generally takes too much time

to be practical. Since verification techniques are not in widespread use, support for verification will

not be one of the criteria used to compare the languages described in this report.

4 . 1 . A w o r d a b o u t w o r d s

Many of the languages surveyed for this report have constructs with names similar or identical to

terms that are useful in a generic fashion. This has the potential of making discussions very

confusing. To help prevent such confusion, SMALL CAPITALS will be used to denote language

constructs with potentially confusing names; terms that appear in plain text can be assumed to have a

generic meaning unless indicated otherwise.

4 . 2 . Decompos i t i on of a s y s t e m

A language's support for decomposition of a system depends both upon its facilities for

encapsulation and the overall program structure imposed by its facilities for separate compilation.

The latter is important because it is desirable to place each "work assignment unit" into one or more

separately-compiled text file(s) so that people working on logically different parts of a system do not

need to spend a lot of time coordinating their use of basic tools such as editors and compilers.

Systems may be decomposed along the lines of their major algorithmic components (functional

decomposition), along the lines of their major data structures {data-oriented decomposition), or along

a combination of the two. Usually, functional decomposition refers to dividing a system into

components which will be executed in some sequential order; this is the sense in which the term will

12

be used below. However, dividing a system into multiple threads of control can also be considered to

be a form of functional decomposition. This second type of functional decomposition will be referred

to below as thread-of-control decomposition to distinguish it from the first type.

4 . 2 . 1 . Func t iona l decompos i t i on

The most important way in which languages support functional decomposition is by providing

mechanisms for grouping and controlling access to sets of declarations. The grouping facilities

provided by the surveyed languages tend to fall into one of three broad classes on a spectrum:

a. None. Although Pascal and ALGOL-60 are block-structured and have procedures,
neither provides special grouping constructs or separate compilation.

b. Collections of individual declarations. FORTRAN, Simula-67, BCPL, BLISS-11, the three
Pascal variants, C, and C + + have separate compilation facilities which can be used for
the purposes of grouping, but for the most part they do not provide initialization
mechanisms and provide only limited control over imports and exports.

Since the unit of grouping in these languages is the compilation unit, it is appropriate to
briefly examine their compilation facilities. BCPL, BLISS-11, PERQ Pascal, C, and C + +
let compilation units contain mixtures of constants, types (or structures), variables, and
procedures. FORTRAN is somewhat more restrictive; its compilation units are
subroutines. Simula-67 provides for separate compilation of procedures and CLASSES.
The other two extended Pascals allow the compilation of groups of procedures (and
private variables in the case of UW-Pascal), but the structure of their programs is different
from that of the other languages, as will be seen in section 4.2.5.

Although they are best suited for defining abstract data types, the class mechanisms in
Simula-67 and C + + provide another way to group procedures and variables. Consider a
class with one instance. The fields belonging to that instance serve the same purpose as
module variables, and the operations defined for its class correspond to module
procedures. In a similar fashion, the body (or 'new' function) of that class corresponds to
the initialization section of a module. Nested classes can even serve the purpose of types
or of nested modules to the extent that they do not need to access the private
declarations of enclosing classes (although C + + further restricts their utility by not
allowing them to be exported).* And the CLASSES in C + + provide one feature which
would be nice to have in module constructs: a finalization service.

c. Module constructs. PROTEL, Mesa, Modula, Modula-2, TARTAN, CHILL, and Ada
provide special constructs for grouping and initialization; with the exception of Modula,
all provide separate compilation. They also tend to provide more control over imports
and exports than the languages in the previous category. Note that while two of the
Pascal variants (PERQ Pascal and Celentano's Pascal) have constructs called MODULES,
they do not provide facilities for initialization and have not been placed in this group. On
the other hand, while Mesa's MODULES are identical to its compilation units, they do
provide initialization and a fairly large amount of control over imports and exports, and
thus belong in this group.

13

In addition, some languages/systems provide subsystem facilities which can be used to group

together a number of separately-compiled modules in a similar fashion to the way that modules group

tqgether individual language entities such as type declarations and procedures. A subsystem facility

is especially useful for programs which are large enough to have heirarchies of designs. Two of the

surveyed languages provide subsystem facilities: PROTEL (which has a special AREA construct) and

Mesa (which provides subsystems as one facet of a configuration language called C/Mesa).

Two other mechanisms are useful for functional composition: nesting and procedure

parameters/variables. Many languages allow nesting procedures, but C and C + + do not allow such

nesting, while BCPL, BLISS-11, and TARTAN allow nesting but prohibit up-level adressing. Except

for Mesa and PROTEL, all of the surveyed languages which provide module constructs allow them to

be nested. Procedure parameters or variables can be useful in situations where a complicated

control structure iterating over some data is logically independent of the operations to be performed

on that data. FORTRAN, Pascal, and the Pascal variants covered in this report provide procedure

parameters. As will be seen in section 4.5, procedure variables can also be of use in writing programs

which have multiple configurations; the list of languages which provide them can be found there.

4 . 2 . 2 . Da ta -o r i en ted d e c o m p o s i t i o n

Languages support data-oriented decomposition by providing mechanisms which can be used for

defining abstract data types. Three capabilities are useful for defining abstract data types: a way to

guarantee the initialization and finalization of each instance of a type, a way to limit access to the data

structure(s) used to implement an abstract type, and a way to control which operations are available

to the users of a type. Just considering the first two items for the moment (the third will be discussed

in section 4.3.3), the facilities provided by the surveyed languages tend to fall into one of four

categories 1 :

a. None. A number of languages, including FORTRAN, ALGOL-60, BCPL, BLISS-11,
Pascal, PERQ Pascal, UW-Pascal, and C, do not provide mechanisms to hide the
implementation details of types from their users or do not provide types.

b. Information-hiding mechanisms which allow importers to restrict their access to a type's
data structure. Such mechanisms provide some protection, but they place the exporter
of a type at the mercy of the "good wi l l " of its importers. Celentano's Pascal provides this
type of facility. In a manner of speaking, BCPL, BLISS-11, and C, which are listed above,
also provide this type of facility -- they allow pointers to unknown structures or types to be
passed around very easily.

c. Information-hiding mechanisms based around modules which provide full access to a

1 [Cashin 81] does not provide enough information to allow classifying PROTEL's facilities.

14

type's data structure within the module defining it but which allow at most limited access
elsewhere. Several languages provide such mechanisms, including Mesa, Modula,
Modula-2, TARTAN, CHILL, and Ada; their facilities vary in the ease with which record
fields can be selectively hidden, among other things. Like the languages mentioned in
previous categories, the languages which fall into this category generally lack
mechanisms to enforce initialization and finalization of instances of a type.

d. Class constructs which allow the definition of abstract data types by providing
initialization/finalization operations and the ability to selectively hide parts of a type
definition. Whereas a module construct provides a means of grouping and controll ing
access to individual entities, which may include both the declarations of types and the
declarations of procedures and functions operating upon them, a class construct is a
form of type declaration. But classes differ from "ordinary" types in that they
encapsulate both a type's data structure and the operations defined upon it. Both
Simula-67 and C + + provide class constructs; although the CLASSES of the former lack a
finalization mechanism, they fit the rest of the description just given.

Several languages with class constructs, including Simula-67 and C + + , provide prefixing or

subclass mechanisms useful for composing abstract data types. With these mechanisms, it is

possible to define a class which (for example) performs stack operations and then give any number of

other classes the property of being stackable by simply mentioning the name of the "stack" class in

their declarations. This both increases the clarity of a program (by separating logically independent

concepts) and reduces the size of its source code.

Another composition mechanism found in some languages (TARTAN and Ada) is the ability to

define generic units which are parameterized by objects, types and procedures, and which can be

instantiated to produce non-generic units which can be used directly. Generic units seem to be

almost the mirror image of classes. A class declaration defines a new data type whose details are

known within the class but not outside. A generic unit hides the details of an outside type from its

internal declarations; it does not define a new type per se. Thus, generic facilities must be combined

with type declaration mechanisms if they are to be used for composing data types. For example, the

rough Ada equivalent of a "stack" class (used as a prefix) would be a generic package which could

be instantiated with a type ELEM to produce a normal package exporting the type "stack of ELEM".

4 . 2 . 3 . T h r e a d - o f - c o n t r o l d e c o m p o s i t i o n

While a single thread of control is sufficient for many programs, some types of programs may benefit

from having their control structures decomposed into multiple threads. The surveyed languages fall

into two groups based upon the control structures which they support 2 :

2 [Cashin 81] does not provide sufficient information to classify Protel one way or the other.

15

a. Single thread of control. Languages in this category view all programs as consisting of a
single thread of control; they include FORTRAN, ALGOL-60, BCPL, Pascal, PERQ Pascal,
UW-Pascal, Celentano's Pascal, and C. One advantage to this approach is that it does not
complicate a language with facilities for multiple threads of control which may be
infrequently used or which may duplicate services available through the use of system
libraries. The corresponding disadvantage is that there is no guarantee that such
alternate services will be available when they are needed.

b. Multiple threads of control. Languages in this category allow programs to consist of more
than one thread of control. They include Simula-67, BLISS-11, Mesa, Modula, C + + ,
TARTAN, CHILL, and Ada; many of these languages are meant to be useful for
programming embedded systems or writing simulation programs, applications which
often involve a great deal of 'natural' concurrency. One advantage of building
concurrency control into a language is to guarantee its availability. However, this must
be weighed against the extra complexity thus introduced. The mechanisms provided by
the above-mentioned languages can be classified into two groups: coroutines and
processes.

