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Abstract

We present a new scheme for the activity of neuron-like elements in a connectionist network, The
CONSENSUS scheme is based on statistical inference. The guiding principle of CONSENSUS is that
decisions should be deferred until sufficient evidence accumulates to make an informed choice.
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awareness of their role and utility in the network which allows them to increase their effectiveness.
The reinforcement scheme utilizes the notion of confidence so that only nodes proven to contribute
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and was able to find suitable encodings to solve them.
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1. Introduction

Knowledge about the architecture of the brain has lead researchers to investigate the properties of
"connectionist” systems. These systems are characterized by simple neuron-like processing
elements which are interconnected and store their knowledge as the strengths of these connections.
There are tasks for which these networks are eminently suited such as pattern recegnition. With the
proper connections and connection strengths, the processing elements can compute in paraliel. For
a specific task, determining the proper interconnections and strengths to utilize the computational
power of the network is straightforward. For more generai problems, we may not be able to determine
the proper configuration of the network. Preferably, the network would be able to dynamically

recoenfigure itself to solve the task presented to it.

To reconfigure itself a program must gain an understanding of the task, in otherwords, it must learn.
For a large domain rote memaorization will be impractical‘ since it requires exhaustively enumerating
the domain. To complete the task without rote memorization, the network must understand some
concepts about the domain. To learn autonomously, no outside agent may communicate to the
network any concepts about the domain. Learning by example, involving a tutor presenting domain
examples to the netwark and indicating the_ desired response, meets this criteria. This means that the
network must be able to formulate its own concepts about the domain based upaon the examples
presented to it. The network must initially recognize features from the domain, then learn to utilize the
features it has learned to recognize. Such learning would be evolutionary with improving
performance as opposed to instant learning. A network utilizing domain feature recognition should
be able to infer domain examples to which it has not been previously exposed. We will concentrate

on learning-by-example.

Initial studies of simple networks learning to classify input vectors were encouraged by the
perceptron convergence procedure. The perceptron convergence proced_ure detailed a method by
which a one layer network could reach its full potential as a computing element. However, most
interesting computations require more than one layer. In 1969, in Perceptrons [19], Minsky and
Papert showed that no convergence procedure can exist for multi-layered networks. The lack of 3
proven convergence procedure does not mean that neural networks are incapable of interesting

computations.

The search for effective convergence procedures continue, many of them with a mathematical bent.
Recent work includes the Boltzmann machine [12], which relies on stochastic relaxation techniques

to achieve convergence. Rather than attempt to prove convergence properties for a method, we wifl



be satisfied by a convincing empirical demonstration of the ability of a method to achieve

convergence.

This paper describes the CONSENSUS system, a cannectionist network. CONSENSUS is an
acronym for CONtext SENsitive NetworkS Using Statistics. The network discovers inherent
environmental constraints by being presented with examples from the domain by a tutor. The
network modifies its interconnections and programming to capture the underlying constraints from
the domain. In this manner, the network learns the tutor's classification method from the examples.

Experiments show that the network is able to learn in simple domains.

The downfall of many learning methods has been the "credit-assignment” problem. A learning
method must be able to determine how to modify its parameters in order to improve its understanding
of the task. Most previous work depends on making many small modifications with little confidence in
each change or its effect on the network. To improve performance they rely on the net accumulated
change of the many small modifications. Instead, we attembt to make a few large changes with good
confidence. The guiding principle of CONSENSUS is that decisions should be deferred until
sufficient evidence accumulates to make an informed choice. The CONSENSUS system attempts to
do this by giving each node an understanding of the role of itself and its neighbors in the network,

The decision method of CONSENSUS is based on probability theory and the statistics of group action.

The maost distinguishing features of the CONSENSUS system are :

1. The use of statistical inference for the classification method. Changes are made when
sufficient statistical evidence has accumulated to justify the change with a high degree of
confidence. ’

2. Large changes are made with confidence. The network makes a few large changes with
a high degree of confidence in contrast to more conventional systems which rely on the
accumulation of many small changes each made with little confidence.

3. Nodes have an awareness of their role and utility in the network. [t is advantageous for
nodes to understand their role in the network so that they may perform that role more
effectively.

4. The use of the notion of confidence in the reinforcement scheme. Only nodes that are
proven to contribute to the success of the network may issue reinforcements, which aids

in the translation of global reinforcements into local reinforcements.

5. The grouping of nodes into communities to exploit their collective knowledge. The
collective knowledge of a group of nodes can exceed that of any of its members.

Section 2 describes the task domain, and Section 3 contains a description of the network



components. Experimental results are presented in Section 4. Section 5 discusses several aspects of

the network, and Section 6 contains concluding remarks.



2. The Domain

2.1 Overview

The learning task involves learning-by-example with immediate feedback by a tutor. The network is
presented with a series of examples from the domain which it must classify. The proper classification
is strictly a function of the current example, no other dependencies including temporal dependencies
are allowed. The tutor gives immediate feedback to the network for each example, delayed feedback
is not allowed. The task is a simple one, but has wide applicability. Many more complicated problems

can be recast in the form of this domain.

2.2 The Learning Task

The task to be performed involves classifying binary vectors. The network must classify each
example presented to it as either vALID or INVALID. The tutor, assumed to be infallible, categorizes
each example as VALID, INVALID, or UNCERTAIN. If the tutor ctassifies an example as VALID the network
must also classify it as»vnuo. If the tutor classifies an example as INVALID the network must also
classify it as INVALID. If the tutor classifies an example as UNCERTAIN, then the network may classify it
as VALID or INVALID. The tutor examines the network’s classification and advises the network of the
accuracy of its classification. The tutor rewards the network for a correct (matching) response and
punishes it for an incorrect response when a VALID Or INVALID was presented. - The tutor neither
rewards nor punishes the network when an UNCERTAIN example was presented. This illustrated in
Table 2-1. The objective is for the network to learn to correctly recognize VALID and INVALID

examples from the domain solely as a result of the tutor’s advice.

Input Vector Tutors Networks Desired
X Y z Classification Classification
0 0 0 Uncertain Either
0 0 1 Invalid Invalid
0 1 0 Invalid . Invalid
0 1 1 Invalid Invalid
1 (1] 0 Invalid Invalid
1 0 1 Valid Valid
1 1 0 Valid Valid
1 1 1 Valid valid

Table 2-1: Sampie Problem



2.3 The Difficulty of the Task

The difficully of any given problem is a function of the size of the binary input vector. A problem
with binary input vectors n elements in length could present the network with up to 2" distinct input
vectors, since each of n inputs could assume 2 distinct states, on or OFF. The network must be able
to make an adequate classification of each potential input vectar. If the number of potential vectors is
m (=2"), then the network has 2™ possible ways to classify the set of possible input vectors since
each of m input vectors could be classified in 2 ways, vALID or INVALID. A domain with input vectors
of length 10, could generate up to 1024 distinct input vectors, and farce the network to choase the
correct classification function from among up to 21024 diftarent possible functions. The double

exponential nature of the problem makes it extremely difficult to solve complex problems.

In practice, the problems are usually simpler. The network may not be presented with all of the
potential input vectors. Some of the input vectors presented may be UNCERTAIN in which case any
classification by the network is acceptable. The worst case assumes that there are no inherent
regularities in the problem. Most interesting problems have some inherent regularities. Recognizing

and representing these regularities is essential to solving problems quickly and efficiently.

A network capable of correctly classifying binary input vectors has the capability to classify arbitrary
input vectors. Any input value, such as reals or integers, can he replaced by one or more binary input

values, therefor the binary nature of the domain is not an inherent restriction on its capabilities.



3. The Network

3.1 An Overview

CONSENSUS is a connectionist network capable of learning from examples. The network consists
of nodes which are organized into communities which are in turn organized hierarchically into layers.
Nodes are interconnected by links which allow the nodes to communicate with each other.
Communities are groups of nodes which are monitored by a distinguished node that reflects their
collective judgement. A conceptual view of the network is shown in Figure 3-1. The following section

gives an overview of the network components and subsequent sections describe the network in

detail.
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Figure 3-1: Conceptual View of a Network



3.2 The Network Components

3.2.1 Nodes

The nodes are the primitive computing elements in the network. Each node controls three links with
which it can connect and communicate with other nodes. For convenience these controiled links will
be referred to as the X link, the Y link, and the Z link. An arbitrary number of uncontrolled links may
be linked to a node. A node is always in one of two statés, ON or OFF, which is a deterministic pairwise
boolean function of the states of two other nodes with which its controlled links are connected. Every
node has a unique identifier and maintains a history summarizing the events which it has chserved.
These are conventional nodes, there are some specialized nades in the network, but the term nodes
will be use to refer to conventional nodes unless otherwise indicated. The operations of the network
center on the conventional and specialized nodes and the following sections describe the operations

in detail.

3.2.2 Links

Links allow communication between nodes. A link is a directed connection between two nodes. A
link has a SUPERIOR end and a SUBORDINATE end which are distinguishable. The superior node
resides in the same layer or a higher layer in the hierarchy than the subordinate node, and the
superior node determines which node shall be the subordinate node. The link can transmit the

following information from the subordinate node to the superior node :

+ Subordinate node state.
e Subordinate node identifier.

* New-Function signal.
The iink can transmit the following information from the superior node to the subordinate node :

» Reinforcement signal.

e Confidence-Level.

The superior end is permanently connected to a single node while the subordinate end may be
connected to different nodes at different times,

3.2.3 Communities
A community is a collection of nodes that function together to share their understanding of the
environment to which they are connected. The community consists of many conventional nodes and

one spokesman node. Each community resides exclusively in one layer.



