
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
o f photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



C M U - C S - 8 6 - 1 3 1 

CONSENSUS: 

A Statistical Learning Procedure 

In a Connectionist Network 

Gordon J . Goe tsch 

Compute r Sc ience Depar tment 

Carnegie-Mel lon Universi ty 

P i t tsburgh, Pa. 15213 

May, 1986 

Abstract 

We present a new scheme for the activity of neuron- l ike e lements in a connec t ion is t network. The 
CONSENSUS scheme is based on stat ist ical in ference. The gu id ing pr inc ip le of CONSENSUS is that 
dec is ions shou ld be deferred unti l suf f ic ient ev idence accumula tes to make an in formed cho ice . 
Consequent ly , large changes in network s t ruc ture can be made wi th con f idence . Nodes have an 
awareness of their role and uti l i ty in the network wh ich a l lows them to increase their ef fect iveness. 
The re in forcement scheme uti l izes the not ion of con f idence so that only nodes proven to cont r ibu te 
successfu l ly issue re inforcements. Nodes are g rouped into commun i t i es to explo i t their co l lect ive 
knowledge wh ich exceeds any indiv idual member. The ne twork was tested against several p rob lems 
and was able to f ind sui table encod ings to so lve t hem. 

Copyr ight © 1986 Gordon J . Goe tsch 

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA 
Order No. 4976, moni tored by the Air Force Av ion ics Labora tory Under Cont rac t F33615-84-K-1520. 

The views and conc lus ions conta ined in this documen t are those of the au thor and shou ld not be 
in terpreted as represent ing the off icial pol ic ies, ei ther expressed or impl ied, of the Defense Advanced 
Research Projects Agency or the US Government . 



Table of Contents 
1 . I n t r o d u c t i o n 

2 . T h e D o m a i n 

2.1 Overv iew 
2.2 T h e Lea rn ing Task 
2.3 T h e Di f f icu l ty of t he Task 

3 . T h e N e t w o r k 

3.1 An Overv iew 
3.2 T h e Ne twork C o m p o n e n t s 

3.2.1 N o d e s 
3.2.2 L inks 
3.2.3 C o m m u n i t i e s 
3.2.4 S p o k e s m a n 
3.2.5 Layers 
3.2.6 Env i ronmen ta l Inputs 
3.2.7 Env i ronmen ta l R e i n f o r c e m e n t 

3.3 Cyc le T im ing 
3.4 Rece iv ing Inputs f r om the Env i r onmen t 
3.5 C o m p u t i n g the O u t p u t of a N o d e 
3.6 C o m p u t i n g the O u t p u t of a S p o k e s m a n 
3.7 C o m p u t i n g the O u t p u t of t he Ne two rk 
3.8 T h e Tu to r 
3.9 Rece iv ing Env i ronmen ta l R e i n f o r c e m e n t 
3.10 T h e C lass i f i ca t ion M e t h o d 

3.10.1 I n t r oduc t i on 
3.10.2 Stat is t ica l I n fe rence 
3.10.3 Class i fy ing the Co in 
3.10.4 Class i fy ing a Func t i on 
3.10.5 Cor re la t i ng a Pair of Func t i ons 

3.11 Ana lyz ing Func t i ons at a N o d e 
3.12 Ana lyz ing L inks at a N o d e 
3.13 Ana lyz ing O u t p u t at a N o d e 
3.14 Free ing L inks 
3.15 C h a n g i n g Func t i ons 
3.16 M ak ing L inks 
3.17 Ca lcu la t i ng the C o n f i d e n c e Level of a N o d e 
3.18 R e c o r d i n g His tory at a N o d e 
3.19 Rece iv ing In terna l R e i n f o r c e m e n t s 
3.20 Issu ing In terna l Re in fo r cemen ts 
3.21 In i t ia l izat ion of t he Ne two rk 
3.22 Exp lana t i on of Cyc le T im ing 

4 . R e s u l t s 

4.1 Ove rv iew 
4.2 A S imp le Test 
4.3 T h e Sh i f te r P rob lem 
4.4 T h e T a d p o l e P r o b l e m 
4.5 Rev iew 



I I 

5 . D i s c u s s i o n 

5.1 I n t r oduc t i on 
5.2 T h e Not ion of C o n f i d e n c e 
5.3 T h e Ro le of S p o k e s m a n and C o m m u n i t i e s 
5.4 T h e Cred i t -Ass ignmen t P rob lem 
5.5 I n t e r connec t i on S c h e m e 
5.6 T h e Tradeof f Be tween Speed of Lea rn i ng a n d Stab i l i ty 
5.7 To le ra t i ng the Env i ronmen t and Tu to r 
5.8 C o n v e r g e n c e 
5.9 Para l le l i sm 
5.10 Res t r i c t ions 
5.11 Issues A v o i d e d 

6 . C o n c l u s i o n s 

I . C o m p l e x i t y o f B o o l e a n N e t w o r k s 



iii 

List of Figures 

F i g u re 3 - 1 : C o n c e p t u a l V iew of a Ne two rk 6 
F i g u r e 3 - 2 : C lass i f i ca t ion Cr i te r ia S k e t c h 14 
F i g u r e 3 - 3 : D e p e n d e n c e Cr i te r ia Ske t ch 17 
F i g u re 4 - 1 : Un ique Boo lean Func t i ons of 3 Inpu ts 28 
F i g u r e 4 - 2 : T a d p o l e P e r f o r m a n c e 3 4 
F i g u r e 5 - 1 : C o m m u n i t y Examp le 37 



iv 

List of Tables 

T a b l e 2 - 1 : S a m p l e P rob lem 4 
T a b l e 3 - 1 : U n i q u e Pa i rw ise Boo lean F u n c t i o n s 10 
T a b l e 3 - 2 : C lass i f i ca t ion Cr i te r ia Examp le 15 
T a b l e 3 - 3 : D e p e n d e n c e Cr i ter ia E x a m p l e 18 
T a b l e 3 - 4 : S imp l i f y ing Pa i rw ise Func t i ons w i th Cons tan t Inpu t 19 
T a b l e 3 - 5 : S imp l i f y ing Pa i rw ise F u n c t i o n s w i t h .Ma tch i ng Inpu ts 20 
T a b l e 3 - 6 : Re in fo r cemen t S c h e m e 24 
T a b l e 3 - 7 : R e i n f o r c e m e n t Examp les 25 
T a b l e 4 - 1 : Resu l ts on Boo lean Func t i ons of 3 Var iab les 30 
T a b l e 4 - 2 : P e r f o r m a n c e on Shi f ter P r o b l e m 31 
T a b l e 5 - 1 : Ef fec ts of I ndependen t Major i ty Vo t i ng 38 



1 

1 . Introduction 

Knowledge about the arch i tec ture of the bra in has lead researchers to invest igate the proper t ies of 

" connec t i on i s t " systems. These systems are charac ter ized by s imple neuron- l ike process ing 

e lements wh ich are in te rconnected and store their know ledge as the s t rengths of these connec t ions . 

There are tasks for wh i ch these networks are eminent ly sui ted such as pat tern recogn i t ion . Wi th the 

proper connec t ions and connec t ion s t rengths, the process ing e lements can c o m p u t e in paral lel . For 

a speci f ic task, de termin ing the proper in te rconnec t ions and s t rengths to ut i l ize the computa t iona l 

power of the network is s t ra ight forward. For more genera l p rob lems, we may not be able to determine 

the proper conf igura t ion of the network. Preferably, the network wou ld be able to dynamica l ly 

reconf igure itself to solve the task presented to it. 

To reconf igure itself a p rogram must gain an unders tand ing of the task, in o therwords , it must learn. 

For a large doma in rote memor izat ion wil l be impract ica l s ince it requi res exhaust ively enumera t ing 

the d o m a i n . To comp le te the task w i thout rote memor iza t ion , the network must unders tand some 

concep ts about the doma in . To learn autonomous ly , no outs ide agent may commun ica te to the 

network any concep ts about the doma in . Learn ing by example, involv ing a tu tor present ing doma in 

examples to the network and indicat ing the des i red response, meets this cr i ter ia. This means that the 

network must be able to formulate its own concep ts about the doma in based upon the examples 

presented to it. The network must init ial ly recogn ize features f rom the doma in , then learn to uti l ize the 

features it has learned to recogn ize. Such learning wou ld be evolut ionary wi th improv ing 

per fo rmance as opposed to instant learn ing. A ne twork ut i l iz ing doma in feature recogn i t ion shou ld 

be able to infer domain examples to wh ich it has not been previously exposed . We wil l concen t ra te 

on learn ing-by-example. 

Initial s tudies of s imple networks learning to classify input vec tors were encouraged by the 

percep t ron conve rgence procedure . The percep t ron conve rgence p rocedure deta i led a method by 

wh i ch a one layer network cou ld reach its full potent ia l as a compu t i ng e lement. However, most 

interest ing computa t ions require more than one layer. In 1969, in Perceptrons[19], Minsky and 

Papert showed that no convergence p rocedure can exist for mul t i - layered networks . The lack of a 

proven conve rgence p rocedure does not mean that neura l ne tworks are incapable of interest ing 

computa t ions . 

The search for ef fect ive convergence p rocedures con t inue , many of them wi th a mathemat ica l bent . 

Recent work inc ludes the Bol tzmann mach ine [12] , wh i ch relies on s tochast ic re laxat ion techn iques 

to ach ieve convergence . Rather than at tempt to prove conve rgence proper t ies for a method , we wil l 
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be sat isf ied by a conv inc ing empir ica l demons t ra t ion of the cibility of a method to achieve 

convergence . 

This paper descr ibes the CONSENSUS system, a connec t ion is t ne twork . CONSENSUS is an 

ac ronym for CONtext SENsit ive N e t w o r k s Using Stat ist ics. The ne twork d iscovers inherent 

env i ronmenta l const ra in ts by be ing presented wi th examples f rom the doma in by a tutor . The 

ne twork modi f ies its in te rconnec t ions and p rog ramming to cap tu re the under ly ing const ra in ts f rom 

the d o m a i n . In th is manner , the network learns the tu to r ' s c lass i f icat ion me thod f rom the examples. 

Exper iments show that the network is able to learn in s imp le doma ins . 

The downfa l l of many learn ing methods has been the " c red i t -ass ignmen t " p rob lem. A learn ing 

method must be able to de termine how to modi fy its parameters in order to improve its unders tand ing 

of the task. Most prev ious work depends on mak ing many smal l mod i f i ca t ions wi th l itt le con f idence in 

each change or its ef fect on the network . To improve pe r fo rmance they rely on the net accumu la ted 

change of the many smal l modi f icat ions. Instead, w e at tempt to make a few large changes wi th g o o d 

con f idence . The gu id ing pr inc ip le of CONSENSUS is that dec is ions shou ld be defer red unti l 

suf f ic ient ev idence accumula tes to make an in fo rmed cho i ce . The CONSENSUS system at tempts to 

d o th is by g iv ing each node an unders tand ing of the ro le of itself and its ne ighbors in the network . 

The dec is ion method of CONSENSUS is based on probabi l i ty theory and the stat ist ics of g roup ac t ion . 