Under a coroutine mechanism, only one thread of control is active at a time; transfers of control are

made explicitly. In the absence of processes (some languages support both), mutually exclusive

access to variables is provided for free. Manual scheduling also allows for very tight control over

timing, but scheduling the execution of various threads can be a cumbersome job. Bliss-11, Mesa,

and Modula-2 provide straightforward coroutine mechanisms. Simula-67 provides both coroutines

based around CLASSES and a special SIMULATION CLASS which uses them internally to provide semi

automatic scheduling. And C + + provides a tasking facility which is very similar in appearance to a

process mechanism but which depends upon having each task call one of the tasking system routines

periodically (and thus appears to be built on top of a coroutine mechanism).

Under a process mechanism, multiple threads of control can be (conceptually) active at once;

transfers of control are made implicitly. Coordinating two processes thus requires mechanisms for

synchronization and communication. One mechanism that appears frequently and in many different

forms is the monitor. Monitors are used to group procedures and private data and look somewhat like

modules; they differ in that only one task may be executing a monitor procedure at any given time.

Usually there is some mechanism by which a monitor procedure can wait for data to arrive or for a

condition to become true; while the procedure is delayed, the monitor lock is released so that another

task may execute inside the monitor. Languages providing process facilities include Mesa, Modula,

TARTAN, CHILL, and Ada. Of these five, all but TARTAN have high-level coordination mechanisms.

Mesa, Modula, and CHILL provide monitors (among other facilities), and Ada allows two tasks to

rendezvous, but TARTAN only provides simple LATCHES (semaphores with associated process

queues).

16

4 . 2 . 4 . Ove r r i de m e c h a n i s m s

When decomposing a system, it may sometimes be useful to have several modules (or classes)

which know each other's implementation details but which present a much narrower interface to the

rest of the world. For example, there might be compelling efficiency reasons for letting two heavily-

used modules access each other's internal data, but no compelling reason for compromising their

abstractions with regards to other modules. A somewhat different justification is given in [Stroustrup

83]:
. . . In many cases the public/private distinction was too sharp; some abstractions are

best represented by a set of mutually dependent classes, rather than a single c l a s s

For example, class qhead and class qtail together present the two ends of a queue to
users of a task system implemented using classes. The attributes of the queue itself are
hidden from the user and shared by qtail and qhead. One can, for example, put elements
on a qtail and get elements from a qhead, but not for example get from a qtail. Some
operations, like inserting a filter into the stream of data passing through the queue, exist
for both classes, but are interpreted differently in the two cases. To implement these
facilities each qhead has to pass information to its corresponding qtail (and vice versa),
and in the simplest most common case this is most easily done by assignment to the qfa/7's
private variables.

However, languages which have strong encapsulation mechanisms normally protect the

implementation of a module or class from all of its users. There are two obvious ways of sharing

implementation details in this situation; both have drawbacks. Combining several modules or classes

has the disadvantage of producing unnecessarily complex interfaces; making implementation details

public has the disadvantage of making them too widely available and negates the advantages gained

from using strong encapsulation constructs. Two of the surveyed languages provide override

mechanisms as a third alternative. Mesa allows MODULES to gain access to the private declarations of

imported MODULES using a SHARES clause, and C + + allows CLASS boundaries to be overridden using

FRIEND declarations.

4 . 2 . 5 . Overa l l p r o g r a m s t r u c t u r e

Another factor affecting the decomposition of a system is the overall program structure imposed by

the compilation mechanism(s) of the language(s) in which it is written. Most of the languages

surveyed have separate compilation mechanisms which support either a top-down (parent unit and

subunits) or a bottom-up (main program and library units) approach to program development. The

top-down approach is characterized by compilation units (subunits) which name the sole unit that

imports them and which are compiled in the context of that unit; the overall structure of a program is

that of a tree. The bottom-up approach is characterized by compilation units which can be imported

by any number of other compilation units, which do not know the names of their importers, and which

17

are compiled in a context containing only standard and imported entities. Under the bottom-up

approach, the overall structure of a program may look like a tree but in general will be a graph.

One aspect of program structure that is relative to both types of compilation mechanisms is whether

or not a language provides separate specifications and implementations for the pieces comprising a

program. Languages with top-down compilation provide separate specification and implementation

parts in the form of stubs and subunits. Languages with bottom-up compilation vary, but there seems

to be a high degree of correlation between languages that provide full checking across compilation

unit boundaries and those that provide separate specification and implementation parts. Note,

however, that just because a language provides separate specifications and implementations for

entities such as procedures and modules does not imply that it provides them for types, as we will see

later.

As can be seen from the descriptions below, most of the surveyed languages provide bottom-up

compilation facilities; a few provide top-down compilation facilities, and a few don't support separate

compilation at all.

• ALGOL-60, Standard Pascal, and Modula do not support separate compilation.

• FORTRAN supports a bottom-up approach. A FORTRAN program consists of one or
more separately-compiled subroutines, which may share data using COMMON blocks.
Global naming space is flat and is determined at link time, so the names of library
subroutines must be chosen carefully to avoid massive naming conflicts (if subroutine
FOO uses subroutine BAR, programs using FOO must be careful to avoid naming some
other subroutine BAR).

• BCPL, BLISS-11, C, and C + + support a bottom-up approach. Their programs consist of
separately-compiled mixtures of entities such as variables, type or structure declarations,
and procedures. Typically, import declarations are placed into include files, which are
not compiled themselves. As in the case of FORTRAN, the flat global naming space used
for exported procedure and variable names means that such names must be chosen
carefully.

• Simula-67 supports a bottom-up approach. It allows procedures and CLASSES to be
compiled separately from the main program. Separately-compiled units may import each
other, although every separately-compiled unit must also be imported directly by the main
program. Although Simula-67 does not provide separate specifications and
implementations, the DECSystem-10 compiler is sufficiently intelligent to recognize that
changes to the bodies of procedures of a separately-compiled CLASS do not require the
recompilation of its importers.

• UW-Pascal supports a top-down approach. Its programs consist of a main segment
together with any number of extension segments and deferred segments. Extension
segments act as additions to the main segment; they exist to allow adding new

18

declarations to a program without requiring the recompilation of deferred segments that
do not use the new declarations. Deferred segments contain procedure bodies
corresponding to stubs in the main and extension segments; they may also contain
declarations of private variables.

• Celentano's Pascal supports a top-down approach. Its programs consist of collections of
MODULES which can be compiled in any order and which are arranged at link-time into
tree structures specified in linker command files. Each MODULE consists of one or more
procedures together with a set of import/export declarations. To make procedure
nesting for any given MODULE heirarchy obvious, MODULES with more than one procedure
are only allowed to be leaves of program trees.

• PERQ Pascal, Mesa, and Modula-2 support a bottom-up approach. Unlike such
languages as FORTRAN and BCPL, they allow the building of layered libraries in which
names exported from lower layers are "invisible" to programs which don' t want to see
them. Programs written in one of these languages consist of MODULES importing each
other by name. Despite having similar names and purposes, the three MODULE facilities
are quite different, as will be seen later. One obvious difference: top-level MODULES in
Mesa and Modula-2 are divided into separately-compiled specification and body parts,
while PERQ Pascal MODULES are logically, but not physically, divided. Mesa's MODULES
are somewhat unusual in that one PROGRAM MODULE may implement several interfaces,
and several PROGRAM MODULES may cooperate to implement a single interface.

• PROTEL supports a mixed approach which is predominantly bottom-up. PROTEL
programs consist of MODULES importing each other in bottom-up fashion. Each MODULE
may contain several separately-compiled INTERFACE and IMPLEMENTATION SECTIONS,
structured in top-down fashion.

• TARTAN allows, but does not require, support for a top-down approach. Both MODULES
and ROUTINES may be placed in files separate from the one containing the main program;
implementations are free to treat these files either as include files (when compiling the
main program) or as separate compilation units.

• CHILL supports a top-down approach. A CHILL program is conceptually one piece of
text, but may be broken up into pieces to facilitate compilation, where each separately-
defined piece is a nested MODULE. Since CHILL allows implementations to choose to
compile nested MODULES completely independently from their parents, subunits typically
declare the context they inherit from their parents rather than naming their parents.
CHILL also has a rather unusual qualification mechanism, discussed later, that allows a
program's naming scheme to be decoupled from its real structure.

• Ada supports bottom-up, top-down, and mixed approaches. An Ada program consists of
one or more compilation units, of which at least one must contain a single top-level
procedure. A compilation unit may consist of a subprogram specification or body, a
PACKAGE specification or body, a GENERIC declaration or body, a GENERIC instantiation, or
a subunit. Subunits can be nested and may contain subprogram bodies, PACKAGE
bodies, GENERIC bodies, and task bodies. Like Mesa and several others, Ada allows the
construction of layered libraries.

19

4 . 3 . I m p o r t / e x p o r t m e c h a n i s m s

In addition to grouping sets of related entities, encapsulation constructs such as the ones described

earlier provide facilities for controlling which names are exported from a construct and which names

are imported into it. They may also provide information-hiding mechanisms for exporting the name of

a type without exporting all of that type's characteristics.

The mechanisms which languages provide for importing and exporting entities vary in several ways.

One major distinction between the various schemes is the method by which they gather the

information on imported entities needed for compilation and linking; section 4.3.1 introduces the

alternatives, which have effects on separate compilation that will be discussed in section 4.4.1.

Languages also differ in the type of control provided over the importing and exporting of entities.

Section 4.3.2 discusses control over exports, section 4.3.3 discusses the subcase of control over

exported types, section 4.3.4 discusses control over imports, and section 4.3.5 discusses control over

imported types. Finally, section 4.3.6 discusses mechanisms for handling naming conflicts which can

arise when importing entities from multiple sources.

4 . 3 . 1 . Ga the r i ng i n fo rma t i on abou t i m p o r t e d en t i t i es

One way in which languages differ is in the methods they use to gather information about entities

imported across compilation unit boundaries. The source and quantity of information gathered about

imported entities may influence (or be influenced by) the approach a language takes towards issues

as diverse as data-oriented decomposition and separate compilation.

