NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-182

Describe - An Explanation Facility For An
Object-Based Expert System

by

Robert L. Joseph
Carnegie-Mellon University
Pittsburgh, PA 15217

J. Robert Endsor
Alex Dickinson
Richard L. Blumenthal
ATAT Bell Laboratories
Holmdel, New Jersey 07744

Abstract

An important property of an expert system is the ability to explain its actions to its users and
developers. This paper discusses the structure and implementation ‘of an explanation system that is
used to describe the actions an associated object-based expert system. The construction of an
expert system as a collection of objects has significant consequences on the design of an exptanation
system. These issues and our solution are described.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
QOrder No. 4676, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520,

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

[xe]

L~ Wb W

Table of Contents

L INTRODUCTION
. OVERVIEW OF DESCRIBE

2.1. Rule Entry
2.1.1, User Viewpoints
2.1.2. Classification
2.2. Data Base Justification
2.3. User Interactions - Dynamic Views

. INITIALIZATICN OF DESCRIBE
. RULE DEFINITION

. RULE EXECUTION

. DATA JUSTIFICATION

. THE USER INTERFACE

. SUMMARY

NOU O R OOWOWWLWOLOMN NN -

Describe - An Explanation Facility For An
Object-Based Expert System

by
Robert L. Joseph

Carnegie-Mellon University
Pittsburgh, PA 15217

J. Robert Endsar
Alex Dickinson
Richard L. Blumenthal

ATA&T Bell Laboratories
Holmdel, New Jersey 07744

1. INTRODUCTION

An important property of an expert system is its ability to describe itsell. The modern expert system
should be able to explain what it is doing, why it is pursuing a course of action, and why it has
reached a conclusion. Explanation facilities are an important aid to the construction, refinement, and
understanding of a large expert system. An expert system is usually built incrementally, and its
knowledge base often begins as a small, incompiete set of rules. In this early stage an explanation
facility displays views of the knowledge base and aétivities of the rule-based computation, thus
indicating the needed developments. As the system rﬁatﬁres through 'a series of refinements the
explanation aids in the development and monitoring of changes. Finally explaining the behavior and
response of a mature system increases its credibility and supports user-confidence.

Object-base expert systems are becoming common. An object is a language construct that
encapsulates a set of data and its associated operations. An object-based program is constructed as
a collection of objects that communicate with each other via messages. 1he expert systems that have
been built using this methodology {e.g. Ha', Niz, Te3) distribute rules among several objects, called

knowledge sources. These knowiedge sources cooperate to solve problems in the system’s domain.

Describe, written in Zetalisp4, is an expianation facility for object-based expert systems. Rules can

be defined throughout the knowledge sources. The user can then display the structure and behavior

of the the expert system, present various views of the system's ruies and show what the system has
done in the past. Describe even provides the abilily to record and retrieve justifications attached to
the expert system’s data entries. Finally the user interacts with the system through an inspection type
window interface. The Describe facility provides an expert syslem with a dynamic and effective

designing, explanation and debugging tool.

The next section presents an overview of the facility. Initialization of Describe is explained in
Section 3. Section 4 presents the rule entry mechanism of the system, and Section 5 describes rule
invocation. The data justification are discussed next in Section 6 and in Section 7 an explanation of

the user interfaces is given.

2. OVERVIEW OF DESCRIBE

Describe executes in the Zetalisp environment on the Symbolics Lisp Machine. Figure 1 illustrates
the structure of the system and its environment. The expert system itself interacts with Describe
through the rule definition and invocation mechanisms, and the data justification mechanism. Using
the defrule macro, the expert system declares its rules and records them in the Describe rule data
base. These rules are then invoked as functions. A trace of the rule execution that resuits in a
cenclusion or daia entry may be recorded and retrieved with the Describe data justification
mechanism. The Describe user interface provides an "inspection window that allows the user to see
the system rules and activity.

2.1. Rule Entry
Rules are entered into an expert system by use of the defrufe macro. Each rule belongs to a class of
rules, and is declared within some object. Different rules are of interest to different users, so each

rule has an associated set of user viewpoints.

2.1.1. User Viewpoints
Like the XPLAINS® system, Describe presents explanation from the perspective of the persan
interested in the information. For instance, the information presented in a casual user’s viewpoint

woulid likely be much less detailed than that presented in a programmer's viéwpoint.

A set of user's viewpoint is associated with each rule as it is defined, and during interaction with
Describe, the user has a viewpoint. Only those rules that are associated with this viewpoint.are used
in descriptions to the user. Describe has operations that allow the user to see the set of all

viewpoints, to add viewpoeints, and to change his viewpoint.

2.1.2. Classificalion

The rules of the expert system are defined in objects. This encapsulalion generites a useful
structure for the system's rules. The rules are also grouped into user defined classes, yielding
another structure, one which is presumably orthogonal to the first. For example, a plumonary
diagnosis object and a prescription object might each contain pneumonia rules and bronchitis rules.
Describe has operation to display the rules of each class, as well as the rules of each object

containing rules.