T h e most d is t ingu ish ing features of the CONSENSUS system a r e : 

1. The use of statistical inference for the classification method. Changes are made when 

suf f ic ient stat ist ical ev idence has accumu la ted to just i fy the c h a n g e w i th a h igh degree of 

con f i dence . 

2. Large changes are made with confidence. The ne twork makes a few large changes wi th 
a h igh degree of con f idence in cont rast to more conven t iona l systems wh ich rely on the 
accumu la t ion of many smal l changes each made w i th l i t t le con f i dence . 

3. A/odes have an awareness of their role and utility in the network. It is advantageous for 

nodes to unders tand their ro le in the ne twork so that they may per fo rm that role more 

effect ively. 

4. The use of the notion of confidence in the reinforcement scheme. Only nodes that a re 
proven to con t r ibu te to the success of the ne twork may issue re in forcements , wh i ch a ids 
in the t rans lat ion of g lobal re in forcements into loca l re in fo rcements . 

5. The grouping 'of nodes into communities to exploit their collective knowledge. The 
co l lec t ive know ledge of a g roup of nodes can exceed that of any of its members . 

Sect ion 2 descr ibes the task doma in , and Sec t ion 3 con ta ins a descr ip t ion of the ne twork 



componen ts . Exper imenta l results are presented in Sect ion 4. Sect ion 5 d iscusses several aspects of 

the network , and Sect ion 6 con ta ins conc lud ing remarks . 
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2. The Domain 

2 . 1 Overview 

T h e learn ing task involves learn ing-by-example w i th immed ia te feedback by a tutor. The ne twork is 

p resented wi th a ser ies of examples f rom the d o m a i n w h i c h it must classify. The proper c lass i f icat ion 

is st r ic t ly a func t ion of the cur ren t example , no o ther dependenc ies inc lud ing tempora l dependenc ies 

are a l lowed. The tu tor g ives immediate feedback to the ne twork for each example , de layed feedback 

is not a l l owed. T h e task is a s imple one , bu t has w i d e appl icabi l i ty . Many more comp l i ca ted p rob lems 

can be recast in the fo rm of th is doma in . 

2 . 2 The Learning Task 

The task to be per fo rmed involves c lass i fy ing b inary vec tors . T h e ne twork must classi fy each 

each examp le as V A L I D , I N V A L I D , or U N C E R T A I N . If the tu tor c lass i f ies an example as V A L I D the ne twork 

must also classify it as V A L I D . If the tu tor c lassi f ies an examp le as I N V A L I D the network must also 

classi fy it as I N V A L I D . If the tutor c lassi f ies an examp le as U N C E R T A I N , then the ne twork may classi fy it 

as V A L I D or I N V A L I D . The tu tor examines the ne twork ' s c lass i f ica t ion and advises the ne twork of the 

accu racy of its c lass i f ica t ion. The tu tor rewards the ne twork for a co r rec t (match ing) response and 

pun ishes it for an incor rec t response when a V A L I D or I N V A L I D was p resen ted . The tu tor nei ther 

rewards nor pun ishes the network when an U N C E R T A I N examp le was p resented . Th is i l lustrated in 

Tab le 2 - 1 . The ob jec t ive is for the ne twork to learn to cor rec t l y recogn ize V A L I D and I N V A L I D 

examples f rom the doma in solely as a result of the tu to r ' s adv ice . 

examp le presented to it as ei ther V A L I D or I N V A L I D . T h e tu tor , assumed to be infal l ib le, ca tegor izes 

I n p u t V e c t o r 
X Y Z 

T u t o r s 
C l a s s i f i c a t i o n 

N e t w o r k s D e s i r e d 
C I a s s i f i c a t i o n 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

U n c e r t a i n 
I n v a l i d 
I n v a l i d 
I n v a l i d 
I n v a l i d 

V a l i d 
V a l i d 
V a l i d 

E i t h e r 
I n v a l i d 
I n v a l i d 
I n v a l i d 
I n v a l i d 

V a l i d 
V a l i d 
V a l i d 

T a b l e 2 - 1 : Samp le Prob lem 
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2.3 The Difficulty of the Task 

T h e d i f f icu l ty of any g iven p rob lem is a f unc t i on of the size of the b inary input vector . A p rob lem 

w i th b inary input vec to rs n e lements in length cou ld present the ne twork w i th up to 2 n d is t inct input 

vec to rs , s ince each of n inputs cou ld assume 2 d is t inc t s tates, O N or O F F . The ne twork must be able 

to make an adequa te c lass i f i ca t ion of each potent ia l inpu t vec tor . If the n u m b e r of potent ia l vec to rs is 

m ( = 2 n ) , then the ne twork has 2 m poss ib le ways to c lassi fy the set of poss ib le input vec tors s ince 

each of m input vec to rs cou ld be c lass i f ied in 2 ways , V A L I D or I N V A L I D . A doma in wi th input vec tors 

of leng th 10, c o u l d genera te up to 1024 d is t inc t inpu t vec tors , and fo rce the ne twork to choose the 

co r rec t c lass i f i ca t ion func t ion f rom a m o n g up to 2 1 0 2 4 d i f fe rent poss ib le func t ions . The doub le 

exponen t ia l na tu re of t he p rob lem makes it ex t remely d i f f icu l t to so lve comp lex p rob lems. 

In p rac t i ce , t he p rob lems are usual ly s impler . T h e ne twork may not be presented wi th all of the 

potent ia l inpu t vec to rs . S o m e of the input vec to rs p resented may be U N C E R T A I N in wh i ch case any 

c lass i f i ca t ion by the ne twork is accep tab le . T h e wors t case assumes that there are no inherent 

regu lar i t ies in the p rob lem. Most in terest ing p rob lems have s o m e inherent regular i t ies. Recogn iz ing 

and represen t ing these regular i t ies is essent ia l to so lv ing p rob lems qu ick ly and ef f ic ient ly. 

A ne two rk capab le of co r rec t l y c lass i fy ing b inary inpu t vec to rs has the capabi l i ty to classi fy arbi t rary 

input vec tors . Any input va lue, s u c h as reals or in tegers , can be rep laced by one or more b inary input 

va lues, the re fo r the b inary na tu re of the d o m a i n is not an inheren t res t r ic t ion on its capabi l i t ies. 
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3. The Network 

3 . 1 An Overview 

C O N S E N S U S is a c o n n e c t i o n i s t ne two rk c a p a b l e of l ea rn ing f r om examp les . T h e ne twork cons is ts 

of nodes w h i c h a re o rgan i zed into c o m m u n i t i e s w h i c h a re in t u rn o rgan i zed h ie rarch ica l l y in to layers. 

N o d e s a re i n t e r c o n n e c t e d by l inks w h i c h a l l ow t h e n o d e s to c o m m u n i c a t e w i th each o ther . 

C o m m u n i t i e s a re g r o u p s of n o d e s w h i c h are m o n i t o r e d by a d i s t i ngu ished n o d e that re f lec ts thei r 

co l l ec t i ve j u d g e m e n t . A c o n c e p t u a l v iew of t he ne two rk is s h o w n in F igure 3 - 1 . T h e fo l low ing sec t i on 

g ives an overv iew of t he ne two rk c o m p o n e n t s and s u b s e q u e n t sec t i ons desc r i be the ne twork in 

de ta i l . 

T u t o r 

F i g u r e 3 - 1 : C o n c e p t u a l V iew of a Ne two rk 
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3.2 The Network Components 

3 . 2 . 1 N o d e s 

T h e n o d e s a re the pr imi t ive c o m p u t i n g e lemen ts in t he ne twork . Each n o d e c o n t r o l s t h ree l inks w i th 

w h i c h it c a n c o n n e c t and c o m m u n i c a t e w i t h o the r nodes . For c o n v e n i e n c e t hese con t ro l l ed l inks wi l l 

be re fe r red to as t he X l ink, t h e Y l ink, a n d t h e Z l ink. An a rb i t ra ry n u m b e r of u n c o n t r o l l e d l inks may 

be l inked to a n o d e . A n o d e is a lways in o n e of t w o s ta tes , O N or O F F , w h i c h is a de te rm in i s t i c pa i rw ise 

boo lean f unc t i on of the s ta tes of t w o o the r n o d e s w i th w h i c h its con t ro l l ed l inks are c o n n e c t e d . Every 

n o d e has a u n i q u e ident i f ie r a n d ma in ta ins a h is tory s u m m a r i z i n g the even ts w h i c h it has obse rved . 

T h e s e are c o n v e n t i o n a l nodes , there are s o m e spec ia l i zed n o d e s in t he ne two rk , bu t t he te rm n o d e s 

wi l l be use to refer to c o n v e n t i o n a l n o d e s un less o the rw ise i nd i ca ted . T h e ope ra t i ons of t he ne two rk 

cen te r on t h e c o n v e n t i o n a l a n d spec ia l i zed n o d e s and t he f o l l ow ing sec t i ons d e s c r i b e the ope ra t i ons 

in de ta i l . 

3 . 2 . 2 L i n k s 

L inks a l low c o m m u n i c a t i o n be tween nodes . A l ink is a d i r ec ted c o n n e c t i o n b e t w e e n t w o nodes . A 

l ink has a S U P E R I O R end a n d a S U B O R D I N A T E e n d w h i c h a re d i s t i ngu i shab le . T h e supe r i o r n o d e 

res ides in the s a m e layer or a h ighe r layer in t he h ie ra rchy t han t he s u b o r d i n a t e n o d e , and the 

supe r i o r n o d e d e t e r m i n e s w h i c h n o d e sha l l be t h e s u b o r d i n a t e n o d e . T h e l ink c a n t ransmi t t h e 

fo l l ow ing i n fo rma t ion f r om the s u b o r d i n a t e n o d e to t he s u p e r i o r n o d e : 

• S u b o r d i n a t e n o d e s ta te . 

• S u b o r d i n a t e n o d e ident i f ier . 

• N e w - F u n c t i o n s igna l . 

T h e l ink c a n t ransmi t t he fo l l ow ing i n fo rma t i on f r o m the supe r i o r n o d e to the s u b o r d i n a t e n o d e :. 

• R e i n f o r c e m e n t s igna l . 

• C o n f i d e n c e - L e v e l . 

T h e supe r i o r e n d is pe rmanen t l y c o n n e c t e d to a s ing le n o d e wh i l e the s u b o r d i n a t e e n d may be 

c o n n e c t e d to d i f fe ren t nodes at d i f fe ren t t imes . 

