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Abstract

We present a new scheme for the activity of neuron-like elements in a connectionist network, The
CONSENSUS scheme is based on statistical inference. The guiding principle of CONSENSUS is that
decisions should be deferred until sufficient evidence accumulates to make an informed choice.
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awareness of their role and utility in the network which allows them to increase their effectiveness.
The reinforcement scheme utilizes the notion of confidence so that only nodes proven to contribute
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and was able to find suitable encodings to solve them.
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1. Introduction

Knowledge about the architecture of the brain has lead researchers to investigate the properties of
"connectionist” systems. These systems are characterized by simple neuron-like processing
elements which are interconnected and store their knowledge as the strengths of these connections.
There are tasks for which these networks are eminently suited such as pattern recegnition. With the
proper connections and connection strengths, the processing elements can compute in paraliel. For
a specific task, determining the proper interconnections and strengths to utilize the computational
power of the network is straightforward. For more generai problems, we may not be able to determine
the proper configuration of the network. Preferably, the network would be able to dynamically

recoenfigure itself to solve the task presented to it.

To reconfigure itself a program must gain an understanding of the task, in otherwords, it must learn.
For a large domain rote memaorization will be impractical‘ since it requires exhaustively enumerating
the domain. To complete the task without rote memorization, the network must understand some
concepts about the domain. To learn autonomously, no outside agent may communicate to the
network any concepts about the domain. Learning by example, involving a tutor presenting domain
examples to the netwark and indicating the_ desired response, meets this criteria. This means that the
network must be able to formulate its own concepts about the domain based upaon the examples
presented to it. The network must initially recognize features from the domain, then learn to utilize the
features it has learned to recognize. Such learning would be evolutionary with improving
performance as opposed to instant learning. A network utilizing domain feature recognition should
be able to infer domain examples to which it has not been previously exposed. We will concentrate

on learning-by-example.

Initial studies of simple networks learning to classify input vectors were encouraged by the
perceptron convergence procedure. The perceptron convergence proced_ure detailed a method by
which a one layer network could reach its full potential as a computing element. However, most
interesting computations require more than one layer. In 1969, in Perceptrons [19], Minsky and
Papert showed that no convergence procedure can exist for multi-layered networks. The lack of 3
proven convergence procedure does not mean that neural networks are incapable of interesting

computations.

The search for effective convergence procedures continue, many of them with a mathematical bent.
Recent work includes the Boltzmann machine [12], which relies on stochastic relaxation techniques

to achieve convergence. Rather than attempt to prove convergence properties for a method, we wifl



be satisfied by a convincing empirical demonstration of the ability of a method to achieve

convergence.

This paper describes the CONSENSUS system, a cannectionist network. CONSENSUS is an
acronym for CONtext SENsitive NetworkS Using Statistics. The network discovers inherent
environmental constraints by being presented with examples from the domain by a tutor. The
network modifies its interconnections and programming to capture the underlying constraints from
the domain. In this manner, the network learns the tutor's classification method from the examples.

Experiments show that the network is able to learn in simple domains.

The downfall of many learning methods has been the "credit-assignment” problem. A learning
method must be able to determine how to modify its parameters in order to improve its understanding
of the task. Most previous work depends on making many small modifications with little confidence in
each change or its effect on the network. To improve performance they rely on the net accumulated
change of the many small modifications. Instead, we attembt to make a few large changes with good
confidence. The guiding principle of CONSENSUS is that decisions should be deferred until
sufficient evidence accumulates to make an informed choice. The CONSENSUS system attempts to
do this by giving each node an understanding of the role of itself and its neighbors in the network,

The decision method of CONSENSUS is based on probability theory and the statistics of group action.

The maost distinguishing features of the CONSENSUS system are :

1. The use of statistical inference for the classification method. Changes are made when
sufficient statistical evidence has accumulated to justify the change with a high degree of
confidence. ’

2. Large changes are made with confidence. The network makes a few large changes with
a high degree of confidence in contrast to more conventional systems which rely on the
accumulation of many small changes each made with little confidence.

3. Nodes have an awareness of their role and utility in the network. [t is advantageous for
nodes to understand their role in the network so that they may perform that role more
effectively.

4. The use of the notion of confidence in the reinforcement scheme. Only nodes that are
proven to contribute to the success of the network may issue reinforcements, which aids

in the translation of global reinforcements into local reinforcements.

5. The grouping of nodes into communities to exploit their collective knowledge. The
collective knowledge of a group of nodes can exceed that of any of its members.

Section 2 describes the task domain, and Section 3 contains a description of the network



components. Experimental results are presented in Section 4. Section 5 discusses several aspects of

the network, and Section 6 contains concluding remarks.



2. The Domain

2.1 Overview

The learning task involves learning-by-example with immediate feedback by a tutor. The network is
presented with a series of examples from the domain which it must classify. The proper classification
is strictly a function of the current example, no other dependencies including temporal dependencies
are allowed. The tutor gives immediate feedback to the network for each example, delayed feedback
is not allowed. The task is a simple one, but has wide applicability. Many more complicated problems

can be recast in the form of this domain.

2.2 The Learning Task

The task to be performed involves classifying binary vectors. The network must classify each
example presented to it as either vALID or INVALID. The tutor, assumed to be infallible, categorizes
each example as VALID, INVALID, or UNCERTAIN. If the tutor ctassifies an example as VALID the network
must also classify it as»vnuo. If the tutor classifies an example as INVALID the network must also
classify it as INVALID. If the tutor classifies an example as UNCERTAIN, then the network may classify it
as VALID or INVALID. The tutor examines the network’s classification and advises the network of the
accuracy of its classification. The tutor rewards the network for a correct (matching) response and
punishes it for an incorrect response when a VALID Or INVALID was presented. - The tutor neither
rewards nor punishes the network when an UNCERTAIN example was presented. This illustrated in
Table 2-1. The objective is for the network to learn to correctly recognize VALID and INVALID

examples from the domain solely as a result of the tutor’s advice.

