
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A NEWTON-RAPHSON BASED STRATEGY FOR
EPLOITING LATENCY IN DYNAMIC SIMULATION

by

S. Kuru & A.W. Westerberg

December, 1983

DRC-O6-M7-33

A NEWTON-RAPHSON BASED STRATEGY FOR
EXPLOITING LATENCY IN DYNAMIC

SIMULATION

by

Selahattin Kurut

Arthur W. Westerberg

Department of Chemical Engineering

Carnegie-Mellon University

Pittsburgh, PA 15213

January, 1983

tCurrent address is Department of Computer Science, Bogazici

University, P. K. 2 Bebek - Istanbul, Turkey,

1. ABSTRACT

Latency1 in dynamic simulation is a consequence of the difference between the

dynamic behavior of different units that make up a flowsheet. Taking advantage of

latency is essential to reduce the computation time in dynamic simulation. It is

observed that in dynamic simulation there is a parallelism between the degree of

dynamical activity of a unit and the computational effort required to realize this

activity. An algorithm is presented to exploit this parallelism by avoiding some or

all the steps involved in solving the corrector equations in the numerical integration

process by the Newton-Raphson method. Unlike conventional ones, the proposed

algorithm has no approximations built into it and solves the correct model of the

flowsheet at each step of the integration. The algorithm is tested on an example

problem and it is shown that significant savings in computation time can be

achieved.

2. SCOPE

Very often in dynamic simulation, only a few of the units in a chemical flowsheet

are dynamically active on a subrange of the integration interval. ' One reason for this

is that some units in the flowsheet have large time constraints relative to those of

others and hence the rate of change in the state of these units is not always

appreciable. Time constraints of largely different magnitudes is one cause of

stiffness in differential systems . Since the integration step-size is determined by the

smallest time constant of a differential system, a dynamic simulator not taking

special action for such a system would be forced to take small steps, thus

demanding large amounts of CPU time. Another reason for some units to stay

inactive for a period of time in dynamic simulation is that when a disturbance

travels around the flowsheet, it affects only a few of the units at a time due to the

dynamic lag between the units. This is because a lag weakens the coupling between

the units. Note that a pure delay between two units decouples them completely if

the integration step-size is less than the delay time in magnitude. The third reason

for having dynamically inactive units is due to the action of control units in the

flowsheet.

Latency in dynamic simulation is thus a consequence of the existence of

dynamically inactive or relatively less active units in flowsheet. Taking advantage of

latency is essential to reduce the computation time" in dynamic simulation.

There are basically two approaches used in the dynamic simulators existing in the

chemical engineering literature. One is to use the sequential modular approach3 and

let the flow of material - and hence the path taken by a disturbance - determine the

integration sequence4. This approach has two drawbacks: First, the existence of

recycle streams introduces difficulties in applying this approach. Use of nested .

loops often results in excessive computation time. Second, the flow of information

does not necessarily have to follow the flow of material.

The other approach5 is to simulate each unit separately for a subinterval, with

step-sizes determined by individual units, as if the units are completely decoupled,

and consider coupling only at the end of the subinterval. For each subinterval,

coupling variables are kept at their values at the beginning of the subinterval.

Though it may give reasonable solutions at times, this approach is not

mathematically justifiable. The system solved in each subinterval is not a correct

model of the flowsheet.

Here we introduce a different strategy where no artificial decoupling strategy is

used so that the equations being solved are the correct model of the flowsheet. All

the units in the flowsheet are simulated simultaneously and the step-size is

determined by the fastest moving unit. This step-size is the smallest of the step-

sizes that would be used by the individual units if the system were assumed to be

decoupled unit by unit. The strategy is based on keeping track of a small subset of

the trajectories followed by the units in the flowsheet. The information about the

trajectory followed by a state variable in the. past is stored as a requirement of the

integration scheme, and the predictor formula predicts the value of the variable in the

immediate future based on this information. Prediction of the algebraic variables for

the model is shown to require keeping track of the trajectories of only a small

subset of them. For a unit that follows a smoother (well approximated by a low

order approximation) trajectory relative to the fastest moving unit, the predicted

values of the state variables can be expected to be close to the corrected values. In

other words, the predicted values may satisfy the corrector equations of the units

experiencing slow dynamics within a tolerance, or at least, these units may require

fewer corrector iterations to converge than the faster moving units in the flowsheet.