3 . 2 . 3 C o m m u n i t i e s 

A c o m m u n i t y is a co l l ec t i on of nodes tha t f u n c t i o n t oge the r to sha re the i r u n d e r s t a n d i n g of t he 

e n v i r o n m e n t to w h i c h they a re c o n n e c t e d . T h e c o m m u n i t y cons i s t s of many conven t i ona l n o d e s and 

one s p o k e s m a n n o d e . Each c o m m u n i t y res ides exc lus ive ly in o n e layer. 
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3 . 2 . 4 S p o k e s m a n 

A s p o k e s m a n is a d i s t i ngu i shed node . It c o n t r o l s one l ink to every o ther n o d e in its c o m m u n i t y 

w h i c h is f ixed a n d may not be r e c o n n e c t e d to o ther nodes . T h e s ta te of t he s p o k e s m a n is a 

de te rm in is t i c f unc t i on of the s ta tes of t he o the r n o d e s in the c o m m u n i t y . T h e s ta te of t he s p o k e s m a n 

represen ts the co l l ec t i ve j u d g e m e n t of t he n o d e s of t he c o m m u n i t y . H e n c e f o r t h , t h e te rm s p o k e s m a n 

is mean t to be s p o k e s m a n n o d e . 

3 . 2 . 5 L a y e r s 

Layers are c o m p o s e d of o n e or mo re c o m m u n i t i e s . T h e n e t w o r k is o r g a n i z e d h ie ra rch ica l l y a n d 

t he re may b e an a rb i t ra ry n u m b e r of layers. T h e b inary i npu t vec to r is c o n s i d e r e d to b e layer 0, t h e 

rema in i ng layers a re n u m b e r e d f r o m 1 t o n. C o m m u n i t i e s in t h e u p p e r m o s t layer a re re fe r red to as 

t o p c o m m u n i t i e s , wh i l e any c o m m u n i t y tha t may c o n n e c t t o t h e i npu ts is re fe r red t o as a base 

c o m m u n i t y . 

3 . 2 . 6 E n v i r o n m e n t a l I n p u t s 

T h e b inary i npu t vec to r f r o m the e n v i r o n m e n t is c o m m u n i c a t e d to t h e n e t w o r k v ia inpu t nodes . 

These a re spec ia l i zed nodes , o n e per e l emen t in t h e vec to r , a n d a lways a s s u m e the s ta te of t h e 

c o r r e s p o n d i n g e l emen t in t he b inary inpu t vec to r . These n o d e s res ide in layer 0 by de f i n i t i on . 

3 . 2 . 7 E n v i r o n m e n t a l R e i n f o r c e m e n t 

T h e tu to r c o n d u c t s the env i ronmen ta l r e i n fo r cemen t . T h e env i r onmen ta l r e i n f o r cemen ts are sen t t o 

every n o d e in t he t op layer. These n o d e s may g e n e r a t e in te rna l r e i n f o r c e m e n t s w h i c h c a n p r o p a g a t e 

d o w n w a r d s t h r o u g h o u t t he ne two rk . 

3.3 Cycle Timing 

Each cyc le cons i s t s of t he phases e n u m e r a t e d be low . A cen t ra l c l o c k e n s u r e s tha t t he n o d e s a re 

p rope r l y s y n c h r o n i z e d . 

1 . Env i r onmen ta l Inpu t Rece i ved . T h e i npu t n o d e s a s s u m e t h e s ta te of t h e c o r r e s p o n d i n g 

e lemen t of t h e b inary i npu t vec to r . 

2. C o m p u t a t i o n . Each n o d e c o m p u t e s i ts n e w s ta te a f ter its s u b o r d i n a t e s have a s s u m e d 
the i r new s ta tes. Its new s ta te is t h e n ava i lab le to its supe r i o r s so they may c o m p u t e the i r 
n e w sta te . Al l n o d e s may c o m p u t e in para l le l sub jec t to p r o p a g a t i o n de lays . 

3. Ne two rk C lass i f i ca t ion . S p o k e s m a n l oca ted in the t o p c o m m u n i t i e s c lass i fy the b ina ry 

inpu t vec to r on beha l f of t he ne two rk . 
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4. Env i ronmen ta l Re in fo r cemen t . Nodes loca ted in the t op c o m m u n i t i e s rece ive 
re i n fo r cemen t f rom the tutor . 

5. In ternal Re in fo r cemen t . The nodes in the top c o m m u n i t i e s issue re i n fo r cemen t s igna ls to 
the i r subo rd i na tes . T h e subo rd i na tes in tu rn issue re i n fo r cemen ts to their subo rd ina tes . 
R e i n f o r c e m e n t may g o on in para l le l t h r o u g h o u t the ne two rk sub jec t to p ropaga t i on -
de lays . 

6. Ana lys is . Each n o d e ana lyzes the f u n c t i o n s it c o u l d c o m p u t e , and the use fu lness of t he 
l inks it con t ro l s . It de te rm ines if it s h o u l d reta in or c h a n g e its cu r ren t c o m p u t e d f u n c t i o n , 
and w h i c h l inks, if any, s h o u l d be rep laced th is cyc le . Al l n o d e s may ana lyze in para l le l . 

7. Un l i nk i ng . L inks des igna ted for r ep lacemen t are un l i nked f r om the i r s u b o r d i n a t e nodes . 

8. C h a n g i n g Func t i ons . N o d e s des i r i ng to c h a n g e the i r c o m p u t e d f u n c t i o n n o w d o so 
i n fo rm ing the i r supe r i o r s of the i r ac t i on . 

9. L i nk ing . L inks w i t hou t c o n n e c t i o n s to a s u b o r d i n a t e n o d e are n o w r e c o n n e c t e d to new 
nodes . 

3.4 Receiving Inputs from the Environment 

T h e env i ronmen ta l b inary inpu t vec to r is m a d e ava i lab le to t he ne twork in the Env i ronmen ta l Input 

Rece ived Phase. Each inpu t n o d e assumes the state of a s p e c i f i e d e lement , w h i c h remains t he same 

f r o m c y c l e to cyc l e , in t he b inary inpu t vec to r . T h e states of t hese n o d e s a re n o w avai lab le to t he 

rema inde r of t he ne twork . 

3.5 Computing the Output of a Node 

A n o d e ou tpu t s one of the s ix teen pa i rw ise boo lean f unc t i ons of two of t he th ree l inks it con t ro l s . 

T h e n o d e c o u l d c o m p u t e any of t h e 38 u n i q u e pa i rw ise b o o l e a n func t i ons e n u m e r a t e d in Tab le 3-1 

sub jec t to the res t r i c t ion tha t on ly t op c o m m u n i t y n o d e s may c o m p u t e a cons tan t . It c o u l d c o m p u t e a 

f unc t i on of n o n e of its l inks (a cons tan t ) , a f unc t i on of one of its l inks, or a f u n c t i o n of two l inks. On ly 

hal f of t he f u n c t i o n s a re i n d e p e n d e n t s i n c e every s igna l has exac t ly o n e inverse. T h e n o d e 

r e m e m b e r s w h i c h f unc t i on it is to ou tpu t . Du r ing the C o m p u t a t i o n Phase the n o d e assumes the s ta te 

of its ou tpu t . 

3.6 Computing the Output of a Spokesman 

T h e s p o k e s m a n n o d e of each c o m m u n i t y o u t p u t s the s ta te of t he major i ty of t h e o ther n o d e s in t h e 

c o m m u n i t y . T h e s p o k e s m a n samp les thei r s ta tes t h r o u g h the l inks it c o n t r o l s and de te rm ines w h i c h 

s ta te is in t he major i ty , b reak ing t ies arb i t rar i ly if n e e d e d . In th is way, the n o d e represen ts the 

co l l ec t i ve j u d g e m e n t of t he nodes in the c o m m u n i t y . 
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F u n c t i o n s o f 0 i n p u t s 

FALSE TRUE 

F u n c t i o n s o f 1 i n p u t : 

X X Y Z 

F u n c t i o n s o f 2 i n p u t s : 

X o r Y 
X o r ~Y 

~X o r Y 
X eqv Y 
X and Y 

X n o r Y Y o r Z Y n o r Z Z o r X 
~X and Y Y o r - Z ~Y and Z Z o r - X 

X and ~Y ~Y o r Z Y and ~Z ~Z o r X 
X x o r Y Y eqv Z Y x o r Z Z e q v X 
X nand Y Y and Z Y n a n d Z Z and X 

Z n o r X 
Z and X 
Z and ~X 
Z x o r X 
Z nand X 

T a b l e 3 - 1 : Un ique Pairwise Boo lean Func t ions 

3.7 Computing the Output of the Network 

The output of the network is taken to be the state of the spokesmen of the top communi t ies . If the 

state of the spokesman is O N , the network is said to have c lassi f ied the examp le as A C C E P T A B L E . If the 

state of the spokesman is O F F , the network is said to have c lassi f ied the example as REJECTABLE. 

The func t ion of the tu tor is to issue the appropr ia te env i ronmenta l re in fo rcement to the network . 

The tu tor can be though t of as a s ingle node res id ing in the n + 1 layer. The tu tor has a f ixed 

cont ro l led l ink to every node of every top commun i t y t h r o u g h wh i ch it may re in fo rce these nodes. 

3.9 Receiving Environmental Reinforcement 

The tutor , p resumed to be infal l ible, c lassi f ies the b inary vec to r input as e i ther A C C E P T A B L E , 

REJECTABLE , or N E U T R A L . It issues a re in fo rcement s ignal to every node in the top commun i t ies . The 

state of each node in the top commun i t y is examined and c o m p a r e d to the des i red c lass i f icat ion. The 

tu to r then issues re in forcement as descr ibed prev ious ly and i l lustrated in Tab le 2 - 1 . 

3.10 The Classification Method 

3 . 1 0 . 1 I n t r o d u c t i o n 

Cons ider the fo l lowing prob lem. You are g iven a co in and asked to classi fy the co in as FA IR , a H E A D , 

or a T A I L . A HEAD co in comes up heads more of ten than tai ls, a T A I L co in comes up tai ls more of ten 

than heads, and a FAIR co in comes up heads and tai ls w i th equa l f requency . How can you de termine 

wh i ch ca tegory the co in be longs to if you are only a l lowed to test the co in by f l ipp ing it and record ing 

the result? 

3.8 The Tutor 



11 

Determin ing the cor rec t c lassi f icat ion wi th absolute cer ta inty is impossib le. Unless the co in a lways 

p roduces heads or tai ls, then any given flip cou ld result in a head or a tai l . A co in that p roduces bo th 

heads and tai ls cou ld be long to any of the three categor ies. Any sequence of observed results could 

be p roduced by a co in f rom any of the three categor ies. This makes it imposs ib le to rule out any of 

the three categor ies wi th absolute certa inty. 

S ince the co in canno t be classi f ied wi th certa inty, we must sett le wi th f l ipp ing the co in unti l a g o o d 

guess as to wh ich category it be longs in can be made. We cou ld satisfy ourselves that the co in is a 

HEAD if a sequence was observed wh ich was very likely for a HEAD co in but very unl ikely for a F A I R or 

T A I L co in . The converse can be done to satisfy ourselves that the co in is a T A I L co in . Sat isfy ing 

ourselves that a co in is a FAIR co in , is much more di f f icul t . Whi le a FA IR co in is equal ly l ikely to c o m e 

up heads or tai ls, it is not assured in any part icu lar number of t r ia ls. Indeed, a FA IR co in is far more 

likely to have an unequal number of heads and tai ls observed after a g iven set of tr ials. It wou ld be 

expec ted that over a very large number of tr ials, the numbers of heads and tai ls wou ld be 

approx imate ly equa l . We can categor ize a co in as be ing as FA IR co in wi th con f i dence if we bel ieve 

w i th con f idence that it is not a HEAD co in and not a T A I L co in by process of e l iminat ion. Th is so lu t ion 

to the co in prob lem is based on stat ist ical in ference and can be p laced on a more formal basis. 

