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1 . Introduction 

Knowledge about the arch i tec ture of the bra in has lead researchers to invest igate the proper t ies of 

" connec t i on i s t " systems. These systems are charac ter ized by s imple neuron- l ike process ing 

e lements wh ich are in te rconnected and store their know ledge as the s t rengths of these connec t ions . 

There are tasks for wh i ch these networks are eminent ly sui ted such as pat tern recogn i t ion . Wi th the 

proper connec t ions and connec t ion s t rengths, the process ing e lements can c o m p u t e in paral lel . For 

a speci f ic task, de termin ing the proper in te rconnec t ions and s t rengths to ut i l ize the computa t iona l 

power of the network is s t ra ight forward. For more genera l p rob lems, we may not be able to determine 

the proper conf igura t ion of the network. Preferably, the network wou ld be able to dynamica l ly 

reconf igure itself to solve the task presented to it. 

To reconf igure itself a p rogram must gain an unders tand ing of the task, in o therwords , it must learn. 

For a large doma in rote memor izat ion wil l be impract ica l s ince it requi res exhaust ively enumera t ing 

the d o m a i n . To comp le te the task w i thout rote memor iza t ion , the network must unders tand some 

concep ts about the doma in . To learn autonomous ly , no outs ide agent may commun ica te to the 

network any concep ts about the doma in . Learn ing by example, involv ing a tu tor present ing doma in 

examples to the network and indicat ing the des i red response, meets this cr i ter ia. This means that the 

network must be able to formulate its own concep ts about the doma in based upon the examples 

presented to it. The network must init ial ly recogn ize features f rom the doma in , then learn to uti l ize the 

features it has learned to recogn ize. Such learning wou ld be evolut ionary wi th improv ing 

per fo rmance as opposed to instant learn ing. A ne twork ut i l iz ing doma in feature recogn i t ion shou ld 

be able to infer domain examples to wh ich it has not been previously exposed . We wil l concen t ra te 

on learn ing-by-example. 

Initial s tudies of s imple networks learning to classify input vec tors were encouraged by the 

percep t ron conve rgence procedure . The percep t ron conve rgence p rocedure deta i led a method by 

wh i ch a one layer network cou ld reach its full potent ia l as a compu t i ng e lement. However, most 

interest ing computa t ions require more than one layer. In 1969, in Perceptrons[19], Minsky and 

Papert showed that no convergence p rocedure can exist for mul t i - layered networks . The lack of a 

proven conve rgence p rocedure does not mean that neura l ne tworks are incapable of interest ing 

computa t ions . 

The search for ef fect ive convergence p rocedures con t inue , many of them wi th a mathemat ica l bent . 

Recent work inc ludes the Bol tzmann mach ine [12] , wh i ch relies on s tochast ic re laxat ion techn iques 

to ach ieve convergence . Rather than at tempt to prove conve rgence proper t ies for a method , we wil l 
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be sat isf ied by a conv inc ing empir ica l demons t ra t ion of the cibility of a method to achieve 

convergence . 

This paper descr ibes the CONSENSUS system, a connec t ion is t ne twork . CONSENSUS is an 

ac ronym for CONtext SENsit ive N e t w o r k s Using Stat ist ics. The ne twork d iscovers inherent 

env i ronmenta l const ra in ts by be ing presented wi th examples f rom the doma in by a tutor . The 

ne twork modi f ies its in te rconnec t ions and p rog ramming to cap tu re the under ly ing const ra in ts f rom 

the d o m a i n . In th is manner , the network learns the tu to r ' s c lass i f icat ion me thod f rom the examples. 

Exper iments show that the network is able to learn in s imp le doma ins . 

The downfa l l of many learn ing methods has been the " c red i t -ass ignmen t " p rob lem. A learn ing 

method must be able to de termine how to modi fy its parameters in order to improve its unders tand ing 

of the task. Most prev ious work depends on mak ing many smal l mod i f i ca t ions wi th l itt le con f idence in 

each change or its ef fect on the network . To improve pe r fo rmance they rely on the net accumu la ted 

change of the many smal l modi f icat ions. Instead, w e at tempt to make a few large changes wi th g o o d 

con f idence . The gu id ing pr inc ip le of CONSENSUS is that dec is ions shou ld be defer red unti l 

suf f ic ient ev idence accumula tes to make an in fo rmed cho i ce . The CONSENSUS system at tempts to 

d o th is by g iv ing each node an unders tand ing of the ro le of itself and its ne ighbors in the network . 

The dec is ion method of CONSENSUS is based on probabi l i ty theory and the stat ist ics of g roup ac t ion . 

T h e most d is t ingu ish ing features of the CONSENSUS system a r e : 

1. The use of statistical inference for the classification method. Changes are made when 

suf f ic ient stat ist ical ev idence has accumu la ted to just i fy the c h a n g e w i th a h igh degree of 

con f i dence . 

2. Large changes are made with confidence. The ne twork makes a few large changes wi th 
a h igh degree of con f idence in cont rast to more conven t iona l systems wh ich rely on the 
accumu la t ion of many smal l changes each made w i th l i t t le con f i dence . 

3. A/odes have an awareness of their role and utility in the network. It is advantageous for 

nodes to unders tand their ro le in the ne twork so that they may per fo rm that role more 

effect ively. 

4. The use of the notion of confidence in the reinforcement scheme. Only nodes that a re 
proven to con t r ibu te to the success of the ne twork may issue re in forcements , wh i ch a ids 
in the t rans lat ion of g lobal re in forcements into loca l re in fo rcements . 

