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Abstract \

This paper describes the desirable attributes of a future equation

oriented flowsheeting system. Areas covered include user/program

cocninunications, modeling considerations for complex flowsheets and finally

the solving of models.



1. Introduction

In this paper we shall fldreamM about the capabilities of a future

equation-based flowsheeting system.

Such a system should aid a design engineer to set up and solve

complex process models. It should have much broader capabilities than

current sequential modular programs, but these added capabilities should

not make it unusable by an ordinary mortal.

Such a system should solve steady-state, dynamic and optimization

problems. It should be friendly; in fact, we believe it can be intelligent

in its interaction with the user. The designer should be able to save

results and readily retrieve them for subsequent modeling or report

writing.

The topics we will discuss are user/program interaction, how one

could use such a system to create a complex model and how one could then

solve such a model. The paper is only a start at examining these ideas. We

hope it serves to broaden the reader's understanding of the large number

of issues involved in creating a useful design aid of this type.

2. Communications

2.1. Types of Communication

We start by brainstorming the types of communications that will

occur with a design aid of the type being considered. The system is to be

useful for a designer to set up and solve large complex process models, to

save results and to retrieve and report on them. Experience has shown

clearly that such systems must contain extensive libraries of building

blocks which the designer connects together to create his model. There are

thus two types of users: those who create the libraries and the design

engineers.



• The system users must enter and run their programs; they must

therefore have facilities to debug them. Finally the need to save and

retrieve earlier runs and to create arbitrarily formatted reports suggest

the system should be tied to a database system.

An interesting question arises. Is it reasonable that the design

engineers and the library creators should, be provided with the same tools?

If possible then only one set of tools need be created, and both types of

users would have the full power of such a system to use. In the next

section we will discuss the nature of models and discover that a model of

a complex system is often created as a hierarchy, i.e. as models which are

built of models which are built of models, etc. A final flowsheet is

nothing more than the highest level of model so far created. It can be

constructed using the same language and tools used to construct lower

level models. Indeed, the libraries of models can be viewed as being the

same as saving results for flowsheet runs so perhaps even the saving and

retrieving functions are the same.

Again then, we appear to need

1. an ability to construct models
2. an ability to run and debug them

3. an ability to save, retrieve and report results to the user.

We seem also to be implying the library creators and the designers are

doing the same things so they can share common tools.

2*2. Form of the Communication

We believe the method of communication for building a model is

through the use of a specially designed nonprocedural language. It should

be one that can read and handle algebraic expressions, as the models will

be constructed of such expressions. Until we examine the nature of the

models, we will postpone our discussion of the language.



To run and debug, the tools must be interactive. The nature of the

debugging begs for such an interface. Debugging normally consists of short

"transactions11 requiring fast "turnaround11 and short "response times11

(Benjamin, et al, 1981). Production runs which likely will not have short

response times can be run in a batch mode through the use of "command

files'* and so also are readily accommodated by interaactive tools.

Debugging requires easy access to "everything," a feature we tried

in part to put into ASCEND-II by making every variable value and every

equation residual available to the user by name and at any time during a

run. One must also be able to "single step" through a run, again a feature

we attempted in ASCEND-II by providing a wealth of commands that break

down the execution of a model into a sequence of small steps, the

consequence of each being understandable by the user. A useful feature

which we do not have in ASCEND-II is to review very selectively the

execution of a model after it has been run. This feature suggests the

selective saving and retrieval of information during a run. The counter-

part of this step with conventional flowsheeting systems is the printing

of a thick pile of output during an execution.

As stated earlier, the capability to save and retrieve earlier

models and runs made with them, along with report generation based on such

results, would seem to suggest tying such an aid to a database management

system. As we have not attempted such an exercise we cannot delve into any

of the details of this idea here. We can, however, point out issues one

must consider.

To be useful such a storage and retrieval system must allow the user

to search and discover which of the old runs is the one he is attempting



to locate* If the system is to support a user who has not written down

extensive notes to himself, it must provide the capability to search and

to locate descriptive information. The notion of providing the user with a

picture on a CRT display of an office with a desk, file cabinets, etc., to

which he can point when searching is very appealing. Models worked on

recently could be kept around on the "desk top.11 Those worked on last

month could be filed in a "cabinet." Such visual cues to aid in searching

seem extremely appealing. Xerox has created such a file management system

for their in-house system.