Input Vector Tutors Networks Desired
X Y z Classification Classification
0 0 0 Uncertain Either
0 0 1 Invalid Invalid
0 1 0 Invalid . Invalid
0 1 1 Invalid Invalid
1 (1] 0 Invalid Invalid
1 0 1 Valid Valid
1 1 0 Valid Valid
1 1 1 Valid valid

Table 2-1: Sampie Problem



2.3 The Difficulty of the Task

The difficully of any given problem is a function of the size of the binary input vector. A problem
with binary input vectors n elements in length could present the network with up to 2" distinct input
vectors, since each of n inputs could assume 2 distinct states, on or OFF. The network must be able
to make an adequate classification of each potential input vectar. If the number of potential vectors is
m (=2"), then the network has 2™ possible ways to classify the set of possible input vectors since
each of m input vectors could be classified in 2 ways, vALID or INVALID. A domain with input vectors
of length 10, could generate up to 1024 distinct input vectors, and farce the network to choase the
correct classification function from among up to 21024 diftarent possible functions. The double

exponential nature of the problem makes it extremely difficult to solve complex problems.

In practice, the problems are usually simpler. The network may not be presented with all of the
potential input vectors. Some of the input vectors presented may be UNCERTAIN in which case any
classification by the network is acceptable. The worst case assumes that there are no inherent
regularities in the problem. Most interesting problems have some inherent regularities. Recognizing

and representing these regularities is essential to solving problems quickly and efficiently.

A network capable of correctly classifying binary input vectors has the capability to classify arbitrary
input vectors. Any input value, such as reals or integers, can he replaced by one or more binary input

values, therefor the binary nature of the domain is not an inherent restriction on its capabilities.



3. The Network

3.1 An Overview

CONSENSUS is a connectionist network capable of learning from examples. The network consists
of nodes which are organized into communities which are in turn organized hierarchically into layers.
Nodes are interconnected by links which allow the nodes to communicate with each other.
Communities are groups of nodes which are monitored by a distinguished node that reflects their
collective judgement. A conceptual view of the network is shown in Figure 3-1. The following section

gives an overview of the network components and subsequent sections describe the network in

detail.
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Figure 3-1: Conceptual View of a Network



3.2 The Network Components

3.2.1 Nodes

The nodes are the primitive computing elements in the network. Each node controls three links with
which it can connect and communicate with other nodes. For convenience these controiled links will
be referred to as the X link, the Y link, and the Z link. An arbitrary number of uncontrolled links may
be linked to a node. A node is always in one of two statés, ON or OFF, which is a deterministic pairwise
boolean function of the states of two other nodes with which its controlled links are connected. Every
node has a unique identifier and maintains a history summarizing the events which it has chserved.
These are conventional nodes, there are some specialized nades in the network, but the term nodes
will be use to refer to conventional nodes unless otherwise indicated. The operations of the network
center on the conventional and specialized nodes and the following sections describe the operations

in detail.

3.2.2 Links

Links allow communication between nodes. A link is a directed connection between two nodes. A
link has a SUPERIOR end and a SUBORDINATE end which are distinguishable. The superior node
resides in the same layer or a higher layer in the hierarchy than the subordinate node, and the
superior node determines which node shall be the subordinate node. The link can transmit the

following information from the subordinate node to the superior node :

+ Subordinate node state.
e Subordinate node identifier.

* New-Function signal.
The iink can transmit the following information from the superior node to the subordinate node :

» Reinforcement signal.

e Confidence-Level.

The superior end is permanently connected to a single node while the subordinate end may be
connected to different nodes at different times,

3.2.3 Communities
A community is a collection of nodes that function together to share their understanding of the
environment to which they are connected. The community consists of many conventional nodes and

one spokesman node. Each community resides exclusively in one layer.



3.2.4 Spokesman

A spokesman is a distinguished node. It controls one link to every other node in its community
which is fixed and may not be reconnected to other nodes. The state of the spokesman is a
deterministic function of the states of the other nodes in the community. The state of the spokesman
represents the collective judgement of the nodes of the community. Henceforth, the term spokesman

is meant to be spokesman node.

3.2.5 Layers

Layers are composed 6f one or more communities. The network is organized hierarchically and
there may be an arbitrary number of layers. The binary input vector is considered to be layer 0, the
remaining layers are numbered from 1 to n. Communities in the uppermost layer are referred to as
top communities, while any community that may connect to the inputs is referred to as a base

community.

3.2.6 Environmental Inputs _
The binary input vector from the environment is communicated to the network via input nodes.
These are specialized nodes, one per element in the vector, and always assume the state of the

corresponding element in the binary input vector. These nodes reside in layer O by definition,

3.2.7 Environmental Reinforcement
The tutor conducts the environmental reinforcement. The environmental reinforcements are sent to
every node in the top layer. These nodes may generate internal reinforcements which can propagate

downwards throughout the network.

3.3 Cycle Timing

Each cycle consists of the phases enufnerated below. A central clock ensures that the nodes are

properly synchronized.

1. Environmental Input Received. The input nodes assume the state of the corresponding
element of the binary input vector.

2. Computation. Each node computes its new state after its subordinates have assumed
their new states. lts new state is then available to its superiors so they may compute their
new state. All nodes may compute in parallel subject to propagation delays.

3. Network Classification. Spokesman located in the top communities classify the binary
input vector on behalf of the network.



4. Covironmental Reinforcement.  Nodes located in the top communities reccive
reinforcement from the tutor,

3. Internal Reinforcement. The nodes in the top communities issue reinforcement signais to
their subordinates. The subordinates in turn issue reinforcements to their subordinates,
Reinforcement may go on in parallel throughout the network subject to propagation
delays.

6. Analysis. Each node analyzes the functions it could compute, and the usefuiness of the
links it controls. It determines if it should retain or change its current computed function,
and which links, if any, should be replaced this cycle. All nodes may analyze in parallel.

7. Unlinking. Links designated for replacement are unlinked from their subardinate nodes.

8. Changing Functions. Nodes dasiring to change their computed function now do so
informing their superiors of their action.

9. Linking. Links without connections to a subordinate node are now reconnected to new
nodes, .

3.4 Receiving Inputs from the Environment

The environmental binary input vector is made available to the network in the Environmental Input
Received Phase. Each input node assumes the state of a specified element, which remains the same
from cycle to cycle, in the binary input vector, The states of these nodes are now available to the

remainder of the network.

3.5 Computing the Outbut of a Node

A node outputs one of the sixteen pairwise boolean functions of two of the three links it controls.
The node could compute any of the 38 unique pairwise boolean functions enumerated in Table 3-1
subject to the restriction that only top community nodes may compute a constant. It could compute a
function of none of its links (a constant), a function of one of its links, or a function of two links. Only
half of the functions are independent since every signal has exactly one inverse. The node
remembers which function it is to output. During the Computation Phase the node assumes the state

of its output.