3.2.4 Spokesman

A spokesman is a distinguished node. It controls one link to every other node in its community
which is fixed and may not be reconnected to other nodes. The state of the spokesman is a
deterministic function of the states of the other nodes in the community. The state of the spokesman
represents the collective judgement of the nodes of the community. Henceforth, the term spokesman

is meant to be spokesman node.

3.2.5 Layers

Layers are composed 6f one or more communities. The network is organized hierarchically and
there may be an arbitrary number of layers. The binary input vector is considered to be layer 0, the
remaining layers are numbered from 1 to n. Communities in the uppermost layer are referred to as
top communities, while any community that may connect to the inputs is referred to as a base

community.

3.2.6 Environmental Inputs _
The binary input vector from the environment is communicated to the network via input nodes.
These are specialized nodes, one per element in the vector, and always assume the state of the

corresponding element in the binary input vector. These nodes reside in layer O by definition,

3.2.7 Environmental Reinforcement
The tutor conducts the environmental reinforcement. The environmental reinforcements are sent to
every node in the top layer. These nodes may generate internal reinforcements which can propagate

downwards throughout the network.

3.3 Cycle Timing

Each cycle consists of the phases enufnerated below. A central clock ensures that the nodes are

properly synchronized.

1. Environmental Input Received. The input nodes assume the state of the corresponding
element of the binary input vector.

2. Computation. Each node computes its new state after its subordinates have assumed
their new states. lts new state is then available to its superiors so they may compute their
new state. All nodes may compute in parallel subject to propagation delays.

3. Network Classification. Spokesman located in the top communities classify the binary
input vector on behalf of the network.



4. Covironmental Reinforcement.  Nodes located in the top communities reccive
reinforcement from the tutor,

3. Internal Reinforcement. The nodes in the top communities issue reinforcement signais to
their subordinates. The subordinates in turn issue reinforcements to their subordinates,
Reinforcement may go on in parallel throughout the network subject to propagation
delays.

6. Analysis. Each node analyzes the functions it could compute, and the usefuiness of the
links it controls. It determines if it should retain or change its current computed function,
and which links, if any, should be replaced this cycle. All nodes may analyze in parallel.

7. Unlinking. Links designated for replacement are unlinked from their subardinate nodes.

8. Changing Functions. Nodes dasiring to change their computed function now do so
informing their superiors of their action.

9. Linking. Links without connections to a subordinate node are now reconnected to new
nodes, .

3.4 Receiving Inputs from the Environment

The environmental binary input vector is made available to the network in the Environmental Input
Received Phase. Each input node assumes the state of a specified element, which remains the same
from cycle to cycle, in the binary input vector, The states of these nodes are now available to the

remainder of the network.

3.5 Computing the Outbut of a Node

A node outputs one of the sixteen pairwise boolean functions of two of the three links it controls.
The node could compute any of the 38 unique pairwise boolean functions enumerated in Table 3-1
subject to the restriction that only top community nodes may compute a constant. It could compute a
function of none of its links (a constant), a function of one of its links, or a function of two links. Only
half of the functions are independent since every signal has exactly one inverse. The node
remembers which function it is to output. During the Computation Phase the node assumes the state

of its output.

3.6 Computing the Qutput of a Spokesman

The spokesman node of each community cutputs the state of the majority of the other nodes in the
community. The spokesman samples their states through the links it controls and determines which
state is in the majority, breaking ties arbitrarily if nceded. In this way, the node represents the

collective judgement of the nodes in the community.
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Functions of 0 inputs :

FALSE TRUE
Functions of 1 input :
X ~X Y ~Y z ~1

Functions of 2 inputs :

Xor Y X nor Y Yor Z Y nor I Zar X Z nor X
X or ~Y ~% and Y ¥ or ~1 ~Y and I Z or ~X ~Z and X
~X or Y X and ~Y ~Y or I Y and ~1 ~I or X Z and ~X
X eqgv Y X xor Y Y eqv Z Y xor 1 L eqv X I xor X
X and Y X nand ¥ Y and Z Y nand 2 Z and X Z nand X

Table 3-1: Unique Pairwise Boolean Functions

3.7 Computing the Output of the Network

The output of the network is taken to be the state of the spokesmen of the top communities. If the
state of the spokesman is ON, the network is said to have classified the example as ACCEPTABLE. [f the

state of the spokesman is OFF, the network is said to have classified the example as REJECTABLE.

3.8 The Tutor

The function of the tutor is to issue the appropriate environmental reinforcement to the network.
The tutor can be thought of as a single node residing in the n+1 layer. The tutor has a fixed

controlled link to every node of every top community through which it may reinforce these nodes.

3.9 Receiving Environmental Reinforcement

The tutor, presumed to be infallible, classifies the binary vector input as either ACCEPTABLE,
REJECTABLE, Or NEUTRAL. It issues a reinforcement signal to every node in the top communities. The
state of each node in the top community is examined and compared to the desired classification. The

tutor then issues reinforcement as described previously and illustrated in Table 2-1.

3.10 The Classification Method

3.10.1 Introduction

Consider the following problem. You are given a coin and asked to classify the coin as FAIR, a HEAD,
or a TAIL. A HEAD coin comes up heads more often than tails, a TAIL coin comes up tails more often
than heads, and a FAIR coin comes up heads and tails with equal frequency. How can you determine
which category the coin belongs to if you are only allowed to test the coin by flipping it and recording

the result?
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Determining the correct classification with absolute certainty is impossible. Unless the coin always
produces heads or tails, then any given flip could result in a head or a tail. A coin that praduces both
heads and tails could belong to any of the three categories. Any sequence of observed results could
be produced by a coin from any of the three categories. This makes it impossible to rule out any of

the three categories with absolute certainty,

Since the coin cannot be classified with certainty, we must settle with flipping the coin until a good
guess as to which categery it belongs in can be made. We could satisfy ourselves that the coin is a
HEAD if & sequence was observed which was very likely for a HEAD coin but very unlikely for a FAIR or
TAlL coin. The converse can be done 1o satisfy ourselves that the caoin is a TAIL coin. Satisfying
ourselves that a coin is a FAIR coin, is much more difficult. While a FAIR cain is equally likely to come
up heads or tails, it is not assured in any particular number of trials. Indeed, a FAIR coin is far more
likely to have an unequal number of heads and tails observed after a given set of trials. It would be
expected that over a very farge number of trials, the numbers of heads and tails would be
approximately equal. We can categorize a coin as being as FAIR coin with confidence if we believe
with confidence that it is not a HEAD coin and not a TAIL coin by process of elimination. This solution

to the coin problem is based on statistical inference and can be placed on a more formal basis.

3.10.2 Statistical Inference

Statictical inference is the process of drawing conclusions about a population on the basis of a
random sample. Alternative hypotheses are classified by hypothesis testing. In the solving the coin
problem we may propose the hypothesis "the unknown coin is a HEAD coin." We generate a sample
by flipping the coin and observing the result. Hypothesis testing is a general method for determining
whether to accept or reject the proposed hypothesis about a random variable from information in the

random sample [1].

3.10.3 Classifying the Coin
In the case of the coin problem, we are asked to categorize the coin as either FAIR, HEAD, or TAIL. [f
an ingufficient number of triais to make a determination has been observed, we can ¢laim that the

proper classification is unknown,

To classify the coin as a HEAD it must be shown that it is unlikely to be a FAIR or a TAIL coin. A FAIR
or a TAIL coin will have heads come up no more often than tails. In a sample of n trials, we will
observe h heads and t tails such that h + t = n. if 100 trials of 1000 coin Hlips each were conducted,

we would expect a FAIR coin to produce between 460 and 540 heads inclusive in 99 of the trials. This
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range from 460 to 540 constitutes the 99% contidence intarval (two tailed) which is defined to be the
range that is expected to encompass 99 out of 100 trials. f more than 540 heads are observed, we
can claim that the coin is a HEAD. If itis acluaily a FAIR coin, the probability of our being wrong is .5%.
Iif it is actually a TAIL coin, the probability of our being wrong is less than .5%. We accept a probability

of error of .5% when we make a classify a coin as a HEAD coin.

Conversely, if the observed number of heads is less than 460, the coin can be classified as a TAIL

coin with an error of .5% or less.

it should be emphasized that not classifying a coin as a HEAD or a TAIL is not equivalent to
classifying it as a FAIR coin. A coin is classified as a HEAD or a TAIL when we have a preponderance of
evidence in favor of that classification. We may or may not have sufficient evidence to classify a coin

as a FAIR coin.

To prove that a coin is a FAIR coin by the above method would require an infinitely large number of
samples. Since it is infeasible to prove that the coin is a FAIR coin, we will be content to show that the
coin is fair to within an equivalence factor. If the equivalence factor is 5%, then we would consider a
coin to be a FAIR coin if it can be shown that it will come up heads between 45% (50% - 5%) and 556%
(50% + 5%) of the time. Showing that the coin will come up heads more than 45% of the time is
analogous to categorizing the coin as a HEAD coin (comes up heads more than 50% of the time). The
99% confidence interval for a coin that comes up head 45% of the time is from 410 to 490 inclusive.
So if more than 490 heads are observed, we are satisfied that the coin will come up heads more than
45% of the time. Analogously, the 89% confidence interval for a coin that comes up heads 55% of the
time is from 510 to 590 inclusive, and if fewer than 510 heads are observed we are satisfied that the
coin will come up heads less than 55% of the time. Therefor if between 491 and 509 heads inclusive
are observed, we are satisfied that the coin will come up heads and tails with equal frequency to

within a 5% equivalence factor and classify the coin as a FAIR coin.