Graphics could play a significant role in retrieval. Dreaming again,

it would be extremely useful if a simple picture of the model could be

retrieved when searching. The picture could be in the form of a simple

process flow diagram (PFD), showing that the model is of a reactor

followed by a flash with the flash bottoms recycling, etc.

Having located one or several old models together with results

generated by them, one may wish to generate a. report and perhaps plots

based on an analysis of the collected set of results. Cherry (1975) ex-

amined these ideas in his Ph.D. thesis. In addition though one may wish to

construct a new model from parts of each of the old models. One needs a

language to deal conveniently with such an exercise. Also one may wish to

use the numbers generated for these earlier models to aid in initializing

the calculations for the newly constructed model.

We shall Leave these issues here because, as yet, we have not

thought seriously how to solve them.



2.3. Documentation

The means need to exist to document and retrieve that documentation

for models which have been created. Thought must therefore be given to the

modes of documentation possible. Online documentation seems appropriate.

The best form would be for models to be self document ing, requiring the

language to be close to English (or Spanish, etc.) and not confusing in

intent. Documentation can be considerably more elegant than simply

displaying back the program, however.

Let's dream a bit. It would be extremely useful if the online

documentation were like a user's manual but with many access routes. First

one should be able to read it like a book written in chapters, sections,

subsections, etc. One should be able to access it through a table of

contents. It would also be useful to allow crossreferencing within the

documentation to other interesting sections related to the one being read.

An entry by an index of keywords is also of value so one can consider a

topic and find one's way to the correct part of ,the documentation. Finally

it would be exceptionally convenient if, while the program is executing,

it

it kept updated pointers to related portions in the documentation so a

simple "help me1' would lead one directly to relevant aid. We discuss

briefly such a help system in Benjamin et al (1981).

Would it not be ideal if the tools to create such documentation were

available? Would it perhaps even be useful if the model developer had to

document within such a system to create the model in the first place? And,

would it not be convenient if somehow the document creation system could

automatically use the model itself as part of the documentation, indexing

it, etc.?



2.4. General Language Considerations

This section is to alert the reader to the problems associated with

language design. The special language one invents for the user to communi-

cate with the system should be very carefully designed. There has been

considerable thought given to language design in computer science, and

these resources should be tapped when developing a language. For example,

one attribute the language should have is an "elegance" that allows a user

to guess the command syntax for commands he has not yet used by assuming

they must be similar to the syntax of commands he has already used.

Questions about "strong typing" of variables arise. Also can the language

cater to an expert? Should it? Perhaps not as it may be significantly less

selfdocument ing•

In Benjamin et al (1981) we raise a number of issues relating to the

language that one should create for a design engineer. We argue that for

flowsheet calculations the appropriate level to interface the user is with

the equations and variables. This will leave .most readers aghast, but

ultimately, when a calculation fails, it is to this level of detail that

the engineer often must gain access to see why. He may look and decide it

is not of help, but invariably he will ask to see the modeling equations.

We also argue, as we have already indicated earlier, that a major

advantage of the equation solving approach is that the model can be stated

independently of how it is to be solved. The solution algorithm becomes a

separate aspect considered when solving but not when creating.

2.5. Nature of the Communication

We have considered various aspects of the user/program interface.

There is another aspect worth considering which is whether the com-

munication is active or passive. Three types of interaction will be

mentioned here: friendly, graceful and intelligent.



Friendly interaction is a very popular concept at this time. It

suggests that the user who is either a novice or who has been away for a

while can discover how to use the system by searching through the help

facilities provided. Graceful interaction goes one step further. It is

friendly but also tolerant of errors, sometimes correcting them if they

are obvious or suggesting alternatives if not. Also a graceful interaction

will allow the user to invent his own abbreviations for routinely used

commands. Graceful interaction has traces of being active in that it will

attempt tcr take some corrective actions on its own.