5. The grouping 'of nodes into communities to exploit their collective knowledge. The 
co l lec t ive know ledge of a g roup of nodes can exceed that of any of its members . 

Sect ion 2 descr ibes the task doma in , and Sec t ion 3 con ta ins a descr ip t ion of the ne twork 



componen ts . Exper imenta l results are presented in Sect ion 4. Sect ion 5 d iscusses several aspects of 

the network , and Sect ion 6 con ta ins conc lud ing remarks . 
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2. The Domain 

2 . 1 Overview 

T h e learn ing task involves learn ing-by-example w i th immed ia te feedback by a tutor. The ne twork is 

p resented wi th a ser ies of examples f rom the d o m a i n w h i c h it must classify. The proper c lass i f icat ion 

is st r ic t ly a func t ion of the cur ren t example , no o ther dependenc ies inc lud ing tempora l dependenc ies 

are a l lowed. The tu tor g ives immediate feedback to the ne twork for each example , de layed feedback 

is not a l l owed. T h e task is a s imple one , bu t has w i d e appl icabi l i ty . Many more comp l i ca ted p rob lems 

can be recast in the fo rm of th is doma in . 

2 . 2 The Learning Task 

The task to be per fo rmed involves c lass i fy ing b inary vec tors . T h e ne twork must classi fy each 

each examp le as V A L I D , I N V A L I D , or U N C E R T A I N . If the tu tor c lass i f ies an example as V A L I D the ne twork 

must also classify it as V A L I D . If the tu tor c lassi f ies an examp le as I N V A L I D the network must also 

classi fy it as I N V A L I D . If the tutor c lassi f ies an examp le as U N C E R T A I N , then the ne twork may classi fy it 

as V A L I D or I N V A L I D . The tu tor examines the ne twork ' s c lass i f ica t ion and advises the ne twork of the 

accu racy of its c lass i f ica t ion. The tu tor rewards the ne twork for a co r rec t (match ing) response and 

pun ishes it for an incor rec t response when a V A L I D or I N V A L I D was p resen ted . The tu tor nei ther 

rewards nor pun ishes the network when an U N C E R T A I N examp le was p resented . Th is i l lustrated in 

Tab le 2 - 1 . The ob jec t ive is for the ne twork to learn to cor rec t l y recogn ize V A L I D and I N V A L I D 

examples f rom the doma in solely as a result of the tu to r ' s adv ice . 

examp le presented to it as ei ther V A L I D or I N V A L I D . T h e tu tor , assumed to be infal l ib le, ca tegor izes 

I n p u t V e c t o r 
X Y Z 

T u t o r s 
C l a s s i f i c a t i o n 

N e t w o r k s D e s i r e d 
C I a s s i f i c a t i o n 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

U n c e r t a i n 
I n v a l i d 
I n v a l i d 
I n v a l i d 
I n v a l i d 

V a l i d 
V a l i d 
V a l i d 

E i t h e r 
I n v a l i d 
I n v a l i d 
I n v a l i d 
I n v a l i d 

V a l i d 
V a l i d 
V a l i d 

T a b l e 2 - 1 : Samp le Prob lem 
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2.3 The Difficulty of the Task 

T h e d i f f icu l ty of any g iven p rob lem is a f unc t i on of the size of the b inary input vector . A p rob lem 

w i th b inary input vec to rs n e lements in length cou ld present the ne twork w i th up to 2 n d is t inct input 

vec to rs , s ince each of n inputs cou ld assume 2 d is t inc t s tates, O N or O F F . The ne twork must be able 

to make an adequa te c lass i f i ca t ion of each potent ia l inpu t vec tor . If the n u m b e r of potent ia l vec to rs is 

m ( = 2 n ) , then the ne twork has 2 m poss ib le ways to c lassi fy the set of poss ib le input vec tors s ince 

each of m input vec to rs cou ld be c lass i f ied in 2 ways , V A L I D or I N V A L I D . A doma in wi th input vec tors 

of leng th 10, c o u l d genera te up to 1024 d is t inc t inpu t vec tors , and fo rce the ne twork to choose the 

co r rec t c lass i f i ca t ion func t ion f rom a m o n g up to 2 1 0 2 4 d i f fe rent poss ib le func t ions . The doub le 

exponen t ia l na tu re of t he p rob lem makes it ex t remely d i f f icu l t to so lve comp lex p rob lems. 

In p rac t i ce , t he p rob lems are usual ly s impler . T h e ne twork may not be presented wi th all of the 

potent ia l inpu t vec to rs . S o m e of the input vec to rs p resented may be U N C E R T A I N in wh i ch case any 

c lass i f i ca t ion by the ne twork is accep tab le . T h e wors t case assumes that there are no inherent 

regu lar i t ies in the p rob lem. Most in terest ing p rob lems have s o m e inherent regular i t ies. Recogn iz ing 

and represen t ing these regular i t ies is essent ia l to so lv ing p rob lems qu ick ly and ef f ic ient ly. 