3.6 Computing the Qutput of a Spokesman

The spokesman node of each community cutputs the state of the majority of the other nodes in the
community. The spokesman samples their states through the links it controls and determines which
state is in the majority, breaking ties arbitrarily if nceded. In this way, the node represents the

collective judgement of the nodes in the community.
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Functions of 0 inputs :

FALSE TRUE
Functions of 1 input :
X ~X Y ~Y z ~1

Functions of 2 inputs :

Xor Y X nor Y Yor Z Y nor I Zar X Z nor X
X or ~Y ~% and Y ¥ or ~1 ~Y and I Z or ~X ~Z and X
~X or Y X and ~Y ~Y or I Y and ~1 ~I or X Z and ~X
X eqgv Y X xor Y Y eqv Z Y xor 1 L eqv X I xor X
X and Y X nand ¥ Y and Z Y nand 2 Z and X Z nand X

Table 3-1: Unique Pairwise Boolean Functions

3.7 Computing the Output of the Network

The output of the network is taken to be the state of the spokesmen of the top communities. If the
state of the spokesman is ON, the network is said to have classified the example as ACCEPTABLE. [f the

state of the spokesman is OFF, the network is said to have classified the example as REJECTABLE.

3.8 The Tutor

The function of the tutor is to issue the appropriate environmental reinforcement to the network.
The tutor can be thought of as a single node residing in the n+1 layer. The tutor has a fixed

controlled link to every node of every top community through which it may reinforce these nodes.

3.9 Receiving Environmental Reinforcement

The tutor, presumed to be infallible, classifies the binary vector input as either ACCEPTABLE,
REJECTABLE, Or NEUTRAL. It issues a reinforcement signal to every node in the top communities. The
state of each node in the top community is examined and compared to the desired classification. The

tutor then issues reinforcement as described previously and illustrated in Table 2-1.

3.10 The Classification Method

3.10.1 Introduction

Consider the following problem. You are given a coin and asked to classify the coin as FAIR, a HEAD,
or a TAIL. A HEAD coin comes up heads more often than tails, a TAIL coin comes up tails more often
than heads, and a FAIR coin comes up heads and tails with equal frequency. How can you determine
which category the coin belongs to if you are only allowed to test the coin by flipping it and recording

the result?
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Determining the correct classification with absolute certainty is impossible. Unless the coin always
produces heads or tails, then any given flip could result in a head or a tail. A coin that praduces both
heads and tails could belong to any of the three categories. Any sequence of observed results could
be produced by a coin from any of the three categories. This makes it impossible to rule out any of

the three categories with absolute certainty,

Since the coin cannot be classified with certainty, we must settle with flipping the coin until a good
guess as to which categery it belongs in can be made. We could satisfy ourselves that the coin is a
HEAD if & sequence was observed which was very likely for a HEAD coin but very unlikely for a FAIR or
TAlL coin. The converse can be done 1o satisfy ourselves that the caoin is a TAIL coin. Satisfying
ourselves that a coin is a FAIR coin, is much more difficult. While a FAIR cain is equally likely to come
up heads or tails, it is not assured in any particular number of trials. Indeed, a FAIR coin is far more
likely to have an unequal number of heads and tails observed after a given set of trials. It would be
expected that over a very farge number of trials, the numbers of heads and tails would be
approximately equal. We can categorize a coin as being as FAIR coin with confidence if we believe
with confidence that it is not a HEAD coin and not a TAIL coin by process of elimination. This solution

to the coin problem is based on statistical inference and can be placed on a more formal basis.

3.10.2 Statistical Inference

Statictical inference is the process of drawing conclusions about a population on the basis of a
random sample. Alternative hypotheses are classified by hypothesis testing. In the solving the coin
problem we may propose the hypothesis "the unknown coin is a HEAD coin." We generate a sample
by flipping the coin and observing the result. Hypothesis testing is a general method for determining
whether to accept or reject the proposed hypothesis about a random variable from information in the

random sample [1].

3.10.3 Classifying the Coin
In the case of the coin problem, we are asked to categorize the coin as either FAIR, HEAD, or TAIL. [f
an ingufficient number of triais to make a determination has been observed, we can ¢laim that the

proper classification is unknown,

To classify the coin as a HEAD it must be shown that it is unlikely to be a FAIR or a TAIL coin. A FAIR
or a TAIL coin will have heads come up no more often than tails. In a sample of n trials, we will
observe h heads and t tails such that h + t = n. if 100 trials of 1000 coin Hlips each were conducted,

we would expect a FAIR coin to produce between 460 and 540 heads inclusive in 99 of the trials. This
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range from 460 to 540 constitutes the 99% contidence intarval (two tailed) which is defined to be the
range that is expected to encompass 99 out of 100 trials. f more than 540 heads are observed, we
can claim that the coin is a HEAD. If itis acluaily a FAIR coin, the probability of our being wrong is .5%.
Iif it is actually a TAIL coin, the probability of our being wrong is less than .5%. We accept a probability

of error of .5% when we make a classify a coin as a HEAD coin.

Conversely, if the observed number of heads is less than 460, the coin can be classified as a TAIL

coin with an error of .5% or less.

it should be emphasized that not classifying a coin as a HEAD or a TAIL is not equivalent to
classifying it as a FAIR coin. A coin is classified as a HEAD or a TAIL when we have a preponderance of
evidence in favor of that classification. We may or may not have sufficient evidence to classify a coin

as a FAIR coin.

To prove that a coin is a FAIR coin by the above method would require an infinitely large number of
samples. Since it is infeasible to prove that the coin is a FAIR coin, we will be content to show that the
coin is fair to within an equivalence factor. If the equivalence factor is 5%, then we would consider a
coin to be a FAIR coin if it can be shown that it will come up heads between 45% (50% - 5%) and 556%
(50% + 5%) of the time. Showing that the coin will come up heads more than 45% of the time is
analogous to categorizing the coin as a HEAD coin (comes up heads more than 50% of the time). The
99% confidence interval for a coin that comes up head 45% of the time is from 410 to 490 inclusive.
So if more than 490 heads are observed, we are satisfied that the coin will come up heads more than
45% of the time. Analogously, the 89% confidence interval for a coin that comes up heads 55% of the
time is from 510 to 590 inclusive, and if fewer than 510 heads are observed we are satisfied that the
coin will come up heads less than 55% of the time. Therefor if between 491 and 509 heads inclusive
are observed, we are satisfied that the coin will come up heads and tails with equal frequency to

within a 5% equivalence factor and classify the coin as a FAIR coin.