Intelligent: interaction can be thought of as a level of interaction

where the computer does not simply let the user know what is permissible,

it also advises the user which of the permissible next steps are the

better ones to take. We can dream a bit again. It would be interesting to

have a design aid that could understand the activity of setting up and

solving complex models. It could know that the better strategy to do this

activity Is to evolve from no model to the final complex model by setting

up parts, testing them, correcting them, testing, and so forth. It could

also advise the user on what steps to take when a test fails. It could

perhaps know that distillation columns cannot be solved when asked to find

solutions requiring too high a recovery for the key component. Such

knowledge suggest a level of understanding beyond providing a user's

manual. The system would have to detect what the user was doing to be able

to offer advice.

The technology needed to develop this type of interaction is being

developed in computer science under the label "expert systems.11 These

systems are an attempt to put knowledge into a computer so it can know

when to apply the knowledge as well as sound like an expert when applying

it.
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We include this section to alert people who wish to develop computer

aids as to the potential of new ideas that are becoming available.

3. Modeling

3«1« A Mathematical Representation

We consider here the mathematical language needed to formulate a

model of the type needed for doing flowsheet simulation, design and

optimization calculations. We shall introduce the concept of general

models (Stateva and Westerberg (1983)) to broaden the range of models

previously allowed in equation-oriented flowsheeting systems. Models are,

in our definition, the equations and variables and not the solution

method, which we consider to be a separate semantic entity.

Simple Steady State Model;

where £(x) is a set of m equations in n+m unknowns x» To solve requires

that n of the unknowns be specified by other means and the remaining are

r' found by solving the m nonlinear algebraic equations in m unknowns.

Constrained Steady State Model;

where g(x) is again a set of m equations in n+m unknowns. However, now

some (or all) of the variables are restricted to be within specified

bounds. (By the use of slack variables this formulation is equivalent to

writing arbitrary inequality constraints.)



To solve one is asking to find a feasible point for the problem.

This problem is typically solved as an optimization problem.

General Function Models (Stateva and Westerberg (1983)):

We now significantly enrich the structure of the models allowed by

permitting the use of both continuous and discrete variables. Without this

added structure, equation-oriented flowsheeting models cannot mimic the

models used within conventional sequential modular flowsheeting systems.

We define a general function to be one of the form

g (x) if i. = TRUE

g (x) otherwise

where £. and %. are equation alternatives to be used depending on the

of the logical (c

I. is defined by

value of the logical (discrete) variable I.. Either may be "null.

X * logical expression

An example is that g.(x) is the relationship between the fanning

friction factor and Reynolds1 number in a pipe. If the Reynolds1 number

exceeds 2100, turbulent flow is to be assumed giving one form. If it is

below 2100, then laminar flow is assumed giving another form.

Stateva and Westerberg explore the range of problem types for which

this structure is useful. An example is a traditional vapor/liquid flash

model where the operation may be one phase (superheated vapor or subcooled

liquid) or two phase. Another example is to evaluate

AT,
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anywhere including the limit as T -t becomes equal to T^-t^. A third

example is to find the largest real root of a cubic polynomial of the form

x + a_x + a-x + a = 0

and so forth.

Pictorially the model operates in "regions11 as depicted by Figure 1.

The given conditions may allow for a solution to reside in only one region

while the initial guess may be in another. One can imagine a strategy

which can move automatically from the incorrect region to the correct one.

Current models in sequential modular flowsheeting systems allow for

general functions to be used in their definition, although this point is

never stated nor perhaps fully appreciated. We are unaware of any

equation-oriented flowsheeting systems attempting to deal with general

function models, however.

Stateva and Westerberg discuss a simple strategy which appears to be

effective for solving a number of problems of this form. Basically it

involves guessing the discrete decision values which are not specified,

solving the corresponding well-behaved region equations for the dependent

continuous variables, reguessing the unspecified discrete decision values,

etc. Contrast this with the current sequential modular "ad hoc11 approach

that imbeds the discrete decisions within each model so the outer flow-

sheeting system is being handed back discontinuous model behavior as it is

trying to converge recycles.