If the number of observed heads is between 460 and 490 inclusive, or between 510 and 540
inclusive we have not classified it into any of the three categories. We judge its proper classification

to be unknown, pending additional data.
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3.10.4 Classifying a Function

Functions at a node can be classified in much the same way as coins can be classified. Coins were
classified depending on whether they came up heads more than 50% (HEAD), less than 50% (TAIL), or
equivalent to 50% (FAIR). The same can be done for functions at a node depending on whether they
are correct more than the current function (SUPERIOR), less than the current function (INFERIOR), or
the same as the current function (REDUNDANT). If there is insufficient information to make this

determination, we classify it as UNKNOWN,

To better illustrate the previous discussion, consider the following example. In the ensuing
discussion, | will refer to Table 3-2 and Figure 3-2. In this example, the present function that the node
is computing is correct 70% of the time. Table 3-2 gives the classification criteria for differing number
of trials. Figure 3-2 presents this information graphically, though not necessarily to scale. On the

y-axis the fraction correct is plotted, on the x-axis the number of trials is plotted.

As we did before in the coin problem, we must determine what the 99% confidence interval is, which
varies with the number of trials. The current fraction correct is shown by line Aa. The confidence
interval about the current fraction correct is delineated by the lines Bb and Cc. if the fraction correct
for the alternative function lies above the line Bb, we classify it as a SUPERIOR alternative function. If
the fraction correct lies below the line Cc, we classify it as an INFERIOR alternative function. To
classify the function as REDUNDANT we must show it falls within the equivalence factor of the fraction
correct for the current function. This range is delineated by the lines Dd and Ee which are paralle! to
line Aa, the fraction correct for the current function. The 99% confidence interval about line Dd is
delineated by lines Ff and Gg. The 99% confidence interval about line Ee is delineated by lines Hh

“and li. The classification of REDUNDANT can be made in the region bounded by lines Bb, Cc, Gg, and
Hh. In the remainder of the figure, we make the classification of UNKNOWN since we do not have a

sufficient number of samples to make a proper determination among the first three categories.

A few observations about the diagram are in order. In the leftmost part of the figure, the UNKNOWN
region dominates. This reflects that only a few number of trials have been conducted and that
insufficient information is available for a proper classification is available. In the rightmost part of the
figure, the y-axis is divided exclusively into SUPERIOR, INFERIOR and REDUNDANT regions. This implies
that with a sufficient number of trials, a proper classification can always be made. This is the case
because the boundaries of the confidence interval asymptatically approach their center. So lines Bb
and Cc asymptotically approach line Aa, lines Ff and Gg asymptotically approach line Dd, and lines
Hh and li asymptotically approach line Ee. Therefor lines Bb and Cc will come closer to line Aa than

any constant, namely the equivalence factor. This insures that the lower boundary to the SUPERIOR
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Size 10 20 50 100 200 500 1000 2000
Correct 7 14 35 70 140 350 700 1400
99% Lower .327 .436 .533 582 617 647 663 .674
Upper 1.000 .964 .867 .818 .783 .753 .737 .726

5% Lower 1.000 .925 .824 773 737 .705 .689 677
Upper .397 501 .502 .638 671 700 715 ,725
Reject < 4 9 27 59 124 324 663 1354
Redundant - - - - - - 689 1355
- - - - - - 715 1450

Accept > 10 - 19 43 81 156 376 737 1450

Table 3-2: Classification Criteria Example

region, line Bb, will intersect the upper boundary to the REDUNDANT region, line Gg. It also insures
that the upper boundary to the INFERIOR region, line Cc, will intersect the lower boundary to the

REDUNDANT region, line Hh.

The sketch in Figure 3-2 is asymmetrical. This is the general case, the figure will be symmaetrical
only when the current function, line Aa, has a fraction correct of 50%. In the network, we have used a
chi-square test instead of explicitly calculating the binomial distribution to simplify the calculations of

the confidence intervals,

An underlying assumption is that 'the each trial is independent. Were the trials to be dependent in
some fashion, the assumptions about the probability distributions would be incorrect. Obtaining ten
out of ten correct when all the trials are independent is far more significant than obtaining ten out of
ten when the outcome of the trials are dependent. To employ this method requires assurance that the

trails are independent and we will take measures discussed later to assure this.

By using this classification method, we can compare an alternate function to the current function
and classify the alternate function as SUPERIOR, INFERIOR, or REDUNDANT, and if lacking sufficient
information to place it in the first three categories, classify it as UNKNOWN. This gives us a means to

determine which of two functions is better.

~ 3.10.5 Correlating a Pair of Functions

We have need to determine when two functions are INDEPENDENT or DEPENDENT. This can be
accomplished by using a method similar to that discussed above. We seek to determine when the
pair of functions compute the same result to an unacceptable degree. The two functions are
considered DEPENDENT if they compute the same functions or if one function is the inverse of the

other. Two functions are considered to be equivalent if they obtain the same resuits within a
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dependence factor with 99% confidence. Two functions are considered to be inverses of one another
if they obtain opposite results with a dependence factor with 99% confidence. If it cannot be
determined that the two functions are DEPENDENT, we classify them as INDEPENDENT. By this

classification of INDEPENDENT, we really mean that the two functions are not totally dependent.

To better illustrate this, consider the following example. In this example, a dependence factor of
10% will be used. Table 3-3 gives the classification criteria for differing number of trials. Figure 3-3
presents this information graphically, though not necessarily to scale. On the y-axis the fraction in

agreement is plotted, on the x-axis the number of trials is plotted.

We must determine when we are 99% confident that the functions agree more often than the
dependence factor allows. With a 10% dependence factor, we seek to show that the functions agree
more than 90% of the time, line Jj, or less than 10% of the time, line Kk. The 99% confidence interval
about the dependence factor must be determined, which varies with the number of trials. The limit of
the confidence interval above the 90% function agreement is shown by line LL. The limit of the
confidence interval below the 10% function agreement is shown by line Mm. If the fraction in
agreement for the specified number of trials is above line LI or below line Mm, we classify the pair of

functions as DEPENDENT, otherwise we classify them as INDEPENDENT.

it should be noted that the lines L} and Mm approach lines Ji and Kk respectively asymptotically.

This figure is symmetrical under all conditions.

3.11 Analyzing Functions at a Node

Each node computes one function of its inputs, while it has the potential to compute any of the 38
functions enumerated in Table 3-1 excluding the 2 constant functions for the nodes in non-top
communities. The node maintains a history for the current function as well as for all of the potential
alternative functions. During the Analysis Phase of each ¢ycle, the node attempts to determine if any
of the functions it is not currently computing could better satisfy its superiors. The node uses the
classification method to compare each alternative function to the current function, and classifies
each alternative among the set of SUPERIOR, INFERIOR, REDUNDANT, and UNKNOWN. The nodes use the

following procedure to determine what function to compute in the next cycle:

1. If any of the alternate functions is classified as SUPERIOR then the alternate function with
the greatest fraction correct is selected to be the new function the node will compute. In’
the case of a tie, the function requiring the fewest inputs is preferred with remaining ties
broken arbitrarily. This new function is marked to be made into the current function in the
Changing Function Phase. Links controlled by the node but unneeded by the new
function are marked to be unlinked in the Unlinking Phase.
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Figure 3-3: Dependence Criteria Sketch
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Size 50 100 200 500 1000 2000 5000
Upper Dependence 45 a0 180 450 900 1800 4500
99% Upper 1.000 .97 L9556 .935 .924 .917 911
Lower Dependence 5 10 20 50 100 200 500
99% Lower .000 .023 .045 .065 .076 .083 .089
Dependent Upper 0 98 190 467 924 1834 4554
Dependent Lower 0 2 10 33 76 166 - 446

Table 3-3: Dependence Criteria Example

2. If none of the alternate functions is classified as SUPERIOR or UNKNOWN, then the alternate
functions classified as REDUNDANT and the current function are compared to determine
the function with the greatest fraction correct, with ties broken as described above. This
function is marked as the new function, and the unneeded links are marked as discussed
above.

3. If no alternate functions are classified as SUPERIOR, but at least ane alternate function is
classified as UNKNOWN, then the current function is retained. No function is marked for
the Changing Function Phase, and no links are marked for the Unlinking Phase.

We desire to change to a SUPERIOR function as soon as we can determine which, if any, it is. When
it is clear that no SUPERIOR functions exist because all the alternate functions are classified as
INFERIOR OF REDUNDANT, then we must settle for a function equivalent to the current one, When there
are no SUPERIOR functions but still are UNKNOWN functions, we must wait to determine if any of the

UNKNOWN functions may be classified as SUPERIOR.

When breaking ties between functions with equivalent fractions correct, we choose the function
requiring the fewest inputs. By preferring the simplest function available, we make more controlled
links availabie to be reconnected to other potentially useful nodes. This gives the node a preference

for the simplest explanation for an observed phenomena (Occam's Razor).

When a new function is selected from one to three controlled links are marked for replacement in
the Unlinking Phase. If the new function is to be a constant, then all three controlled links are
unneeded and they are all marked for replacement. If a one input function is selected, then the
necessary link is retained while the other two are marked for reptacement. If a two input function is
selected, then the two necessary links are retained while the third is designated for replacement.
Once we have examined the pessible functions and made our determination for the best function to
compute, we need to examine as many new possible functions as possible. This is accomplished by

replacing controlled links to nodes whose potential we have already examined.
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3.12 Analyzing Links at a Node

Each node analyzes the signals received from its controlled links during the Analysis Phase. The
controlled links may be transmitting signals that are of no value to the node; it so the node will seek to

identify and replace the useiess links.