3 . 1 0 . 2 S t a t i s t i c a l I n f e r e n c e 

Stat ist ical in ference is the process of d rawing conc lus ions about a popu la t ion on the basis of a 

random sample. Al ternat ive hypotheses are classi f ied by hypothesis testing. In the solv ing the co in 

p rob lem we may propose the hypothesis " the unknown co in is a HEAD c o i n . " We genera te a sample 

by f l ipp ing the co in and observ ing the result. Hypothesis test ing is a genera l method for de te rmin ing 

whether to accept or reject the proposed hypothes is about a random var iable f rom in format ion in the 

random sample [1 ] . 

3 . 1 0 . 3 C l a s s i f y i n g t h e C o i n 

In the case of the co in prob lem, w e are asked to categor ize the co in as ei ther FA IR , H E A D , or T A I L . If 

an insuff ic ient number of tr ials to make a determinat ion has been observed, w e can c la im that the 

p roper c lassi f icat ion is unknown. 

To classify the co in as a HEAD it must be shown that it is unl ikely to be a F A I R or a T A I L co in . A F A I R 

or a T A I L co in wil l have heads come up no more of ten than tai ls. In a sample of n tr ials, we wil l 

observe h heads and t tails such that h + t = n. If 100 tr ials of 1000 co in f l ips each were c o n d u c t e d , 

we wou ld expect a FAIR co in to p roduce between 460 and 540 heads inc lusive in 99 of the tr ials. Th is 
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range f rom 460 to 540 const i tu tes the 99% confidence interval ( two tai led) wh i ch is def ined to be the 

range that is expec ted to encompass 99 out of 100 tr ials. If more than 540 heads are observed, w e 

can c la im that the co in is a H E A D . If it is actual ly a FA IR co in , the probabi l i ty of our be ing w rong is .5%. 

If it is actual ly a T A I L co in , the probabi l i ty of our be ing w rong is less than .5%. W e accept a probabi l i ty 

of error of .5% when w e make a classify a co in as a HEAD co in . 

Conversely , if the observed number of heads is less than 460, the co in can be classi f ied as a T A I L 

co in w i th an error of .5% or less. 

It shou ld be emphas ized that not c lassi fy ing a co in as a HEAD or a T A I L is not equivalent to 

c lassi fy ing it as a F A I R co in . A co in is c lassi f ied as a H E A D or a T A I L when w e have a p reponderance of 

ev idence in favor of that c lass i f icat ion. We may or may not have suf f ic ient ev idence to classify a co in 

as a F A I R co in . 

To prove that a co in is a FAIR co in by the above method wou ld require an inf ini tely large number of 

samples. S ince it is infeasible to prove that the co in is a FAIR co in , w e wil l be con ten t to show that the 

co in is fair to wi th in an equivalence factor. If the equ iva lence factor is 5%, then w e wou ld cons ider a 

co in to be a FA IR co in if it can be shown that it wi l l come up heads between 45% (50% - 5%) and 55% 

(50% + 5%) of the t ime. Showing that the co in wil l come up heads more than 45% of the t ime is 

ana logous to ca tegor iz ing the co in as a H E A D co in (comes up heads more than 5 0 % of the t ime). The 

99% con f i dence interval for a co in that comes up head 45% of the t ime is f rom 410 to 490 inc lus ive. 

So if more than 490 heads are observed, w e are sat isf ied that the co in wil l come up heads more than 

45% of the t ime. Analogous ly , the 99% con f idence interval for a co in that comes up heads 55% of the 

t ime is f rom 510 to 590 inc lusive, and if fewer than 510 heads are observed we are sat isf ied that the 

co in wil l come up heads less than 55% of the t ime. Therefor if be tween 491 and 509 heads inc lusive 

are observed , w e are sat isf ied that the co in wi l l come up heads and tai ls w i th equal f requency to 

w i th in a 5% equ iva lence factor and classify the co in as a FA IR co in . 

If the number of observed heads is be tween 460 and 490 inclusive, or be tween 510 and 540 

inc lus ive w e have not c lassi f ied it into any of the th ree categor ies . W e j udge its p roper c lassi f icat ion 

to be unknown, pend ing addi t ional data . 
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3 . 1 0 . 4 C l a s s i f y i n g a F u n c t i o n 

Funct ions at a node can be classi f ied in m u c h the same way as co ins can be classi f ied. Coins were 

c lassi f ied depend ing on whether they came up heads more than 5 0 % (HEAD ) , less than 50% (TAIL ) , or 

equivalent to 50% (FAIR ) . The same can be d o n e for func t ions at a node depend ing on whether they 

are cor rec t more than the cur rent func t ion (SUPERIOR ) , less than the cur ren t funct ion ( INFERIOR ) , or 

the same as the cur ren t func t ion ( R E D U N D A N T ) . If there is insuf f ic ient in format ion to make this 

de terminat ion , we classify it as U N K N O W N . 

To better i l lustrate the prev ious d iscuss ion , cons ider the fo l lowing example. In the ensu ing 

d iscuss ion , I wil l refer to Table 3-2 and Figure 3-2. In th is example , the present funct ion that the node 

is compu t i ng is co r rec t 70% of the t ime. Table 3-2 gives the c lass i f icat ion cr i ter ia for d i f fer ing number 

of tr ials. Figure 3-2 presents this in format ion graphica l ly , t hough not necessar i ly to scale. On the 

y-axis the f ract ion cor rec t is p lo t ted, on the x-axis the number of tr ials is p lo t ted. 

As w e d id before in the co in p rob lem, we must de te rmine what the 99% con f idence interval is, wh ich 

var ies wi th the number of t r ia ls. The cur ren t f rac t ion co r rec t is shown by l ine Aa. The con f idence 

interval about the cur ren t f ract ion cor rec t is de l ineated by the l ines Bb and Cc. If the f ract ion cor rec t 

for the al ternat ive funct ion lies above the l ine Bb, w e classify it as a S U P E R I O R a l ternat ive func t ion . If 

the f ract ion cor rec t lies be low the l ine Cc, w e classi fy it as an INFERIOR a l ternat ive func t ion . To 

classify the func t ion as R E D U N D A N T we must show it fal ls wi th in the equ iva lence factor of the f ract ion 

cor rec t for the cur ren t func t ion . Th is range is de l ineated by the l ines Dd and Ee wh i ch are paral lel to 

l ine Aa, the f ract ion cor rec t for the cur ren t func t ion . The 99% con f idence interval about l ine Dd is 

del ineated by l ines Ff and Gg . The 99% con f i dence interval about l ine Ee is del ineated by l ines Hh 

and l i . The c lassi f icat ion of R E D U N D A N T can be made in the reg ion bounded by l ines Bb, Cc, Gg , and 

Hh. In the remainder of the f igure, w e make the c lass i f icat ion of U N K N O W N s ince we do not have a 

suf f ic ient number of samples to make a proper de terminat ion among the first th ree categor ies. 

A few observat ions about the d iagram are in order . In the lef tmost part of the f igure, the U N K N O W N 

reg ion dominates . This ref lects that only a few number of tr ials have been conduc ted and that 

insuf f ic ient in format ion is avai lable for a proper c lass i f icat ion is avai lable. In the r ightmost part of the 

f igure, the y-axis is d iv ided exclusively into S U P E R I O R , INFERIOR and R E D U N D A N T regions. This impl ies 

that w i th a suf f ic ient number of tr ials, a p roper c lass i f icat ion can always be made. This is the case 

because the boundar ies of the con f idence interval asymptot ica l ly app roach their center. So l ines Bb 

and Cc asymptot ica l ly approach l ine Aa, l ines Ff and Gg asymptot ica l ly app roach l ine Dd, and l ines 

Hh and li asymptot ica l ly approach l ine Ee. Therefor l ines Bb and Cc wil l come closer to l ine Aa than 

any constant , namely the equ iva lence factor. This insures that the lower boundary to the S U P E R I O R 
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F i g u r e 3 - 2 : Classi f icat ion Cr i ter ia Ske tch 
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S i z e 10 20 50 100 200 500 1000 2000 
C o r r e c t 7 14 35 70 140 350 700 1400 

99% Lower . 3 2 7 . 4 3 6 . 5 3 3 . 5 8 2 . 6 1 7 . 6 4 7 . 6 6 3 . 6 7 4 
U p p e r 1 . 0 0 0 . 9 6 4 . 8 6 7 . 8 1 8 . 7 8 3 . 7 5 3 . 7 3 7 . 7 2 6 

5% Lower 1 . 0 0 0 . 9 2 5 . 8 2 4 . 7 7 3 . 7 3 7 . 7 0 5 . 6 8 9 . 6 7 7 
U p p e r . 3 9 7 . 5 0 1 . 5 9 2 . 6 3 8 . 6 7 1 . 7 0 0 . 7 1 5 . 7 2 5 

R e j e c t < 4 9 27 59 124 3 2 4 663 1354 
R e d u n d a n t - - - - - - 689 1355 

- - - - - - 715 1450 
A c c e p t > 10 19 43 8 1 156 376 737 1450 

T a b l e 3 - 2 : Classi f icat ion Cr i ter ia Example 

reg ion , l ine Bb, wi l l intersect the upper boundary to the R E D U N D A N T reg ion , l ine Gg . It also insures 

that the upper boundary to the INFERIOR reg ion, l ine Cc, wi l l intersect the lower boundary to the 

R E D U N D A N T reg ion, l ine Hh. 

The ske tch in Figure 3-2 is asymmetr ica l . This is the general case, the f igure wil l be symmetr ica l 

only when the cur ren t func t ion , l ine Aa, has a f rac t ion cor rec t of 50%. In the network, w e have used a 

ch i -square test instead of expl ic i t ly ca lcu la t ing the b inomia l d is t r ibut ion to simpl i fy the ca lcu la t ions of 

the con f idence intervals. 

An under ly ing assumpt ion is that the each tr ial is independent . Were t he tr ials to be dependen t in 

some fash ion, the assumpt ions about the probabi l i ty d is t r ibut ions wou ld be incorrect . Obta in ing ten 

out of ten cor rec t when all the tr ials are independent is far more s ign i f icant than obta in ing ten out of 

ten when the ou tcome of the tr ials are dependent . To employ this method requires assurance that the 

trai ls are independent and we wil l take measures d iscussed later to assure this. 

By using this c lassi f icat ion method , we can compare an a l ternate funct ion to the cur rent func t ion 

and classify the a l ternate funct ion as S U P E R I O R , INFERIOR , or R E D U N D A N T , and if lack ing suf f ic ient 

in fo rmat ion to p lace it in the first three categor ies , c lassi fy it as U N K N O W N . Th is gives us a means to 

de te rmine wh i ch of two func t ions is better. 