Two approaches to handling regions are possible. One is to convert

the problem to a feasible point problem, which is usually formulated as an

optimization problem. Here the expressions defining the logical variables

become constraints for the region model equations.
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Figure 1. A Model Which Operates in Regions
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The second approach is to guess which region is the correct one but

ignore the constraints. If the solution resides outside the constraints,

the place it falls can give help in reguessing which region to attempt

next. This approach does not require an optimization problem formulation

and is the one we are examining at present.

3.2. Dynamic Models

Kuru (1981) suggests writing a dynamic model in the form of a mixed

set of ODE's and algebraic equations:

x - v

jf(V,X,£,U) = 0

£(*> £» H) = 2

ju(t) given

x(0) given

where x are "state11 variables equal in number to variables v and to

equations f, v are "velocity11 variables, £ are algebraic variables equal

in number to equations £ and u are independent variables whose time

'' trajectories must be specified by other means before a unique solution is

defined, £ are the state equations, but here written in terms of variables

v rather than as RHS's for the x equations, and £ are algebraic equations.

Defining X=v has the advantage that the numerical method which will

be used to integrate the equations forward in time will have a simple

predefined form of ODE to convert to the approximating algebraic equations

defined by the method. For example a modified Euler's method will convert

x=v into
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or

which relates the unknown x and v values at time t, to the known values

at time t,. Also the state equations .f need not be algebraically

rearranged so each f. is in terms of only one x. variable, often a tedious

task.

3.3. Dynamics with Inequalities and General Functions

Inequalities can be added and any of the algebraic equations may be

defined as general functions for a dynamic model, too.

3.4. Optimization

The only difference in an optimization model and one of the earlier

ones is that a variable must be designated as the objective to be

maximized or minimized. A point to be made here is that it should be

possible to designate any variable. If so then problems are possible of

the type: find the maximum recovery for this column if you are given 107«

more money to operate it.

We will not discuss optimization further in this paper except to

note that significant new results have occurred since Han (1975) provided

the theoretical insights to allow the development of the very fast

successive quadratic programming algorithm. Powell (1977) implemented the

Han ideas, and we (Berna et al (1980), Locke and Westerberg (1982), Locke

et al (1982)) extended them for use with large models.

3.5. Procedures

Perkins (1983) strongly advocates that an equation-oriented flow-

sheeting system must be able to use existing procedures within a model. A
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"procedure" contains within it the equations and the code to solve them.

One argument for allowing procedures is that some physical behavior could

not be modeled in existing equation-oriented systems. We believe allowing

general functions removes this argument. Another is that companies have

many models developed which they will be unwilling to throw away, partic-

ularly for the calculation of physical properties. Finally the argument is

made that some models defy normal solution methods and are best handled by

a procedure that can incorporate all sorts of special ad hoc methods to

help get to a solution for them. We agree with these last two arguments,

particularly the former; the latter may become less valid as we learn how

to set up and solve models containing general functions.

3.6. Model Hierarchies

Complex models are almost always built in a hierarchical fashion. An

example is a distillation column, which is built up of trays, flash units,

splitters, mixers, heat exchangers, pumps, etc. A flash unit itself is in

fact a hierarchical structure. Embedded in it' is the need to evaluate

K-values and enthalpies so in ccTncept it uses a library of models that

already exist to evaluate the needed physical properties.

To create complex models one therefore needs the ability to combine

previously written models with the extra defining equations for the

. complex model. It is here that "language" considerations become important.

This ability can be included with "elegance", or it can be unfortunately

clumsy. We used "macros" in ASCEND-II to include this ability. Our next

generation language (ASCEND-III) has a very natural language construction,

so natural that we do not even have to raise the concept of "macros" to

the model builder.
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Let's get at some fine points about building models in hierarchies.

Consider the problem of a flowsheet which "contains11 a flash unit. The

flash unit "contains" the physical property routines to calculate

K-values, enthalpies and so forth. At the flowsheet level we wish to

include the flash model and to tell it which variation of the physical

property routines we wish it to include. How does one do this "routing"

task with a natural language construct? We used defaults in ASCEND-II to

pass information down to the flash unit so it could then create a

statement to be added to the flowsheet through macro expansion that

invoked the desired physical property models.