If the number of observed heads is between 460 and 490 inclusive, or between 510 and 540
inclusive we have not classified it into any of the three categories. We judge its proper classification

to be unknown, pending additional data.
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3.10.4 Classifying a Function

Functions at a node can be classified in much the same way as coins can be classified. Coins were
classified depending on whether they came up heads more than 50% (HEAD), less than 50% (TAIL), or
equivalent to 50% (FAIR). The same can be done for functions at a node depending on whether they
are correct more than the current function (SUPERIOR), less than the current function (INFERIOR), or
the same as the current function (REDUNDANT). If there is insufficient information to make this

determination, we classify it as UNKNOWN,

To better illustrate the previous discussion, consider the following example. In the ensuing
discussion, | will refer to Table 3-2 and Figure 3-2. In this example, the present function that the node
is computing is correct 70% of the time. Table 3-2 gives the classification criteria for differing number
of trials. Figure 3-2 presents this information graphically, though not necessarily to scale. On the

y-axis the fraction correct is plotted, on the x-axis the number of trials is plotted.

As we did before in the coin problem, we must determine what the 99% confidence interval is, which
varies with the number of trials. The current fraction correct is shown by line Aa. The confidence
interval about the current fraction correct is delineated by the lines Bb and Cc. if the fraction correct
for the alternative function lies above the line Bb, we classify it as a SUPERIOR alternative function. If
the fraction correct lies below the line Cc, we classify it as an INFERIOR alternative function. To
classify the function as REDUNDANT we must show it falls within the equivalence factor of the fraction
correct for the current function. This range is delineated by the lines Dd and Ee which are paralle! to
line Aa, the fraction correct for the current function. The 99% confidence interval about line Dd is
delineated by lines Ff and Gg. The 99% confidence interval about line Ee is delineated by lines Hh

“and li. The classification of REDUNDANT can be made in the region bounded by lines Bb, Cc, Gg, and
Hh. In the remainder of the figure, we make the classification of UNKNOWN since we do not have a

sufficient number of samples to make a proper determination among the first three categories.

A few observations about the diagram are in order. In the leftmost part of the figure, the UNKNOWN
region dominates. This reflects that only a few number of trials have been conducted and that
insufficient information is available for a proper classification is available. In the rightmost part of the
figure, the y-axis is divided exclusively into SUPERIOR, INFERIOR and REDUNDANT regions. This implies
that with a sufficient number of trials, a proper classification can always be made. This is the case
because the boundaries of the confidence interval asymptatically approach their center. So lines Bb
and Cc asymptotically approach line Aa, lines Ff and Gg asymptotically approach line Dd, and lines
Hh and li asymptotically approach line Ee. Therefor lines Bb and Cc will come closer to line Aa than

any constant, namely the equivalence factor. This insures that the lower boundary to the SUPERIOR
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Size 10 20 50 100 200 500 1000 2000
Correct 7 14 35 70 140 350 700 1400
99% Lower .327 .436 .533 582 617 647 663 .674
Upper 1.000 .964 .867 .818 .783 .753 .737 .726

5% Lower 1.000 .925 .824 773 737 .705 .689 677
Upper .397 501 .502 .638 671 700 715 ,725
Reject < 4 9 27 59 124 324 663 1354
Redundant - - - - - - 689 1355
- - - - - - 715 1450

Accept > 10 - 19 43 81 156 376 737 1450

Table 3-2: Classification Criteria Example

region, line Bb, will intersect the upper boundary to the REDUNDANT region, line Gg. It also insures
that the upper boundary to the INFERIOR region, line Cc, will intersect the lower boundary to the

REDUNDANT region, line Hh.

The sketch in Figure 3-2 is asymmetrical. This is the general case, the figure will be symmaetrical
only when the current function, line Aa, has a fraction correct of 50%. In the network, we have used a
chi-square test instead of explicitly calculating the binomial distribution to simplify the calculations of

the confidence intervals,

An underlying assumption is that 'the each trial is independent. Were the trials to be dependent in
some fashion, the assumptions about the probability distributions would be incorrect. Obtaining ten
out of ten correct when all the trials are independent is far more significant than obtaining ten out of
ten when the outcome of the trials are dependent. To employ this method requires assurance that the

trails are independent and we will take measures discussed later to assure this.

By using this classification method, we can compare an alternate function to the current function
and classify the alternate function as SUPERIOR, INFERIOR, or REDUNDANT, and if lacking sufficient
information to place it in the first three categories, classify it as UNKNOWN. This gives us a means to

determine which of two functions is better.

~ 3.10.5 Correlating a Pair of Functions

We have need to determine when two functions are INDEPENDENT or DEPENDENT. This can be
accomplished by using a method similar to that discussed above. We seek to determine when the
pair of functions compute the same result to an unacceptable degree. The two functions are
considered DEPENDENT if they compute the same functions or if one function is the inverse of the

other. Two functions are considered to be equivalent if they obtain the same resuits within a
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dependence factor with 99% confidence. Two functions are considered to be inverses of one another
if they obtain opposite results with a dependence factor with 99% confidence. If it cannot be
determined that the two functions are DEPENDENT, we classify them as INDEPENDENT. By this

classification of INDEPENDENT, we really mean that the two functions are not totally dependent.

To better illustrate this, consider the following example. In this example, a dependence factor of
10% will be used. Table 3-3 gives the classification criteria for differing number of trials. Figure 3-3
presents this information graphically, though not necessarily to scale. On the y-axis the fraction in

agreement is plotted, on the x-axis the number of trials is plotted.

We must determine when we are 99% confident that the functions agree more often than the
dependence factor allows. With a 10% dependence factor, we seek to show that the functions agree
more than 90% of the time, line Jj, or less than 10% of the time, line Kk. The 99% confidence interval
about the dependence factor must be determined, which varies with the number of trials. The limit of
the confidence interval above the 90% function agreement is shown by line LL. The limit of the
confidence interval below the 10% function agreement is shown by line Mm. If the fraction in
agreement for the specified number of trials is above line LI or below line Mm, we classify the pair of

functions as DEPENDENT, otherwise we classify them as INDEPENDENT.

it should be noted that the lines L} and Mm approach lines Ji and Kk respectively asymptotically.