A ne two rk capab le of co r rec t l y c lass i fy ing b inary inpu t vec to rs has the capabi l i ty to classi fy arbi t rary 

input vec tors . Any input va lue, s u c h as reals or in tegers , can be rep laced by one or more b inary input 

va lues, the re fo r the b inary na tu re of the d o m a i n is not an inheren t res t r ic t ion on its capabi l i t ies. 
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3. The Network 

3 . 1 An Overview 

C O N S E N S U S is a c o n n e c t i o n i s t ne two rk c a p a b l e of l ea rn ing f r om examp les . T h e ne twork cons is ts 

of nodes w h i c h a re o rgan i zed into c o m m u n i t i e s w h i c h a re in t u rn o rgan i zed h ie rarch ica l l y in to layers. 

N o d e s a re i n t e r c o n n e c t e d by l inks w h i c h a l l ow t h e n o d e s to c o m m u n i c a t e w i th each o ther . 

C o m m u n i t i e s a re g r o u p s of n o d e s w h i c h are m o n i t o r e d by a d i s t i ngu ished n o d e that re f lec ts thei r 

co l l ec t i ve j u d g e m e n t . A c o n c e p t u a l v iew of t he ne two rk is s h o w n in F igure 3 - 1 . T h e fo l low ing sec t i on 

g ives an overv iew of t he ne two rk c o m p o n e n t s and s u b s e q u e n t sec t i ons desc r i be the ne twork in 

de ta i l . 

T u t o r 

F i g u r e 3 - 1 : C o n c e p t u a l V iew of a Ne two rk 
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3.2 The Network Components 

3 . 2 . 1 N o d e s 

T h e n o d e s a re the pr imi t ive c o m p u t i n g e lemen ts in t he ne twork . Each n o d e c o n t r o l s t h ree l inks w i th 

w h i c h it c a n c o n n e c t and c o m m u n i c a t e w i t h o the r nodes . For c o n v e n i e n c e t hese con t ro l l ed l inks wi l l 

be re fe r red to as t he X l ink, t h e Y l ink, a n d t h e Z l ink. An a rb i t ra ry n u m b e r of u n c o n t r o l l e d l inks may 

be l inked to a n o d e . A n o d e is a lways in o n e of t w o s ta tes , O N or O F F , w h i c h is a de te rm in i s t i c pa i rw ise 

boo lean f unc t i on of the s ta tes of t w o o the r n o d e s w i th w h i c h its con t ro l l ed l inks are c o n n e c t e d . Every 

n o d e has a u n i q u e ident i f ie r a n d ma in ta ins a h is tory s u m m a r i z i n g the even ts w h i c h it has obse rved . 

T h e s e are c o n v e n t i o n a l nodes , there are s o m e spec ia l i zed n o d e s in t he ne two rk , bu t t he te rm n o d e s 

wi l l be use to refer to c o n v e n t i o n a l n o d e s un less o the rw ise i nd i ca ted . T h e ope ra t i ons of t he ne two rk 

cen te r on t h e c o n v e n t i o n a l a n d spec ia l i zed n o d e s and t he f o l l ow ing sec t i ons d e s c r i b e the ope ra t i ons 

in de ta i l . 

3 . 2 . 2 L i n k s 

L inks a l low c o m m u n i c a t i o n be tween nodes . A l ink is a d i r ec ted c o n n e c t i o n b e t w e e n t w o nodes . A 

l ink has a S U P E R I O R end a n d a S U B O R D I N A T E e n d w h i c h a re d i s t i ngu i shab le . T h e supe r i o r n o d e 

res ides in the s a m e layer or a h ighe r layer in t he h ie ra rchy t han t he s u b o r d i n a t e n o d e , and the 

supe r i o r n o d e d e t e r m i n e s w h i c h n o d e sha l l be t h e s u b o r d i n a t e n o d e . T h e l ink c a n t ransmi t t h e 

fo l l ow ing i n fo rma t ion f r om the s u b o r d i n a t e n o d e to t he s u p e r i o r n o d e : 

• S u b o r d i n a t e n o d e s ta te . 

• S u b o r d i n a t e n o d e ident i f ier . 

• N e w - F u n c t i o n s igna l . 

T h e l ink c a n t ransmi t t he fo l l ow ing i n fo rma t i on f r o m the supe r i o r n o d e to the s u b o r d i n a t e n o d e :. 

• R e i n f o r c e m e n t s igna l . 

• C o n f i d e n c e - L e v e l . 

T h e supe r i o r e n d is pe rmanen t l y c o n n e c t e d to a s ing le n o d e wh i l e the s u b o r d i n a t e e n d may be 

c o n n e c t e d to d i f fe ren t nodes at d i f fe ren t t imes . 

3 . 2 . 3 C o m m u n i t i e s 

A c o m m u n i t y is a co l l ec t i on of nodes tha t f u n c t i o n t oge the r to sha re the i r u n d e r s t a n d i n g of t he 

e n v i r o n m e n t to w h i c h they a re c o n n e c t e d . T h e c o m m u n i t y cons i s t s of many conven t i ona l n o d e s and 

one s p o k e s m a n n o d e . Each c o m m u n i t y res ides exc lus ive ly in o n e layer. 
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3 . 2 . 4 S p o k e s m a n 

A s p o k e s m a n is a d i s t i ngu i shed node . It c o n t r o l s one l ink to every o ther n o d e in its c o m m u n i t y 

w h i c h is f ixed a n d may not be r e c o n n e c t e d to o ther nodes . T h e s ta te of t he s p o k e s m a n is a 

de te rm in is t i c f unc t i on of the s ta tes of t he o the r n o d e s in the c o m m u n i t y . T h e s ta te of t he s p o k e s m a n 

represen ts the co l l ec t i ve j u d g e m e n t of t he n o d e s of t he c o m m u n i t y . H e n c e f o r t h , t h e te rm s p o k e s m a n 

is mean t to be s p o k e s m a n n o d e . 