3 . 1 0 . 5 C o r r e l a t i n g a P a i r o f F u n c t i o n s 

We have need to determine when two func t ions are I N D E P E N D E N T or DEPENDENT . This can be 

accomp l i shed by using a method similar to that d iscussed above. We seek to determine when the 

pair of func t ions compu te the same result to an unaccep tab le degree . The two func t ions are 

cons idered DEPENDENT if they compu te the same func t ions or if one func t ion is the inverse of the 

other. Two func t ions are cons idered to be equiva lent if they obta in the same results wi th in a 
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dependence factor w i th 99% con f idence . Two func t ions are cons idered to be inverses of one another 

if they obta in oppos i te results wi th a dependence factor wi th 99% con f idence . If it canno t be 

determined that the two func t ions are DEPENDENT , w e classify them as INDEPENDENT . By this 

c lassi f icat ion of INDEPENDENT , we really mean that the two func t ions are not total ly dependent . 

To better i l lustrate th is, cons ider the fo l lowing example . In th is example , a dependence factor of 

10% wil l be used. Table 3-3 gives the c lassi f icat ion cr i ter ia for d i f fer ing number of tr ials. F igure 3-3 

presents this in format ion graphical ly , t hough not necessar i ly to sca le . On the y-axis the f ract ion in 

agreement is p lot ted, on the x-axis the number of tr ials is p lo t ted. 

We must de termine when w e are 99% conf ident that the func t ions agree more of ten than the 

d e p e n d e n c e factor a l lows. Wi th a 10% dependence factor, w e seek to s h o w that the func t ions agree 

more than 90% of the t ime, l ine J j , or less than 10% of the t ime, l ine Kk. The 9 9 % con f idence interval 

about the dependence factor must be de te rmined , wh i ch var ies w i th the number of tr ials. The l imit of 

the con f idence interval above the 90% func t ion agreement is shown by l ine L I . The limit of the 

con f idence interval be low the 10% func t ion agreement is shown by l ine M m . If the f ract ion in 

agreement for the spec i f ied number of tr ials is above l ine LI or be low l ine M m , w e classify the pair of 

func t ions as DEPENDENT , o therwise w e classify them as INDEPENDENT. 

It shou ld be noted that the l ines LI and Mm approach l ines Jj and Kk respect ively asymptot ical ly . 

Th is f igure is symmetr ica l under all cond i t ions . 

3.11 Analyzing Functions at a Node 

Each node compu tes one funct ion of its inputs, whi le it has the potent ia l to c o m p u t e any of the 38 

func t ions enumera ted in Tab le 3-1 exc lud ing the 2 cons tan t func t ions for t he nodes in non- top 

communi t ies . The node mainta ins a history for the cur ren t func t ion as wel l as for all of the potent ia l 

a l ternat ive func t ions . Dur ing the Analysis Phase of each cyc le , the node at tempts to de termine if any 

of the func t ions it is not cur rent ly compu t ing cou ld better sat isfy its super iors . The node uses the 

classi f icat ion method to compare each al ternat ive func t ion to the cur ren t f unc t i on , and classi f ies 

each al ternat ive among the set of S U P E R I O R , I N F E R I O R , R E D U N D A N T , and U N K N O W N . The nodes use the 

fo l lowing p rocedure to determine what func t ion to compu te in the next c y c l e : 

1 . If any of the al ternate func t ions is c lassi f ied as S U P E R I O R then the a l ternate func t ion w i th 
the greatest f rac t ion cor rec t is se lected to be the new func t ion the node wil l compu te . In 
the case of a t ie, the func t ion requi r ing the fewest inputs is prefer red wi th remain ing t ies 
b roken arbitrar i ly. Th is new func t ion is marked to be made into the cur ren t func t ion in the 
Chang ing Funct ion Phase. L inks cont ro l led by the node but unneeded by the new 
funct ion are marked to be un l inked in the Unl ink ing Phase. 
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S i z e 50 100 200 500 1000 2000 5000 

Uppe r D e p e n d e n c e 45 90 180 450 900 1800 4500 
99"/, U p p e r 1 .000 . 9 7 7 . 9 5 5 . 9 3 5 . 9 2 4 . 9 1 7 . 9 1 1 

Lower D e p e n d e n c e 5 10 20 50 100 200 500 
99% Lower . 0 0 0 . 0 2 3 . 0 4 5 . 0 6 5 . 0 7 6 . 0 8 3 . 0 8 9 

D e p e n d e n t U p p e r 0 98 190 467 924 1834 4554 
D e p e n d e n t Lower 0 2 I t ) 33 76 166 446 

T a b l e 3 - 3 : Dependence Cr i ter ia Example 

2. If none of the a l ternate func t ions is c lassi f ied as S U P E R I O R or U N K N O W N , t hen the al ternate 
func t ions c lassi f ied as R E D U N D A N T and the cur ren t func t ion are c o m p a r e d to de termine 
the funct ion wi th the greatest f rac t ion cor rec t , w i th t ies b roken as desc r ibed above. This 
func t ion is marked as the new func t ion , and the unneeded l inks are marked as d iscussed 
above. 

3. If no al ternate func t ions are c lassi f ied as S U P E R I O R , but at least one a l ternate func t ion is 
classi f ied as U N K N O W N , then the cur ren t func t ion is re ta ined. No func t ion is marked for 
the Chang ing Funct ion Phase, and no l inks are marked for the Unl ink ing Phase. 

W e desire to change to a S U P E R I O R func t ion as soon as we can de termine w h i c h , if any, it is. When 

it is c lear that no S U P E R I O R func t ions exist because al l the a l ternate func t ions are classi f ied as 

INFERIOR or R E D U N D A N T , then we must sett le for a func t ion equiva lent to the cu r ren t one. When there 

are no S U P E R I O R func t ions but stil l are U N K N O W N func t ions , we must wait to de te rmine if any of the 

U N K N O W N func t ions may be classi f ied as S U P E R I O R . 

W h e n break ing t ies be tween func t ions wi th equ iva lent f rac t ions cor rec t , w e choose the func t ion 

requi r ing the fewest inputs. By preferr ing the simplest func t ion avai lable, w e make more cont ro l led 

l inks avai lable to be reconnec ted to other potent ia l ly useful nodes. Th is g ives the node a pre ference 

for the s implest exp lanat ion for an observed phenomena (Occam 's Razor) . 

W h e n a new func t ion is se lected f rom one to th ree con t ro l led l inks are marked for rep lacement in 

the Unl ink ing Phase. If the new func t ion is to be a cons tan t , then all th ree cont ro l led l inks are 

unneeded and they are all marked for rep lacement . If a one input func t ion is se lec ted, then the 

necessary l ink is reta ined whi le the other two are marked for rep lacement . If a two input func t ion is 

se lec ted, then the two necessary l inks are reta ined whi le the th i rd is des ignated for rep lacement . 

O n c e w e have examined the possib le func t ions and made our de te rmina t ion for the best func t ion to 

compu te , we need to examine as many new possib le func t ions as possib le. Th is is accompl i shed by 

rep lac ing cont ro l led l inks to nodes whose potent ia l w e have a l ready examined . 
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3.12 Analyzing Links at a Node 

Each node analyzes the s ignals received f rom its con t ro l led l inks du r ing the Analysis Phase. The 

cont ro l led l inks may be t ransmit t ing signals that are of no value to the node; if so the node wil l seek to 

identi fy and replace the useless l inks. 

A cont ro l led l ink to an input node may be connec ted to a node w h i c h ou tpu ts a constant . S ince a 

node can compu te any pairwise boo lean func t ion , a l ink to a node compu t i ng a cons tan t prov ides no 

useful in format ion. As an example, assume the X l ink is c o n n e c t e d to a node that a lways ou tpu ts 

TRUE. In Table 3-4, the 2 Input co lumn shows the pai rwise boo lean func t ion of X and Y and the 1 

Input co lumn shows the equivalent func t ions if X is a lways TRUE. S ince the node compu tes all the 

func t ions in the 1 Input co lumn wi th its Y l ink, there is no advantage to hav ing the X l ink connec ted to 

a node that outputs TRUE. Ana logous cases ho ld for the X l ink a lways s ignal ing FALSE, and 

constants on the other l inks. Any l inks de te rmined to be D E P E N D E N T w i th the func t ions TRUE or 

FALSE, are marked for rep lacement in the Unl ink ing Phase. 

2 I n p u t 1 I n p u t 2 I n p u t 1 I n p u t 

FALSE FALSE X and Y Y 
X n o r Y FALSE X eqv Y Y 

~X and Y FALSE Y Y 
~X FALSE ~X o r Y Y 

X and ~Y ~Y X TRUE 
~Y ~Y X o r ~Y TRUE 

X x o r Y ~Y X o r Y TRUE 
X nand Y ~Y TRUE TRUE 

T a b l e 3 - 4 : Simpl i fy ing Pairwise Func t ions wi th Constant Input 

Two cont ro l led l inks may be connec ted to nodes w h i c h ou tpu t the same func t ion or inverses of one 

another . In this case, only one of the l inks is useful s ince w e can de te rmine the second given the 

ou tpu t of the first. Table 3-5 i l lustrates the case whe re the X and Y l inks ou tpu t the same func t ion . 

The 1 Input co lumn shows the func t ion of the Y l ink tha t is equ iva lent to the func t ion of the X and Y 

l inks shown in the 2 Input co lumn . Each Analysis Phase, all pai rs of l inks are c lassi f ied as ei ther 

I N D E P E N D E N T or DEPENDENT . If any pair of l inks is marked as D E P E N D E N T , then one l ink in the pair 

chosen arbi trar i ly is marked for rep lacement in the Unl ink ing Phase. 

In ei ther of the two cases above, the l ink be ing rep laced may be part of the cur ren t func t ion . For 

example, if it is de termined that the X l ink is redundan t and the func t ion be ing compu ted is X OR Y, 

then the X l ink wh i ch are func t ion depends on wil l be rep laced. In cases l ike th is, we mark the node to 

rep lace its two- input funct ion by the one- input func t ion equiva lent . 
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2 I n p u t 1 I n p u t 2 I n p u t 1 I n p u t 

FALSE FALSE X and Y Y 
X n o r Y ~Y X eqv Y TRUE 

~X and Y FALSE Y Y 
~X ~Y ~X o r Y TRUE 

X and ~Y FALSE X Y 
~Y ~Y X o r — Y TRUE 

X x o r Y TRUE X o r Y Y 
X nand Y ~Y TRUE TRUE 

T a b l e 3 - 5 : Simpl i fy ing Pairwise Func t ions w i th Ma tch ing Inputs 

3.13 Analyzing Output at a Node 

A node that is not a member of a top c o m m u n i t y shou ld not c o m p u t e a cons tan t . The tu tor 's 

c lass i f icat ion of the input vec tors may make a cons tan t the best response f rom the network , there for 

the nodes in the top commun i t i es may need to ou tpu t a cons tan t . From the prev ious sec t ion , w e 

know that nodes canno t useful ly employ, a l ink to a node that ou tpu ts a cons tan t . Unl ink ing f rom 

nodes wh i ch ou tpu t a cons tan t is inef f ic ient s ince each node that l inks to the node that ou tpu ts a 

cons tan t must independent ly de te rm ine to unl ink f rom the node . It is more ef f ic ient to let t he node 

de tec t when it ou tpu ts a cons tan t . Each Analys is Phase, w e c o m p a r e the cu r ren t func t ion to a 

cons tan t func t ion and de te rmine if they are D E P E N D E N T or I N D E P E N D E N T . If they are de te rmined to be 

DEPENDENT , all l inks are marked for rep lacement in the Un l ink ing Phase and a randomly se lec ted 

func t ion is marked to be the new func t ion in the Func t ion Chang ing Phase. 