The idea is to decompose the flowsheet unit by unit and to avoid some or all of the

computational stages involved in the corrector iterations for those units that are

dynamically inactive or relatively less active.

3. CONCLUSIONS AND SIGNIFICANCE

The strategy presented for exploiting latency is based on the intuition that units

with little or no dynamical activity in a flowsheet should introduce little or no

computational work in the numerical integration process in dynamic simulation.

Arguing on this parallelism qualitatively, an algorithm is obtained for dynamic

simulators that use predictor-corrector methods. Although the algorithm is based on

the Newton-Raphson technique as the equation solving method, the idea is readily

applicable to other techniques as well.

It is shown on an example that the algorithm has significant advantage over the

conventional strategy in terms of the computation time. We note that the new

algorithm has% no approximation built into it and the solution is identical with that of

the conventional algorithm in terms of the trajectories of the variables, the number

of steps taken, and the step-sizes used in the integration.

4. INTRODUCTION

In order to understand fully the concept of latency we shall cbnsider the flowsheet

in Figure 1. We shall first examine the dynamic behavior of the units in the

flowsheet in qualitative terms. Then we shall discuss the conventional approaches

for exploiting latency and present the idea of the strategy introduced in this paper.

Later in the paper we shall discuss the strategy in detail and deduce an algorithm

from the arguments. The flowsheet in Figure 1 wil l be used as an example to show

that significant savings in computation time can be achieved with the algorithm

presented. The flowsheet in Figure 1 represents a batch process where the reactants

A and B are converted into product C in controlled reaction conditions.

The reaction

A • B = C

is a second order endothermic reaction with a constant heat of reaction and a rate

expression

dcA/dt = -kcAcD
A AB

The operation of the batch process is composed of the following four phases:

Phase 1: The reactor is fi l led with the reactants to a specified level.

Phase 2: Reactants are heated to the reaction temperature. A heating coil is used

to supply constant heat flow to the reactor.

Phase 3: Reactor contents are circulated through the heating loop in order to

maintain the reaction temperature. The heating loop contains a steam heater, and the

steam flowrate is manipulated to supply just enough heat to keep the reactor

contents at reaction temperature.

Phase 4: Reactor contents are discharged to a storage tank through a line which

contains a cooler to cool the products down to ambient temperature.

The above operation of the batch process is accomplished with the scenario given

in Table 4-1 for the operation of the valves present in the flowsheet.

Time VI V2 V3 V4 V5

t

t3

open
close
close
close
close

open
close
close
close
close

close
open
close
close
close

close
close
open
close
close

close
close
close
open
close

Table 4-1: Valve Operation for Scenario

The system is designed as one composed of seven subsystems. The equations for

each subsystem are as follows (see nomenclature).

Subsystem 1: Reactor Level
Hh /Ht = f • •_

iaB 'out
AR dhR/dt = f._ A • f._ „ - f _

Subsystem 2: Reactor Temperature

d(hRT)/dt * QH • QR -

Subsystem 3: Heating Coil

QH = q

Subsystem 4: Component Concentrations

AR d(hRCA)/dt - f _ . C ^ - r -

d(hRCB)/dt « fJaBCB£) - r - fo u tCB

*R d (h R C C) / d t • r " fOutCC

T * A R h R k C A C B

k * k c

Subsystem 5: Heating Loop

QR " R

Q L - F S X S

Subsystem 6: Cooler

QC • foutCV<T - V

Q s F C .AT

Subsystem 7: Storage Tank

* f o u t

1 - foutCA

A,. d(hTCBT)/dt * fQutCB

A, d(hTCCJ)/dt = foutCc

Note the model consists of both algebraic and ordinary differential equations.