A controlled link to an input node may be connected to a node which outputs a constant. Since a
node can compute any pairwise boolean function, a link to a node computing a constant provides no
useful information. As an example, assume the X link is connected to a node that always outputs
TRUE. In Table 3-4, the 2 Input column shows the pairwise boolean function of X and Y and the 1
Input column shows the equivalent functions if X is always TRUE. Since the node combutes all the
functions in the 1 Input column with its Y link, there is no advantage to having the X link connected to
a node that outputs TRUE. Analogous cases hold for the X link always signaling FALSE, and
constants on the other links. Any links determined to be DEPENDENT with the functions TRUE or

FALSE, are marked for replacement in the Unlinking Phase.

2 Input 1 Input 2 Input 1 Input
FALSE FALSE X and Y Y
X nor Y FALSE X eqv Y Y
~X and Y FALSE Y . Y
~X FALSE ~X or Y Y
X and ~Y ~Y X TRUE
~Y ~Y X or ~Y TRUE
X xor Y ~Y Xor Y TRUE
X nand Y ~Y TRUE TRUE

Table 3-4; Simplifying Pairwise Functions with Constant Input

Two controlled links may be connected to nodes which output the same function or inverses of one
another. In this case, only one of the links is useful since we can determine the second given the
output of the first. Table 3-5 illustrates the case where the X and Y links output the same function.
The 1 Input column shows the function of the Y link that is equivalent to the function of the X and Y
links shown in the 2 Input column. Each Analysis Phase, alt pairs of links are classified as either
INDEPENDENT Or DEPENDENT. If any pair of links is marked as DEPENDENT, then one link in the pair

chosen arhitrarily is markéd for replacement in the Unlinking Phase.

In either of the two cases above, the link being replaced may be part of the current function. For
example, if it is determined that the X link is redundant and the function being computed is X OR Y,
then the X link which are function depends on will be replaced. In cases like this, we mark the node to

replace its two-input function by the one-input function equivalent.
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2 Input 1 Input 2 Input 1 Input
FALSE FALSE X and Y Y
X nor Y ~Y X eqv Y TRUE
~%X and Y FALSE Y Y
~X ~Y ~X or Y TRUE
X and ~Y FALSE X Y
~Y ~Y X or-~Y TRUE
X xor Y TRUE X or Y Y
X nand Y ~Y : TRUE TRUE

Table 3-5: Simplifying Pairwise Functions with Matching Inputs

3.13 Analyzing Output at a Node

A node that is not a member of a top community should not compute a constant. The tutor's
classification of the input vectors may make a constant the best response from the network, therefor
the nodes in the top communities ray need to output a constant. From the previous section, we
know that nodes cannot usefully employ a link to a node that oﬁtputs a cdnstant. Unlinking from
nodes which output a constant is inefficient since each node that links to the node that outputs a
constant must indepenc_!ently determine to unlink from the node. It is more efficient to let the node
detect when it outputs a constant. Each Analysis Phase, we compare the current function to a
constant function and determine if they are DEPENDENT or INDEPENDENT. If they are determined to be
DEPENDENT, all links are marked for replacement in the Unlinking Phase and a randomiy sefected

function is marked to be the new function in the Function Changing Phase.

It should be emphasized that prohibiting the node from computing a constant function is not
sufficient. Consider a'node that outputs X OR Y, where Xis ~A and Y is A OR B. The node will output
TRUE since ~AOR A OR B will always evaluate to TRUE. Testing the X and Y links against a constant
and each other will yield the INDEPENDENT classification. Though the inputs are not completely
dependent, they may be partially dependent a case our Classification scheme will not récognize. As a

resuit, the test for a node that outputs a constant must be explicit.

3.14 Freeing Links

In the Unlinking Phase, the links designated to be unlinked are freed. Before being unlinked, the
node identifier of the subordinate node is recorded so the node may avoid reconnecting to this same
node. The connection of the link to the subordinate node is then severed. The link is now free to

connect to another destination node in the Linking Phase.
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3.15 Changing Functions

A node that is changing its function sends a New-Function signal to all of its superiors. If a node
receives a New-Function sig_nal from a link, all histories of functions that are dependent on that link
are reinitialized. The node aiso determines if the current function is dependent on the signaling link, if
so it sends a New-Function signal to its superiors. When a node changes its function, all of the nodes
which have been tracking its usefulness must be infarmed of the change. It would be confusing to a
node to merge statistics of a subordinate who was formerly computing X AND Y and is now

computing X NAND Y, for example. The New-Function signal scheme performs this role.

3.16 Making Links

In the Linking Phase, any links without subordinate nodes are reconnected. The nodes in each
community are allowed to connect their controlled links to any node from a set of other communities.
This set of communities may vary for different communities. Among the set of communities which
may be connected to, any node including spokesman are eligible. The only restriction is that a link
may not connect to a node with which a link was unlinked from in the Unlinking Phase of the current
cycle. This prevents linking to node that has just been shown to not be useful in the current cycle.

This restriction is waived if the set of nodes that can be linked with would otherwise be null.

3.17 Calculating the Confidence Level of a Node

Every node maintains a measure of its confidence. Nodes with confidence have demonstrated that
they are receiving reinforcements that are better than chance, meaning being more than 50% correct.
Nodes without confidence have not derﬁonstrated that the reinforcements they are receiving are
better than chance. To determine if a node has confidence, we use the classification method
discussed previously. We determine if the current function would be classified as SUPERIOR when
compared against a function obtaining a fraction correct of 50%. If the current function would have
been classified SUPERIOR then we classify it as being CONFIDENT, otherwise we classify it as being
UNCONFIDENT. This distinction is important since CONFIDENT nodes may issue internal reinforcement
signals while UNCONFIDENT nodes may not. CONFIDENT nodes may be ordered based on how
confident they are, with nodes having the greater fraction correct being considered mare confident |
than their fellows.
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3.18 Recording History at a Node

in order to make informed decision, a node must have an understanding of its role in the network.
To achieve this each node maintains a history of several of its functions. The node does not explicitly
retain a memory of all past events, but rather a statistical summary of past events. Each node
maintains all of the histaries itemized below except for nodes in the top community which need not

maintain an gutput history.

e Reinforcement history. Thirty-eight values, one per potential function the node could
compute. Records the fraction of POSITIVE and NEGATIVE reinforcements received which
were POSITIVE. ‘

e Link history. Three values, one per controlled link, which records the fraction of cycles
the link was in the ON state.

e Link pair history. Three values, one per pair of controlled links, which records the
fraction of cycles both links were in the same state.

e Output history. Single value which records the fraction of cycles the node was in the ON
state. '

These histories have been weighted to give more recent events more importance. Unweighted
histories inhibited effective learning because the nature of the classification method let functions with
long histories dominate functions with short histories. Often a node found a good function and buiit
up a long history to attest to its goodness. Later, when a better function was available the shortness
of its history prevented its superiority from being recognized. As an example a node that received 90
POSITIVE reinforcements compared to 10 NEGATIVE reinforcements could not demonstrate a
superiority over a function receiving 800 POSITIVE reinforcements and 200 NEGATIVE reinforcements.
This feads to a close-mindedness along the lines of "it has always been good enough, why consider

anything else?” The method of weighting histories alleviates this problem.

The histories are maintained as follows. Each history is saved as a value, x, between -n and n where
2n can be interpreted as the effective memory length of the history. The history is initialized, usually
to 0. Whenever a reinforcement is received, the value is scaled towards 0 by x/n. Additionally, if the
reinforcement was POSITIVE, x is incremented by 1, and if it was NEGATIVE, x is decremented by 1. The
impact of the current event is 1, and the effective impact of past events diminishes exponentiaily as
they become more remote in the past. If a node receives POSITIVE and NEGATIVE reinforcemgnts with
equal frequency, the value will exponentially drift towards 0 indicating a balance between the two. If
the reinforcements are always POSITIVE, the value will climb towards n, which can be reached but

never exceeded, indicating pure POSITIVE reinforcement. The values from O to n indicate increasing
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degrees of net POSITIVE reinforcement. The value ((x + n)/2n) gives the fraction correct out of 2n
events. When measuring states or agreement of states, we make the appropriate substitutions for the
fraction of POSITIVE and NEGATIVE reinforcements. Histories are always initialized to 0, except for the

Reinforcement history which is initialized to the value of the history of the current function.

The use of weighted histories gives a common length to ail histories which facilitates comparing
them. The mathematical comparisons are much simpler than with an exact history. The weighted
history also solves the problem of good functions with long memories dominating better alternatives
with shorter memories. Unfortunately, we must accept the converse, namely that it takes longer to
refute poor functions. Alter initializatioh, the weighted history has an effective memory of 2n events.
We choose 0 for all but the Reinforcement history for which we choose the value of the current
function history. A reasonable initial value must be chosen since the during the first few cycles the
assumed history shall dominate the early cycles activity. For example, if the history were initialized to
0, it would indicate a history of equal POSITIVE and NEGATIVE reinforcement, for a function that always |
receives NEGATIVE reinforcement it will take several cycles to overcome this initialization. The
unweighted history does not have this drawback. Another advantage to the weighted history is its
ability to quickly recognize when its reir;forcement pattern has changed. Consider a node which has
learned the optimal function demanded by its superior who reinforces it. If it has an unweighted
history of 10,000 events and suddenly its superiors asked it to solve a different task, it would take
thousands of events before the node realized that its superior were reinforcing it differently. With a

weighted history a hundred events may suffice.