It shou ld be emphas ized that p roh ib i t ing the node f rom c o m p u t i n g a cons tan t func t ion is not 

suf f ic ient . Cons ider a 'node that ou tpu ts .X OR Y, whe re X is ~ A and Y is A OR B. The node wil l ou tpu t 

TRUE s ince ~ A OR A OR B wil l a lways evaluate to TRUE. Test ing the X and Y l inks against a cons tan t 

and each other wi l l y ie ld the I N D E P E N D E N T c lass i f i ca t ion . T h o u g h the inputs are not comple te ly 

dependen t , they may be part ial ly dependen t a case our c lass i f ica t ion s c h e m e wi l l not recogn ize . As a 

result , the test for a node that ou tpu ts a cons tan t must be expl ic i t . 

3.14 Freeing Links 
In t he Unl ink ing Phase, the l inks des igna ted to be un l inked are f reed . Before be ing un l inked, the 

node ident i f ier of the subord ina te node is r eco rded so the node may avoid reconnec t i ng to th is same 

node . The connec t i on of the l ink to the subord ina te n o d e is then severed . T h e l ink is now f ree to 

c o n n e c t to another dest inat ion node in the L ink ing Phase. 
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3.15 Changing Functions 

A node that is chang ing its func t ion sends a New-Func t i on s igna l to all of its super iors . If a node 

rece ives a New-Func t ion s ignal f rom a l ink, all h is tor ies of f unc t i ons that are dependen t on that l ink 

are re in i t ia l ized. The node also de te rmines if the cu r ren t func t ion is dependen t on the s ignal ing l ink, if 

so it sends a New-Func t ion s ignal to its super io rs . W h e n a node c h a n g e s its f unc t i on , all of the nodes 

w h i c h have been t rack ing its usefu lness must be in fo rmed of the c h a n g e . It w o u l d be con fus ing to a 

node to merge stat is t ics of a subord ina te w h o w a s former ly c o m p u t i n g X AND Y and is now 

c o m p u t i n g X NAND Y, for examp le . The New-Func t i on s igna l s c h e m e per fo rms th is ro le. 

3.16 Making Links 

In the L ink ing Phase, any l inks w i thou t subo rd ina te nodes are r econnec ted . The nodes in each 

c o m m u n i t y are a l lowed to c o n n e c t the i r con t ro l l ed l inks to any n o d e f rom a set of o ther commun i t ies . 

Th is set of commun i t i es may vary for d i f ferent commun i t i es . A m o n g the set of commun i t i es w h i c h 

may be c o n n e c t e d to , any node inc lud ing s p o k e s m a n are e l ig ib le . T h e only rest r ic t ion is that a l ink 

may not c o n n e c t to a node wi th w h i c h a l ink was un l inked f rom in the Un l ink ing Phase of the cur ren t 

cyc le . Th is prevents l ink ing to node that has jus t been s h o w n to not be useful in the cur ren t cyc le . 

Th is rest r ic t ion is wa ived if the set of nodes that can be l inked wi th w o u l d o therwise be nul l . 

3.17 Calculating the Confidence Level of a Node 

Every node main ta ins a measu re of its c o n f i d e n c e . Nodes w i th c o n f i d e n c e have demons t ra ted that 

they are rece iv ing re in fo rcements that are bet ter t han c h a n c e , mean ing be ing more than 5 0 % cor rec t . 

Nodes w i thou t con f i dence have no t demons t ra ted that the re in fo rcements they are receiv ing are 

bet ter than chance . To de te rm ine if a node has con f i dence , w e use the c lass i f icat ion method 

d iscussed previously. W e de te rm ine if the cu r ren t f unc t i on w o u l d be c lassi f ied as S U P E R I O R when 

c o m p a r e d against a func t ion ob ta in ing a f rac t ion co r rec t of 50%. If the cu r ren t func t ion wou ld have 

been c lassi f ied S U P E R I O R then w e classi fy it as be ing C O N F I D E N T , o therw ise w e classi fy it as be ing 

U N C O N F I D E N T . Th is d is t inc t ion is impor tan t s ince C O N F I D E N T nodes may issue internal re in fo rcement 

s ignals wh i le U N C O N F I D E N T nodes may not . C O N F I D E N T nodes may be o rdered based on how 

con f iden t they are, w i th nodes hav ing the greater f rac t ion co r rec t be ing cons ide red more con f iden t 

than their fe l lows. 
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3.18 Recording History at a Node 

In o rder to make in fo rmed dec i s ion , a n o d e must have an unde rs tand ing of its ro le in the network . 

To ach ieve th is each node main ta ins a h is tory of severa l of its f unc t i ons . T h e n o d e does not expl ic i t ly 

reta in a memory of all past events , but ra ther a stat is t ica l s u m m a r y of past events . Each node 

main ta ins all of t he h is tor ies i temized be low excep t for nodes in the t o p c o m m u n i t y w h i c h need not 

ma in ta in an ou tpu t h istory. 

• Re in fo rcement h istory. Th i r ty -e ight va lues, o n e per potent ia l f unc t i on the n o d e cou ld 
c o m p u t e . Reco rds the f rac t ion of P O S I T I V E and N E G A T I V E r e in fo rcemen ts rece ived w h i c h 
w e r e P O S I T I V E . 

• L ink h istory. Th ree va lues, one per con t ro l l ed l ink, w h i c h reco rds t he f rac t ion of cyc les 

the l ink was in t he O N s tate. 

• L ink pair h is tory. Th ree va lues, one per pai r of con t ro l l ed l inks, w h i c h reco rds the 
f rac t ion of cyc les bo th l inks were in the same sta te . 

• Ou tpu t h is tory. S ing le va lue w h i c h reco rds t he f rac t ion of cyc les the n o d e w a s in the O N 
state. 

These h is tor ies have been we igh ted to g ive mo re recen t even ts mo re impo r tance . Unwe igh ted 

h is tor ies inh ib i ted ef fect ive learn ing because t he na tu re of t he c lass i f i ca t ion m e t h o d let f unc t i ons w i th 

long h is tor ies d o m i n a t e f unc t i ons w i th shor t h is tor ies . Of ten a n o d e f o u n d a g o o d func t ion and bui l t 

up a long h is tory to at test to its goodness . Later , w h e n a bet ter f unc t i on w a s avai lab le the shor tness 

of its h is tory p revented its super io r i ty f r om be ing recogn i zed . As an examp le a node that rece ived 90 

P O S I T I V E r e in fo rcemen ts c o m p a r e d to 10 N E G A T I V E r e i n fo rcemen ts c o u l d not demons t ra te a 

super io r i t y over a func t ion rece iv ing 800 P O S I T I V E r e i n fo rcemen ts and 200 N E G A T I V E re in fo rcements . 

Th is leads to a c lose -m indedness a long the l ines of " i t has a lways been g o o d e n o u g h , w h y cons ider 

any th ing e lse?" The me thod of we igh t i ng h is tor ies a l lev iates th is p r o b l e m . 

T h e h is tor ies a re ma in ta ined as fo l lows. Each h is to ry is saved as a va lue, x , be tween -n and n w h e r e 

2n c a n be in te rp re ted as the ef fect ive m e m o r y leng th of t he h is tory. T h e h is tory is in i t ia l ized, usual ly 

to 0. Wheneve r a re in fo rcemen t is rece ived , t he va lue is sca led t o w a r d s 0 by x/n. Addi t iona l ly , if the 

re in fo rcement w a s P O S I T I V E , X is i nc remen ted by 1 , a n d if it w a s N E G A T I V E , X is d e c r e m e n t e d by 1 . T h e 

impac t of t he cu r ren t event is 1 , and the e f fec t ive impac t of past even ts d im in ishes exponent ia l l y as 

they b e c o m e more remote in the past. If a n o d e rece ives P O S I T I V E and N E G A T I V E re in fo rcements w i th 

equa l f requency , t he va lue wi l l exponent ia l l y dr i f t t o w a r d s 0 ind ica t ing a ba lance be tween the two . If 

t he re in fo rcemen ts a re a lways P O S I T I V E , t he va lue wi l l c l imb t o w a r d s /?, w h i c h can be reached bu t 

never e x c e e d e d , ind ica t ing pu re P O S I T I V E r e in fo rcemen t . T h e va lues f r om 0 to n ind ica te inc reas ing 
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d e g r e e s of net P O S I T I V E r e i n fo rcemen t . T h e va lue ((x + n)/2n) g ives the f rac t ion co r rec t ou t of 2n 

events . W h e n measu r i ng s ta tes or a g r e e m e n t of s ta tes, w e make the app rop r ia te subs t i tu t ions for t he 

f rac t i on of P O S I T I V E a n d N E G A T I V E r e i n fo r cemen ts . H is to r ies a re a lways in i t ia l ized to 0, excep t for t he 

R e i n f o r c e m e n t h is tory w h i c h is in i t ia l ized to the va lue of the h is tory of the cu r ren t f unc t i on . 

T h e use of w e i g h t e d h is to r ies g ives a c o m m o n leng th to al l h is tor ies w h i c h fac i l i ta tes c o m p a r i n g 

t h e m . T h e ma themat i ca l c o m p a r i s o n s a re m u c h s imp le r t han w i th an exac t h istory. T h e we igh ted 

h is to ry a lso so lves the p r o b l e m of g o o d func t i ons w i th long memor i es d o m i n a t i n g bet ter a l ternat ives 

w i th sho r te r memor i es . Un fo r tuna te ly , w e mus t a c c e p t the conve rse , name ly that it takes longer to 

re fu te poo r f unc t i ons . Af ter in i t ia l iza t ion, t he w e i g h t e d h is tory has an e f fec t ive memory of 2n events . 

W e c h o o s e 0 for all bu t the Re in fo r cemen t h is tory for w h i c h w e c h o o s e the va lue of the cu r ren t 

f un c t i o n h is tory . A reasonab le ini t ial va lue mus t be c h o s e n s i nce the d u r i n g the f irst few cyc les the 

a s s u m e d h is to ry sha l l d o m i n a t e the ear ly cyc les act iv i ty . For examp le , if t he h is tory we re in i t ia l ized to 

0, it w o u l d i nd i ca te a h is to ry of equa l P O S I T I V E a n d N E G A T I V E r e i n fo rcemen t , fo r a f unc t i on tha t a lways 

rece ives N E G A T I V E r e i n fo r cemen t it wi l l take severa l cyc les to o v e r c o m e th is in i t ia l izat ion. The 

u n w e i g h t e d h is to ry d o e s no t have th is d r a w b a c k . A n o t h e r advan tage to the we igh ted h is tory is its 

abi l i ty to qu i ck l y r ecogn i ze w h e n its r e i n fo r cemen t pa t te rn has c h a n g e d . Cons ide r a n o d e w h i c h has 

lea rned t he op t ima l f unc t i on d e m a n d e d by its supe r i o r w h o re in fo rces it. If it has an unwe igh ted 

h is to ry of 10,000 even ts and s u d d e n l y its supe r io rs asked it to so lve a d i f fe ren t task, it w o u l d take 

t h o u s a n d s of even ts be fo re t he n o d e rea l ized tha t its super io r w e r e re in fo rc ing it d i f ferent ly . Wi th a 

w e i g h t e d h is to ry a h u n d r e d events may su f f i ce . 