3 . 2 . 5 L a y e r s 

Layers are c o m p o s e d of o n e or mo re c o m m u n i t i e s . T h e n e t w o r k is o r g a n i z e d h ie ra rch ica l l y a n d 

t he re may b e an a rb i t ra ry n u m b e r of layers. T h e b inary i npu t vec to r is c o n s i d e r e d to b e layer 0, t h e 

rema in i ng layers a re n u m b e r e d f r o m 1 t o n. C o m m u n i t i e s in t h e u p p e r m o s t layer a re re fe r red to as 

t o p c o m m u n i t i e s , wh i l e any c o m m u n i t y tha t may c o n n e c t t o t h e i npu ts is re fe r red t o as a base 

c o m m u n i t y . 

3 . 2 . 6 E n v i r o n m e n t a l I n p u t s 

T h e b inary i npu t vec to r f r o m the e n v i r o n m e n t is c o m m u n i c a t e d to t h e n e t w o r k v ia inpu t nodes . 

These a re spec ia l i zed nodes , o n e per e l emen t in t h e vec to r , a n d a lways a s s u m e the s ta te of t h e 

c o r r e s p o n d i n g e l emen t in t he b inary inpu t vec to r . These n o d e s res ide in layer 0 by de f i n i t i on . 

3 . 2 . 7 E n v i r o n m e n t a l R e i n f o r c e m e n t 

T h e tu to r c o n d u c t s the env i ronmen ta l r e i n fo r cemen t . T h e env i r onmen ta l r e i n f o r cemen ts are sen t t o 

every n o d e in t he t op layer. These n o d e s may g e n e r a t e in te rna l r e i n f o r c e m e n t s w h i c h c a n p r o p a g a t e 

d o w n w a r d s t h r o u g h o u t t he ne two rk . 

3.3 Cycle Timing 

Each cyc le cons i s t s of t he phases e n u m e r a t e d be low . A cen t ra l c l o c k e n s u r e s tha t t he n o d e s a re 

p rope r l y s y n c h r o n i z e d . 

1 . Env i r onmen ta l Inpu t Rece i ved . T h e i npu t n o d e s a s s u m e t h e s ta te of t h e c o r r e s p o n d i n g 

e lemen t of t h e b inary i npu t vec to r . 

2. C o m p u t a t i o n . Each n o d e c o m p u t e s i ts n e w s ta te a f ter its s u b o r d i n a t e s have a s s u m e d 
the i r new s ta tes. Its new s ta te is t h e n ava i lab le to its supe r i o r s so they may c o m p u t e the i r 
n e w sta te . Al l n o d e s may c o m p u t e in para l le l sub jec t to p r o p a g a t i o n de lays . 

3. Ne two rk C lass i f i ca t ion . S p o k e s m a n l oca ted in the t o p c o m m u n i t i e s c lass i fy the b ina ry 

inpu t vec to r on beha l f of t he ne two rk . 
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4. Env i ronmen ta l Re in fo r cemen t . Nodes loca ted in the t op c o m m u n i t i e s rece ive 
re i n fo r cemen t f rom the tutor . 

5. In ternal Re in fo r cemen t . The nodes in the top c o m m u n i t i e s issue re i n fo r cemen t s igna ls to 
the i r subo rd i na tes . T h e subo rd i na tes in tu rn issue re i n fo r cemen ts to their subo rd ina tes . 
R e i n f o r c e m e n t may g o on in para l le l t h r o u g h o u t the ne two rk sub jec t to p ropaga t i on -
de lays . 

6. Ana lys is . Each n o d e ana lyzes the f u n c t i o n s it c o u l d c o m p u t e , and the use fu lness of t he 
l inks it con t ro l s . It de te rm ines if it s h o u l d reta in or c h a n g e its cu r ren t c o m p u t e d f u n c t i o n , 
and w h i c h l inks, if any, s h o u l d be rep laced th is cyc le . Al l n o d e s may ana lyze in para l le l . 

7. Un l i nk i ng . L inks des igna ted for r ep lacemen t are un l i nked f r om the i r s u b o r d i n a t e nodes . 

8. C h a n g i n g Func t i ons . N o d e s des i r i ng to c h a n g e the i r c o m p u t e d f u n c t i o n n o w d o so 
i n fo rm ing the i r supe r i o r s of the i r ac t i on . 

9. L i nk ing . L inks w i t hou t c o n n e c t i o n s to a s u b o r d i n a t e n o d e are n o w r e c o n n e c t e d to new 
nodes . 

3.4 Receiving Inputs from the Environment 

T h e env i ronmen ta l b inary inpu t vec to r is m a d e ava i lab le to t he ne twork in the Env i ronmen ta l Input 

Rece ived Phase. Each inpu t n o d e assumes the state of a s p e c i f i e d e lement , w h i c h remains t he same 

f r o m c y c l e to cyc l e , in t he b inary inpu t vec to r . T h e states of t hese n o d e s a re n o w avai lab le to t he 

rema inde r of t he ne twork . 

3.5 Computing the Output of a Node 

A n o d e ou tpu t s one of the s ix teen pa i rw ise boo lean f unc t i ons of two of t he th ree l inks it con t ro l s . 