2.2. Data Base Justification

As an expert system reaches conclusions or makes entries into some data base, it might wish to
record justifications for these actions. Describe provides an operation that offers an explanation for
the current action. Describe also provides operations that parse this execution trace. These could
then be used to later justify a conclusion or data base entry. The justification functions are accessed

by function calls in the user's program. .

2.3. User Interactions - Dynamic Views

The Describe user interface provides the user with several views of an expert system as it is running.
The user may see all the rules that have fired, all the rules the have taken soma action, ail the true
rules , and all the false rules. Thus the Describe user interface maybe used as a debugging tool
during system development.

3. INITIALIZATION OF DESCRIBE

The function DES-initialize creates the Describe system and is calléd exactly once before the expert
system is executed. DES-initialize is called with two arguments. The first argument sets up some
defaults for user convience. This argument is a list and each item in the list is a pair. The first element
of each pair is the name of a class of rules, and the sécond element is a list of viewboints assoéiated
with that rule class. Later, when defining a rule of some class, the default viewpoints associated with

that rule will be the viewpogint of the second element.
The second argument is a list of the viewpoints that are to be used in the system.

DES-initialize returns a value that allows the user to access the just-initialize instance of the
Describe data base. This value must be preserved if the user is going to interact with the system other
than to define rules. In particular the justification functions and Describe user interface require this

value.

A call to DES-nitiatize has the form:

(DES-initialize '({class1 (class-viewpoints-list)))
'(global-viewpaint-list))

In line example:

s The only rute-class is identify-rules; the only viewpaint is horse,
;i animai-des is the variable that can be used to access describe data base.

(setg animal-des (DES-initialize '({identify-rules)) '(horse)))

An execution of a given expert system is termed a session. Between successive sessions the expert
system should reset the Describe system with the message :reset. this message resets the trace
information to an initial state, while preserving the rule data base (DES-initialize destroys both trace
information and the rule base).

4. RULE DEFINITION

The ruies of the expert system are defined using the defruie macro, whose structure is:

{defrule {rule-name flavor-name) (argument)
(class-name viewpoint-list)
IF if-clause
THEN then-clause
ELSE else-clause-list
"documentation™)

where viewpoint-list, else-clause-list, and documentation string are optional parameters.

The name of the rule is that given by the first parameter. The rule is local to the flaver named by the
second parameter. (Actually the rule is implemented as a defun-method). Arg-list is a list of
arguments to be passed to the rule whenever it is invoked, This rule is a2 member of the rule class, if
the viewpoint-list is specified, it overrides the c¢lass def_aui_t. The body of the rule is specified by an

i-then or if-then-else expression. The documentation.is optional, unevaluated text.
Defrule returns the method that must be called to access the rule,

The series of calls to defrule that defines the system’s rules should only occur after a call to
DES-initialize. The code segment below illustrates rule definition.

o0 A method o carry out the rule: definitions.

. Notice the scoping. The rules will only be able to access globais and
- instance vanables of the Havor namerd in their definition. Violation

-+ of this will not be noticed un til run-time as this is when the defrule

w macro within a macre is expanded.

{defmethod (animal-farm :define-rules) ()

=+ Rule id1 in the animal-farm flavor is of rule-class identify-rules,
. and has the viewpoint student,
(defrule (id1 animai-farm) {) (identify-rules '(student)

IF (send data-base :recall '(animal has hair))

THEN ((send data-base :remember '(animal is mammal))))

:»» Rule id2 in the animal-farm flavor is also of rute-class identify-rules,
i+ and may be seen by all viewpoints.
{defruie {id2 animal-farm} {) (identify-rules)
IF (send data-base :recall ‘(animal gives milk))
THEN ({send data-base :remember '(animal is mammal)})
"this is a definitive rule for mammals”)

5. RULEEXECUTION

A rule is local to the flavor the is specified in its definition (not necesszarily the flavor the delfinition is
carried out in). The rule is executed by the form:

(rule-name args)

A rule returns the value of its evaluated predicate (if-clause).

6. DATA JUSTIFICATION

There are several functions provided for data justification. The first function, justify, is used to
record the system activities that led to a conclusion or data entry. The remaining functions aid in the

examination of the justify function rentries.

(justify description-system) - This function returns a list of all the rules that have fired during
the session. {The symbol description-system represents the vaiue returned by
DES-initialize), Each entry on the list has the following format;

(Ravor-name class name viewpoint-list parameter-value-list
if-clause-evaluation)

This function’s value indicates the reason that the current system state has been
reached, and presumably justifies present conclusions or data entries.

{(justify-name entry) - Returns the name from an entry passed to it.

(justify-flavor entry) - Returns the flavor of an entry.
{justity-viewpoint entry) - Returns the viewpoint of an entry.

{justify-parm-val entry) - Returns the value that was passed as a parameter to the rule for the
specific entry,

{justify-rule-eval entry) - Returns what the rule evaluated to for a particular entry.