In ASCEND-II I we are including the language construct that will

allow any name used in any lower level model to be treated as a formal

(i.e. dummy) name that can be replaced with an actual name by the higher

level. Thus we can write a flash model to invoke the "ideal" option for

liquid activities, but, when including this flash model in a flowsheet, we

can overwrite at the top level the "ideal option" of the lower level by

the "NRTL" or "Wilson" option.

Along with this powerful renaming potential goes the possibility

that one might, for example, rename a variable of type "temperature" to be

a variable- of type "pressure". ASCEND-III uses strong variable typing so

the writer of the flash model can insist that a variable be of type

"temperature."

Another language issue is the notion of equivalencing two names so

they refer to the same variable. In most languages this equivalencing must

be done at the highest level the variables are mentioned. In ASCEND-III,

we are allowing equivalencing to occur at the lowest level. Why? Consider
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a pipe model with input stream SI and output stream S2. In steady state

the model does not change component flows from input to output. If it can

equivalence them, the equations that otherwise are needed to equate them

and the storage space for having these flows written twice can be

eliminated from the model. It is conceivable a very large fraction of the

modeling equations and variables could be eliminated for some problems.

We return to make a point on variable typing. In ASCEND-III vari-

ables and records made up of collections of variables can be strongly

typed. Thus we can collect together a set of variables and type them as a

"stream,11 The normal notion of record typing is to fix completely all

attributes when defining a type — thus a stream containing H~, CH, and

C-H, might be of type "hydrocarbon stream11 and a stream containing HO of

type "water stream.M The flash model would have difficulty when it typed

its inputs and outputs as stream records — which stream type should they

be, the water stream type or the other? In ASCEND-III we get around this

by allowing typing to be qualified. Thus the flash can insist that its

inputs and outputs are of type "stream"; the components involved can be

set by separately qualifying the type "stream" to be the type "hydrocarbon

stream," for example. The flash model only cares that what it gets is at

least of type "stream" for its input and output streams.

3.7. Variable Names

The final point of importance is the naming of variables. It is

desirable that a variable can be accessed by any set of attributes it has.

For example, if a temperature is that of a tank as well as of its outlet

stream, which of course is the inlet stream to another unit, we ought to

be able to access it by any of these names. In ASCEND-III naming is done

by constructing qualifiers; e.g. a variable can be named
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REACT0R1. LIQUID-OUT. TEMP

If it is also

HX2. INI. TEMP

it can be accessed by this name too.

4. Model Solving

All our current thinking supports solving models using Newton or

quasi-Newton methods combined with sparse matrix methods. This approach

first converts nonlinear algebraic equations into their linearized equiva-

lents* These linearized equations are then solved iteratively, with the

linear equation solving taking advantage of their structure.

The main alternative to solving is by "tearing11. Tearing procedures

strive to discover the fewest variables one has to guess such that, by

algebraically manipulating the equations, the remaining variables can be

solved for using a forward substitution scheme. There will be a leftover

set of equations equal in number to the set of < tear variables. These are

evaluated as error functions and, if not equal to zero, require one to

reguess the tear variables. A sequential modular flowsheeting system uses

tearing to solve - recycle problems. Tearing has significant problems which

are difficult to get around for a general equation solving package. First

one usually discovers the tear variables for a set of equations using only

the structure of the equations. It is very easy to create singular

solution procedures using structure only. Second the approach suggests one

will manipulate the equations to create the forward elimination scheme for

the nontear variables. To date such algebraic manipulation is too costly

to be done repeatedly. It can take seconds of time to rearrange an
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equation* Third, the sensitivity information developed for Newton-based

schemes is valuable for implementing optimization.

Therefore we shall confine our discussion here to Newton-based

solving* The approach involves the following considerations.