T h e n o d e c o u l d c o m p u t e any of t h e 38 u n i q u e pa i rw ise b o o l e a n func t i ons e n u m e r a t e d in Tab le 3-1 

sub jec t to the res t r i c t ion tha t on ly t op c o m m u n i t y n o d e s may c o m p u t e a cons tan t . It c o u l d c o m p u t e a 

f unc t i on of n o n e of its l inks (a cons tan t ) , a f unc t i on of one of its l inks, or a f u n c t i o n of two l inks. On ly 

hal f of t he f u n c t i o n s a re i n d e p e n d e n t s i n c e every s igna l has exac t ly o n e inverse. T h e n o d e 

r e m e m b e r s w h i c h f unc t i on it is to ou tpu t . Du r ing the C o m p u t a t i o n Phase the n o d e assumes the s ta te 

of its ou tpu t . 

3.6 Computing the Output of a Spokesman 

T h e s p o k e s m a n n o d e of each c o m m u n i t y o u t p u t s the s ta te of t he major i ty of t h e o ther n o d e s in t h e 

c o m m u n i t y . T h e s p o k e s m a n samp les thei r s ta tes t h r o u g h the l inks it c o n t r o l s and de te rm ines w h i c h 

s ta te is in t he major i ty , b reak ing t ies arb i t rar i ly if n e e d e d . In th is way, the n o d e represen ts the 

co l l ec t i ve j u d g e m e n t of t he nodes in the c o m m u n i t y . 
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F u n c t i o n s o f 0 i n p u t s 

FALSE TRUE 

F u n c t i o n s o f 1 i n p u t : 

X X Y Z 

F u n c t i o n s o f 2 i n p u t s : 

X o r Y 
X o r ~Y 

~X o r Y 
X eqv Y 
X and Y 

X n o r Y Y o r Z Y n o r Z Z o r X 
~X and Y Y o r - Z ~Y and Z Z o r - X 

X and ~Y ~Y o r Z Y and ~Z ~Z o r X 
X x o r Y Y eqv Z Y x o r Z Z e q v X 
X nand Y Y and Z Y n a n d Z Z and X 

Z n o r X 
Z and X 
Z and ~X 
Z x o r X 
Z nand X 

T a b l e 3 - 1 : Un ique Pairwise Boo lean Func t ions 

3.7 Computing the Output of the Network 

The output of the network is taken to be the state of the spokesmen of the top communi t ies . If the 

state of the spokesman is O N , the network is said to have c lassi f ied the examp le as A C C E P T A B L E . If the 

state of the spokesman is O F F , the network is said to have c lassi f ied the example as REJECTABLE. 

The func t ion of the tu tor is to issue the appropr ia te env i ronmenta l re in fo rcement to the network . 

The tu tor can be though t of as a s ingle node res id ing in the n + 1 layer. The tu tor has a f ixed 

cont ro l led l ink to every node of every top commun i t y t h r o u g h wh i ch it may re in fo rce these nodes. 

3.9 Receiving Environmental Reinforcement 

The tutor , p resumed to be infal l ible, c lassi f ies the b inary vec to r input as e i ther A C C E P T A B L E , 

REJECTABLE , or N E U T R A L . It issues a re in fo rcement s ignal to every node in the top commun i t ies . The 

state of each node in the top commun i t y is examined and c o m p a r e d to the des i red c lass i f icat ion. The 

tu to r then issues re in forcement as descr ibed prev ious ly and i l lustrated in Tab le 2 - 1 . 

3.10 The Classification Method 

3 . 1 0 . 1 I n t r o d u c t i o n 

Cons ider the fo l lowing prob lem. You are g iven a co in and asked to classi fy the co in as FA IR , a H E A D , 

or a T A I L . A HEAD co in comes up heads more of ten than tai ls, a T A I L co in comes up tai ls more of ten 

than heads, and a FAIR co in comes up heads and tai ls w i th equa l f requency . How can you de termine 

wh i ch ca tegory the co in be longs to if you are only a l lowed to test the co in by f l ipp ing it and record ing 

the result? 

3.8 The Tutor 
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Determin ing the cor rec t c lassi f icat ion wi th absolute cer ta inty is impossib le. Unless the co in a lways 

p roduces heads or tai ls, then any given flip cou ld result in a head or a tai l . A co in that p roduces bo th 

heads and tai ls cou ld be long to any of the three categor ies. Any sequence of observed results could 

be p roduced by a co in f rom any of the three categor ies. This makes it imposs ib le to rule out any of 

the three categor ies wi th absolute certa inty. 

S ince the co in canno t be classi f ied wi th certa inty, we must sett le wi th f l ipp ing the co in unti l a g o o d 

guess as to wh ich category it be longs in can be made. We cou ld satisfy ourselves that the co in is a 

HEAD if a sequence was observed wh ich was very likely for a HEAD co in but very unl ikely for a F A I R or 

T A I L co in . The converse can be done to satisfy ourselves that the co in is a T A I L co in . Sat isfy ing 

ourselves that a co in is a FAIR co in , is much more di f f icul t . Whi le a FA IR co in is equal ly l ikely to c o m e 

up heads or tai ls, it is not assured in any part icu lar number of t r ia ls. Indeed, a FA IR co in is far more 

likely to have an unequal number of heads and tai ls observed after a g iven set of tr ials. It wou ld be 

expec ted that over a very large number of tr ials, the numbers of heads and tai ls wou ld be 

approx imate ly equa l . We can categor ize a co in as be ing as FA IR co in wi th con f i dence if we bel ieve 

w i th con f idence that it is not a HEAD co in and not a T A I L co in by process of e l iminat ion. Th is so lu t ion 

to the co in prob lem is based on stat ist ical in ference and can be p laced on a more formal basis. 