3.19 Receiving Internal Reinforcements 

Nodes may rece ive re i n fo r cemen ts f r om any of the i r super io rs . T h e n o d e rece iv ing re in fo rcemen t 

mus t d e t e r m i n e w h i c h if any to ut i l ize. To a c c o m p l i s h th is t he n o d e measures the Con f idence -Leve l of 

e a c h n o d e tha t is the i r super io r . If no supe r i o r is C O N F I D E N T , t hen only N E U T R A L r e i n fo rcemen t s igna ls 

can b e rece ived . If any supe r i o r is C O N F I D E N T , t hen on ly t he re i n fo r cemen t f r om the super io r w i th the 

g rea tes t c o n f i d e n c e is u t i l i zed. In the event of m o r e than one supe r i o r w i th equa l con f i dence , the 

n o d e w h o s e re i n f o r cemen t w a s ut i l ized in the p rev ious cyc l e wi l l be ut i l ized in th is cyc le , o the rw ise 

c y c l e s a re b r o k e n arb i t rar i ly w h i c h he lps t o ma in ta in con t i nu i t y in t he re i n fo r cemen t s igna ls be tween 

cyc les . W e p reven t t he n o d e f r om ut i l iz ing m o r e t han o n e re i n fo r cemen t s igna l per cyc l e to insure 

that t he r e i n fo r cemen ts rece ived are i ndependen t . T h e i n d e p e n d e n c e assumpt ion is vital to the 

c lass i f i ca t ion m e t h o d . If a n o d e had severa l supe r i o r s w h o w e r e compu ta t i ona l l y equ iva lent , t hen 

they w o u l d al l p r o d u c e t he s a m e r e i n f o r c e m e n t s igna ls . T h e n o d e w o u l d in terpre t these as 

i n d e p e n d e n t r e i n fo r cemen t s igna ls , t h u s g iv ing t h e m more s i gn i f i cance they deserve . To prevent th is 

poss ib i l i ty , on ly t he supe r i o r w i th the g rea tes t c o n f i d e n c e is r e c o g n i z e d . 
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3.20 Issuing Internal Reinforcements 

Every n o d e c a n rece ive a n d t ransmi t r e i n f o r c e m e n t in t he In terna l R e i n f o r c e m e n t Phase . T h e s e 

r e i n f o r c e m e n t s igna ls a re used to c h o o s e the c u r r e n t f unc t i on as p rev ious ly d i s c u s s e d . W h e n a n o d e 

is C O N F I D E N T is has t h e r igh t to re i n fo rce t h e n o d e s it has c o n t r o l l e d l inks to . A n o d e issues 

r e i n f o r cemen t t h r o u g h every c o n t r o l l e d l ink. 

T h e r e i n f o r c e m e n t s c h e m e is ou t l i ned in Tab le 3-6 w h i c h i l lus t ra tes r e i n f o r c e m e n t t h r o u g h t he X 

l ink, t he cases for the o the r l inks a re a n a l o g o u s . If t h e n o d e rece ived a N E U T R A L r e i n f o r c e m e n t s igna l , 

t h e N E U T R A L r e i n f o r c e m e n t s igna l is i ssued . T h e n o d e has rece ived th is s igna l b e c a u s e it has no t 

p layed a s ign i f i can t ro le in t he c lass i f i ca t ion by t h e ne two rk , o r t he tu to r i ssued an U N C E R T A I N 

r e i n f o r c e m e n t s igna l . It s h o u l d b e r e m e m b e r e d tha t t h e l ink is t r ansmi t t i ng a b o o l e a n s igna l , a n d tha t 

t h e inverse s igna l c o u l d have b e e n sent . Had t h e s igna l b e e n i nve r ted , t h e n o d e may have o u t p u t a 

d i f fe ren t s igna l . If a d i f fe ren t s igna l b e e n sen t a n d t h e n o d e ac tua l l y rece i ved a non -neu t ra l 

r e i n f o r c e m e n t it c a n b e s h o w n tha t t h e n e w r e i n f o r c e m e n t w o u l d be t h e o p p o s i t e of its c u r r e n t 

r e i n fo rcemen t . S o the n o d e c a n hypo thes i ze a c c u r a t e l y t h e r e i n f o r c e m e n t it w o u l d have rece i ved had 

t h e X l ink sen t an inver ted s igna l . If t h e n o d e rece i ved a P O S I T I V E r e i n f o r c e m e n t a n d inver t ing t he X 

l ink s igna l w o u l d a lso have resu l ted in a P O S I T I V E r e i n fo r cemen t , t hen t he X l ink h a d no c o n t r o l over 

t he r e i n f o r c e m e n t s igna l so w e s e n d t h r o u g h t h e X l ink a N E U T R A L r e i n f o r c e m e n t s igna l . T h e s a m e 

w o u l d app ly if b o t h had b e e n N E G A T I V E r e i n f o r c e m e n t s igna ls . If t h e n o d e rece ived a P O S I T I V E 

r e i n f o r c e m e n t a n d an inver ted X l ink s igna l w o u l d have resu l ted in a N E G A T I V E r e i n fo r cemen t , t h e n w e 

k n o w t h e X l ink w a s c r u c i a l in t h e r e i n f o r c e m e n t rece i ved by t he n o d e . For t h e n o d e to rece i ve a 

P O S I T I V E r e i n f o r cemen t , t h e X l ink mus t c o n t i n u e to o u t p u t t h e resu l t it is n o w , so w e issue a P O S I T I V E 

r e i n f o r c e m e n t t h r o u g h t h e X l ink. T h e o p p o s i t e c a s e o c c u r s w h e n t h e n o d e rece ives a N E G A T I V E 

r e i n fo r cemen t , a n d an inver ted X l ink s igna l w o u l d have resu l ted in a P O S I T I V E r e i n f o r cemen t . W e 

issue a N E G A T I V E r e i n f o r c e m e n t t h r o u g h t h e X l ink to e n c o u r a g e t h e n o d e c o n n e c t e d to v ia t he l ink to 

c h a n g e the o u t p u t it c o m p u t e s . 

R e i n f o r c e m e n t t o X L i n k 

R e i n f o r c e m e n t 
R e c e i v e d 
By Node 

R e i n f o r c e m e n t 
R e c e i v e d By Node i f 

X L i n k S i g n a l I n v e r t e d 

R e i n f o r c e m e n t 
I s s u e d t o 

X L i n k 
R e a s o n 

p o s i t i v e 
p o s i t i v e 
n e g a t i v e 
n e g a t i v e 
n e u t r a l 

p o s i t i v e 
n e g a t i v e 
p o s i t i v e 
n e g a t i v e 

n e u t r a l 
p o s i t i v e 
n e g a t i v e 
n e u t r a l 
n e u t r a l 

X L i n k - no e f f e c t 
X L i n k - c o r r e c t 
X L i n k - w r o n g 
X L i n k - no e f f e c t 
d e s i r e d s i g n a l u n k n o w n 

T a b l e 3 - 6 : R e i n f o r c e m e n t S c h e m e 
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Tab le 3-7 g ives examp les of r e i n fo r cemen t to the X l ink for t w o func t i ons . In the first examp le , the 

n o d e is c o m p u t i n g the f unc t i on X. T h e ou tpu t of t he n o d e is iden t ica l to the s ta te s igna led by the X 

l ink. Obse rve that t he re i n fo r cemen t i ssued t h r o u g h the X l ink is iden t ica l to the re i n fo r cemen t 

rece ived by t he n o d e itself. T h e n o d e is ac t i ng as an in te rmed ia ry b e t w e e n its super io r and its X l ink 

subo rd i na te , a n d is mere ly pass ing i n fo rma t ion b e t w e e n these t w o nodes . In the s e c o n d examp le , the 

OR f u n c t i o n is be ing c o m p u t e d . W h e n the Y l ink is s i gna l i ng O N , t he X l ink rece ives N E U T R A L 

r e i n fo rcemen t , s ince it c a n n o t a f fec t t he ou tpu t of t he n o d e . W h e n the Y l ink is s igna l ing O F F , t he X 

l ink rece ives e i ther a P O S I T I V E or N E G A T I V E r e i n f o r c e m e n t s i nce its ou tpu t is c ruc ia l to the 

re i n fo r cemen t rece ived by the n o d e . 

R e i n f o r c e m e n t R e i n f o r c e m e n t 
R e i n f o r c e m e n t Node R e c e i v e d I s s u e d t h r o u g h 

F u n c t i o n X Y R e s u l t Node R e c e i v e d i f X I n v e r t e d X L i n k 

0 0 0 p o s i t i v e n e g a t i v e p o s i t i v e 
0 0 0 n e g a t i v e p o s i t i v e n e g a t i v e 
0 1 0 p o s i t i v e n e g a t i v e p o s i t i v e 
0 1 0 n e g a t i v e p o s i t i v e n e g a t i v e 
1 0 1 p o s i t i v e n e g a t i v e p o s i t i v e 
1 0 1 n e g a t i v e p o s i t i v e n e g a t i v e 
1 1 1 p o s i t i v e n e g a t i v e p o s i t i v e 
1 1 1 n e g a t i v e p o s i t i v e n e g a t i v e 

0 0 0 p o s i t i v e n e g a t i v e p o s i t i v e 
0 0 0 n e g a t i v e p o s i t i v e n e g a t i v e 
0 1 1 p o s i t i v e p o s i t i v e n e u t r a l 
0 1 1 n e g a t i v e n e g a t i v e n e u t r a l 
1 0 1 p o s i t i v e n e g a t i v e p o s i t i v e 
1 0 1 n e g a t i v e p o s i t i v e n e g a t i v e 
1 1 1 p o s i t i v e p o s i t i v e n e u t r a l 
1 1 1 n e g a t i v e n e g a t i ve n e u t r a l • 

T a b l e 3 - 7 : R e i n f o r c e m e n t Examp les 

3.21 Initialization of the Network 

T h e ne two rk c a n be in i t ia l ized as fo l l ows . M a r k every c o n t r o l l e d l ink for c o n n e c t i o n , a n d every n o d e 

to have its f unc t i on c h a n g e d to a randomly se lec ted f unc t i on f r o m a m o n g t hose e l ig ib le f unc t i ons . 

Execu te t he C h a n g i n g F u n c t i o n s and Un l i nk ing Phases success ive ly , and the ne two rk is ready to 

b e g i n . 