The surveyed languages which support separate compilation (this excludes ALGOL-60, Pascal, and

Modula) tend to gather information using one or more of the following methods:

a. The properties of automatically-imported entities may be guessed based upon the
context in which the undeclared identifier which triggered their import appeared. This
method has all the disadvantages of the following one, plus an increased probability that
the imported information is simply wrong.

FORTRAN, C, and C + + use this method. FORTRAN assumes that any name followed by
a left parenthesis which was not declared as an array denotes an external subprogram or
function; the assumed type of a function is based on the first letter of its name. C and
C + + assume that undeclared identifiers used as function names refer to external
functions returning integers. FORTRAN and C do not check the number and types of
arguments in external function calls, but C + + requires all calls to automatically-
imported functions to have the same profile as the calls which triggered their import.

b. The properties of imported entities may be declared in the unit(s) which import them.
This may be done either by physically including the text in the importing unit(s) or with the
help of include files (separate text files which are usually shared between all importers of
the items which they declare). Imports generally are not associated with any particular

20

exporter until link time; this has several implications. One is that the only way to enforce
consistent use of interfaces is to enlist the aid of a linker; most languages don't bother.
Another is that in the absence of explicit instructions, about all a linker can do in the way
of connecting importers and exporters is to resolve references using a flat naming space;
while naming conflicts between locally-declared and imported names will be detected at
compile time, other naming conflicts may not be discovered until link time.

FORTRAN, BCPL, BLISS-11, C, C + + , and Celentano's Pascal use this method. The first
five use flat link-time naming spaces to resolve references to entities such as COMMON
blocks, external routines, and external variables; Celentano's Pascal provides a multi
level naming scheme based on descriptions of "module" heirarchies which are given to a
special linker. CHILL implementations which independently compile MODULES also use
this method; the properties of entities in parents and subunits are declared in context
specifications and grant specifications respectively. Celentano's Pascal and the CHILL
implementations described above both require link-time checks to enforce the consistent
use of interfaces. The other languages do not require such checks, although BCPL,
BLISS-11, C, and C + + provide include file facilities which can be helpful for maintaining
consistency. One potential problem with include files is that including the same file twice
(as may happen when include files include each other) can cause false naming conflicts.
The macro facilities in C and C + + can be used to avoid such conflicts, and the Nova
implementation of BCPL avoids such problems by ignoring all but the first GET statement
on any particular file.

c. The properties of imported entities may be determined by examining the unit(s) which
export them. Many languages in this category take advantage of the association between
importers and exporters to enforce consistent interface usage (by requiring importers to
be compiled after the units they import) and to offer a multi-level global naming space.
There are at least two subissues: (1) whether or not units have separate specifications
and implementations, and (2) the degree of control that is provided over the importation
and exportation of individual entities within a unit.

Simula-67, PERQ Pascal, PROTEL, Mesa, Modula-2, and Ada use this method. All are
strongly-typed languages which do type checking across compilation unit boundaries;
with the exception of PERQ Pascal, all impose restrictions on compilation order sufficient
to guarantee consistent use of interfaces. PROTEL, Mesa, Modula-2, and Ada provide
separately-compiled specifications. PERQ Pascal divides its MODULES into exported and
private parts, but the the two parts are not physically separate (in fact, a MODULE without
procedures can be imported but not compiled). Simula-67 does not provide separate
specifications and implementations for its compilation units (which are PROCEDURES and

CLASSES).

d. The properties of subunits may be declared in their parent units, with the properties of
parent units determined by examining them. If this sounds confusing, consider that the
relationship between a parent unit and one of its subunits actually involves two imports.
The parent unit imports useful properties from its subunit by requiring them to be
declared as part of its (the parent's) text. And the subunit imports its context from its
parent. One way to import this context is to explicitly declare it (as in Celentano's
Pascal); in this case, both imports fall under category (b). But when this context is
obtained by examining the parent unit, the relationship between a subunit and its parent
does not fall completely under category (b) or category (c), but involves elements of both.

21

UW-Pascal and Ada use this method. Both languages require the specifications of
subunits to be part of the text of the corresponding parent units. Both also require that
subunits be compiled after parent units; this guarantees that a subunit's parent will
always be available for examination. TARTAN's subunit mechanism is fairly similar; the
major differences are that only the name of a subunit must be declared in a main
program, and that implementations may choose not to support separate compilation at all
(the manual says only that if an implementation supports separate compilation, it must do
full checking across compilation boundaries). CHILL implementations which support
separate but not independent compilation may also use this method (or something similar
to it the CHILL separate compilation proposal is fairly vague on this topic).

Separation of specification and implementation is an issue which directly affects the degree to

which a language and its implementation can succeed at several conflicting design goals.

Abstraction concerns would seem to be best served by allowing the complete separation of

specifications from their implementations. A complete separation would also serve the goal of

reducing recompilation costs. However, a compiler which does not have any information about the

implementation of an imported entity is likely to be harder to write and to produce less efficient object

code than a compiler which has full information. It may be necessary to build a very complex and

time-consuming linker to handle the output of a minimum-information compiler. Taking the other

extreme reverses the disadvantages, sacrificing abstraction and recompilation time in the name of

object code efficiency. We have seen already that several languages provide separate specification

and implementation parts for entities such as procedures and modules. As will be seen later, most of

these languages require some type implementation details to be put into specifications for the benefit

of their compilers, and thus provide only partial separation when everything is considered.

4 . 3 . 2 . Con t ro l l i ng expo r t s

Languages which provide module constructs or which provide bottom-up separate compilation

generally provide control over which declarations in a grouping unit (henceforth referred to as a

"module") are exported. The most basic of these, without which the others are useless, is the

mechanism by which entire entities are classified as public or private:

a. Entities may be marked as being either public or private. This approach has the
disadvantage of mixing specifications with implementations, which has two
consequences. Finding all the entities exported from a "module" may require looking
through many pages of implementation source. For languages which gather information
about imported entities from their exporter(s), the mixing of specification and
implementation may result in many extra recompilations.

BCPL, BLISS-11, C, and C + + take this approach when handling global variables and
procedures. Unlike the other three languages, C exports these entities unless they are
explicitly declared local to a compilation unit.

22

b. Entities may be private unless named in an export list. This approach also has the
disadvantage of mixing specifications and implementations, with the attendant
consequences. However, for the purpose of determining which names are exported by a
"module" , it is easier to read an export list than an entire source file.

FORTRAN takes this approach when handling global variables. Each subprogram may •
contain COMMON declarations which associate a set of variables with offsets into data
blocks that are shared with ail other subprograms declaring COMMON blocks of the same
name. However, there is no guarantee that all the subprograms using a COMMON block
will divide it up in the same way, since really just the name and size of the block are
exported, rather than the individual variable names.

Modula and TARTAN take this approach; both use export lists to control which entities
are exported from their respective MODULES. Modula only allows simple identifiers to
appear in export lists, while TARTAN allows the use of qualified names. TARTAN allows
MODULE names to be exported; although the language definition does not specify what
this means, presumably it provides a way to re-export all of the names exported by a
MODULE as a group.

Modula-2 uses this approach for nested MODULES, but not for MODULES at the compilation
unit level. Names can be exported in either unqualified or qualified form.

CHILL also uses export lists, GRANT statements export names from a MODULE or REGION
to the surrounding scope. Names can be granted with the PERVASIVE property, which
automatically makes them available in every MODULE or REGION that could import them.
Names can also be granted with arbitrary qualifiers, and names which are already
qualified can be re-granted with different qualifiers than they have in the exporting
MODULE. CHILL also provides a way to export all of the "strongly-visible" names defined
in a MODULE or REGION without listing them all.

c. Entities may be placed in different sections of a program to indicate their export status.
This approach has the advantage of separating specifications and implementations,
which makes it easier to locate exported entities, and languages which use it often couple
it with a separate compilation mechanism that allows the implementation of a "module"
to be recompiled without affecting the clients of that "module" . (However, separation of
specification and implementation is often compromised with respect to types, presumably
for reasons of runtime efficiency.)

PERQ Pascal uses this approach. Its MODULES consist of an EXPORTS part and a PRIVATE
part. Both parts are placed in the same file; this can be the cause of unnecessary
recompilations when using environment tools such as 'make' which depend upon file
modification dates.

PROTEL also uses this approach. Its MODULES may consist of a number of separately-
compiled INTERFACE and IMPLEMENTATION SECTIONS. As the names imply, items declared
in INTERFACE SECTIONS are public, while those declared in IMPLEMENTATION SECTIONS are
private.

Mesa combines this approach with a public/private marking scheme. Mesa has two
types of MODULES: DEFINITIONS MODULES and PROGRAMS; by default, all items declared in

23

the former are public, while all items declared in the latter are private. However, Mesa
allows names in either type of MODULE to be marked PUBLIC or PRIVATE; this mechanism
extends to such things as record field names, and it serves as a basis for type
information-hiding.

Modula-2 combines this approach with export lists at the compilation unit level and uses
export lists alone for nested MODULES. At the compilation unit level, Modula-2 provides
three types of MODULES: DEFINITION MODULES, IMPLEMENTATION MODULES, and main
programs; only the former can export items, DEFINITION MODULES are restricted to
exporting qualified identifiers; nested MODULES may also export unqualified identifiers.
Exporting a record type or an enumeration type automatically exports the names of the
appropriate field identifiers or enumeration constants; exporting a MODULE has the effect
of exporting the names in its export list as qualified names.

Ada also takes the approach of separating specifications and implementations. The
specifications of PACKAGES, tasks, and GENERIC units are always separate from their
bodies, and subprogram specifications can be declared separately. PACKAGE
specifications are further divided into public and PRIVATE parts. Since the
implementation of a PACKAGE cannot be divided among several bodies, PRIVATE parts
serve little purpose other than as a repository for the full type declarations of PRIVATE
types, as discussed in the next section.