(justify-class entry) - Returns what the rule’s class is for a particular entry.

7. THE USER INTERFACE

The describe user interface is a window-based tool. The interface is part of the system menu and is
accessed by typing Select-D. It may also be invoked by the form.

(describer description-system)
i)

The user types the name of the symbol bound to the description system (i.e., the value returned by
DES-initialize) in the user program. Describe then has access to the rule base of the expert system,

allowing dynamic tracing and rule status examination.

A typical usage of the Describe user interface is shown in figure 2. The user’'s expert system is
running in the lower window (a lisp listner) and the Describe descriptions occupy the upper windows.
As rules execute they print out in the scrolling trace window. The other windows service menu

requests made by the user. Services available include:

-

. Display ail the rules in the current viewpoint,

. Digplay all the unevaluated rules in the current viewpoint,

n

3. Dispiay all the false rules in the current viewpoint.

4, Dispiay all the true rules in the current viewpoint.

. Dispiay all the ruies in the current viewpoint that-have been activated.

4]

6. Display an overview of the system.

-..J

. Display further menus that enable the display of rules in particular classes and flavors.

Note that each call to DES-initialize creates a new rule base, so the function describer will need to

be called again with the new value.

8. SUMMARY

Describe is an explanation facility for object-based expert system executing in the Zctalisp
environment. This facility provides a rule-entry mechanism. It also displays the rule structure and
execution trace of the associated expert system, Finally, Describe can be used to record and retrieve
justification attached to the expert system's data entries. As of the writting of this article the system

Describe is successfully being used in several expert systems at Bell Laboratories.

Describe

PDescription

Rule nechanisns
detoe

bese

Initialize (revet)

_—

Rule entry

/

nechesnisns

Rule invocation

{

Data Jjustificetion

\

nechanisns

User

Enpert

Systen

aninal-decl
interactor [#<DESCRIPTION-SYSTEM 3772441)]
- Meotra abon
Truca Information [ALL])
(RHINAL-FARN 102) has paraneters HIL <+ HIL viewoint (1ALL)

IF {SEHD DATA-BREE 1RECALL (QUOTE (ANINAL GIVES WILK)))

(AHINAL CIVES MILK)
THEN ((SEnD DATA-BRGE REPENBER (OQUOTE (ANINAL 16 hANMAL)))) ;

Meore balow

top of ltams Trace
True If Clauses [Al.l.] ra g'*n_u
{ANINAL-FARM 1D2) + (ANINAL GIVEG MILK) vieupaint (:ALL) &JF EH
{(ANINAL-FARN 1D1) < {(ANINAL HAS HAIR) viewpoint (1ALL)
(ANINAL-FRRW 102) + (ANIMAL GIVEG MILK) vieupoint (:ALL)
(RMINAL-FRRN IDI} + (ANINAL HAS HAIR) viewpoint (:ALL}
Meore inlow
Mors adove Re _frcsl‘l
Current Bulas ALL! Set Viewpoint
Rules (ANINAL_FARN 113 Print Rules
Class: HILIFY- R
Arsunantes L "Eoe kot Hema
swvpointt
IF (AND (EEND DATA-BASE sRECALL (OUOTE (AHIMAL 16 BIRD))) (SEND DATA-BAGE (RECALL (OUOTE (ANINAL FLYE MELL)))) False Rules
THEM ((SEND DATA-BRSE (RENEMBER (OUOTE (ANIMAL 1§ ALBATROSS)))) True Rules
ELGE NIL Action Rulea
Enplanation NIL !")ysl.d:mE Overview
xit
Moere Miow

()
the facte erat
C((RHINAL HAS MOSE) (AMINAL 16 PANMAL) (AHINAL GIVES NILK) (RHINAL HAS HAIR))

|[Enter new facts {and with nil) 1

:;Mul has stripes}

fhe facte are:

((ANINAL HAS GIRIPEG) (ANIMAL HAS HOGE} (ANINMAL 16 NMAMMAL) (ANINAL GIVES NILK) (ANINAL HAG HAIR))

Iinur neu facte (end uith nil)

Lisp Listener 2

sdas BEFH U en L 'H creen bunpling

bt]

Figure ¢

References

Hayes-Roth, F., “The HEARSAY Il speech-understanding system: intergrating knowledge to
solve uncertainty,” Computing Surveys 12 {2), 1980, pp. 213 - 253,

Nii, H.P. and Feigenbaum, E. A., Rule-based Understanding of Signls in pattern Directed
inference Systems, D.A. Waterman and R. Hayes-Roth (eds) Academic Press, 1978.

Terry Allan, "The Crysalis Project: Hierarchical Cantrol of Production Systems,” Tech. report,
Stanford University Computer Science Department, May 1984,

Weinreb, D. and D. Moon, Lisp Machine Manual, 1981,

"Swartout, William R., XPLAIN: a System for Creating and Explaining Expert Consulting
Programs, Addison-Wesley, 1983, pp. 285 - 325.