3.19 Receiving Internal Reinforcements

Nodes may receive reinforcements from any of their superiors. The node receiving reinforcement
must determine which if any to utilize. To accomplish this the node measures the Confidence-Level of
each node that is their superior. If no superior is CONFIDENT, then only NEUTRAL reinforcement signals
can be received. If any superior is CONFIDENT, then only t_he reinforcement from the superibr with the
greatest confidence is utilized. In the event of more than one superior with equal confidence, the
node whose reinforcement was utilized in the previous cycle will be utilized in this cycle, otherwise
cycles are broken arbitrarily which helps to maintain continuity in the reinforcement signals between
cycles. We prevent the node from utilizing more than one reinforcement signal per cycle to insure
that the reinforcements received are independent. The independence assumption is vital to the
classification method. If a node had several superiors who were computationally equivalent, then
they would all produce the same reinforcement signals. The node would interpret these as
independent reinforcement signals, thus giving them more significance they deserve. To prevent this

possibility, only the superior with the greatest confidence is recognized.
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3.20 Issuing Internal Reinforcements

Every node can receive and transmit reinforcement in the Internal Reintorcement Phase. These
reinforcement signals are u_sed to choose the current function as previously discussed. When a node
is CONFIDENT is has the right to reinforce the nodes it has controlled links to. A node issues

reinforcement through every controlled link.

The reinforcement scheme is outlined in Table 3-6 which illustrates reinforcement through the X
link, the cases for the other links are analogous. |If the node received a NEUTRAL reinforcement signal,
the NEUTRAL reinforcement signal is issued. The node has received this signal because it has not
played a significant role in the classification by the network, or the tutor issued an UNCERTAIN
reinforcement signal. It should be remembered that the link is transmitting a boolean signal, and that
the inverse signal could have been sent. Had the signal been inverted, the node may have output a
different signal. If a different signal been sent and the node actually received' a non-neutral
reinforcement it can be shown that the new reinforcement would be the opposite of its current
reinforcement. So the node can hypotheéize accurately the reinforcement it would have received had -
the X fink sent an inverted signal. If the node received a PosiTIVE reinforcement and inverting the X
link signal would also have resulted in a POSITIVE reinforcement, then the X link had no control over
the reinforcement signal so we send through the X link a NEUTRAL reinforcement signal. The same
would apply if both had been NEGATIVE reinforcement signals. If the node received a POSITIVE
reinforcement and an inverted X link signal would have resulted in a NEGATIVE reinforcement, then we
know the X link was crucial in the reinforcement received by the node. For the node to receive a
POSITIVE reinforcement, the X link must continue to output the result it is now, so we issue a POSITIVE
reinforcement through the X link. T'he‘opp'osite case occurs when the node receives a NEGATIVE
reinforcement, and an inverted X link signal would have resulted in a POSITIVE reinforcement, We
issue a NEGATIVE reinforcement through the X link to encourage the node connected to via the link to
change the output it computes. .

Reinforcement to X Link

Reinforcement Reinforcement Reinforcement
Received Received By Node if Issued to Reason
By Node X Link Signal Inverted X Link
positive positive neutral X Link - no effect
positive negative positive X Link - correct
negative positive negative X Link - wrong
negative negative neutral X Link - no effect
neutral -- ‘ neutral desired signal unknown

Table 3-6: Reinfarcement Scheme
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Table 3-7 gives exampies of reinforcement to the X link for two functions. In the first example, the
node is computing the function X. The output of the node is identical to the state signaled by the X
link. Observe that the reinforcement issued through the X link is identical to the reinforcement
received by the node itself. The node is acting as an intermediary between its superior and its X link
subordinate, and is merely passing information between these two nodes. In the second example'. the
OR function is being computed. When the Y link is signaling on, the X link receives NEUTRAL
reinforcement, since it cannot affect the output of the node. When the Y link is signaling oFF, the X
link receives either a POSITIVE or NEGATIVE reinforcement since its output is crucial to the

reinforcement received by the node.

Reinforcement Reinforcement
Reinforcement Node Received Issued through

Function X Y Result Node Received if X Inverted X Link
X 0 0 0 positive negative positiive
0 0 0 negative positive negative
o 1 0 positive negative " positive
0 1 0 negative positive negative
1 0 1 positive negative - positive
1 0 1 negative positive negative
1 1 1 positive negative positive
1 1 1 negative positive negative
XorY 0 0 0 positive negative positive
0 0 0 negative positive negative

0 1 1 positive positive neutral

0 1 1 nggative negative neutral
1 0 1 positive negative positive
1 0 1 negative positive negative

1 1 1 positive positive neutral

1 1 1 negative negative neutral-

Table 3-7: Reinforcement Examples

3.21 Initialization of the Network

The network can be initialized as follows. Mark every controlled link for connection, and every node
to have its function changed to a randomly selected function from among those eligible functions.
Execute the Changing Functions and Unlinking Phases successively, and the network is ready to
begin.
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3.22 Explanation of Cycle Timing

Conceptually each cycle is broken into several distinct phases. As implemented some of these
phases are carried out simultaneously. The first three phases can be processed at the same time.

Both reinforcement phases can be carried out simultaneously. No other overlap is possible.

The Unlinking, Changing, and Linking Phases are cqnducted separately to minimize disruption to
the network during transitions. Nodes which are changing their function, signal a New-Function to
their superiors. The New-Function signal causes its recipients to lose confidence and reinitialize their
statistics. This loss of information should be avoided when it is unnecessary. It node P has
designated the link to node Q to be replaced, and node Q is about to change its function, then there is
no need for node P to receive the New-Function signal from node Q. Placing the Unlinking Phase
before the Changing Function Phase allows their connecting link to be freed preventing the reception
of the signal. Similarly if node R wishes to make a link to node Q, then there is no need for node R to
receive the signal either. Therefor, the Linking Phase is placed éfter the Changing Function Phase so
that the New-Function signals are transmitted before the new link connection is made. in both cases,

nodes P and R had no reason to know that node Q was changing its function.
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4. Results

4.1 Overview

To demonstrate the capabilities of the CONSENSUS system it was run against three instances of the
learning task. The first instance requires classifying all possible functions of three inputs, which vary
significantly in difficuity. The network was developed-on this problem and later applied to the
following problems. The second instance is the shifter problem, here the network must recognize an
important regularity, but has more inputs to contend with. In the third instance, the network controls

a simulated organism in a more complex environment.

4.2 A Simple Test

For a simple non-trivial test, the following task was posed to the network: Learn to recognize and
correctly classify each of the possible unique boolean functions of 3 variables. The binary input
vectors consists of 3 elements, allowing 8 (23) unique input vectors. We required the network to
classify each vector as either vaLID or iNvALID, which allows 256 (28) possible functions. From among
these 256 possible functions cnly 14 are unigue, the remainder being equivalent if you can rename
inputs and recognize inverses. Figure 4-1 enumerates the functions, gives the frequency with which

they or an equivalent occurs, and diagrams a Karnough map of the function.

To solve this problem, the network was configured to have three communities organized into three
layers with each community composed of 24 nodes. The nodes in each community are permitted to
link to any node below them including the input nodes. The network was run against gach unique
function for 1024 cycles. The number of minterms correct (out of a maximum of 8) for the network is
tabulated in Table 4-1,

The learning process was observed to occur in roughly three phases. The first phase occurs during
the initial 20 to 30 cycles. The network begins with a random initialization of functions and
connections of dubious value. During the first few cycles the top community nodes identify the
aspects of the random initialization that were especially poor. These functions that perform badly are
quickly replaced by better functions that generally compute slightly better than chance. In this
problem, top community nodes would be expected to be initialized such that they would compute 4 of
the 8 minterms correctly. Typically, after this first phase there are essentially no top community nodes
getter fewer than 4 minterms correct and the majority are getting between 5 and 7 minterims correct.

The spokesman in the top community usually have at least 6 minterms correct and often have ail 8
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K B L 6 M 6

Figure 4-1: Unigue Boolean Functions of 3 Inputs
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minterms correct. Activity in this first phase is confined principally to the nodes in the top community
because until the nodes in the top community gain confidencz, no reinforcement is issued to the
nodes to the lower levels. While performance after this phase is often surprisingly good, the
knowledge is not robust. There are often many critical nodes in the network. These nodes are critical
because a change in their function would drastically affect the performance of the network as ei

whole.

Slow progress is characteristic of the second phase. Most of the nodes in the top community now
possess confidence and are reinforcing their subordinates. Several nodes in the tower levels are able
to identify features that are useful to their superiors. The positive reinforcement from their superiors
allows these nodes to "lock on” to the feature they have identified. Once a node has "locked on" to a
feature, other nodes at higher levels are often able to determine how to use this feature to improve
their performance. This phase ranges from 50 to 300 cycles in duration. At its conclusion, most top
communilty nodes have either 7 or 8 minterms correct, though on difficult problem nodes with 6
minterms correct can be found. The spokesman has ail of the minterms correct and many nodes in

the lower level now possess confidence. The knowledge is relatively robust at this point.

The third phase consists of very slow learning. Nodes in the top community make slow progress
while searching for a way to get their last minterm correct. When a node has all but one minterm
correct, it must often explore a large number of possibilities before it finds a way to get all the
minterms correct. Nodes in the lower level occasionly find improvements in their functions. The
New-Function signal they generate during their transition to a new function can cause many nodes
above them to lose confidence and reinitialize their histories. After losing confidence, these nodes
are vulnerable to the temptation of changing their current function for one that is almost as good but
is temporarily performing as well as or better than the current function. Nodes that yield to the
temptation must then relearn the minterms they now have incorrect. The network generally makes
very slow progress and eventually reaches an apparent equilibrium between the slow improvements

of the top community nodes and the consequences of the waves of New-Function signals.