4.1. Partitioning and Precedence Ordering (see Westerberg et al (1979)).

Based on the structure of the resulting problem it is often possible

to partition the problem into a sequence of smaller irreducible ones which

can be solved in a precedence order. Each irreducible problem requires the

simultaneous solving of equations. For solving m equations in m unknowns

(a square system), partitioning and precedence ordering is well under-

stood, with an algorichm by Tarjan (1972), which is very similar to one by

Sargent and Westerberg (1964), being extremely effective. Nousquare sys-

tems of ra equations in n+ro variables are not so readily dealt wich as here

one can significantly affect the partitioning possible by choice of which

'n' variables to use as the independent ones. "Safe* partitioning is

possible if 'a' fictitious equations are added before partitioning where

each is assumed to contain all variables. After partitioning these equa-

tions are dropped. Another alternative is to select the independenc

variables by other means and then cu partition the resulting square sysucnu

If partitioning is done then one can solve the variable initial-

ization problem, convergence problems, etc., as a sequence of smaller

problems. Often initialization, for example, is easier to do well if

values for variables feeding into a current partition from an earlier one

are already calculated.

We find ourselves with a dilemma here using this argument to justify

the use of partitioning. A good scheme to partition is to generate the
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linearized equations and to perform an "analyze" pass for Gaussian elimi-

nation where a set of pivots are picked based on structural and numerical

considerations. The fn* variables not pivoted become the independent ones.

We then partition and precedence order the leftover square set of 'm'

equations and variables. But we needed initial guesses to generate the

linearized equations. Full circle. Clearly we need to "tear11 this circle

and start somewhere. One could envision two (or more) passes. First one

would crudely guess the variables and then perform an analyze pass to

choose a set of 'n' independent variables. Then one could partition and

precedence order the vmf equations and 'm1 dependent variables. Then one

could start over on initializing variables. Comparison studies are needed

to decide if this two pass strategy is worthwhile for most problems.

4.2. Large Problems

To solve really large problems one can consider ways to decompose

the irreducible computations or to solve them using other than Newton-like

methods.

Problem decomposition using Newton-like schemes has been discussed

by Westerberg and Berna (1978) and by Stadtherr and Hilton (1982). The

idea is to decompose the linear equations corresponding to a flowsheet

problem by taking advantage of their bordered block diagonal structure.

The decomposition allows one to work on the equations unit by unit so the

fast memory requirements of the computer need only be large enough for a

unit's worth of equations. The penalty one pays is the substantial amount

of data transfers to and from mass memory.

A sparse matrix package has been written by Clark (1980) based on

these decomposition ideas. It is really very interesting in its capa-

bilities, which were motivated by Kuru's (1981) thesis work on dynamic
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simulation. It permits one to generate the Jacobian and RHS error func-

tions for each unit separately and pass them to the sparse matrix package.

Based on a preanalysis first pass, this package knows the extent to which

it can reduce the equations for the unit by partial forward elimination,

saving the bulk of the modified Jacobian matrix on fast memory and keeping

the part that connects to other units available for subsequent reduction

at the far end of the fast memory available. When fast memory fills to the

extent permitted, the combined residual blocks from previously analyzed .

units are themselves reduced as if a unit. The back substitution~%Eep

retrieves the modified Jacobians in the reverse order and carries out back

substitution on a unit by unit basis.

If the variables for a unit have not changed since the last step, —• /

the Jacobian and RHS error generation can be suppressed. If needed for

backward substitution the package will use the results of the last pass.

If the RHS errors are essentially zero for a unit, the forward elimination

step is not required. Again it can be skipped. A similar skipping for

unnecessary back substitution steps is possible.

Finally, if two units are in the flowsheet in a way that would

permit them to use the same pivot sequence, one can suppress the costly

"analyze" step of a sparse matrix package and use the pivot sequence of

one unit on another. This feature is particularly useful in dynamic

simulation.

Kuru suppressed 45% of the computations needed for a very simple

dynamic model using these capabilities. The "latent" portions of com-

putations for the process were simply turned off when portions of the

process ceased to be very active.
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4.3. Variable Initialization

To solve a set of simultaneous nonlinear algebraic equations using a

Newton based scheme requires that one has an initial guess for every

variable* The user will be willing to provide guesses for only a few of

the variables, and the system must be developed to provide the rest.

We believe that this step must be done with extreme care, as doing

it poorly can often lead to no chance to solve the problem even though a

solution exists. Newton schemes will usually converge rapidly il^ they will

converge. Using Newton-Raphson we frequently solve problems in 4 to 6

iterations. The theory is very clear — one must get in the vicinity of the

answer to get such convergence rates. Failing to do so will lead to slow

or no convergence, with no convergence being useless to the user.