Let us consider one of the four phases of the batch process for the moment and

observe the behavior of the system. Let us choose phase 4 for this purpose. Phase

4 is the discharge phase and starts at time t~ by opening valve V5 while keeping the

rest of the valves in the system closed. In phase 4, the reactor contents are

discharged to the storage tank through the cooler where they are cooled down to

ambient temperature, as stated earlier. We observe that the subsystems that are

active in this phase are subsystem 1, which represents the reactor level, subsystem

6, which represents the cooler, and subsystem 7, which represents the storage tank.

The other four subsystems are inactive in phase 4 in the sense that the variables

that appear in the equations modeling these subsystems do not change their values

during this phase. This is one form of latency that is encountered in dynamic

simulation. In this case, the equations modeling the inactive subsystems need not be

considered in the solution process of the numerical integration.

6

On the other hand, we may expect that subsystem 7 follows a smoother trajectory

than subsystem 1 in phase 4 because the time constant of the storage tank is likely

to be larger than that of the reactor in magnitude. This is another form of latency

in which case the integration step-size is determined by the subsystem with the

smaller time constant, but the variables associated with the subsystem of the larger

time constant are expected to change faster.

The time that phase 4 ends, t4 , is determined by the value of variable h4 which

represents the reactor level. When hR reaches the value zero, valve V5 is closed.

By observing the system in all the four phases we obtain the information given in

Table 4-2. The last column in Table 4-2 gives the specifications that characterize a

particular phage. The specifications simply show the values of the control variables

that force the system to act in the desired manner.

active observed
period subsystems variable specifications

2 ' 3

4 ' 5 C C

1,6,7 h R

fout=°'V°

ln.B

'out"0'*"0

Ko=0,q=0

Table 4-2: Dynamical Activity of Subsystems in Each Phase

5. A GENERAL MODEL

We consider here the solving of a general process modeled by mixed sets of both

algebraic and ordinary differential equations of the form

dx/dt =f(x.z,u,t) (1)

g{x,z,u.t) = 0 (2)

u(t) given (3)

where

x . are "n" state variables equal in number to the equations 1

2 are "m" "algebraic" variables equal in number to equations 2

u are "r" control variables representing the degrees of
freedom for our problem. As equation 3 indicates,
they are specified versus time.

A more conventional discussion on process modeling would consider that equations

2 were used to eliminate z by writing

2 = g(x,u,t)

and rewriting 1 in the form

dx/dt = f(x,g(x,u,t),u,t) = f(x,u,t)

We shall however consider the implications of solving our model explicitly in the

form of equations 1 to 3.

Firstly in our discussion, we note that the chosen numerical integration scheme will

convert equations 1 into (often implicit) algebraic equations to be solved at the next

time step. For example, if we chose to use the trapezoidal rule, we would write

h(x(tk+1),u(tk+1),x(tk),u(tk)) = x(tk+1) -

[x(tk) • (At/2){f(x(tk+l),z(t(k+l),u(tk+1),tk+l)

f(x(tk),z(tk),u(tk),tk)}] (4)

Other schemes create similar equations.

Knowing x, z and u at time tR and u at tfc+1# we can solve equations 4 together

with equations 2 at time tfc+1

g(x(tk+1),z(tk+1),u(tk+1),tk+1) = 0

(2')

as a set of n+m nonlinear algebraic equations in the n+m unknowns, x(tfc+) and

z(tk+1), using for example the Newton-Raphson method.

8

We note that equations 4 and 2' are in general implicit in variables x(tk+1) and

z(t). To aid in solving, values for these variables can be predicted as is done for

only the state variables in a more conventional discussion. Prediction is usually

done by fitting a polynomial in time to past behavior of x and z and using this

polynomial to predict (extrapolate) the behavior at t 1 It would appear we may need

therefore to save information on the previous behavior of not only the state

variables, x, but also for all the algebraic variables, z. In a typical process the

algebraic variables are far more numerous than the state variables (consider all the

algebraic variables involved in evaluating physical properties). This requirement could

in fact doom the approach we are about to suggest. Fortunately, we need usually

only predict a very few of the algebraic variables by extrapolating their past

behavior.