Five of the surveyed languages do not appear in the above list. Of these, two do not provide

grouping mechanisms (ALGOL-60 and Pascal), two provide compilation units which are arranged in

top-down fashion to form programs but do not provide module constructs (UW-Pascal and

Celentano's Pascal), and only one provides a grouping mechanism of the form mentioned above.

This language is Simula-67. It provides separate compilation but does not provide a module

construct; since its compilation units are single entities (PROCEDURES and CLASSES), export

declarations would be redundant.

Languages may also provide mechanisms for making distinctions finer than just "publ ic" or

"pr ivate". Some languages have provisions for exporting variables from a module in "read only"

mode; this can be used to avoid creating trivial functions which simply return the value of a variable

that needs to be protected from "unauthorized" updates. This type of exporting is provided by

Modula, which forces it upon programmers, and Mesa, in which it is optional. Some languages have

provisions for selectively exporting parts of a type definition; control over exported types is discussed

separately below.

24

4 . 3 . 3 . Con t ro l l i ng e x p o r t e d types
As mentioned above, one aspect of control over exports is the degree to which a language allows

control over exported types. However, control over types is also directly related to data-oriented

decomposition as discussed in section 4.2.2. This section should be considered as an adjunct to

both of those just mentioned; it expands upon references that they make.

An important motivation for type control mechanisms is that abstract data types can be very useful

for decomposing a system. An abstract data type consists of two parts: a data structure (of which

some parts may not be intended for public use) and a set of operations defined upon it. Thus, it is

useful to consider both mechanisms for hiding the details of a data structure and mechanisms for

controll ing operations upon it.

The surveyed languages provide various degrees of control over the selective exporting of data

structures; where control is provided, it may be linked to a module or to a class, as detailed below 3 .

Note that a language may provide a way to hide the structure of a type without providing separate

specification and implementation parts for it; the idea behind this is often that compilers can produce

more efficient object code when they have access to details about type representations and that it is

not too harmful to let a compiler use information about an abstract type's representation (since any

"bad assumptions" a compiler makes when generating object code can easily be fixed by

recompilation after the type representation changes).

a. Some languages do not provide user-definable types, do not provide any form of
grouping or class construct, or have only top-down compilation mechanisms (and
provide no control since subunits are logically part of their parents). Naturally, they do
not provide separate specifications and implementations for types. Languages in this
category include FORTRAN, ALGOL-60, Pascal, UW-Pascal, and Celentano's Pascal; the
latter allows importers of a type to restrict their knowledge about that type, as will be seen
later.

b. Some languages have bottom-up compilation mechanisms but provide no control - a
type must be completely exported or completely private. As in the above case, this has
the severe drawback that it is impossible to prevent the users of an abstract data type
from improperly relying upon implementation details. Languages in this category include
BCPL, BLISS-11, C, and PERQ Pascal; like the languages listed above, they do not
provide separate specifications and implementations for types.

c. Some languages allow the representations of exported types to be completely hidden.
This solves the problem of improper access to internal details, but constructing a data
structure (such as a record) which has some public parts and some private parts may
require a number of type declarations. Languages in this category include Modula,

3 [Cashin 81] does not provide enough information to classify PROTEL's facilities.

25

Modula-2, and Ada; as will be seen below, none of these languages provides fully
separate specifications and implementations for types.

Modula enforces a rather strict rule: the structure of any type exported from a MODULE is
unavailable outside that MODULE. While this rule ensures that protection is provided when
desired, it also prevents the use of the MODULE facility as a mechanism for grouping
public type declarations. Modula does not support separate compilation, much less
separate specification and implementation parts for types; thus, even the smallest change
to a type declaration is sufficient to force full recompilation of a program.

Modula-2 abandoned Modula's restrictive rule in favor of opaque types. Types exported
from modules normally come with full structural information. However, when writing
DEFINITION MODULES (compilation units which serve the same purpose as Mesa's
INTERFACE MODULES or Ada's package specifications), it is possible to simply declare a
type's identifier. This completely hides the properties of the type from its importers. The
full type declaration of an opaque type appears in the corresponding IMPLEMENTATION
MODULE, and thus it is always possible to change the implementation of an opaque type
without requiring recompilation of the users of the MODULE to which it belongs. However,
the full type must be a subrange of a standard numeric type or a pointer type; this
restriction seems to be for the benefit of language compilers (typically both numeric types
and pointers can be accomodated in one or two words of memory).

Ada allows package specifications to declare private types. A private type declaration
contains the name of a type and may contain a discriminant part; it must be accompanied
by a full type declaration in the private part of the same package specification. Outside
the package which contains the private type declaration, none of the structure declared
in the full type declaration is visible, although some information (such as the number of
bits required to store a value of the type) is still available through attributes. While Ada's
private type mechanism allows more implementation choices than Modula-2's opaque
type mechanism, this advantage is not without cost. Both languages make compromises
in their information-hiding mechanisms to allow generation of efficient object code, and
Ada's compromise is that it allows compilers to rely upon information about the
implementation of private types. This translates directly into added recompilations.

d. Some languages go further than the above solution by allowing the declaration of record
types (or classes) in which fields are individually marked as being public or private. This
approach adds flexibility without losing protection. Languages in this category include
Simula-67, C + + , Mesa, TARTAN, and CHILL. Like Ada, these five languages do not
provide separate specification and implementation parts for types and data fields of
classes. Compilers can rely upon having full information about all imported types; while
this allows generating efficient object code, it can also result in extra recompilations.

Simula-67 allows CLASS attributes to be protected by listing either the attributes which are
to be protected or the attributes which are to be left unprotected in a PROTECTED or
HIDDEN PROTECTED declaration. Two of the possible types of attributes, simple variables
and arrays, correspond to the fields of a record; other attribute types are procedures,
functions, and CLASSES, PROTECTED declarations limit the visibility of attributes to the
CLASS in which they are defined, its subclasses, and blocks which are prefixed with the
name of the CLASS. The keyword HIDDEN further restricts visibility to the defining CLASS
itself; subclasses are allowed to declare PROTECTED attributes in their parents to be

26

HIDDEN within themselves and their descendants.

C + + divides CLASS declarations into two parts; only members declared after the
keyword PUBLIC can be accessed outside the defining CLASS. Derived CLASSES cannot
access the private members of their base classes; private members are analogous to
Simula-67's HIDDEN PROTECTED attributes, and there is no equivalent to Simula-67's
PROTECTED declaration.

Mesa allows PUBLIC and PRIVATE access attributes to be specified in a large number of
places ("anywhere a name can be declared" and "preceding the T y p e S p e c i f i c a t i o n in
a type definit ion" - [Mitchell 79]). This allows such things as declaring an exported type
with a completely private representation, or declaring an exported record type which has
some fields marked PRIVATE and other fields marked PUBLIC.

TARTAN uses MODULE export lists to provide control over which parts of a type
declaration are exported. Record field names are exported separately from the names of
record types, so it is easy to export only selected fields of a record. Export lists are also
used to grant permission to use the infix operators, subscripts, constructors, " .a l l "
operation, or "create" function associated with a type outside its exporting MODULE.

CHILL also uses MODULE export lists to provide information-hiding. It does not provide a
direct way to hide the implementations of arbitrary types, unlike Mesa and Ada, but it
allows the fields, of record types to be selectively hidden using FORBID clauses in GRANT
statements. A FORBID clause may either list the fields to be hidden or specify ALL, in
which case all of the field names of that record type are hidden.

Most languages provide an implicit set of operations upon user-defined data types; this typically

includes at least assignment and equality. For some abstract data types, these operations may be

undesired or unsuitable (as in the case of a data type implementing fractions, where a standard

bit-by-bit equality operator would come to the conclusion that 1/2 is not equal to 3/6) . Yet

assignment and (in)equality are usually exported even for types whose representation is hidden. A

few languages provide facilities for preventing the export of standard operations and/or replacing

them with user-supplied code:

• Celentano's Pascal does not allow either assignment or (in)equality to be applied to

variables of unknown types.

• C + + allows the overloading of most operators, subject to the restriction that user-
defined operators must take a class object as one of their arguments (to prevent things
like redefining integer addition). Although the assignment and "address of" operators
cannot be directly suppressed, they can be overloaded and can thus be disabled using
appropriately-written function declarations.

• Modula does not allow using assignment or (in)equality tests on objects of a type outside
the MODULE in which that type is defined ([Smedema 83]).

• Modula-2 does not allow using (in)equality tests on objects of an opaque type outside of

27

the MODULE in which that type is defined. Unfortunately, the language provides no way to
suppress assignment ([Gleaves 84]).

• TARTAN allows programs to overload standard operators; this seems to include
assignment. As mentioned above, the language also provides control over the kinds of
operations available for a type outside its defining MODULE.

• Ada allows most operators (unfortunately, not including assignment) to be overloaded,
and provides limited private types for which assignment and predefined (in)equality are
not available outside the exporting PACKAGE.

4 . 3 . 4 . Con t ro l l i ng i m p o r t s

The surveyed languages provide several ways of controlling precisely which external entities

imported into a module or compilation unit:

• Entities which are used but not declared may be implicitly imported into a "module"
(example: C assumes that an undeclared identifier used as "id(..) M denotes an external
function returning an int). This mechanism isn't very desirable, even though it may cut
down on the number of import declarations that need to be written. A mistyped identifier
in a program would not be caught at compile time and might not even be caught at link
time (consider the case where some other, unrelated part of the program exports
something with the same identifier), going on to cause rather " interesting" bugs.

• Entities may be imported on an item-by-item basis (example: the IMPORT declaration in
Modula-2, when used with anything other than module names). Assuming that
programmers do not want to type any more import declarations than necessary, this has
the advantage of making connections between modules very explicit. This can be of use
both to humans maintaining a program and to a "smart" compiler trying to reduce
recompilations. One disadvantage is that importing everything exported in another
"module" is rather cumbersome. Whether an imported entity must be referred to using a
qualified name or can be referred to using an unqualified name has some bearing on
naming conflicts (discussed later) and on the ease of using imported names, but doesn't
really affect the ease of finding connections between "modules".