3 . 1 0 . 2 S t a t i s t i c a l I n f e r e n c e 

Stat ist ical in ference is the process of d rawing conc lus ions about a popu la t ion on the basis of a 

random sample. Al ternat ive hypotheses are classi f ied by hypothesis testing. In the solv ing the co in 

p rob lem we may propose the hypothesis " the unknown co in is a HEAD c o i n . " We genera te a sample 

by f l ipp ing the co in and observ ing the result. Hypothesis test ing is a genera l method for de te rmin ing 

whether to accept or reject the proposed hypothes is about a random var iable f rom in format ion in the 

random sample [1 ] . 

3 . 1 0 . 3 C l a s s i f y i n g t h e C o i n 

In the case of the co in prob lem, w e are asked to categor ize the co in as ei ther FA IR , H E A D , or T A I L . If 

an insuff ic ient number of tr ials to make a determinat ion has been observed, w e can c la im that the 

p roper c lassi f icat ion is unknown. 

To classify the co in as a HEAD it must be shown that it is unl ikely to be a F A I R or a T A I L co in . A F A I R 

or a T A I L co in wil l have heads come up no more of ten than tai ls. In a sample of n tr ials, we wil l 

observe h heads and t tails such that h + t = n. If 100 tr ials of 1000 co in f l ips each were c o n d u c t e d , 

we wou ld expect a FAIR co in to p roduce between 460 and 540 heads inc lusive in 99 of the tr ials. Th is 



12 

range f rom 460 to 540 const i tu tes the 99% confidence interval ( two tai led) wh i ch is def ined to be the 

range that is expec ted to encompass 99 out of 100 tr ials. If more than 540 heads are observed, w e 

can c la im that the co in is a H E A D . If it is actual ly a FA IR co in , the probabi l i ty of our be ing w rong is .5%. 

If it is actual ly a T A I L co in , the probabi l i ty of our be ing w rong is less than .5%. W e accept a probabi l i ty 

of error of .5% when w e make a classify a co in as a HEAD co in . 

Conversely , if the observed number of heads is less than 460, the co in can be classi f ied as a T A I L 

co in w i th an error of .5% or less. 

It shou ld be emphas ized that not c lassi fy ing a co in as a HEAD or a T A I L is not equivalent to 

c lassi fy ing it as a F A I R co in . A co in is c lassi f ied as a H E A D or a T A I L when w e have a p reponderance of 

ev idence in favor of that c lass i f icat ion. We may or may not have suf f ic ient ev idence to classify a co in 

as a F A I R co in . 

To prove that a co in is a FAIR co in by the above method wou ld require an inf ini tely large number of 

samples. S ince it is infeasible to prove that the co in is a FAIR co in , w e wil l be con ten t to show that the 

co in is fair to wi th in an equivalence factor. If the equ iva lence factor is 5%, then w e wou ld cons ider a 

co in to be a FA IR co in if it can be shown that it wi l l come up heads between 45% (50% - 5%) and 55% 

(50% + 5%) of the t ime. Showing that the co in wil l come up heads more than 45% of the t ime is 

ana logous to ca tegor iz ing the co in as a H E A D co in (comes up heads more than 5 0 % of the t ime). The 

99% con f i dence interval for a co in that comes up head 45% of the t ime is f rom 410 to 490 inc lus ive. 

So if more than 490 heads are observed, w e are sat isf ied that the co in wil l come up heads more than 

45% of the t ime. Analogous ly , the 99% con f idence interval for a co in that comes up heads 55% of the 

t ime is f rom 510 to 590 inc lusive, and if fewer than 510 heads are observed we are sat isf ied that the 

co in wil l come up heads less than 55% of the t ime. Therefor if be tween 491 and 509 heads inc lusive 

are observed , w e are sat isf ied that the co in wi l l come up heads and tai ls w i th equal f requency to 

w i th in a 5% equ iva lence factor and classify the co in as a FA IR co in . 

If the number of observed heads is be tween 460 and 490 inclusive, or be tween 510 and 540 

inc lus ive w e have not c lassi f ied it into any of the th ree categor ies . W e j udge its p roper c lassi f icat ion 

to be unknown, pend ing addi t ional data . 
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3 . 1 0 . 4 C l a s s i f y i n g a F u n c t i o n 

Funct ions at a node can be classi f ied in m u c h the same way as co ins can be classi f ied. Coins were 

c lassi f ied depend ing on whether they came up heads more than 5 0 % (HEAD ) , less than 50% (TAIL ) , or 

equivalent to 50% (FAIR ) . The same can be d o n e for func t ions at a node depend ing on whether they 

are cor rec t more than the cur rent func t ion (SUPERIOR ) , less than the cur ren t funct ion ( INFERIOR ) , or 

the same as the cur ren t func t ion ( R E D U N D A N T ) . If there is insuf f ic ient in format ion to make this 

de terminat ion , we classify it as U N K N O W N . 