The algebraic equations are highly structured for a process and the algebraic

variables and equations can be reordered such that their incidence matrix (see

Westerberg at al3) is in the bordered triangular form shown in Figure 2. This

reordering can be done automatically using any of several algorithms.

If we know values for only the m' tear variables, where m' is usually much smaller

than m (the total number of algebraic variables, z), then we can use the first m - m'

algebraic equations to solve explicitly for the m - m' nontear algebraic variables.

These first m - m' equations are lower triangular and thus can be solved directly

using a forward substitution scheme. We would ignore the remaining mr tear

equations in our prediction scheme.

This observation suggests we need only predict the m' tear variables using past

behavior for them. The remaining ones can be predicted by m - m' of the algebraic

equations using a forward substitution scheme. Thus the "cost" of predicting is

essentially the cost of saving past values for the state and algebraic tear variables,

and then using the majority of the algebraic equations themselves to predict the

remaining algebraic nontear variables. In terms of time required, prediction can be

accomplished in a time similar therefore to the time of evaluating the right-hand side

error vector for the Newton-Raphson scheme since the latter is an evaluation of

equations 4 and 2. We discuss how this can be accomplished in practice.

As stated earlier, the tear variables can be found automatically using existing

algorithms. However, since they are being found only to save storage space in

terms of past values being needed for them, it hardly seems worth the effort to be

too careful to find a tear set having the fewest tear variables possible in it. Such

complete automatic tearing algorithms are usually very expensive to execute both in

computer time and space. Also, if a tear set is found for a set of equations, one is

stil l faced with the problem of transforming the equations algebraically into a form

suitable for fast forward elimination - i.e., one needs to rewrite each equation as it

appears in the forward substitution scheme so the new variable occurring in it is

found explicitly in terms of the other variables occurring in it. Doing this

automatically using algebraic manipulation codes is so expensive as to be out of the

question as an approach. Again only a good tear set need be found.

Suppose we analyze each unit model carefully to discover a set of tear variables

for it, and we do this only the one time when the unit model is developed. We can

then write a special prediction routine that can use the nontear equations to evaluate

the algebraic nontear variables given predicted values for the state and selected tear

variables for the unit. We write this prediction routine along with the routines to

evaluate the Jacobian matrix and right-hand-side errors for the unit equations.

We can then have available for each such routine a list of the variables needed as

input and a list of those predicted in terms of them. Predicting only the tear

variables on these lists for all units and the state variables wil l then allow us to

predict all remaining algebraic variables for an entire flowsheet. We can be cleverer

than this approach and reduce the total number of tear variables needed if desired.

A tear variable for a unit may already be predicted because it exists in a unit whose

prediction routine has already been executed. If so, that variable can be dropped

from the set of tear variables for the unit yet to have its variables predicted, and

the space needed to save its past values can be eliminated. Discovering the

variables which can be dropped can be done in a single preliminary pass through the

prediction step. Clearly an optimal order for predicting variables for a flowsheet

exists if we adopt this approach. (It is questionable however if the space saved wil l

be worth the space and time needed for implementing such an ordering algorithm.)

6. THE STRATEGY AND THE ALGORITHM

Integration by predictor-corrector methods6 requires a prediction and up to a

prespecified number of corrector iterations at every step of the integration process.

In general, it is the corrector step that is computationally expensive. At the

corrector step, the corrector equations, which are nonlinear in general, are solved

using an appropriate iterative scheme - the Newton-Raphson method in our case. A

10

Newton-Raphson iteration corresponds to solving a set of linear equations obtained

by a Taylor series expansion of the nonlinear equations around the current point.