This figure is symmetrical under all conditions.

3.11 Analyzing Functions at a Node

Each node computes one function of its inputs, while it has the potential to compute any of the 38
functions enumerated in Table 3-1 excluding the 2 constant functions for the nodes in non-top
communities. The node maintains a history for the current function as well as for all of the potential
alternative functions. During the Analysis Phase of each ¢ycle, the node attempts to determine if any
of the functions it is not currently computing could better satisfy its superiors. The node uses the
classification method to compare each alternative function to the current function, and classifies
each alternative among the set of SUPERIOR, INFERIOR, REDUNDANT, and UNKNOWN. The nodes use the

following procedure to determine what function to compute in the next cycle:

1. If any of the alternate functions is classified as SUPERIOR then the alternate function with
the greatest fraction correct is selected to be the new function the node will compute. In’
the case of a tie, the function requiring the fewest inputs is preferred with remaining ties
broken arbitrarily. This new function is marked to be made into the current function in the
Changing Function Phase. Links controlled by the node but unneeded by the new
function are marked to be unlinked in the Unlinking Phase.
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Figure 3-3: Dependence Criteria Sketch
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Size 50 100 200 500 1000 2000 5000
Upper Dependence 45 a0 180 450 900 1800 4500
99% Upper 1.000 .97 L9556 .935 .924 .917 911
Lower Dependence 5 10 20 50 100 200 500
99% Lower .000 .023 .045 .065 .076 .083 .089
Dependent Upper 0 98 190 467 924 1834 4554
Dependent Lower 0 2 10 33 76 166 - 446

Table 3-3: Dependence Criteria Example

2. If none of the alternate functions is classified as SUPERIOR or UNKNOWN, then the alternate
functions classified as REDUNDANT and the current function are compared to determine
the function with the greatest fraction correct, with ties broken as described above. This
function is marked as the new function, and the unneeded links are marked as discussed
above.

3. If no alternate functions are classified as SUPERIOR, but at least ane alternate function is
classified as UNKNOWN, then the current function is retained. No function is marked for
the Changing Function Phase, and no links are marked for the Unlinking Phase.

We desire to change to a SUPERIOR function as soon as we can determine which, if any, it is. When
it is clear that no SUPERIOR functions exist because all the alternate functions are classified as
INFERIOR OF REDUNDANT, then we must settle for a function equivalent to the current one, When there
are no SUPERIOR functions but still are UNKNOWN functions, we must wait to determine if any of the

UNKNOWN functions may be classified as SUPERIOR.

When breaking ties between functions with equivalent fractions correct, we choose the function
requiring the fewest inputs. By preferring the simplest function available, we make more controlled
links availabie to be reconnected to other potentially useful nodes. This gives the node a preference

for the simplest explanation for an observed phenomena (Occam's Razor).

When a new function is selected from one to three controlled links are marked for replacement in
the Unlinking Phase. If the new function is to be a constant, then all three controlled links are
unneeded and they are all marked for replacement. If a one input function is selected, then the
necessary link is retained while the other two are marked for reptacement. If a two input function is
selected, then the two necessary links are retained while the third is designated for replacement.
Once we have examined the pessible functions and made our determination for the best function to
compute, we need to examine as many new possible functions as possible. This is accomplished by

replacing controlled links to nodes whose potential we have already examined.
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3.12 Analyzing Links at a Node

Each node analyzes the signals received from its controlled links during the Analysis Phase. The
controlled links may be transmitting signals that are of no value to the node; it so the node will seek to

identify and replace the useiess links.

A controlled link to an input node may be connected to a node which outputs a constant. Since a
node can compute any pairwise boolean function, a link to a node computing a constant provides no
useful information. As an example, assume the X link is connected to a node that always outputs
TRUE. In Table 3-4, the 2 Input column shows the pairwise boolean function of X and Y and the 1
Input column shows the equivalent functions if X is always TRUE. Since the node combutes all the
functions in the 1 Input column with its Y link, there is no advantage to having the X link connected to
a node that outputs TRUE. Analogous cases hold for the X link always signaling FALSE, and
constants on the other links. Any links determined to be DEPENDENT with the functions TRUE or

FALSE, are marked for replacement in the Unlinking Phase.

2 Input 1 Input 2 Input 1 Input
FALSE FALSE X and Y Y
X nor Y FALSE X eqv Y Y
~X and Y FALSE Y . Y
~X FALSE ~X or Y Y
X and ~Y ~Y X TRUE
~Y ~Y X or ~Y TRUE
X xor Y ~Y Xor Y TRUE
X nand Y ~Y TRUE TRUE

Table 3-4; Simplifying Pairwise Functions with Constant Input

Two controlled links may be connected to nodes which output the same function or inverses of one
another. In this case, only one of the links is useful since we can determine the second given the
output of the first. Table 3-5 illustrates the case where the X and Y links output the same function.
The 1 Input column shows the function of the Y link that is equivalent to the function of the X and Y
links shown in the 2 Input column. Each Analysis Phase, alt pairs of links are classified as either
INDEPENDENT Or DEPENDENT. If any pair of links is marked as DEPENDENT, then one link in the pair

chosen arhitrarily is markéd for replacement in the Unlinking Phase.

In either of the two cases above, the link being replaced may be part of the current function. For
example, if it is determined that the X link is redundant and the function being computed is X OR Y,
then the X link which are function depends on will be replaced. In cases like this, we mark the node to

replace its two-input function by the one-input function equivalent.
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2 Input 1 Input 2 Input 1 Input
FALSE FALSE X and Y Y
X nor Y ~Y X eqv Y TRUE
~%X and Y FALSE Y Y
~X ~Y ~X or Y TRUE
X and ~Y FALSE X Y
~Y ~Y X or-~Y TRUE
X xor Y TRUE X or Y Y
X nand Y ~Y : TRUE TRUE

Table 3-5: Simplifying Pairwise Functions with Matching Inputs

3.13 Analyzing Output at a Node

A node that is not a member of a top community should not compute a constant. The tutor's
classification of the input vectors may make a constant the best response from the network, therefor
the nodes in the top communities ray need to output a constant. From the previous section, we
know that nodes cannot usefully employ a link to a node that oﬁtputs a cdnstant. Unlinking from
nodes which output a constant is inefficient since each node that links to the node that outputs a
constant must indepenc_!ently determine to unlink from the node. It is more efficient to let the node
detect when it outputs a constant. Each Analysis Phase, we compare the current function to a
constant function and determine if they are DEPENDENT or INDEPENDENT. If they are determined to be
DEPENDENT, all links are marked for replacement in the Unlinking Phase and a randomiy sefected

function is marked to be the new function in the Function Changing Phase.