On these problems, the network obtains 8 out of 8 minterms correct in 512 cycles and maintains this
through 1024 cycles. The network had the easiest times with the functions of two inputs or less (A, C,
L, and M). These are the functions possessing the greatest regularity. The network had the greatest
difficulty with functions G and H. These functions have several minterms which are dispersed from
each other. Functions are difficult to learn if they have few underlying regularities. Adjacent
minterms with the same value form regularities. Functions such as B or C with a preponderance of

one minterm value have many adjacent minterms of the same value. Functions with the equal number
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of minterms of each vatue cannot help but possess some degree of requiarity. The nodes with a slight

preponderance of one minterm value offer the fewest underlying regularities.

Cycles

function 32 64 128 256 512
A False 8 . * * *
B X~y ~1 7 7 7 8 8
C X~ Y 8 8 8 8 8
D X ~ {Y xor 2) 7 7 7 8 8
E (X~Y~Z) v ~(X~Y~Z) 6 6 7 8 8
F X~ (Y v 1) 8 8 8 8 8
G (X ~ Y) v (~X*~¥~Z) 7 7 7 7 8
H (X ~ (Y xor Z)) v (~X~Y~Z) 8 8 7 7 8
1 (X ~Y) v (~¥ ~ 1) 8 3 8 8 8
J X xor (Y ~ 1) 8 8 8 8 8
K (X ~Y) v (Z ~ (X xor Y)) 7 7 7 8 8
L X ' 8. 8 8 8 8
M X xor Y 7 7 8 8 8
N X xor Y xor Z 6 7 8 8 8

* - gvery node in community has 8

Table 4-1: Results on Boolean Functions of 3 Variables

4.3 The Shifter Problem

As a more difficult test, the network was asked to solve the following problem : Learn to recognize
shifts of the input vector. The binary input vector was divided into two components, S and V. The
component S consists of a single element and designates the transformation on component V to be
performed to produce O, the output vector. The component V consists of four elements numbered V1
through V4 and the vector O consists of four elements numbered O1 through 04. If S is on, O shouild
receive the corresponding elements of V, for example O2 receives Vz. If S is oFF, O should receive the
elements of V shifted one place, for example O, receives V,- When a shift took place, O1 should
receive V s 0 produce a rotation of the last element. There are 32 (25) unique input vectors which
were presented with equal probability. We required the network to produce O, the output vector. For
each element of O, the network-must determine which of 2%2 functions implement the required

function.

To solve the problem, the network was configured to have eight communities organized into two
layers. Since a top community can produce only a single bit of output, one top community is needed

for each element in O, the output vector. Essentially there are four networks operating in parallel.
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Each network consists of one community in the first layer which connects only to input nodes, and
one communily in the second layer which is a top community and may connect only to nedes in its
courtterpart in the first layer. Each communily was composed of 10 nodes, the maximum atlowed by
the current simulator given the earlier requirements. It should be noted that the network was given no
advanced knowledge about the S and V components and must discover this on its own. The network
was run for 1024 cycles and the number of minterms correct {out of a maximum of 32) is tabulated in

Table 4-2.

in this problem, the first phase dominates the first 150 cycles. At the completion of the first phase
the spokesman are ~90% carrect utilizing nodes which ~75% correct. The second phase consists of
roughly 450 cycles, as the nodes improve to ~95% accuracy and the spokesman becomsz 100%

accurate. During the third phase, the nodes produce slow progress in impraving their accuracy.

Cycles Nodes Spokesman Cycles Nodes Spokesman
32 18.65 22.75 544 29.00 32.00
64 21.65 22.75 576 29.50 "
96 22.78 22.75 608 28.70 "

128 24.30 27.75 640 29.85 "
160 24.75 28.75 672 29.85 . "
192 25.20 28.50 704 29.85 "
224 25.20 27.00 736 29.85 "
256 25.65 27.75 768 29.85 "
288 26.85 30.00 80O 30.05 "
320 27.05 30.00 832 30.05 "
352 27.10 30.00 864 30.05 "
384 27.20 30.00 896 239.85 "
416 27.60 30.00 928 30.05 "
448 28.15 31.00 360 30.20 "
480 28.28 31.00 9g2 30.40 "
512 29.12 32.00 1024 30.40 "

Table 4-2: Performance on Shifter Problem

4.4 The Tadpole Problem

As a final task, the network was asked to direct a simulated tadpole in a simple environment. The
tadpole lives in a one-dimensional pond, it must come to surface for oxygen and dive to the bottom for
food without waiting too long lest it die from starvation or asphyxiation. The pond has eight distinct
depths, oxygen may only be obtained at the surface, depth 0, and food- may only be obtained at the
bottom, depth 7. The tadpole’s lungs may hold up to 15 units of oxygen, and its stomach may hold up
to 15 units of food. Each cycle, it consumes 1 units of oxygen and 1 unit of food. 1t dies when it has
no oxygen or food. When at the surface, it fully replenishes its oxygen. When at the bottom, it fully

replenishes his food. Each cycle it can either swim upwards or downwards. Swimming upwards
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decreases its depth by one except when at the surface, in which case it remains there. Swimming
downwards increases its depth by one except when at the bottom, in which case it remains Lhere.
The tadpole is aware of how many units of oxygen and food it has. The tadpole was started at the
surface with a full complement of oxygen and food, in the event it died the tadpole was reincarnated

in this state.

To allow the network to control the tadpole, we must establish a correspondence between the
tadpole environment and the network environment. To present the network with a binary input vector
the following was done. The tadpole’s food supply can be represented by a four bit number, as can
the oxygen supply. We used the 3 high order bits from the food supply and the 2 high order bits from
the oxygen supply to create a 5 bit binary input vector to the network. The vALID classification was
taken to mean swim downwards, and the INVALID classification was taken to mean swim upwards.
The tutor insists the tadpole swim downwards when it has less food than oxygen, and swim upwards
when it has less oxygen than food. When it has an equal amount of food and oxygen, the tutor is
indifferent and gives an UNCERTAIN classification. To confuse the network, the tutor may give an
incorrect classification on any cycle. The tutor will classify the vector correctly 80% of the time,
however each of the two alternatives will be designated 10% of the time. These classifications are
used regardless to the current depth of the tadpole. The state of the network was not specially
altered in the event the tadpole perished,

The nature of the problem demonstrates several capabilities of the network. With a binary input
vector of 5 elements, up to 32 (25) unique input vectors may be presented. The network may need to
consider up to 232 ditierent functions. Unlike the previous problems, the input vectors will not be
presented with equal frequency. The frequency with which each input vector is presented may vary
significantly during the course of the task. The tadpole has incomplete information receiving only 5
inputs when 8 are required to completely designate the state of his oxygen and food supplies. To the
tadpole, the tutor is inconsistent. With fewer inputs the network has a resolution that is tog coarse to
completely distinguish all possible states of the tadpole. The tutor lies 20% of the time, so caution

must be exercised in interpreting any specific reinforcement.

The network has configured to have three communities organized into three layers with each
community composed of 24 nodes. The nodes in each community are permitted to link to any node
below them including the input nodes. The network was run for 512 cycles. Figure 4.2 shows the
tadpole under control of the network. The left-hand charts show the depth of the tadpole as a
function of time. The right-hand charts show the networks knowledge at the end of each lite or the
end of the simulation. For each possible combination of inputs, the action the network would choose

is displayed, a cross indicating swimming downwards otherwise swimming upwards.
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The first life of the tadpole lasts 23 cycles. The tadpole meanders near the top, then swims to the
bottom. lingers there, and then perishes while swimming to the surface. The network has no real
understanding at this early stage, The apparently intelligent swimming sequences are the result of

the random initialization of the network.

The second life of the tadpcle lasts 17 cycles. The tadpole Iingeré near the top, then swims to the
bottom and tries to quickly return to the surface. The network now has a general understanding that
when food is less than oxygen swimming downwards is required. It understands the converse about
the need to swim upwards when oxygen is the more critical commaodity. It is overly concerned about
lack of food. This is due to its starting ét the surface, the tadpole typically finds oxygen early while

lacking food which should lead it to be more concerned about food.

In its third life, the tadpole has learned the ropes. it has learned to methodically swim upwards and
downwards replenishing its oxygen and food. Early in its life it pauses for one cycle at the bottom,
later it avoids this pause. The tadpole continued this cyclical swimming for the last 472 cycles of the
simulation. It recognizes that it lives in one of two states, needing oxygen or needing food. It
recognizes its current state and swims u;i or down approgriately. Once the tadpole has commenced
the swimming cycle, the network only receives 11 unique input vectors. The remaining input vectors
are never encountered by the tadpole anYmore. The tadpole has a perfect encoding for these input

vectors since they always allow it to choose the correct action.

4.5 Review

The network has shown its capability to handle several different problems. The network has faced
environments with inputs of varying frequencies, inconsistent tutors, and with and without important
underlying regularities. In each case, the network has been able to find a suitable enceding to solve
the task presented to it. These tasks show some variety in their interconnection schemés. We inténd

to explore the system’s ability to produce its own interconnection scheme in future research.
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5. Discussion

5.1 Intrcduction

In previous sections the structure of the network has been detailed together with its performance on
several problems, In this section several aspects of the network shall be discussed including the
notion of confidence and its role in the reinforcement scheme and the function of communities. The

issue of convérgence will be tddresses along with some imitations on the network.