To better i l lustrate the prev ious d iscuss ion , cons ider the fo l lowing example. In the ensu ing 

d iscuss ion , I wil l refer to Table 3-2 and Figure 3-2. In th is example , the present funct ion that the node 

is compu t i ng is co r rec t 70% of the t ime. Table 3-2 gives the c lass i f icat ion cr i ter ia for d i f fer ing number 

of tr ials. Figure 3-2 presents this in format ion graphica l ly , t hough not necessar i ly to scale. On the 

y-axis the f ract ion cor rec t is p lo t ted, on the x-axis the number of tr ials is p lo t ted. 

As w e d id before in the co in p rob lem, we must de te rmine what the 99% con f idence interval is, wh ich 

var ies wi th the number of t r ia ls. The cur ren t f rac t ion co r rec t is shown by l ine Aa. The con f idence 

interval about the cur ren t f ract ion cor rec t is de l ineated by the l ines Bb and Cc. If the f ract ion cor rec t 

for the al ternat ive funct ion lies above the l ine Bb, w e classify it as a S U P E R I O R a l ternat ive func t ion . If 

the f ract ion cor rec t lies be low the l ine Cc, w e classi fy it as an INFERIOR a l ternat ive func t ion . To 

classify the func t ion as R E D U N D A N T we must show it fal ls wi th in the equ iva lence factor of the f ract ion 

cor rec t for the cur ren t func t ion . Th is range is de l ineated by the l ines Dd and Ee wh i ch are paral lel to 

l ine Aa, the f ract ion cor rec t for the cur ren t func t ion . The 99% con f idence interval about l ine Dd is 

del ineated by l ines Ff and Gg . The 99% con f i dence interval about l ine Ee is del ineated by l ines Hh 

and l i . The c lassi f icat ion of R E D U N D A N T can be made in the reg ion bounded by l ines Bb, Cc, Gg , and 

Hh. In the remainder of the f igure, w e make the c lass i f icat ion of U N K N O W N s ince we do not have a 

suf f ic ient number of samples to make a proper de terminat ion among the first th ree categor ies. 

A few observat ions about the d iagram are in order . In the lef tmost part of the f igure, the U N K N O W N 

reg ion dominates . This ref lects that only a few number of tr ials have been conduc ted and that 

insuf f ic ient in format ion is avai lable for a proper c lass i f icat ion is avai lable. In the r ightmost part of the 

f igure, the y-axis is d iv ided exclusively into S U P E R I O R , INFERIOR and R E D U N D A N T regions. This impl ies 

that w i th a suf f ic ient number of tr ials, a p roper c lass i f icat ion can always be made. This is the case 

because the boundar ies of the con f idence interval asymptot ica l ly app roach their center. So l ines Bb 

and Cc asymptot ica l ly approach l ine Aa, l ines Ff and Gg asymptot ica l ly app roach l ine Dd, and l ines 

Hh and li asymptot ica l ly approach l ine Ee. Therefor l ines Bb and Cc wil l come closer to l ine Aa than 

any constant , namely the equ iva lence factor. This insures that the lower boundary to the S U P E R I O R 
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F i g u r e 3 - 2 : Classi f icat ion Cr i ter ia Ske tch 
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S i z e 10 20 50 100 200 500 1000 2000 
C o r r e c t 7 14 35 70 140 350 700 1400 

99% Lower . 3 2 7 . 4 3 6 . 5 3 3 . 5 8 2 . 6 1 7 . 6 4 7 . 6 6 3 . 6 7 4 
U p p e r 1 . 0 0 0 . 9 6 4 . 8 6 7 . 8 1 8 . 7 8 3 . 7 5 3 . 7 3 7 . 7 2 6 

5% Lower 1 . 0 0 0 . 9 2 5 . 8 2 4 . 7 7 3 . 7 3 7 . 7 0 5 . 6 8 9 . 6 7 7 
U p p e r . 3 9 7 . 5 0 1 . 5 9 2 . 6 3 8 . 6 7 1 . 7 0 0 . 7 1 5 . 7 2 5 

R e j e c t < 4 9 27 59 124 3 2 4 663 1354 
R e d u n d a n t - - - - - - 689 1355 

- - - - - - 715 1450 
A c c e p t > 10 19 43 8 1 156 376 737 1450 

T a b l e 3 - 2 : Classi f icat ion Cr i ter ia Example 

reg ion , l ine Bb, wi l l intersect the upper boundary to the R E D U N D A N T reg ion , l ine Gg . It also insures 

that the upper boundary to the INFERIOR reg ion, l ine Cc, wi l l intersect the lower boundary to the 

R E D U N D A N T reg ion, l ine Hh. 

The ske tch in Figure 3-2 is asymmetr ica l . This is the general case, the f igure wil l be symmetr ica l 

only when the cur ren t func t ion , l ine Aa, has a f rac t ion cor rec t of 50%. In the network, w e have used a 

ch i -square test instead of expl ic i t ly ca lcu la t ing the b inomia l d is t r ibut ion to simpl i fy the ca lcu la t ions of 

the con f idence intervals. 

An under ly ing assumpt ion is that the each tr ial is independent . Were t he tr ials to be dependen t in 

some fash ion, the assumpt ions about the probabi l i ty d is t r ibut ions wou ld be incorrect . Obta in ing ten 

out of ten cor rec t when all the tr ials are independent is far more s ign i f icant than obta in ing ten out of 

ten when the ou tcome of the tr ials are dependent . To employ this method requires assurance that the 

trai ls are independent and we wil l take measures d iscussed later to assure this. 