It should be emphasized that prohibiting the node from computing a constant function is not
sufficient. Consider a'node that outputs X OR Y, where Xis ~A and Y is A OR B. The node will output
TRUE since ~AOR A OR B will always evaluate to TRUE. Testing the X and Y links against a constant
and each other will yield the INDEPENDENT classification. Though the inputs are not completely
dependent, they may be partially dependent a case our Classification scheme will not récognize. As a

resuit, the test for a node that outputs a constant must be explicit.

3.14 Freeing Links

In the Unlinking Phase, the links designated to be unlinked are freed. Before being unlinked, the
node identifier of the subordinate node is recorded so the node may avoid reconnecting to this same
node. The connection of the link to the subordinate node is then severed. The link is now free to

connect to another destination node in the Linking Phase.
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3.15 Changing Functions

A node that is changing its function sends a New-Function signal to all of its superiors. If a node
receives a New-Function sig_nal from a link, all histories of functions that are dependent on that link
are reinitialized. The node aiso determines if the current function is dependent on the signaling link, if
so it sends a New-Function signal to its superiors. When a node changes its function, all of the nodes
which have been tracking its usefulness must be infarmed of the change. It would be confusing to a
node to merge statistics of a subordinate who was formerly computing X AND Y and is now

computing X NAND Y, for example. The New-Function signal scheme performs this role.

3.16 Making Links

In the Linking Phase, any links without subordinate nodes are reconnected. The nodes in each
community are allowed to connect their controlled links to any node from a set of other communities.
This set of communities may vary for different communities. Among the set of communities which
may be connected to, any node including spokesman are eligible. The only restriction is that a link
may not connect to a node with which a link was unlinked from in the Unlinking Phase of the current
cycle. This prevents linking to node that has just been shown to not be useful in the current cycle.

This restriction is waived if the set of nodes that can be linked with would otherwise be null.

3.17 Calculating the Confidence Level of a Node

Every node maintains a measure of its confidence. Nodes with confidence have demonstrated that
they are receiving reinforcements that are better than chance, meaning being more than 50% correct.
Nodes without confidence have not derﬁonstrated that the reinforcements they are receiving are
better than chance. To determine if a node has confidence, we use the classification method
discussed previously. We determine if the current function would be classified as SUPERIOR when
compared against a function obtaining a fraction correct of 50%. If the current function would have
been classified SUPERIOR then we classify it as being CONFIDENT, otherwise we classify it as being
UNCONFIDENT. This distinction is important since CONFIDENT nodes may issue internal reinforcement
signals while UNCONFIDENT nodes may not. CONFIDENT nodes may be ordered based on how
confident they are, with nodes having the greater fraction correct being considered mare confident |
than their fellows.
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3.18 Recording History at a Node

in order to make informed decision, a node must have an understanding of its role in the network.
To achieve this each node maintains a history of several of its functions. The node does not explicitly
retain a memory of all past events, but rather a statistical summary of past events. Each node
maintains all of the histaries itemized below except for nodes in the top community which need not

maintain an gutput history.

e Reinforcement history. Thirty-eight values, one per potential function the node could
compute. Records the fraction of POSITIVE and NEGATIVE reinforcements received which
were POSITIVE. ‘

e Link history. Three values, one per controlled link, which records the fraction of cycles
the link was in the ON state.

e Link pair history. Three values, one per pair of controlled links, which records the
fraction of cycles both links were in the same state.

e Output history. Single value which records the fraction of cycles the node was in the ON
state. '

These histories have been weighted to give more recent events more importance. Unweighted
histories inhibited effective learning because the nature of the classification method let functions with
long histories dominate functions with short histories. Often a node found a good function and buiit
up a long history to attest to its goodness. Later, when a better function was available the shortness
of its history prevented its superiority from being recognized. As an example a node that received 90
POSITIVE reinforcements compared to 10 NEGATIVE reinforcements could not demonstrate a
superiority over a function receiving 800 POSITIVE reinforcements and 200 NEGATIVE reinforcements.
This feads to a close-mindedness along the lines of "it has always been good enough, why consider

anything else?” The method of weighting histories alleviates this problem.

The histories are maintained as follows. Each history is saved as a value, x, between -n and n where
2n can be interpreted as the effective memory length of the history. The history is initialized, usually
to 0. Whenever a reinforcement is received, the value is scaled towards 0 by x/n. Additionally, if the
reinforcement was POSITIVE, x is incremented by 1, and if it was NEGATIVE, x is decremented by 1. The
impact of the current event is 1, and the effective impact of past events diminishes exponentiaily as
they become more remote in the past. If a node receives POSITIVE and NEGATIVE reinforcemgnts with
equal frequency, the value will exponentially drift towards 0 indicating a balance between the two. If
the reinforcements are always POSITIVE, the value will climb towards n, which can be reached but

never exceeded, indicating pure POSITIVE reinforcement. The values from O to n indicate increasing
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degrees of net POSITIVE reinforcement. The value ((x + n)/2n) gives the fraction correct out of 2n
events. When measuring states or agreement of states, we make the appropriate substitutions for the
fraction of POSITIVE and NEGATIVE reinforcements. Histories are always initialized to 0, except for the

Reinforcement history which is initialized to the value of the history of the current function.

The use of weighted histories gives a common length to ail histories which facilitates comparing
them. The mathematical comparisons are much simpler than with an exact history. The weighted
history also solves the problem of good functions with long memories dominating better alternatives
with shorter memories. Unfortunately, we must accept the converse, namely that it takes longer to
refute poor functions. Alter initializatioh, the weighted history has an effective memory of 2n events.
We choose 0 for all but the Reinforcement history for which we choose the value of the current
function history. A reasonable initial value must be chosen since the during the first few cycles the
assumed history shall dominate the early cycles activity. For example, if the history were initialized to
0, it would indicate a history of equal POSITIVE and NEGATIVE reinforcement, for a function that always |
receives NEGATIVE reinforcement it will take several cycles to overcome this initialization. The
unweighted history does not have this drawback. Another advantage to the weighted history is its
ability to quickly recognize when its reir;forcement pattern has changed. Consider a node which has
learned the optimal function demanded by its superior who reinforces it. If it has an unweighted
history of 10,000 events and suddenly its superiors asked it to solve a different task, it would take
thousands of events before the node realized that its superior were reinforcing it differently. With a

weighted history a hundred events may suffice.