How can initialization be accomplished? We can imagine several

schemes.

First one can use defaulting. The user can be asked for any guesses

he is willing to provide. The system then proceeds to use default values

for all the rest. Defaulting can be done by setting all variables to zero,

J' or it can be done with some problem insight if the "type11 of each variable

is known. For example, if a variable is known to be a temperature, it

could be defaulted to 300K. Or a mole fraction could be defaulted to 1/n ,

where n is the number of components in the stream. To default with this

level of insight requires that the system has considerable information

available — in the case of mole fraction that the variable is a mole

fraction and that it is part of a stream containing n components.

A second approach is to use "tearing11 concepts to analyze a problem

to discover a minimal set of variables, which if guessed, will allow the
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rest to be determined in terms of these. Here tearing is only used to

obtain an initial guess. We use such an approach in ASCEND-II. However,

the tearing is not done automatically, nor did we strive to provide

minimum tear sets. Rather, each unit to be put into the library was

analyzed by the library creator to find a set of tear variables which if

known would allow the remaining variables to be initialized. The input

stream variables to a unit were assumed to be known or to have been

guessed by the user on entry to initialization. These together with a few

"tear11 variables permitted initialization of the remaining variables for

the unit. The tear variable names are known and printed in the user manual

for each unit.

By sequencing through a flowsheet much as for solving in a se-

quential modular fashion, all the units can be initialized by guessing

only recycle stream values and the tear variables for each unit. Locke

(1982) describes the approach in more detail. Kuru and Westerberg (1983)

describe similar ideas to predict algebraic variable values as one is

stepping forward in time when solving initial value dynamic simulations.

There is another approach to initialization that is very appealing.

It is to "evolve11 from simple models up to the final complex one that one

wishes to solve. For example, one could first use approximate models that

consider only material balance and equilibrium equations, the latter with

constant relative volatilities, etc. A system composed of these simple or

partial models could be solved first. Based on these numbers, more

complexity can be added — for example, the heat balances, the new

variables initialized and the system solved again. Note that here the

entire complex flowsheet is solved at each step but with a sequence of

more complete models.
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It is our experience that the simple models will converge from

almost any first guess so one can readily get started with simple defaults

and perhaps the unit-by-unit initialization of ASCEND-II. Then based on

these results, more complexity can be added to the models and unit-by-unit

initialization repeated to initialize the added variables just introduced.

Does this sound like the special tricks used by many distillation column

programs?

The use of general function modeling permits one to develop models

that can evolve from simple to complex by the changing of a single

discrete variable from values of "simple" to "intermediate11 to "complete."

This capability we feel will have major impact on solving difficult

problems.

4.4. Variable and Equation Scaling

Scaling is a "black art." Experience is poor with schemes that

rescale variables and equations and do not consider the nature of the

problem. The Newton-Raphson method predicts a step which is theoretically

. scale invariant; it is said to be a scale invariant method. It is not in

practice, however, as scaling is necessary to allow a stable pivot

sequence to be selected for a finite word length machine.

Quasi-Newton methods are frequently not theoretically scale-

invariant* Perkins (1983) discusses this point. He presents an appealing

case for developing scale invariant Broyden-like methods and discovers on

testing them that theoretical scaling invariance has not helped

particularly.

Still, scaling itself is necessary as it is needed to prevent

excessive roundoff errors when pivoting. How can one do it if completely

blind scaling seems to be poor?
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In ASCEND-II we scale variables by knowing the variable type and

scale using nominal values* We divide temperature perturbations by 300K,

mole fractions by unity and so forth. Flowrate scaling is based on current

values.

To scale equations we develop the terms in the nonlinear equation

(based on current variable values) which are added together to form the

equation and scale by the largest of these in magnitude or unity,

whichever is larger.

In ASCEND-II, variable and equation rescaling can be requested at

any time. We have had problems not converge until they were rescaled,

indicating it was not that the problems did not converge, but, because of

poor scaling, we could not detect convergence.