Gaussian elimination with LU factorization is the usual technique to solve the

resulting linear equations. This comprises four computational stages: pivot

selection, LU factorization, forward elimination, and backward substitution. Pivot

selection is related to the structure of the coefficient matrix (the Jacobian matrix for

nonlinear systems) of the system, and, since this structure does not change from

step to step in integration, pivot selection is not performed at every step. There are

two cases where pivot selection is redone: 1. If the decision variable set is

changed, then repivoting is necessary since some pivots may no longer be variables

in the problem. This occurs at the end of each phase in the example problem. 2. In

the case of numerical singularity, where some pivots are no longer eligible because

of the numerical values of the variables. LU factorization is done only when the

coefficient matrix is regenerated. This is usually done in the following cases: 1.

Some large amount of steps have been taken since the last regeneration, 2.

Corrector iterations do not converge even when the step-size is reduced, 3. Step-size

has changed significantly.

The numerical behavior of a unit in corrector iterations (e.g. the number of

iterations needed for convergence, stages that can be skipped in one Newton-Raphson

iteration, etc.) depends on how close the predicted values are to the corrected values,

its interaction with other units, and the existence of a change in decision variables

associated with it. For a system with latency, the numerical behavior of the units

will be different from each other, by definition. The approach that we take in taking

advantage of latency is based on exploiting the difference between the units in their

numerical behavior in corrector iterations. This, of course, requires decomposing the

flowsheet so that individual units can be treated separately. A code that is

developed by Clark7, based on a paper by Westerberg and Berna8, gives us this

capability.

The idea in the Westerberg and Berna decomposition strategy is to perform pivot

selection and LU factorization stages of a Newton-Raphson iteration on a unit basis.

In the pivot selection phase, pivots for a unit are selected only among its internal

variables. The rows that are not assigned pivots are merged with the rows of other

units in the same situation. The blocks that are obtained by this merging - the so-

called residual blocks - are pivoted when they get large enough (according to

memory space considerations). LU factorization, forward elimination and backward

11

substitution are performed in the same way.

Let us discuss the possible situations that might be seen during the calculations

performed for a step of numerical integration in dynamic simulation. As stated

earlier, the computational activity at a step comprises a prediction and several

corrector iterations, where a corrector iteration corresponds to a forward elimination

and a backward substitution. If the predicted values for the variables for a unit are

the same as their values at the previous step, then the corrector equations for this

unit will already be satisfied by the predicted values. In this case, there is no need

for doing forward elimination for this unit.

Another situation that might be seen is the case where the predicted values are

different than the values at the previous step, but the equation residuals are still zero

within a tolerance. If the variables have not moved enough to require a re-evaluation

of the Jacobian matrix for the Newton-Raphson equations, then we can suppress the

forward elimination step for this case. The equation residuals for the predictor

equations become the negative of the right-hand-side for their corresponding Newton-

Raphson equations. If they are essentially zero, the right-hand-side after the forward

elimination step will also be essentially zero.

In backward substitution the perturbations for the shared variables for a unit have

already been determined before the equations for the unit are ready to be back

substituted to find the predicted perturbations for the variables for the unit. If the

unit was already skipped for forward elimination, implying its equation residuals are

essentially zero, and if the predicted shared variable perturbations feeding back to

the unit are also essentially zero, then the unit can be skipped for the backward

substitution step.

Still another situation possible is the case where the value of a control variable

changes at some point. In this case, all four stages of a Newton-Raphson iteration

are performed for the unit to which the control variable belongs.

We also need criteria on the maximum number of allowable corrector iterations in

one integration step and on the maximum number of allowable integration steps

without Jacobian re-evaluation. Again, since the computational behavior of different

units of a system with latency are expected to be different from each other, the

maximum allowable corrector iterations and the maximum allowable integration steps

without Jacobian re-evaluation will be different for different units.