• Entities may be imported as a group with qualified names only (example: an Ada WITH
clause used to import a package specification). This method makes it very easy to import
all of the items exported from another "module" . It also makes the connections between
"modules" somewhat less explicit than with the above approach. The mitigating factor
which partially makes up for group importing is the necessity to qualify references to
imported entities. Names which are qualified tend to stand out visually and syntactically,
even though they do take longer to type and are thus harder to use than unqualified ones.

• Entities may be imported as a group with unqualified names (example: an Ada
WITH/USE combination used to import a package specification). This makes the
connections between "modules" rather hard to find, since import declarations only name
groups and the places where imported entities are used do not stand out visually. It can
also make life much harder for tools in a programming environment, especially for
languages like Ada which have complex semantics. The advantage of this approach is
that it is very easy to import and use all of the entities exported from another "module" .

28

Many of the surveyed languages provide mechanisms for more than one type of importing, as noted

in the following list (as expected, ALGOL-60 and Pascal do not appear due to their lack of grouping

mechanisms):

• FORTRAN supports both implicit and item-by-item importing. Subprograms and
functions are usually imported implicitly; this is true even in the presence of function type
declarations, which look exactly like variable declarations. These implicit imports are
triggered by using a name in a CALL statement (subprograms) or by putting an argument
list after an identifier which does not denote an array (functions). Functions may also be
imported explicitly using EXTERNAL declarations; this is necessary when a function is to
be passed as a parameter. Variables can be imported/exported explicitly using COMMON
blocks; importing only selected variables from COMMON blocks generally requires
declaring junk variables for padding purposes.

• Simula-67 supports item-by-item importing of PROCEDURES and CLASSES. Indeed, since it
does not have a module construct and since its compilation units consist of single
entities, it is hard to imagine how Simula-67 might provide any other style of importing.

• BCPL, BLISS-11, C, and C + + allow procedures and variables to be imported on an
item-by-item basis (individual "extern" declarations) or as a group with unqualified
names (by using include files full of such declarations). They do not provide ways to
export entities like type or structure declarations; nonetheless, programs written in these
languages commonly use include files as a way of "export ing" and " import ing" items
from and to each source file. This usage falls under the category "importing groups of
unqualified names." And C and C + + assume that undefined identifiers used as function
names in the context of function calls refer to external functions; as mentioned before,
this can be rather undesirable.

• PERQ Pascal supports importing all the names exported from a MODULE as a group with

unqualified names.

• Celentano's Pascal has programs with a top-down structure, but it supports item-by-item
importing so that it can provide independent compilation. As will be seen in the next
section, it provides a fair amount of control over the importing of types.

• UW-Pascal has programs with a top-down structure, but it provides a degree of control
over imports as a side-effect of its compilation mechanism. The major purpose for its
extension segments is to allow new declarations to be added to a main program without
forcing recompilation of all its subunits. Subunits do not have any knowledge about
extension segments "beyond" the one that they name, so they do not need to be
recompiled when new ones are added. This "lack of knowledge" effect can be
deliberately used for import control, although the amount of control thus provided is
obviously limited.

• PROTEL allows groups of names to be imported, and it allows names to be qualified.
Unfortunately, [Cashin 81] is not very specific about the importing mechanisms available
in the language.

29

• Mesa has a fairly flexible importing mechanism. In its most basic form, all of the names
exported from a MODULE are imported with qualified names, OPEN clauses allow
unqualified references to names exported from a MODULE, USING clauses are basically
import lists; they tell the compiler both to prevent access to unlisted names in the
appropriate MODULE, and to generate warnings for listed names which are not used. The
warnings serve a fairly useful purpose: they help programmers keep USING lists up-to-
date, which in turn makes it easier to understand the connections between MODULES.

• Modula-2 uses import lists and has fairly restrictive scoping rules. The entities in the
scope immediately surrounding a MODULE may be imported on an item by-item basis. By
default, no identifiers (except the "standard" one.s) cross MODULE boundaries; this is in
sharp contrast to Ada, where a PACKAGE automatically inherits entities in surrounding
scopes according to standard block-structuring rules. One consequence of this rule is
that if a nested MODULE needs to use a library MODULE, the library MODULE must be
imported at the top level and passed down through all intermediate scopes. Modula-2
allows entities to be imported both on an item-by-item basis and, by importing MODULE
identifiers, as a group with qualified names. Modula-2 does not allow import lists to
contain qualified names, but by using FROM clauses, it is possible to import selected parts
of a MODULE.

• Modula and TARTAN use import lists to control the names imported by their respective
MODULES; like Modula-2, both use closed scoping. TARTAN requires that all imported
objects have "global extent"; this means that a MODULE declared inside a procedure
cannot import any of the locals of that procedure. TARTAN, like Modula-2, allows
importing the names of MODULES; presumably this provides a form of group importing.

• CHILL supports several styles of importing. Like Modula-2 and unlike Ada, CHILL has
closed scoping - nested MODULES do not automatically inherit names in their surrounding
contexts. Names exported with the PERVASIVE attribute are an exception to this rule, and
are inherited automatically. Using SEIZE statements, a MODULE may import individual
names from its surrounding context or groups of names from other visible MODULES.
Whether or not imported names are qualified depends both upon their export
declarations (if any) and their import declarations; SEIZE statements are allowed to
unqualify names or to locally rename their prefixes, although they need do neither of
these operations.

• Ada supports several styles of importing, all of which involve the use of its WITH clause.
By itself, a WITH clause imports a library unit (which can be a subprogram/PACKAGE
specification, a GENERIC declaration, or an instantiation) with an unqualified name; for a
PACKAGE, this has the effect of importing all of its exported entities with qualified names.
USE clauses allow unqualified references to all entities exported from a PACKAGE (modulo
naming conflicts), and renaming declarations can be used to selectively unqualify the
names of objects, subprograms, exceptions, and PACKAGES.

30

4 . 3 . 5 . Con t ro l l i ng i m p o r t e d t y p e s

Most languages which provide mechanisms to hide the implementation of a type from its users

place control over hiding in the module which contains a type definition or the class which defines a

type. But a few languages allow the importers of a type to voluntarily restrict their knowledge of its

structure. These languages generally do not provide control over type exports, and while the hiding

mechanisms they provide are better than none at all, they are not as secure as the ones discussed in

section 4.3.3, since the exporter of a type is completely at the mercy of the "good behavior" of its

importers.

The following five languages provide ways to hide the implementation of imported types:

• Celentano's Pascal allows import declarations (and local type declarations
corresponding to import declarations) to partially specify types. Types may be specified
to have completely unknown representations. Also, record types may be specified to
have some fields of known type and some of unknown type; the latter are basically
unusable within the MODULE declaring them.

• BCPL, BLISS-11, and C, while not providing explicit mechanisms to hide the details of an
imported type or structure, make it very easy to use pointers to unknown types or
structures. This allows source files to cooperate to provide a form of hiding similar to that
provided by Modula-2's opaque types.

• C + + also provides "support" for hiding using the approach outlined above for
C. However, since C + + provides a CLASS mechanism (discussed previously) that is
much more suitable for hiding a type's implementation details, there isn't much point in
resorting to the use of "generic" pointers.

4 . 3 . 6 . Hand l ing nam ing c o n f l i c t s

Sometimes, different modules or compilation units export entities which have the same name. If two

(or more) such "modules" are imported by a client, conflicts between the names of the entities they

export can be a problem. Two facilities useful for handling naming conflicts are qualification

(specifying in which context a reference is to be bound) and overloading (having a compiler

determine which entity is being referenced based upon a process of elimination).

Provisions for qualification vary:

• FORTRAN, ALGOL-60, BCPL, BLISS-11, C, Pascal, PERQ Pascal, UW-Pascal,
Celentano's Pascal, and Modula provide no facilities for qualifying names. Long
identifiers can sometimes be used to achieve a similar effect to always-qualified names,
but they are cumbersome both to use and to retrofit.

• Simula-67 and C + + provide implicit qualification of the names of class operations based
upon an object's type. In both languages, calls upon class operations are written in the
form "object.operation", and since variable names cannot be overloaded, the meaning of

31

such a call is clear no matter how many classes use the same name for an operation.
This type of qualification can provide some of the convenience of overloading facilities in
practice. As far as qualifying other names exported from compilation units goes, C + + is
as lacking in facilities as C.

• PROTEL, Mesa, Modula-2, TARTAN, CHILL, and Ada provide explicit qualification of -
names exported from modules, generally using module names as qualifiers. In Modula-2
and CHILL, which use export lists, whether or not exported names are qualified is under
the control of the exporter - if an exporter chooses to export unqualified names, naming
conflicts in an importer will result in an error. TARTAN also uses export lists, but when
imported names conflict, their unqualified forms simply cancel each other out. Mesa and
Ada always export names in qualified form; presumably, PROTEL does the same.
Modula-2 allows exported names to be qualified but does not allow qualified names to
appear in export lists; this interacts with nested MODULES such that if two inner MODULES
export items with the same name, the outer MODULE cannot re-export just those two
items; it must export at least one of the inner MODULES. CHILL's qualification mechanism
is both flexible and unusual; the qualifiers attached to names exported from a MODULE
need bear no relation to the name of that MODULE, and qualifiers can be renamed at any
import or export statement. This allows hiding the structure of a MODULE from its
importers, among other things.

Several languages provide overloading facilities which allow the declaration (or importing) of

several procedures or functions with identical names. The binding of a particular procedure or

function to a name in a call is made by using contextual information about each call together with the

parameter and result types declared for procedures and functions to eliminate "impossible" choices.