Two implications occur here for the flowsheeting system. Again it

must be aware of variable types, and we find it very useful to solve

problems interactively, at least the first few times, to see if rescaling

can improve the solution process.

4.5. Converg ing

The real problem here is to decide what to do if one fails to

converge. From a numerical point of view, one can investigate such topics

as using bounded Newton steps, or steps such as those predicted by a

Marquardt-Levenberg algorithm, or use a continuation method. Seader (1983)

has just presented an excellent paper which uses continuation methods to

converge complex distillation structures. Perkins (1983) also discusses

attempting to create more stable and convergent quasi-Newton methods, by,

for example, making them (theoretically) independent of scaling. Many

people have suggested starting up dynamic models to find the desired
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steady state solutions. This is one aspect of flowsheeting systems well

covered by the literature, and one we will not spend time on here. The

continuation methods look exciting jLf they can be developed to run faster.

At the present time they seem to take an order of magnitude too long.

We will look at another aspect to converging. It is quite different

from the above and involves, again, sneaking up on the problem by evolving

V

from less complex calculations to more difficult ones. The idea we bring

up here which is different from that in initialization is to change the

set of variables used as the independent ones for a problem. We will

illustrate with an example.

Suppose we wish to solve a distillation column model. We give it a

fixed number of trays, top and bottom, and want to solve it to recover 907,

of the light key in the top product and 95% the heavy key in the bottom

product. In ASCEND-II, the approach we would take is first to solve the

column in a manner we know intuitively has a solution. We would fix the

feed, top product flow and reflux rate, the last at a somewhat higher than

necessary value. We almost certainly will find a solution (or we will

'-, "evolve" to it through a sequence of less complex models as discussed

under initialization). We would then trade the top product flow and reflux

specifications for the two recovery specifications. This trade means we

will change the sets of variables identified as dependent and independent.

Suppose we leave the variable values, even for the new independent

variables, at the values found above. We ask the system to attempt to

solve. It will spot a singularity in the Jacobian matrix for the new set

of dependent variables if the trade was bad among the dependent and

independent variable sets. We can change what we specify until we obtain a
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nonsingular problem. We can then attempt to impose the 907. and 957»

recovery specifications. If the problem fails to converge, it can be

because we are too far from the answer initially or because the specifica-

tions are beyond the ability of the column to meet them. It is not because

we chose a bad set of variables to use as independent variables.

Failing to converge we would, in ASCEND-II, return to our original

simulation and play with the reflux rate and top product flow to see how

far we can push the recoveries. If we cannot get close to those desired,

we would almost certainly see the impossibility of our original problem.

Note we are using the "power11 of ASCEND-II to allow us to alter the sets

of dependent and independent variables quickly to discover why we cannot

converge.

This altering of sets is a matter of changing the flags associated

with variables that indicate if the variable is to be calculated or fixed

in the subsequent calculation. It costs us only a "reanalyze" step in the

solving of linear equations (about 1 second for several hundred equations

on a VAX-780).

4.6. Procedures

We can propose three approaches to solving models containing

procedures. Let's assume our procedure calculates £ given x and that it is

equivalent to

Z - £(*>

Including this procedure is the same as including the equations

KZ»*> - Z " E(2S) " 9.
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into our model* The Jacobian elements for a Newton-Raphson scheme become

the latter we must estimate numerically, either using perturbations or

quasi-Newton update methods.

An alternative for using procedures is to develop an approximate

nonlinear model that reproduces the local behavior of the procedure

adequately in the vicinity of the current solution. For example, one might

approximate a complex thermodynamic model for K-values by

The procedure is then used to obtain K. values vs T and P at the current

compositions of the vapor and liquid streams which are in equilibrium with

each other, to allow A. and B. to be approximated. Lucia and West man

(1983) points out that this last approach can cause one to lose the

superlinear convergence characteristics of a quasi-Newton method.

5. Conclusion

We have used this paper to discuss many aspects we view to be

important in equation solving approaches to process flowsheeting. The

presentation is not meant to be complete or even near complete.

We believe some new ideas on language design for such a system and

the use of "general functions11 in models are real contributions to

developing these systems in the future.
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