12

At every step of the numerical integration process, the number of iterations needed

for the convergence of corrector equations is counted for each unit. An average

allowable number of corrector iterations is computed for each unit by averaging the

number of iterations needed in the last several steps. If the number of iterations

needed for convergence of the corrector equations of a unit at any step exceeds this

average, then the portion of the Jacobian matrix that belongs to this unit is updated

and an LU factorization is performed on that portion. At the same time, the

frequency of Jacobian matrix evaluations is monitored and an average number of

steps is computed to use as a limit on the maximum number of steps that can be

taken without re-evaluating the portion of the Jacobian matrix belonging to that unit.

From these arguments we deduce the following algorithm for the solution of the

corrector equations.

0. Initialization at the first step:

Set maxstep. and maxiter. to their initial values for each unit i.

Set stepcount. to 1.

1. Set itercount. to 0.
{The next two steps correspond to comments
made at the end of the first paragraph
in this section.}

2. Set itercount. = maxstep.

Update J.

Perform LU factorization on J.

Set stepcount. to 1.

3. If itercount. = maxiter. then

Update J.

Perform LU factorization on J.

Set itercount. to 0.

4. Forward elimination:

If |Ax| £ c 1# then skip unit i.

Otherwise, calculate resid.

13

If |residj ^ c , then skip unit i.

Otherwise, perform forward elimination on unit i.

5. Backward substitution:

If forward elimination was skipped for this unit and if jAsJ £ *3

for the shared variables, then skip unit i.

Otherwise, perform backward substitution on unit i.

6. If a forward elimination or a backward substitution is performed on
unit i then increment itercount. by 1.

7. Convergence check:

If not converged then go to 2

If converged then update maxiter, stepcount. and maxstep.

7. AN EXAMPLE AND A COMPARISON

The flowsheet in Figure 1 is simulated using a predictor- corrector method with the

Heun method being the predictor formula and the trapezoidal rule being the corrector

formula9. Step-size change is allowed at every step but restricted to a maximum

allowable step-size in order to display the solution frequently enough. The local

truncation error, which is estimated by Richardson extrapolation, is used as the basis

for step-size adjustment.

The Clark implementation of the Westerberg and Berna decomposition algorithm is

used as the decomposition and linear equation solving code for both the conventional

strategy and the new one proposed here. This implementation allows the calling

program to request different steps of the Newton-Raphson scheme be performed

selectively on selected subsystems.

The following observation was made during the simulation. Remember the process

passes through 4 phases as described earlier. A total of 131 integration steps were

taken to complete the simulation. Two steps were unsuccessful at the first two tries

of phase 3 due to unacceptable truncation error. Phase 1 took 10 steps, each

converging in one iteration with no need for forward elimination. That was because

only one subsystem with a linear equation was active in phase 1. Phase 2 took 11

steps, again each converging in one iteration. Only one of the two subsystems that

14

were active in this phase required forward elimination. Phase 3 took 90 successful

steps. At 73 of the 90 steps, convergence was achieved in 2 iterations and for 17

of them it was achieved in one iteration. The predictor accurately predicted the

behavior of one of the two subsystems active in this phase. That subsystem

required no forward elimination. Phase 4 took 20 steps, each converging in 3

iterations. Only one of the three subsystems that were active in this phase required

forward elimination. Pivot selection and LU factorization had to be performed a total

of 6 times, 4 of them being at phase changes and 2 at step failures. We note that,

although we cite the results of a run where pivot selection was performed forcibly

every time there was a change in the operation phase, this is not a requirement of

the algorithm. In another test, the system itself successfully detected if a new pivot

selection was required, even at operation phase changes.

conventional new
activity millisec millisec

pivot
selection 806 808

LU
factorization 20307 11964

forward
elimination 8226 4261

backward
substitution 4226 1022

shared
variable check - 467

Jacobian
evaluation 561 241

right-hand side
generation 922 434

total time 35048 19197

table 7-1: Computation Time Comparisons of the Two Strategies

Table 7-1 gives statistics on the performance of the conventional strategy and the

15

proposed strategy. It is seen that the new algorithm reduces the CPU time by about

45%. One may estimate a maximum possible time saving potential for the steps of

LU factorization, forward elimination and backward substitution for the Newton-

Raphson scheme by taking the number of equations to be solved at each phase of

operation as a basis. These estimates show that the CPU time could be reduced up

to 60% for the example problem. The actual number obtained for the example is

48%. The difference of 12% between the estimated and the actual values reflects the

overhead occurring in detecting if various steps can be skipped in the algorithm

being proposed here.