As long as there is enough information to determine which entity is meant, naming conflicts between

overloadable entities do not cause problems. In fact, overloading can simplify naming schemes by

allowing the use of the same name for routines which perform similar operations on different types; a

good example of this is Ada's TEXT - IO package, which provides GET and PUT for several standard

types. However, overloading may also contribute quite significantly to the complexity of a language's

semantics. Overloading may occasionally combine with other language features to produce nasty

surprises, as in the case of the Ada code in Figure 4 -1 , where adding a procedure FOO to the

package IMPORT2 silently changes the meaning of a call in procedure MAIN.

In this example, before IMPORT2.FOO is declared, there is only one possible interpretation of the

call in MAIN: IMPORT1.FOO(1), which involves one implicit conversion (from UNIVERSAL INTEGER to

REAL). Once IMPORT2.FOO is declared, there are two interpretations: IMPORT1.FOO(1) (which

requres one implicit conversion) and IMPORT2.FOO(1) (which does not require a conversion). Since

there are two functions named FOO for which the argument (1) is valid, it might seem that the call in

MAIN is ambiguous. However, in this case, Ada's overloading rules give preference to the

interpretation which requires the smallest number of implicit conversions, namely IMPORT2.FOO(1).

32

Figu re 4 - 1 : Pathological Ada Overloading Example

package IMP0RT1;
— original FOO, the procedure MAIN intends to call
procedure F00(X: REAL); one implicit conversion

end IMP0RT1;

package IMP0RT2;
procedure OLD_STUFF;

adding this FOO silently breaks the call in MAIN
procedure F00(X: INTEGER); no implicit convers-ions

end IMP0RT2;

with IMP0RT1; use IMP0RT1;
with IMP0RT2; use IMP0RT2;
procedure MAIN is
begin

F00(1); — calls IMP0RT1.F00 until IMP0RT2.F00 appears
end;

Thus, the meaning of the call in MAIN changes in an unintended way without so much as the slightest

hint that anything has happened.

Languages which provide overloading include TARTAN, Ada, and C + + . The former two always

allow procedure and function names to be overloaded, whereas C + + requires functions which are

overloadable to be explicitly declared as such; this provides backwards compatability with C and

helps to prevent accidental overloading. But it's still possible to construct examples in C + + where

the meaning of a program changes silently, as in the Ada example above, although the mechanism

involved is somewhat different.

4 . 4 . Separa te comp i l a t i on

Most of the languages surveyed for this report support separate compilation. Separate compilation

facilities are necessary for developing large programs, since fully recompiling a large program would

take too much time to be done often. The degree to which a separate compilation facility can reduce

compilation costs depends both upon its design (the dependency relationships and safety restrictions

built into a language) and its implementation (the ability of a particular language implementation to

reduce recompilations resulting from minor changes).

33

4 . 4 . 1 . Safe ty and o rde r of comp i l a t i on

Separate compilation facilities can be categorized according to two factors: whether or not pieces

of a program can be compiled independently, and whether or not a program consisting of several

compilation units is checked as well as one consisting of a single compilation unit:

a. Unsafe independent compilation. Compilation units can be compiled in any order,
interface changes must be propagated by hand, and when several units are put together
to form a program, there is little or no checking to make sure that interfaces were used
consistently. Implementations typically rely upon standard linkers and do not use
compilation databases. Languages in this category include FORTRAN, BCPL, BLISS-11,
C, and C + + .

b. Safe independent compilation. Compilation units can be compiled in any order and
interface changes must be propagated by hand, but when several units are put together
to form a program, potentially extensive checking is done to make sure that interfaces
were used consistently. Implementations typically use non-interconnected databases
and rely upon special linkers. Languages in this category include Celentano's Pascal and
CHILL.

c. Unsafe dependent compilation. Compilation units should be compiled in some partial
order; when several units are put together to form a program, little or no checking is done
to make sure that interfaces were used consistently. Implementations typically do not use
either databases or special linkers. PERQ Pascal falls into this category only because it
does not enforce the compilation of MODULES after changes to the interfaces of the
MODULES they import; this in turn can be traced to its lack of physical separation for
specifications and bodies. When used with include files, BCPL, BLISS-11, C, and C + +
also fall into this category (header files usually are not compiled but do impose
dependencies).

d. Safe dependent compilation. Compilation units should be compiled in some partial order;
when several units are put together to form a program, checking is done to make sure
that interfaces were used consistently. Implementations typically use interconnected
compilation databases to store symbol table information and to enforce compilation
order; special linkers are generally not required. Languages in this category include
Simula-67, UW-Pascal, PROTEL, Mesa, Modula-2, TARTAN, CHILL, and Ada. CHILL is
listed both here and above because CHILL implementations are allowed to compile
programs using either an independent, dependent, or hybrid approach, so long as
whatever compilation method is used is safe.

4 . 4 . 2 . Recomp i la t i on s t ra teg ies

When some compilation unit or set of compilation units has changed, it becomes necessary to

recompile the changed unit(s) and any other units affected by the change. Recompilation can often

be an expensive step in terms of both time and machine resources, and minimizing the amount of

recompilation required as the result of a change is often desirable. Although recompilation strategies

are often implementation-dependent, it seems worthwhile to list three general cases:

• Recompile the world. This approach to recompilation is very expensive, and in many

34

situations is to be regarded as a last resort. However, recompiling all of a program's
compilation units does have the advantage of getting rid of strange problems that can
arise from linking together inconsistent object files (as can happen when using languages
with unsafe separate compilation).

• Recompile "potentially-affected" units, where "potentially affected" is recursively -
defined to include (a) units which have changed since they have last been compiled, and
(b) units which depend upon "potentially affected" units (in the sense of order-of-
compilation dependency). This approach to recompilation is generally taken by
implementations of languages which provide safe dependent compilation; these
languages generally provide at least some separation of specification and implementation
so that changes to things like the bodies of procedures do not cause lots of
recompilations. If this method is consistently applied, it provides just as much safety as
recompiling the world, usually at less cost. But recompilation costs may still be
unacceptable, since changes to widely-used low-level interfaces can have "r ipple"
effects resulting in the entire recompilation of a large system.

• Try to recompile just "actually-affected" units - potentially-affected units which are
affected semantically by a change or whose intermedrate/object code representations
need to be updated. Obviously, the definition of which units are "actually-affected"
varies from implementation to implementation. If the cost of determining which
recompilations can be skipped is not too high, this approach can save a large amount of
recompilation time. It can often be applied manually when using languages with unsafe
separate compilation by taking advantage of the way that a particular compiler is known
to operate, and the savings may be attractive enough to be worth risking the occasional
full recompilation. But when using languages with safe dependent compilation, it
generally must be supported by "smart" compilers which attempt to determine the
differences between the "o l d " and "new" versions of a compilation unit (such as the
PROTEL and Mary-2 implementations described in [Cashin 81] and [Rain 84],
respectively) if it is to be available.

4 . 5 . V e r s i o n / c o n f i g u r a t i o n c o n t r o l

Although version control and configuration management are to a large extent environment issues, a

few languages provide facilities which may be of some use in these areas. These facilities include

single-version control, configuration languages, conditional compilation, and procedure variables; for

the most part, they are better viewed as supplements to environment tools than as competitors to

them.

Single-version control is often found in languages which have strong typing and which do type-

checking across compilation boundaries by examining the exporters of imported items. It can be

useful in the absence of environment tools designed to support multiple versions of a system. By

definition, all of the languages listed in section 4.4.1 as having safe separate compilation facilities

35

provide at least single-version contro l 4 . Languages which do not support separate compilation also

provide single-version control in a trivial sense, although large programs written in one of them are

likely to present extreme version-control problems.

Configuration languages were fairly rare among the surveyed languages; this is not too surprising

since they direct actions at the l inker/binder level. Mesa provides a configuration language known as

C/Mesa which can be used for building subsystems, specifying that several modules cooperate to

supply an interface, and specifying which module is to act as the representative of a group of

modules, among other things ([Mitchel l 79]). And PROTEL's incremental loader has a command

language said to be similar in purpose to C/Mesa ([Cashin 81]).

Two other facilities that can be useful when working with multiple configurations are conditional

compilation and procedure variables. Conditional compilation facilities can be found in PERQ Pascal,

C, and C + + ; they are most useful when differences are slight and do not involve heavily-used

interfaces, since one of their major drawbacks is that reconfiguring systems written using them may

require too much recompilation to be practical. Procedure variables provide a different and perhaps

more useful approach, as discussed in [Cashin 81]:

One of the requirements for DMS was the ability to tailor large numbers of slightly
differing systems easily and inexpensively. This rules out any configuration scheme based
on conditional compilation as the amount of time required to recompile a system of this
size is large. Instead, we adopted a simple configuration process based on selection of
subsystems from a common library. . . . When an optional module is loaded, it "b inds"
itself (i.e. initializes procedure variables to point at its procedures) through the system and
is subsequently invoked through these procedure variables. Operating system and
language support is required to identify and execute module initialization code. It is
interesting to note that ADA does not support procedure variables whereas software in
both Mesa and PROTEL makes extensive use of this feature.

In addition to PROTEL and Mesa, a number of other languages provide procedure variables,

including BCPL, BLISS-11, C, C + + , Modula-2, and CHILL.