3.19 Receiving Internal Reinforcements

Nodes may receive reinforcements from any of their superiors. The node receiving reinforcement
must determine which if any to utilize. To accomplish this the node measures the Confidence-Level of
each node that is their superior. If no superior is CONFIDENT, then only NEUTRAL reinforcement signals
can be received. If any superior is CONFIDENT, then only t_he reinforcement from the superibr with the
greatest confidence is utilized. In the event of more than one superior with equal confidence, the
node whose reinforcement was utilized in the previous cycle will be utilized in this cycle, otherwise
cycles are broken arbitrarily which helps to maintain continuity in the reinforcement signals between
cycles. We prevent the node from utilizing more than one reinforcement signal per cycle to insure
that the reinforcements received are independent. The independence assumption is vital to the
classification method. If a node had several superiors who were computationally equivalent, then
they would all produce the same reinforcement signals. The node would interpret these as
independent reinforcement signals, thus giving them more significance they deserve. To prevent this

possibility, only the superior with the greatest confidence is recognized.
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3.20 Issuing Internal Reinforcements

Every node can receive and transmit reinforcement in the Internal Reintorcement Phase. These
reinforcement signals are u_sed to choose the current function as previously discussed. When a node
is CONFIDENT is has the right to reinforce the nodes it has controlled links to. A node issues

reinforcement through every controlled link.

The reinforcement scheme is outlined in Table 3-6 which illustrates reinforcement through the X
link, the cases for the other links are analogous. |If the node received a NEUTRAL reinforcement signal,
the NEUTRAL reinforcement signal is issued. The node has received this signal because it has not
played a significant role in the classification by the network, or the tutor issued an UNCERTAIN
reinforcement signal. It should be remembered that the link is transmitting a boolean signal, and that
the inverse signal could have been sent. Had the signal been inverted, the node may have output a
different signal. If a different signal been sent and the node actually received' a non-neutral
reinforcement it can be shown that the new reinforcement would be the opposite of its current
reinforcement. So the node can hypotheéize accurately the reinforcement it would have received had -
the X fink sent an inverted signal. If the node received a PosiTIVE reinforcement and inverting the X
link signal would also have resulted in a POSITIVE reinforcement, then the X link had no control over
the reinforcement signal so we send through the X link a NEUTRAL reinforcement signal. The same
would apply if both had been NEGATIVE reinforcement signals. If the node received a POSITIVE
reinforcement and an inverted X link signal would have resulted in a NEGATIVE reinforcement, then we
know the X link was crucial in the reinforcement received by the node. For the node to receive a
POSITIVE reinforcement, the X link must continue to output the result it is now, so we issue a POSITIVE
reinforcement through the X link. T'he‘opp'osite case occurs when the node receives a NEGATIVE
reinforcement, and an inverted X link signal would have resulted in a POSITIVE reinforcement, We
issue a NEGATIVE reinforcement through the X link to encourage the node connected to via the link to
change the output it computes. .

Reinforcement to X Link

Reinforcement Reinforcement Reinforcement
Received Received By Node if Issued to Reason
By Node X Link Signal Inverted X Link
positive positive neutral X Link - no effect
positive negative positive X Link - correct
negative positive negative X Link - wrong
negative negative neutral X Link - no effect
neutral -- ‘ neutral desired signal unknown

Table 3-6: Reinfarcement Scheme
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Table 3-7 gives exampies of reinforcement to the X link for two functions. In the first example, the
node is computing the function X. The output of the node is identical to the state signaled by the X
link. Observe that the reinforcement issued through the X link is identical to the reinforcement
received by the node itself. The node is acting as an intermediary between its superior and its X link
subordinate, and is merely passing information between these two nodes. In the second example'. the
OR function is being computed. When the Y link is signaling on, the X link receives NEUTRAL
reinforcement, since it cannot affect the output of the node. When the Y link is signaling oFF, the X
link receives either a POSITIVE or NEGATIVE reinforcement since its output is crucial to the

reinforcement received by the node.

Reinforcement Reinforcement
Reinforcement Node Received Issued through

Function X Y Result Node Received if X Inverted X Link
X 0 0 0 positive negative positiive
0 0 0 negative positive negative
o 1 0 positive negative " positive
0 1 0 negative positive negative
1 0 1 positive negative - positive
1 0 1 negative positive negative
1 1 1 positive negative positive
1 1 1 negative positive negative
XorY 0 0 0 positive negative positive
0 0 0 negative positive negative

0 1 1 positive positive neutral

0 1 1 nggative negative neutral
1 0 1 positive negative positive
1 0 1 negative positive negative

1 1 1 positive positive neutral

1 1 1 negative negative neutral-

Table 3-7: Reinforcement Examples

3.21 Initialization of the Network

The network can be initialized as follows. Mark every controlled link for connection, and every node
to have its function changed to a randomly selected function from among those eligible functions.
Execute the Changing Functions and Unlinking Phases successively, and the network is ready to
begin.
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3.22 Explanation of Cycle Timing

Conceptually each cycle is broken into several distinct phases. As implemented some of these
phases are carried out simultaneously. The first three phases can be processed at the same time.

Both reinforcement phases can be carried out simultaneously. No other overlap is possible.

The Unlinking, Changing, and Linking Phases are cqnducted separately to minimize disruption to
the network during transitions. Nodes which are changing their function, signal a New-Function to
their superiors. The New-Function signal causes its recipients to lose confidence and reinitialize their
statistics. This loss of information should be avoided when it is unnecessary. It node P has
designated the link to node Q to be replaced, and node Q is about to change its function, then there is
no need for node P to receive the New-Function signal from node Q. Placing the Unlinking Phase
before the Changing Function Phase allows their connecting link to be freed preventing the reception
of the signal. Similarly if node R wishes to make a link to node Q, then there is no need for node R to
receive the signal either. Therefor, the Linking Phase is placed éfter the Changing Function Phase so
that the New-Function signals are transmitted before the new link connection is made. in both cases,

nodes P and R had no reason to know that node Q was changing its function.
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4. Results

4.1 Overview

To demonstrate the capabilities of the CONSENSUS system it was run against three instances of the
learning task. The first instance requires classifying all possible functions of three inputs, which vary
significantly in difficuity. The network was developed-on this problem and later applied to the
following problems. The second instance is the shifter problem, here the network must recognize an
important regularity, but has more inputs to contend with. In the third instance, the network controls

a simulated organism in a more complex environment.