5.2 The Notion of Confidence

The notion of confidence is important to making the reinforcement scheme effective. This scheme
deliberately attempts to suppress "noisy” reinforcement signals. Noisy reinfarcement signals are of
dubious valug to a gystem based on statistical inference. These signals retard the rate of learning by
generating_additional trials that contain little information, Consider the coin-flipping experiment,
before you need only study a single coin, if you must study several indistinguishable coins when you
already know that all but one is fair, the randomness of the fair coins makes it more difficult to study
the hypothetically "fair" coin. A node that is CONFIDENT has established that its performance is better
than chance. A CONFIDENT node is aware that it serves an important function in the network, Nodes
which are UNCONFIDENT would be expected to have a large noisy component in any reinforcement
signals they might send since they have not established that they are performing better than chance.
Since only nodes that are CONFIDENT may issue reinforcements other than NEUTRAL, the largest
potential source of noisy reinforcements has been suppressed. The distinction between nodes with
differing degrees of confidence, allows subordinates to respond to the superior with the greatest
confidence and hence the least noisy reinforcements. This approach contrasts with that taken by
most other researchers. They accept the presence of noisy reinforcements since their models rely on
making numerous small changes. They expect that the errors will cancel each other out, leaving a
meaningful change. We attempt to make a smaller number of more substantial modifications, but
must not allow the presence of noisy reinforcements to slow down our determining which substantial

modifications are best.

5.3 The Role of Spokesman and Communities

Each cluster has a distinguished node referred to as the spokesman. The spokesman samples the
states of the other nodes in the cluster and adopts the most commoniy found state. Essentially, he
adopts the state of the majority of his brethren. His state represents the combined knowledge of the

nodes in the cluster.
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The basic notion is that collectively the nodes have more knowtedge than any node has individually.
Function H from the 3-variable tests provides a good example. A node in the first layer can do no
better than getting 5 of the 8 minterms correct. Figure 5-1 shows the 19 functions that a first layer
node could compute which have 5 minterms correct. The inverses of these functions have 3
minterms correct, and exhaust the alternatives available to the node. Clearly function H is beyond any
individual first level node. It is also beyond any second level node wifh access only to first level nodes
since the best any second level node can do is 7 minterms correct. A third level node is capable of

calculating of function H.

However, function H is not beyond the capability of a community of nodes. If the first level
community consisted of 19 nodes, each computing 1 of the 19 functions in Figure 5-1, the spokesman
would have all the minterms correct. While the underlying regutarities for this function are minimal
each of the nodes with 5 minterms correct has captured some underlying regutarity. While each node
knows very little, each has some understanding of the problem. Collectively the nodes have sufficient
understanding to solve the problem. Majority voting recognizes the 3 true minterms with a one vote
margin, and rejects the minterm (~X) AND Y AND (~Z) by one vote. The remaining minterms are
easily recognized to be false. While this. example is unusual, it indicates the potential power of a

collection of nodes each possessing minimal knowledge.

The community benefits from the independent pieces ot knowledge each of the nodes possess. |f
each of the nodes were to compute the same function then the majority voting would yield no
advantage. However, when each node has independently acquired a moderately good record, the
group will have acquired an excellent record. As Table 5-1 demonstrates, a collection of 15 nodes
each inde;iendent!y correct 80% of the time will have a majority correct over 9% of the time. Nodes
with perfect knowledge {100% correct) or no knowledge (50% correct} derive no benefit from group
action. Nodes with a moderate degree of knowledge (70% or more} do derive great benefit from
group action. Groups of as few as 5 nodes can produce major improvements with groups as large as
15 producing even more. In practice, obtaining perfect knowledge'in a single node is a difficult task,
but obtaining a moderate degree of knowledge is not. By collecting a number of independent nodes

with some knowledge, the community has good knowledge.

A crucial notion in the voting scheme is the independence of the nodes. We provide no explicit
mechanism for ensuring independence of the nodes. Instead, we rely on the randomness of the
connections and functions in the network. We select community sizes on the order of 20 or more
nodes with the expectation that the nodes will have several independent methods of getting a large

fraction correct. With several independent methods available, it can be expected that each of the
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Probability Probability Majority Wrong For Size

Right 1 3 5 7 9 15
500 5000 5000 5000 5000 5000 5000
600 400 3520 3174 2898 2666 2131
700 3600 2160 1631 1260 0988 0500
800 2000 1040 0579 0333 0196 0a42
900 1000 6280 0088 go27 0009 0000

1.000 0000 0000 .0000 0600 0000 0000

Table 5-1: Effects of Independent Majarity Voting

methods will be utilized by approximately an equal number of nodes, White there is no guarantee of
this, it has been obsarved to work well in practice. Communities are not large with the expectation
that each node will find an equally good method, but rather so that each of the available methods is
represented with rough equality. The spokesman nodes perform significantly better than

conventional nodes when the conventional nodes encompass several independent methods.

5.4 The CrediteAssignmen_t Problem

The downfall of many learning methods has been the "credit-assignment” problem. A learning
method must be able to determine how to modify its parameters in arder to improve its understanding

of the designated task. In their paper [12], Hinten, Sejnowski, and Ackley state :

The major technical stumbling block which prevented the generalization of simple
learning algorithms to more complex networks was this : To be capable of interesting
computations, a network must contain non-linear elements that are not directly
constrained by the input, and when such a network does the wrong thing it appears
impossible to decide which of the many connections strengths is at fault.

The CONSENSUS system attempts to do this by giving each node an understanding of the role of
itself and its neighbors in the network. Each node in the network is a non-linear element that attempts
to correlate two lower-order concepts into a higher-order concept for use by its superiors. The
reinforcement scheme, including the notion of confidence, aliows it to translate global reinforcement
signals into meaningful focal reinforcement signals to determine which part of the network must be

improved.

The translation of global reinforcements to Idcal reinforcements is carried out incrementally at each
node. The top layers receive their reinforcement from the environment. While the top layer nodes are
without confidence, they withhold reinforcement from the lower layers, allowing their immediate
subordinates to experiment freely. When the nodes in the top community have confidence, they
reinforce their subordinates. Each node refines the giobal reinforcement into a unique local

reinforcement for each node it reinforces. The reinforcement scheme attempts to identify the nodes
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respensible for the global reinforcement and reward/punish that node accordingly. Nodes which
cannot affect the global reinforcement receive neutral reinforcement. The subordinates of the top

layer nodes reinforce their subordinates in kind.

The CONSENSUS system changes the functions at nodes and links in the network in order to
develop an internal model that captures the structure of its environment. The decision method and

reinforcement scheme give it the means to attempt to determine where faults lie and to correct them,

5.5 Interconnection Scheme

The organization of the nodes into communities imposes structure on the network. The simplest
organization is to randomly interconnect nodes. This has the benefit of being simple, but is inefficient
since the network must start from scratch for all knowledge. The grouping of nodes into communities
allows the collective knowledge of the community members to be utilized. The spokesman serves this
role and purpose by signaling the consensus of his compatriots: In addition to the introspective
benefits of communities, the community provides a basis for external organization. Since the nodes
of each community may be connected to the nodes of a specified subset of all communities we have a
limited capability to "program” the network by specifying the intercannection scheme. An obvious
application is to specify a scheme whereby nodes examine similar inputs tagether, in the case of a
two-dimensional image, we can have nodes look only at pixels that are near one ancther. In the case
of inputs of differing natures, we could organize the connections by input type, such as having some
communities examine temperature, some pressure, and others force. These interconnection
schemes can be specified in the lower layers to facilitate the learning on special problems before the
higher-order concepts.reach the upper layers. This scheme allows us io specify the interconnection

in the large, while retaining randomness in the small.

5.6 The Tradeoff Between Speed of Learning and Stability

The parameters affecting the rate of learning are the confidence-level, the equivalence factor, and
dependence factor. To speed up the learning, in the short term, the confidence-level could be
reduced, the equivalence factor increased, and the dependence factor increased. The drawback to
speeding up the rate of learning is that the network becomes unstable. It is unstable because it is

vulnerable to the chance presentation of a few unusual input vectors.

The rate of learning would be increased if the confidence-level were reduced from 99%, since each
node would require fewer samples to make a decision. Increasing the equivalence factor would allow

a greater number of functions to be classified as equivalent, and it would take less time for each
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function to be so classified. Increasing the dependence factor would make it easter to draw the
conclusion that a pair of links was redundant. Increasing the equivalence and dependence factors
would decrease the sensitivity of the nodes to line gradations of performance, in nore complex

problems this loss would be of significance.

Since lhe network is canstantly responding to the input vectors in proportion to their frequency in
the immediate past, the presentation of a very small subset of the possible input vectors on many
consecutive cycles would lead the network to believe that the frequency of presentation of the input
vectors had changed. Reducing the tolerance of these parameters makes the network respond more
quickly to these changes, since it requires fewer sarples to make a decision. When the tutor
presents such a subset of the input vectors by chance, the network may make an unwarranted
reconfiguration thus losing its accumulated knowledge. Keeping the tolerances of the parameters
high protects the network from short term sequences of examples by chance. The underlying
philosophy of the network is to make a few well informed decisions rather than many less informed
decisions, reducing the tolerance of the parameters would allow the network to inake decisions on

less information, contradicting our philosophy.

Learning schemes based on felaxaﬁon techniques face an analogous problem. The rate of learning
can be increased by performing the relaxation faster, in the specific case of the Boltzmann machine
by lower the temperature faster. The danger they face is that the faster the relaxation is performed
the less likely the system will zero in on the global maxima. For CONSENSUS, the problem is not
finding the global maxima, but staying there in the face of a chance presentation of an

unrepresentable set of input vectors.