5. Summary
The tables on the next few pages summarize the categorizations made in section 4. They do not

contain any new information, and thus may be skipped without penalty by readers who want to move

on to section 6.

t h a ^ o f LXri9L7VideS
 C O n t r 0 ' ° V e r m U ' , i P , e V e r S i 0 n S ' b U t S h ° U l d b e C ° " S i d - < - - e n v i r o n s , too. rather

36

Tab le 5 - 1 : Facilities for Decomposition of a System

Functional Procedure
Language Decomposition Parms/Vars
=

FORTRAN comp. units yes
ALGOL-60 no support no
Simula-67 comp. units no

BCPL comp. units yes
BLISS-11 comp. units yes

Pascal no support yes
PERQ Pascal comp. units yes
UW-Pascal comp. units yes
Cel. Pascal comp. units yes

C comp. units yes

C++ comp. units yes
PROTEL modules [a] yes
Mesa modules [a] yes
Modula modules [b] no
Modula-2 modules [b] yes
TARTAN modules [b] no
CHILL modules [b] yes

Ada modules [b] no

Data-or tented
Decomposit ion

no support
no support
classes [c]
no support
no support
no support
no support
no support
import Ctrl
no support
classes [c]

Coroutines
==========

no
no

yes
no

yes
no
no
no
no
no

yes

yes
no

export Ctrl
export Ctrl
export Ctrl yes
export Ctrl [*d] no
export Ctrl no
export Ctrl [d] no

Processes

no
no
no
no
no
no
no
no
no
no
no

yes
yes
no

yes
yes
yes

Program
Structuring

bottom-up

bottom-up
bottom-up
bottom-up

bottom-up
top-down
top-down
bottom-up
bottom-up
bottom-up [e]
bottom-up

bottom-up
top-down
top-down [f]
both types

[a] has subsystem facility
[d] has generics facility

[b] allows nested modules
[e] top-down within MODULE

[c] has subclasses
[f] flexible qualification

37

Tab le 5 -2 : Mechanisms for Importing and Exporting Whole Entities

Gathering r.xport Control
Information mark 11st spec auto

Language A B c D items Items part
============= : : : : S S 3 = 3 3 = 3 3 3 3 33 = 3

FORTRAN X X X
ALGOL-60
Simula-67 X . . .
BCPL X X *
BLISS-11 X X •
Pascal — — — —

PERQ Pascal X X
UW-Pascal X _ _ _

Cel. Pascal X . . .
C X X X •
C++ X X X •
PROTEL X x
Mesa X X X
Modula X X
Modula-2 X X X
TARTAN . X X
CHILL X ? X
Ada X X X

Import Control Naming Conflicts
name group qualified overload
items qua I unqu names? names?

: s s s = 3 3 3 3 3 3 3 S S 3 3 = 3 3 3 3 3 3 3 3 3 3 3 3 3 3!

X no no
— — — no no
X class no
X * no no
X * no no
— —' no no

X no no
— —" no no
X no no
X • no no
X * class yes

? ? module no
X X X module no
X X no no
X X module no
X X module yes
X X X module no

X X module yes
Legend:

A = guess properties of imports. B

* Ll TTH9 IT e X P 0 P t i n g U n i t ' D • Parent/subunit relationship (b & c)
- has include files, which can be used to serve a similar purpose

declare properties in importer,

38

Tab le 5-3 : Information Hiding, Compilation, and Configuration Facilities

Language
• B l l l l t t

FORTRAN
ALGOL-60
Simula-67
BCPL
BLISS-11
Pascal
PERQ Pascal
UW-Pascal
Cel. Pascal
C
C++
PROTEL
Mesa
Modula
Modula-2
TARTAN
Chill
Ada

Control Over Data Types
Location Hide Any Hide Fields Replace/Suppress
if avail Type? Selectively? Assign?
» = 3a = X = = = = = = = = = : = = =

exporter [1]

importer

exporter
(do no

exporter
exporter
exporter
exporter
exporter
exporter

X
X
X

Separate
Compilation
safe? dep.?

s s s s s s s s s S S S S 3 S

no no

yes yes
no [2]
no [2]

no yes
yes yes

X yes no
no [2]

X no [2]
0 yes yes

yes yes
X. —-
X yes yes
X yes yes

yes [3]
X yes yes

Misc. Facilities
Cnfg Cond Proc
Lang Comp Vars

= S S S S S 3 S S S 3 S S S S S

X

X
X
X
X

m ves by virtue of CLASSes being the only type-definition mechanism H a i i f l i | . n

t e n n c a y independent, but header files are often used and impose obvious p ndenc.es
[I] i m p u t a t i o n s may use independent, dependent, or hybrid compilation strateg.es

http://ndenc.es
http://strateg.es

39

6. Conclusions
In the process of writing this report, I noticed several relationships and trends involving the

surveyed programming languages, as described below.

Generally speaking, languages which are typically compiled (such as the ones described in this

report) have been improving over the years in terms of their support for programming-in-the-large.

FORTRAN and ALGOL-60 are two very early languages and they show their age of the surveyed

languages, they were the only two which did not provide user-definable data structures. Except for

Simula-67, all of the surveyed languages which provide strong mechanisms for either functional or

data-oriented decomposition are of fairly recent origin. The mid-70's seems to be a turning point

before which few languages supported any kind of decomposition well and after which a number of

languages with module constructs appeared. These latter languages can be seen as a response to

the concerns raised in the early-to-mid-70's in papers such as [Parnas 71b] and [DeRemer 76].

Among the languages which supported separate compilation, there was a very strong correlation

between the method(s) used to gather information about imported entities, strong typing, and safe

separate compilation. Languages which guessed the properties of imported entities or obtained them

from the importing units fell into two groups: most were weakly typed (or untyped) and had unsafe

compilation facilities, although two were strongly typed and had safe compilation facilities which

depended upon link-time semantic checks. Languages which obtained information from exporting

units (either library units or parents of subunits) were uniformly strongly typed, and all but one had

safe compilation facilities (the exception was PERQ Pascal). Although several languages used more

than one method of gathering information, only CHILL gathered information using both types of

methods just discussed, so the method a language uses to gather information about imported entities

would seem to be a fairly good predictor of the strength of its typing and the safety of its compilation

facilities.

This combined with other information suggests an interesting way to categorize the surveyed
languages, namely:

• Languages which are completely unsuitable for programming-in-the-large - those
without separate compilation. This category includes ALGOL-60, Pascal, and Modula.

• Languages which provide generally poor support for programming-in-the-large -- those
which are weakly typed or untyped, have flat name spaces, do not provide control over
exported types, and have unsafe separate compilation facilities. This category includes
FORTRAN, BCPL, BLISS-11, and C. The one advantage that these languages have over
many of those in the next category is that they make it very easy to skip recompilations
known to be unnecessary.

40

• Languages which provide generally good support for programming-in-the-large -- those
which are strongly typed, have multi-level name spaces with some form of qualified
names, provide control over exported types, and have safe separate compilation facilities.
This category includes Mesa, Modula-2, TARTAN, CHILL, and Ada. It probably includes
PROTEL, which fits the description in all ways for which [Cashin 81] provides any
information. Simula-67 also fits this category in many ways, although it has a fairly flat -
program structure (all of the units comprising a program must be imported by the main
program). Note that all but one of these languages provide modules (the remaining one
has classes) and that only one modular language (Modula) is not in this category.

• Languages which do not fit neatly into one of the above categories, because they are
extensions of other languages. This category includes PERQ Pascal, UW-Pascal,
Celentano's Pascal, and C + + . These languages are generally more suitable for
programming-in-the-large than those on which they were based; however, their facilities
are generally not as extensive as the facilities of the languages in the third category. This
is not too surprising, as the goal of extension efforts is often specific improvement rather
than full revision.

Even among languages in the third category, there are differences in design philosophy, as

evidenced by the styles of programming each supports. Modula-2 illustrates one approach; its closed

scoping and import/export lists force programmers to make connections between modules explicit

and detailed, at the expense of convenience. The language is not very large and obviously was

designed to permit easy implementation. Ada illustrates a quite different approach; it has open

scoping and makes it very easy for programmers to import and use items from many different sources,

although it may be fairly hard to track down the uses of any particular item. Furthermore, the

language contains many features of varying degrees of complexity. Mesa and CHILL hedged their

bets, at least on the issue of ease of importing versus accountability, by letting programmers have

greater freedom to select the style of importing. At this point in time, it is not clear which approach

will ultimately win out.

Moving on to a different topic, one thing that was somewhat surprising was a strong correlation

between languages that provided modules or classes and languages that provided multiple threads of

control. All languages which provided the former provided the latter, with the possible exception of

PROTEL ([Cashin 81] does not mention whether or not it supports multiple threads). Conversely,

only one of the languages which did not have modules or classes provided multiple threads. The

reason that both languages with classes had coroutines is fairly obvious; the extensions that turned C

into C + + were largely inspired by Simula-67, and Simula-67 has a coroutine mechanism to facilitate

event-driven simulations. While this sample is hardly sufficient to generalize about all languages with

classes, it is interesting to note that Smalltalk also supports event-driven simulations. The

connection, if any, between modules and multiple threads of control seems to be rather less obvious;

41

perhaps the only connection is that the languages which have modules are fairly recent ones, and

have facilities for multiple threads only because of separate interest in parallel processing at the time

that they were invented.

None of the surveyed languages provided both modules and classes. This seems odd. While

classes can be used to imitate modules to some extent, declaring both a class and an instance of that

class would seem to be less convenient than declaring a module, especially when the combination

"class + instance" cannot be separately compiled (the case for Simula-67). And while all of the

languages with modules (with the possible exception of PROTEL) also provided mechanisms to hide

type details, only two provided any form of composition mechanism which could begin to compete

with the subclasses found in Simula-67 and C + + . It would appear that combining modules and

classes in one language, if done properly, would produce a language which could support

decomposition better than most or all of the languages that were examined for this report. However, it

may be worthwhile to briefly consider two languages which seem to have taken the opposite

approach of taking one construct and building around it heavily.