4.2 A Simple Test

For a simple non-trivial test, the following task was posed to the network: Learn to recognize and
correctly classify each of the possible unique boolean functions of 3 variables. The binary input
vectors consists of 3 elements, allowing 8 (23) unique input vectors. We required the network to
classify each vector as either vaLID or iNvALID, which allows 256 (28) possible functions. From among
these 256 possible functions cnly 14 are unigue, the remainder being equivalent if you can rename
inputs and recognize inverses. Figure 4-1 enumerates the functions, gives the frequency with which

they or an equivalent occurs, and diagrams a Karnough map of the function.

To solve this problem, the network was configured to have three communities organized into three
layers with each community composed of 24 nodes. The nodes in each community are permitted to
link to any node below them including the input nodes. The network was run against gach unique
function for 1024 cycles. The number of minterms correct (out of a maximum of 8) for the network is
tabulated in Table 4-1,

The learning process was observed to occur in roughly three phases. The first phase occurs during
the initial 20 to 30 cycles. The network begins with a random initialization of functions and
connections of dubious value. During the first few cycles the top community nodes identify the
aspects of the random initialization that were especially poor. These functions that perform badly are
quickly replaced by better functions that generally compute slightly better than chance. In this
problem, top community nodes would be expected to be initialized such that they would compute 4 of
the 8 minterms correctly. Typically, after this first phase there are essentially no top community nodes
getter fewer than 4 minterms correct and the majority are getting between 5 and 7 minterims correct.

The spokesman in the top community usually have at least 6 minterms correct and often have ail 8
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Figure 4-1: Unigue Boolean Functions of 3 Inputs
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minterms correct. Activity in this first phase is confined principally to the nodes in the top community
because until the nodes in the top community gain confidencz, no reinforcement is issued to the
nodes to the lower levels. While performance after this phase is often surprisingly good, the
knowledge is not robust. There are often many critical nodes in the network. These nodes are critical
because a change in their function would drastically affect the performance of the network as ei

whole.

Slow progress is characteristic of the second phase. Most of the nodes in the top community now
possess confidence and are reinforcing their subordinates. Several nodes in the tower levels are able
to identify features that are useful to their superiors. The positive reinforcement from their superiors
allows these nodes to "lock on” to the feature they have identified. Once a node has "locked on" to a
feature, other nodes at higher levels are often able to determine how to use this feature to improve
their performance. This phase ranges from 50 to 300 cycles in duration. At its conclusion, most top
communilty nodes have either 7 or 8 minterms correct, though on difficult problem nodes with 6
minterms correct can be found. The spokesman has ail of the minterms correct and many nodes in

the lower level now possess confidence. The knowledge is relatively robust at this point.

The third phase consists of very slow learning. Nodes in the top community make slow progress
while searching for a way to get their last minterm correct. When a node has all but one minterm
correct, it must often explore a large number of possibilities before it finds a way to get all the
minterms correct. Nodes in the lower level occasionly find improvements in their functions. The
New-Function signal they generate during their transition to a new function can cause many nodes
above them to lose confidence and reinitialize their histories. After losing confidence, these nodes
are vulnerable to the temptation of changing their current function for one that is almost as good but
is temporarily performing as well as or better than the current function. Nodes that yield to the
temptation must then relearn the minterms they now have incorrect. The network generally makes
very slow progress and eventually reaches an apparent equilibrium between the slow improvements

of the top community nodes and the consequences of the waves of New-Function signals.

On these problems, the network obtains 8 out of 8 minterms correct in 512 cycles and maintains this
through 1024 cycles. The network had the easiest times with the functions of two inputs or less (A, C,
L, and M). These are the functions possessing the greatest regularity. The network had the greatest
difficulty with functions G and H. These functions have several minterms which are dispersed from
each other. Functions are difficult to learn if they have few underlying regularities. Adjacent
minterms with the same value form regularities. Functions such as B or C with a preponderance of

one minterm value have many adjacent minterms of the same value. Functions with the equal number
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of minterms of each value cannot help but possess some degree of regularity. The nodes with a slight

preponderance of one minterm value offer the fewest underlying regularities.

Cycles

Function 32 64 128 256 512
] * * *

A False 8
B X"y * z 7 7 7 8 8
C X *Y 8 8 8 8 8
D X - (Y xor 2) 7 7 7 8 8
E (X~Y*Z) v ~(X*Y~2Z) 6 6 7 8 8
F X * (Y v Z) 8 8 8 8 8
G X " Y) v (=X"~Y~2) 7 7 7 7 8
H (X * (Y xor Z)) v (-X-Y-2) 8 8 7 7 8
| X *Y) v (=Y * 2Z) 8 8 8 8 8
J X xor (Y ~ Z) 8 8 8 8 8
K X *Y) v (Z - (X xor Y)) 7 7 7 8 8
L X 8 8 8 8 8
M X xor Y 7 7 8 8 8
N X xor Y xor Z 6 7 8 8 8

* - every node in community has 8

Table 4-1: Results on Boolean Functions of 3 Variables

4.3 The Shifter Problem

As a more difficult test, the network was asked to solve the following problem : Learn to recognize
shifts of the input vector. The binary input vector was divided into two components, S and V. The
component S consists of a single element and designates the transformation on component V to be
performed to produce O, the output vector. The component V consists of four elements numbered V,
through V, and the vector O consists of four elements numbered 0, through 0,. If Sis ON, O should
receive the corresponding elements of V, for example 0, receives V,. If S is OFF, O should receive the
elements of V shifted one place, for example 0, receives V, When a shift took place, 0, should
receive V, to produce a rotation of the last element. There are 32 (2°) unique input vectors which
were presented with equal probability. We required the network to produce O, the output vector. For
each element of O, the network must determine which of 2°° functions implement the required

function.

To solve the problem, the network was configured to have eight communities organized into two
layers. Since a top community can produce only a single bit of output, one top community is needed

for each element in O, the output vector. Essentially there are four networks operating in parallel.