5.7 Tolerating the Environment and Tutor

The network does not require that the example input vectors span the space of all possible input
vectors. The network responds to the input vectars in proportion to the frequency of their
appearance; the more often a vector appears, the more the network will respond to that input. For
input vectors that do not occur, the network may choose any classification. The network will choose
the classification that is most consistent with the regularities inherent in the input vectors that have
been presented to it. The frequency with which an input vector is presented may vary; the network

will respond to that input vector in proportion to its frequency in the immediate past.

The network can tolerate non-deterministic and varying classifications by the tutor. The

classification of an input vector by the tutor as VALID, INVALID, or UNCERTAIN need not be deterministic
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or consistent. For example, the tutor may classify a given input vector as vaLID 80% of the time and
INVALID 10% of the time. The network will classily the input vector as VALID to maximize its positive
reinforcement.  The network would also choose a vALID classification if the input vector were
UNCERTAIN 0% of the time and vaLip for 10% of the time. The zakility to handle a non-deterministic
tutor relieves the tutor of any requirement for internal consistency. The tutar's classification scheme

may change with time; the network will respond to the classification used in the immediate past.

In an effort to maximize its positi've reinforcement from the tutor, the network will concentrate an the
input vectors that appear most frequently with the vaLID or INVALID classification. Input vectors that
are classitied as UNCERTAIN or do not appear will be classified in the manner most convenient to the
network in its pursuit of the more importaht input vectors. This is analogous to an electrical engineer
freely utilizing do-not-cares in a Karnough map to produce the simplest circuit possible that fits his
design requirements. In a pinch, the network may even intentionally choose the wrong classification
for infrequent input vectors if it allows it to better classify the more frequent input vectors. When the
tutor changes its classification of, or frequency of, some input vectors, the network will respond.
After a short period of exposure to the new reinforcement criteria, tha netwark will recanfigure itself in

response.

5.8 Convergence

Until now, we have avoiding the issue of convergence. To be capable of achieving convergence,
the network must be able to escape local maxima and settle into the global maxima. For complex
systems this can be a very difficult task since it is infeasible to exhaustively search the entire space.
The CONSENSUS network has the capability to escape many, but not all, local maxima and settle into

a global maxima.

CONSENSUS constantly contemplates major changes in its functions, hence it is not limited to smail
local changes. A system confined to making small local changes has a limited horizon in searching
for superior alternatives. A search conducted from the top of a small hill with a limited horizan wiil
never "sge" a mountain range in the distance. With each node at every level in the hierarchy
constantly probing for alternatives with one controlied link, the network is not confined to local
changes. In general, while the lower level nodes are contemplating minor changes, the upper level
nodes will be contemplating major changes. This gives the network the opportunity to consider more
than local changes. When confronted with two equivalent aiternatives, the network chooses
randomly between them. This gives it the capability to fully explore plateaus in the search space.
While there may be no better alternatives available from the current position, there may be better

alternatives available from a position equivalent to the current position,
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The continuous probing for alternative connections gives the nodes the opportunity to explore all
potential alternative connections subject to the restriction of maintaining the links for the current
function. Unless the current function requires two links neither of which is used in the optimal
function, the method of randomly assigning links will lead to the optimal link and function assignment
in time. For the random interconnects to achieve perfection would be expected to take exponential

time, by trial and error, so this has limited practicality.

Once a configuration is reached that is always correct, its components will always receive positive
reinforcement and have no incentive to change their computations. The only method by which the
configuration could be disrupted, is the trémsm’ission of the New-Function signal (see Section 3.15) as
lower level nodes attempt to improve their performance. The momentary lack of confidence in the
structure leaves it vulnerable to undesirable changes. Except for this weakness, the network will not

leave a global maxima.

5.9 Parallelism

The major operations in the network can be conducted in parailel. The exception is the delay due to
the propagation of signals through the network. The length of the propagation delay is proportional
to the height of the network. The parallel processing at the nodes is possible because nodes require
only local knowledge to function. The data on alternative computations is maintaine_ad locally at each
node. Decisions regarding reinforcements can be made strictly on the basis of information from the

locat links. The only global control required is a clock to regulate'the phases of each cycle.

5.10 Restrictions

A major restriction of the network is the restriction on the nodes to computing boolean functions.
This poses no inherent restriction on the capability of the network, since any computable function has
an equivalent boolean function. For this reason and simplicity, this investigation has only considered
boolean computations at the nodes. In practice, the boolean function limitation restricts the fan-in of
the network to two. Computing arbitrary boolean functions on more than two variables quickly
becomes impractical. The low fan-in will require fall networks for more complicated problems. Itis
not clear how well the network will scale with increasing network height. In principle, there is no
reason why the decision method cannot be applied to more conventional sum-of-weights-and-
compare-to-threshold models. Such models are unable to compute the exclusive-ar and equivalence
functions, but this drawback is cutweighed by allowing a greater fan-in which allows shorter networks

to perform the same task.
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The exploration of aiternative hypotheses is gredtly simplified from the knowledge that inverting a
computation changes a reward to punishment and vice versa. However, this prevents the network
from solving the two-arm bandit problem. The two-arm bandit problem is characterized by forcing the
network to choose between two good alternatives (or two bad alternatives). While both aiternatives
are good, one alternative is better than the other. A network operating on the assumption that the
alternative to a good choice is a bad choice will be unaware that the alternative is actually a better
choice. The CONSENSUS network would be unable to solve such a problem. A solution to this
problem would require that the network actually attempt the alternative computations, but this

possibility has not been explored.

5.11 Issues Avoided

No attempt has been made to deal with sequences of input vectors. The model has no capability to
memorize state, and its behavior must therefore be a function of the current input vector only. The
issue of allowing cycles in the network has also been avoided. The choice of a hierarchical
organization prevents the occurrence of cycles. The issue delayed reinforcement has been avaided
since the network assumes all reinforcement is immediate. These are all important issues, but beyond

the scope of the present work.



5. Conclusicns

The guiding principle in COMSENSUS has been that decisions should be deferred until sufficient
evidence accumulates te make an informed decision. !t is the basis for the following features which

most distinguish CONSENSUS from other neural networks.

The use of statistical inference for the classification method reflects this guiding principle by waiting
for the accumulation of statistical evidence to support any proposed change. Changes are not made
until the accumulated statistical evidence gives overwhelming support to any proposed change,
thereby minimizing the chance of error. The classification method secks to make a small number of

major changes each with goed confidence.

A few large changes are made each with good confidence. This i3 in contrast to more conventional
systems which rely on the accumulation of many small changes each made with little confidence.
These methads rely on the errors to cancel each other out. Since any given change may be in error,
changes must be kept small. This restricts them to contemplating only very local changes. Since we

have greater confidence in our changes we may contemplate more global changes.

Nodes have an awareness of their role in the network. They seek to maximize the flow of
information through the network. This is accomplished by avoiding redundant connections and

avoiding the computation of constants.

The notion of confidence in conjunction with the reinforcement scheme seeks to translate global
reinforcements into meaningful local rei_nforcements without transmitting reinforcements of dubious
value. Uninformed nodes do not issue reinforcement since they do not possess confidence. Nodes
possessing confidence reinforce their subordinates based on their understanding of the role of

themselves and their subordinates.

The grouping of nodes into communities exploits the fact that often the knowledge of the group
exceeds that of any of its members. Obtaining perfect knowledge at a node is often extremely
difficult, but obtaining good knowledge is much easier. The majority of a group of nodes, each

possessing independentiy good knowledge, will have nearly perfect knowledge.

This combination of factors gives a new approach to the “credit-assignment™” problem. Simulations
of the CONSENSUS system has shown its ability to solve simple learn-by-example problems.

Questions regarding the scalability and ultimate capability are currently unresolved.
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|. Complexity of Boolean Networks

The worse-case lower and upper bounds on the number of layers required to compute an arbitrary

boolean function of 7 inputs can be calculated if the presence of the spokesman are ignored.

To calculate a worst-case lower bound, recognize that an arbitrary function must be able to access
all of the inputs. The restriction of a fixed fan-in, f, from the lower tayers allows the calculation of a
lower bound, since the uppermost node must have indirect access to every input. A first layer node
can compute a function of up to f inputs, a second layer node can compute a function function of up
to 2 inputs, and the general case is that a nth layer node can compute a function of up to f* inputs.
From this it can determined that CEIL{LOG, ) layers are required to compute a function of ninputs. In
the special case of f or fewer inputs, one tayer is required. This allows the computation of constants
which the input lines are not capable of individually. From thisa w:)rst-case lower bound of MAX (CEIL

(LOG, n), 1) can be placed on the number of layers required.

To calculate a worst-case upper bound, imagine the construction of an AND-OR (Disjunctive
Canonical Form) network. This requires two steps, the first to calculate up to 2" minterms, and the
second to OR the minterms together. Each minterm could be a function of all n inputs. Several layers
of nodes are needed each computing the AND function, except in the first layer where some of the
inputs may need to be negated. Thé minimal number of layers is a function of the fan-in of the nodes.
From the lower bound calculations, CEIL(LOG, ) layers will be required. To do the second part,
several layers of nodes computing OR are required to combine the minterms. cvsu.(LOGlf 2" layers aré
required to OR together 2" minterms. This can be simplified to CEIL(n LOG, 2) layers. This could also
be achieved by using an OR-AND (Conjunctive Canonical Farm) network. By using the form requiring
the fewest minterms or maxterms, at most o{n1} minterms or maxterms are needed. Again a minimum
of one layer is required to handle the case of f or fewer inputs. By summing the requirements for the
two phases, an upper bound of MAX ((n* 1) * CEIL (LoG, 2)) + CEIL (Log, n), 1} layers can be

determined.

It can also be shown that as f increases to 201 the upper bound decreases to two layers, one for

the AND and one for the OR since a single layer is capable of performing each of these functions.
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