One of these languages is Ada. Ada provides PACKAGES (modules) which are useful for functional

decomposition and PRIVATE types which are declared inside PACKAGES and are useful for data-

oriented decomposition. In this respect, it is not too much different from languages such as Modula-2

or Mesa. But Ada has other features which make it easier to use than many other modular languages

for the purpose of programming in the style normally associated with classes. Generic units provide a

form of data type composition, and overloading of procedure and function names can be used to

simulate the effect of implicit type qualification. This is not to say that these features work in the same

way as the class-related features which they can be used to simulate. In fact, like much of the rest of

the language, they are fairly complicated to implement. The complexity of Ada in general (not just the

parts discussed herein) has led to a number of criticisms of the language and the suggestion that it is

basically the final language in a particular line of development.

The other language is Smalltalk. Smalltalk was not surveyed for this report, and is quite different

from the languages previously mentioned. The typical (read Xerox) implementation consists of an

entire environment which is built around the language and which is highly interactive; it is much

closer to the environment provided by a Lisp Machine or by an APL interpreter than to the

environments provided for most implementations of the languages surveyed for this report. Smalltalk

provides a class construct which in the latest public incarnation provides subclassing similar to that of

Simula-67 (there have been at least three major versions of the language and the 1976 version of the

language may have allowed classes to inherit properties from multiple superclasses, as hinted at in

42

[Ingalls 78]). But what is interesting about Smalltalk is that all Smalltalk programs, as well as the

Smalltalk environment itself, are based around the idea of defining classes and performing operations

upon instances of classes. Even such basic expressions as "3 + 4 " reflect this orientation

(conceptually, a message is being sent to the number 3 asking it to add 4 to itself and return the

result, although the actual language implementation is intelligent enough to recognize this special

case). The entire programming paradigm is quite different from the ones presented by languages

such as FORTRAN, Pascal, or Ada. In fact, it is even quite different from the paradigm presented by

Simula-67 and C + + , for while neither of these languages provides module constructs, it is possible

to write programs in Simula-67 or C + + which are not in the least data-oriented and which use

classes merely as record types if at all. So the Smalltalk approach is to get programmers to think

about their programs in a different way, rather than providing features which can be used to more

easily simulate modules. But Smalltalk may also influence the way in which programmers use

modular languages, as we will see below.

First, consider that most of the surveyed languages which provided support for programming-in-the-

large provided safe, dependent compilation. While this approach has some advantages over the

alternatives, it tends to impose extra recompilation costs, since it often is not possible to manually

skip the recompilation of a potentially-affected unit and typical implementations are not sufficiently

intelligent to skip the recompilation of any unit in a potentially-affected set. This tendency is

magnified by the typical lack of separation of type specifications and implementations., which allows

compilers to generate code that depends upon the representations of imported abstract types and

becomes obsolete when these representations change. While the code thus produced may be

efficient, recompilation time is often much more critical than object code efficiency during most of the

development cycle. And this brings us to the final point.

The desirability of using languages which are designed to support building large systems combined

with concern over recompilation costs rriay have a major effect on future implementations of such

languages. In particular, future implementations may be more likely to provide integrated

environments and to do incremental compilation or even interpretation of programs throughout the

development process, with traditional compilation runs performed only when a program is to be

released and its executable form must be fairly efficient. While the benefits of strong environment

support have been enjoyed for years by people in the Lisp and Smalltalk communities, strong

environment support for the use of "compi led" languages has generally not been available, perhaps

due to a general emphasis on the efficient use of machine time and the difficulty of providing nice

environments for such languages. But as machine time becomes less important and programmer

time becomes more important, good environments are becoming less of a " luxury" and more of a

43

"necessity" for software development, and thus we can expect to see more of them in the future.

44

[ANSI 83]

[Applebe 85]

[AT&T 84]

[Birtwistle 73]

[Birtwistle 75]

[Bishop 83]

[Brooks 79]

[Cashin 81]

[CCITT 80]

[Celentano 80]

[Curry 79]

[DeRemer 76]

References
American National Standard Reference Manual for the Ada Programming

Language
New York, 1983.
ANSI/MIL-STD-1815A-1983.

Applebe, William F. and Hansen, Klaus.
A Survey of Systems Programming Languages: Concepts and Facilities.
Software Practice and Experience 15(2): 169-190, February, 1985.

C + + (Release E)
AT&T Bell Laboratories, 1984.

Birtwistle, G. M., Dahl, O-J, Myhrhaug, B., and Nygaard, K.

Simula Begin.

AUERBACH, Philadelphia, 1973.

Birtwistle, Graham and Palme, Jacob.
DECsystem-10 SIMULA Language Handbook Part I (Second Edition)
Swedish National Defense Research Institute, 1975.
Published through DECUS Program Library (# 10-223B).
Bishop, R., Bordelon, E., Cheung, R., Feay, M. R., Louis, G., and Smedema, C. H.
Separate Compilation and the Development of Large Programs in CHILL.
In Proceedings of the Fifth International Conference on Software Engineering for

Telecommunications Systems, pages 80-86. JEE, 1983.
Brooks (Jr.), Frederick P.
The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1979.

Cashin, P. M., Joliat, M. L., Kamel, R. F., and Lasker, D. M.
Experience With a Modular Typed Language: PROTEL.
In Proceedings of the International Conference on Software Engineering, pages

136-143. IEEE, 1981.

Draft Recommendation Z.200: Proposal for a recommendation for a CCITT High

Level Programming Language (CHILL)

CCITT, 1980.
Temporary Document No. 39-E.

Celentano, Augusto, Vigna, Pierluigi Delia, Ghezzi, Carlo, and Mandrioli, Dino.
Separate Compilation and Partial Specification in Pascal.
IEEE Transactions on Software Engineering SE-6(4):320-328, July, 1980.

Curry, James E. and PARC staff,
BCPL Reference Manual

Computer Sciences Laboratory, Xerox Palo Alto Research Center, 1979.

DeRemer, Frank and Kron, Hans H.
Programming-in-the-Large Versus Programming-in-the-Small.
IEEE Transactions on Software Engineering SE-2(2):80-86, June, 1976.

45

[Ekman 67]

[Gear 78]

[Gleaves 84]

[Goldberg 83]

[Ingalls 78]

[Jensen 74]

[Kernighan 78]

[Le Blanc 84]

[Mitchell 79]

[Parnas7la]

[Parnas7 lb]

[Rain 84]

[Richards 79]

Ekman, Torgil and Froberg, Carl-Erik.
Introduction to ALGOL Programming.
STUDENTLITTERATUR, Lund, Sweden, 1967.
Gear, C. William.

FORTRAN and WATFIV Language Manual.
Science Research Associates, Inc., 1978.

Gleaves, Richard.
Modula-2 for Pascal Programmers.
Springer-Verlag, New York, 1984.

Goldberg, Adele and Robson, David.
Smalltalk-80: The Language and Its Implementation.
Addison-Wesley Publishing Company, Menlo Park, CA, 1983.
Ingalls, Daniel H.

The Smalltalk-76 Programming System: Design and Implementation.
In Proceedings of the Fifth ACM Symposium on Principles of Programming

Languages, pages 9-16. ACM, 1978.

Jensen, Kathleen and Wirth, Niklaus.
Pascal User Manual and Report (second edition).
Springer-Verlag, New York, 1974.

Kernighan, Brian W. and Ritchie, Dennis M.
The C Programming Language.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1978.
Le Blanc, Richard J. and Fischer, Charles N.

A Simple Separate Compilation Mechanism for Block-Structured Languages.
IEEE Transactions on Software Engineering SE-10(3):221 -226, May, 1984.

Mitchell, James G., Maybury, William, and Sweet, Richard.
Mesa Language Manual version 5.0

System Development Department, Xerox Palo Alto Research Center, 1979.

Parnas, D. L.

Information Distribution Aspects of Design Methodology.
Technical Report, Department of Computer Science, Carnegie-Mellon University,

February, 1971.

Parnas, D. L.

On the Criteria to be Used in Decomposing Systems Into Modules.
Technical Report CMU-CS-71-101, Department of Computer Science, Carnegie

Mellon University, August, 1971.

Rain, Mark.

Avoiding Trickle-down Recompilation in the Mary2 Implementation.
Software - Practice and Experience 14(12): 1149-1157, December, 1984.
Richards, Martin and Whitby-Strevens, Colin.
BCPL - The Language and its Compiler.
Cambridge University Press, New York, 1979.

46

[Shaw 78]

[Shaw 81]

[Smedema 83]

[Spice 84]

[Stroustrup 83]

[Tichy 79]

[Wirth 77]

[Wirth 80]

[Wulf 72]

Shaw, Mary, Hilfinger, Paul, and Wulf, Wm. A.
TARTAN - Language Design for the Ironman Requirement: Reference Manual.
Technical Report CMU-CS-78-133, Department of Computer Science, Carnegie-

Mellon University, June, 1978.
Shaw, Mary, Almes, Guy T., Newcomer, Joseph, Reid, Brian, and Wulf, Wm. A. m

A Comparison of Programming Languages for Software Engineering.
Software - Practice and Experience 11:1 -52,1981.

Smedema, C. H., Medema, P., and Boasson, M.
The Programming Languages: Pascal, Modula, CHILL, and Ada.
Prentice-Hall International, Englewood Cliffs, New Jersey, 1983.

PERQ Pascal Extensions, Spice Programmer's Manual
Department of Computer Science, Carnegie-Mellon University, 1984.

Stroustrup, Bjarne.
Adding Classes to the C Language: An Exercise in Language Evolution.
Software - Practice and Experience 13:139-161,1983.

Tichy, Walter F.
Software Development Control Based on Module Interconnection.
In Proceedings of the International Conference on Software Engineering, pages

29-41. IEEE, 1979.

Wirth, N.
Modula: a Language for Modular Multiprogramming.
Software - Practice and Experience 7:3-35,1977.
Wirth, N.
The Programming Language Modula-2
Institut for Informatik, ETH Zurich, 1980.
This is an edited reprint of Report Nr. 36, Ifl, ETH Zurich.

Wulf, William A. et al .
BLISS-11 Programmer's Manual
Digital Equipment Corporation, 1972.

[Wulf 75]