3.22 Explanation of Cycle Timing 

C o n c e p t u a l l y e a c h c y c l e is b r o k e n in to severa l d i s t inc t phases . As i m p l e m e n t e d s o m e of t hese 

phases a re ca r r i ed ou t s imu l taneous ly . T h e f i rst th ree phases can b e p r o c e s s e d at the s a m e t ime. 

Bo th r e i n f o r cemen t phases c a n be ca r r i ed ou t s imu l taneous ly . No o ther ove r lap is poss ib le . 

T h e Un l i nk i ng , C h a n g i n g , a n d L ink ing Phases a re c o n d u c t e d separa te ly to m in im ize d i s r u p t i o n to 

t he n e t w o r k d u r i n g t rans i t ions . Nodes w h i c h a re c h a n g i n g the i r f u n c t i o n , s i gna l a N e w - F u n c t i o n to 

the i r super io rs . T h e N e w - F u n c t i o n s igna l c a u s e s its rec ip ien ts to lose c o n f i d e n c e and re in i t ia l ize the i r 

s ta t is t ics . Th is loss of i n fo rma t i on shou ld be avo ided w h e n it is unnecessa ry . If n o d e P has 

des igna ted t h e l ink to n o d e Q to be rep laced , a n d n o d e Q is a b o u t to c h a n g e its f u n c t i o n , t h e n t h e r e is 

no need for n o d e P to rece ive t he N e w - F u n c t i o n s igna l f r om n o d e Q. P lac ing t h e Un l i nk ing Phase 

b e f o r e the C h a n g i n g Func t i on Phase a l l ows the i r c o n n e c t i n g l ink t o be f reed p reven t i ng t h e r e c e p t i o n 

of t he s igna l . S imi lar ly if n o d e R w ishes to make a l ink to n o d e Q, then t he re is no need for n o d e R to 

rece ive t he s igna l e i ther . There fo r , the L i nk ing Phase is p l aced af ter t he C h a n g i n g Func t i on Phase so 

tha t t he N e w - F u n c t i o n s igna ls a re t ransmi t ted be fo re the new l ink c o n n e c t i o n is made . In b o t h cases , 

n o d e s P a n d R had no reason to k n o w tha t n o d e Q w a s c h a n g i n g i ts f u n c t i o n . 
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4. Results 

4.1 Overview 

To demons t ra te the capabi l i t ies of the CONSENSUS system it was run against three instances of the 

learn ing task. The first ins tance requi res c lassi fy ing all possib le func t ions of three inputs, wh ich vary 

s ign i f icant ly in d i f f icul ty . The ne twork was deve loped on th is p rob lem and later appl ied to the 

fo l lowing p rob lems. The second instance is the shi f ter p rob lem, here the network must recogn ize an 

impor tan t regular i ty , but has more inputs to con tend w i th . In the th i rd instance, the network cont ro ls 

a s imula ted o rgan ism in a more comp lex env i ronment . 

4.2 A Simple Test 

For a s imple non-tr iv ia l test, the fo l lowing task was posed to the network : Learn to recogn ize and 

cor rec t ly classi fy each of the possib le un ique boo lean func t ions of 3 var iables. The binary input 

vec to rs cons is ts of 3 e lements , a l lowing 8 (2 3 ) un ique input vectors . W e requi red the network to 

classi fy each vec tor as e i ther V A L I D or I N V A L I D , wh i ch a l lows 256 (2 8 ) possible funct ions. From among 

these 256 poss ib le func t ions only 14 are un ique, the remainder be ing equivalent if you can rename 

inputs and recogn ize inverses. F igure 4-1 enumera tes the func t ions , gives the f requency wi th wh ich 

they or an equiva lent occu rs , and d iagrams a Karnough map of the func t ion . 

To solve th is p rob lem, the network was con f igu red to have three commun i t ies organized into three 

layers wi th each commun i t y composed of 24 nodes. The nodes in each commun i t y are permi t ted to 

l ink to any node be low them inc lud ing the input nodes. The network" was run against each un ique 

func t ion for 1024 cyc les . T h e number of min terms co r rec t (out of a max imum of 8) for the network is 

tabu la ted in Tab le 4 - 1 . 

The learn ing p rocess was observed to occu r in rough ly three phases. The first phase occurs dur ing 

the init ial 20 to 30 cyc les . The network beg ins w i th a random init ial izat ion of func t ions and 

connec t i ons of dub ious value. Dur ing the first few cyc les the top commun i t y nodes identi fy the 

aspects of the random ini t ia l izat ion that were especia l ly poor . These func t ions that per form badly are 

qu ick ly rep laced by bet ter func t ions that genera l ly c o m p u t e sl ight ly bet ter than chance . In th is 

p rob lem, top commun i t y nodes wou ld be expec ted to be ini t ial ized such that they wou ld compu te 4 of 

the 8 min terms cor rec t ly . Typical ly , after this first phase there are essential ly no top commun i ty nodes 

get ter fewer than 4 min terms co r rec t and the major i ty are get t ing be tween 5 and 7 minterms cor rec t . 

The spokesman in the top commun i t y usual ly have at least 6 minterms cor rec t and often have all 8 
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minterms cor rec t . Activi ty in this first phase is con f ined pr inc ipal ly to the nodes in the top commun i t y 

because unti l the nodes in the top commun i t y ga in con f idence , no re in fo rcement is issued to the 

nodes to the lower levels. Whi le per fo rmance after this phase is of ten surpr is ing ly g o o d , the 

know ledge is not robust . There are of ten many cr i t ica l nodes in the network . These nodes are cr i t ica l 

because a change in their funct ion wou ld drast ical ly af fect the pe r fo rmance of the network as a 

who le . 

S low progress is character is t ic of the second phase. Most of the nodes in the top commun i t y now 

possess con f idence and are re inforc ing their subord inates. Several nodes in the lower levels are able 

to identi fy features that are useful to their super iors . The posi t ive re in fo rcement f rom their super io rs 

a l lows these nodes to " l ock o n " to the feature they have ident i f ied. O n c e a node has " l ocked o n " to a 

feature, o ther nodes at h igher levels are of ten able to de te rmine h o w to use th is feature to improve 

their per fo rmance. This phase ranges f rom 50 to 300 cyc les in du ra t ion . At its conc lus ion , most top 

commun i t y nodes have either 7 or 8 minterms cor rec t , t hough on di f f icul t p rob lem nodes wi th 6 

minterms cor rec t can be found . The spokesman has all of the min terms cor rec t and many nodes in 

the lower level now possess conf idence. The know ledge is relat ively robust at th is po int . 

The th i rd phase consists of very s low learning. Nodes in the top commun i t y make s low progress 

whi le search ing for a way to get their last minterm cor rec t . When a node has all but one minterm 

cor rec t , it must of ten exp lore a large number of possibi l i t ies be fo re it f inds a way to get all the 

minterms cor rec t . Nodes in the lower level occas ion ly f ind improvements in their func t ions . The 

New-Funct ion s ignal they generate dur ing their t rans i t ion to a new func t ion can cause many nodes 

above them to lose con f idence and reinit ial ize their histor ies. After losing con f i dence , these nodes 

are vu lnerable to the temptat ion of chang ing their cu r ren t func t ion for one that is a lmost as good but 

is temporar i ly per fo rming as wel l as or bet ter than the cur ren t f unc t i on . Nodes that y ie ld to the 

temptat ion must then relearn the minterms they now have incor rec t . The ne twork genera l ly makes 

very s low progress and eventual ly reaches an apparent equ i l ib r ium between the s low improvements 

of the top commun i t y nodes and the consequences of the waves of New-Func t ion s ignals. 

On these prob lems, the network obtains 8 out of 8 min terms co r rec t in 512 cyc les and mainta ins this 

t h rough 1024 cycles. The network had the easiest t imes wi th the func t ions of two inputs or less (A, C, 

L, and M). These are the funct ions possessing the greatest regular i ty. The ne twork had the greatest 

d i f f icul ty w i th func t ions G and H. These func t ions have several min terms w h i c h are d ispersed f rom 

each other. Funct ions are di f f icul t to learn if they have few under ly ing regular i t ies. Ad jacent 

minterms wi th the same value form regular i t ies. Funct ions such as B or C wi th a p reponde rance of 

one minterm value have many adjacent minterms of the same value. Func t ions wi th the equal number 
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of min terms of each value canno t help but possess some degree of regular i ty. The nodes w i th a s l ight 

p reponde rance of one minterm value offer the fewest under ly ing regular i t ies. 

C y c l e s 
F u n c t i o n 32 64 128 256 512 

A F a l s e 8 • * * * 

B X " Y * Z 7 7 7 8 8 

C X * Y 8 8 8 8 8 

D X - (Y x o r Z ) 7 7 7 8 8 

E ( X ~ Y * Z ) v ~ ( X * Y ~ Z ) 6 6 7 8 8 

F X * (Y v Z ) 8 8 8 8 8 

G (X " Y ) v ( ~ X A ~ Y ~ Z ) 7 7 7 7 8 

H (X * (Y x o r Z ) ) v ( - X - Y - Z ) 8 8 7 7 8 

I (X A Y) v (~Y * Z ) 8 8 8 8 8 

J X x o r (Y ~ Z) 8 8 8 8 8 

K (X * Y ) v (Z - (X x o r Y ) ) 7 7 7 8 8 

L X 8 8 8 8 8 

M X x o r Y 7 7 8 8 8 

N X x o r Y x o r Z 6 7 8 8 8 

* - e v e r y node i n c o m m u n i t y has 8 

T a b l e 4 - 1 : Resul ts on Boo lean Funct ions of 3 Var iables 

4.3 The Shifter Problem 

As a more d i f f icu l t test, the ne twork was asked to solve the fo l lowing prob lem : Learn to recogn ize 

shi f ts of the input vector . The binary input vector was d iv ided into two componen ts , S and V. The 

c o m p o n e n t S cons is ts of a s ingle e lement and des ignates the t ransformat ion on componen t V to be 

pe r fo rmed to p r o d u c e O, the output vector . The c o m p o n e n t V cons is ts of four e lements numbered V t 

t h rough V 4 and the vector O cons is ts of four e lements numbered 0 1 t h rough 0 4 . If S is O N , O shou ld 

rece ive the co r respond ing e lements of V, for example 0 2 receives V 2 < If S is O F F , O shou ld rece ive the 

e lements of V shi f ted one p lace, for example 0 2 receives V r When a shif t t ook p lace, 0 1 shou ld 

receive V 4 to p roduce a rotat ion of the last e lement . There are 32 (2 5 ) un ique input vectors w h i c h 

were presented wi th equal probabi l i ty . W e requi red the network to p roduce O, the output vector . For 

each e lement of O, the ne twork must de termine wh i ch of 2 3 2 func t ions implement the requ i red 

f unc t i on . 

To so lve the p rob lem, the ne twork was con f igu red to have e ight commun i t i es organ ized into two 

layers. S ince a top commun i t y can p roduce only a s ing le bi t of output , one top commun i t y is needed 

for each e lement in O, the ou tpu t vector . Essential ly there are four ne tworks opera t ing in paral le l . 