16

C A' C B' C C

CAO'CBO

'cw
E

f

fin.A' fm.B

out

FS

Fcw

9

hR

V

itercount.

k

k

k0

m

m'

maxstep.

Nomenclature

reactor cross-sectional area, given

storage tank cross-sectional area, given

concentrations of A,B, and C in reactor

concentrations of A and B in respective inlet streams

concentrations of A, B, and C in the storage tank

heat capacity of reactants and products, constant, given

heat capacity of cooling water, given

activation energy for the reaction, given

rhs functions for state equations

inlet flowrates of A and B to reactor, volumetric, given

outlet flowrate from reactor, given

steam flowrate through the heater

cooling water flowrate though the cooler

algebraic equations

reactor fluid level

storage tank fluid level

unit index

iteration counter for unit i in corrector iterations

portion of Jacobian matrix belonging to unit i

time index

reaction rate constant

Arhenius constant

number of algebraic equations, g, and algebraic variables, z

number of algebraic tear variables

maximum number of steps allowed for unit i without

regenerating J.

17

maxiter
i

n

QH

r

r

R

resid.

stepcount.

t

T

u

X

X.

AT

t O

maximum number of corrector iterations allowed for unit i

number of state variables, x

heat supply rate to the reactor through the heating coil

rate of heat absorbed by the reaction

heat supply to the heater

number of control variables, u

rate of reaction

universal gas constant

residuals of corrector equations belonging to unit i

variables shared with unit i and all other units

number of steps take without regenerating J.

time

reactor temperature

control variables

state variables

variables associated with unit i

heat of reaction, constant, given

allowable temperature increase for cooling water, given

algebraic variables

tolerance parameters

latent heat of steam, given

18

REFERENCES

1. Rabbat, N.B.G., Sangiovanni-Vincentelli, A.L. Hsieh, H.Y., "A Multilevel Newton
Algorithm with Macromodeling and Latency for the Analysis of Large-Scale
Nonlinear Circuits in the Time Domain/' IEEE Trans. Circuits Systems, Vol. CAS-
26, No. 9, 1979, pp. 733-741.

2. Shampine, L.F., Gear, C.W., "A User's View of Solving Stiff ODE's," SIAM
Review, 1979, pp. 21.

3. Westerberg, A.W., Hutchison, H.P., Motard, R.L., Winter, P., Process Flow sheet ing,
Cambridge Univ. Press, Cambridge, England, 1979.

4. Alfonso, L L , DYSCO: An Interactive Executive Program for Dynamic Simulation
and Control of Chemical Processes, PhD dissertation, Univ. of Mich., 1974.

5. Patterson, G.K., Rozsa, R.B., "DYNSYL: A General-Purpose Dynamic Simulator
for Chgmical Processes," Computers and Chem. Eng. J., Vol. 4, 1980, pp. 1-20.

6. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, 1971.

7. Clark, P.A., "An Implementation of a Decomposition Scheme Suitable for
Process Design Calculations," Master's thesis, Carnegie-Mellon Univ., Pittsburgh,
PA 15213, 1980.

8. Westerberg, A.W., Berna, T.J., "Decomposition of Very Large Scale Newton-
Raphson Based Flowsheeting Problems," Computers and Chem. Eng. J., Vol. 2,
1978, pp. 61-63.

9. Kuru, S., Dynamic Simulation with an Equation Based Flowsheeting System, PhD
dissertation, Carnegie-Mellon Univ., Pittsburgh, PA 15213, 1981.

A,B,C

Figure 1: Flowsheet for a Batch Process

Figure 2: Bordered Lower Triangular Structure
for Unit Model Equations