By using this c lassi f icat ion method , we can compare an a l ternate funct ion to the cur rent func t ion 

and classify the a l ternate funct ion as S U P E R I O R , INFERIOR , or R E D U N D A N T , and if lack ing suf f ic ient 

in fo rmat ion to p lace it in the first three categor ies , c lassi fy it as U N K N O W N . Th is gives us a means to 

de te rmine wh i ch of two func t ions is better. 

3 . 1 0 . 5 C o r r e l a t i n g a P a i r o f F u n c t i o n s 

We have need to determine when two func t ions are I N D E P E N D E N T or DEPENDENT . This can be 

accomp l i shed by using a method similar to that d iscussed above. We seek to determine when the 

pair of func t ions compu te the same result to an unaccep tab le degree . The two func t ions are 

cons idered DEPENDENT if they compu te the same func t ions or if one func t ion is the inverse of the 

other. Two func t ions are cons idered to be equiva lent if they obta in the same results wi th in a 
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dependence factor w i th 99% con f idence . Two func t ions are cons idered to be inverses of one another 

if they obta in oppos i te results wi th a dependence factor wi th 99% con f idence . If it canno t be 

determined that the two func t ions are DEPENDENT , w e classify them as INDEPENDENT . By this 

c lassi f icat ion of INDEPENDENT , we really mean that the two func t ions are not total ly dependent . 

To better i l lustrate th is, cons ider the fo l lowing example . In th is example , a dependence factor of 

10% wil l be used. Table 3-3 gives the c lassi f icat ion cr i ter ia for d i f fer ing number of tr ials. F igure 3-3 

presents this in format ion graphical ly , t hough not necessar i ly to sca le . On the y-axis the f ract ion in 

agreement is p lot ted, on the x-axis the number of tr ials is p lo t ted. 

We must de termine when w e are 99% conf ident that the func t ions agree more of ten than the 

d e p e n d e n c e factor a l lows. Wi th a 10% dependence factor, w e seek to s h o w that the func t ions agree 

more than 90% of the t ime, l ine J j , or less than 10% of the t ime, l ine Kk. The 9 9 % con f idence interval 

about the dependence factor must be de te rmined , wh i ch var ies w i th the number of tr ials. The l imit of 

the con f idence interval above the 90% func t ion agreement is shown by l ine L I . The limit of the 

con f idence interval be low the 10% func t ion agreement is shown by l ine M m . If the f ract ion in 

agreement for the spec i f ied number of tr ials is above l ine LI or be low l ine M m , w e classify the pair of 

func t ions as DEPENDENT , o therwise w e classify them as INDEPENDENT. 

It shou ld be noted that the l ines LI and Mm approach l ines Jj and Kk respect ively asymptot ical ly . 

Th is f igure is symmetr ica l under all cond i t ions . 

3.11 Analyzing Functions at a Node 

Each node compu tes one funct ion of its inputs, whi le it has the potent ia l to c o m p u t e any of the 38 

func t ions enumera ted in Tab le 3-1 exc lud ing the 2 cons tan t func t ions for t he nodes in non- top 

communi t ies . The node mainta ins a history for the cur ren t func t ion as wel l as for all of the potent ia l 

a l ternat ive func t ions . Dur ing the Analysis Phase of each cyc le , the node at tempts to de termine if any 

of the func t ions it is not cur rent ly compu t ing cou ld better sat isfy its super iors . The node uses the 

classi f icat ion method to compare each al ternat ive func t ion to the cur ren t f unc t i on , and classi f ies 

each al ternat ive among the set of S U P E R I O R , I N F E R I O R , R E D U N D A N T , and U N K N O W N . The nodes use the 

fo l lowing p rocedure to determine what func t ion to compu te in the next c y c l e : 

1 . If any of the al ternate func t ions is c lassi f ied as S U P E R I O R then the a l ternate func t ion w i th 
the greatest f rac t ion cor rec t is se lected to be the new func t ion the node wil l compu te . In 
the case of a t ie, the func t ion requi r ing the fewest inputs is prefer red wi th remain ing t ies 
b roken arbitrar i ly. Th is new func t ion is marked to be made into the cur ren t func t ion in the 
Chang ing Funct ion Phase. L inks cont ro l led by the node but unneeded by the new 
funct ion are marked to be un l inked in the Unl ink ing Phase. 
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S i z e 50 100 200 500 1000 2000 5000 

Uppe r D e p e n d e n c e 45 90 180 450 900 1800 4500 
99"/, U p p e r 1 .000 . 9 7 7 . 9 5 5 . 9 3 5 . 9 2 4 . 9 1 7 . 9 1 1 

Lower D e p e n d e n c e 5 10 20 50 100 200 500 
99% Lower . 0 0 0 . 0 2 3 . 0 4 5 . 0 6 5 . 0 7 6 . 0 8 3 . 0 8 9 

D e p e n d e n t U p p e r 0 98 190 467 924 1834 4554 
D e p e n d e n t Lower 0 2 I t ) 33 76 166 446 

T a b l e 3 - 3 : Dependence Cr i ter ia Example 

2. If none of the a l ternate func t ions is c lassi f ied as S U P E R I O R or U N K N O W N , t hen the al ternate 
func t ions c lassi f ied as R E D U N D A N T and the cur ren t func t ion are c o m p a r e d to de termine 
the funct ion wi th the greatest f rac t ion cor rec t , w i th t ies b roken as desc r ibed above. This 
func t ion is marked as the new func t ion , and the unneeded l inks are marked as d iscussed 
above. 

3. If no al ternate func t ions are c lassi f ied as S U P E R I O R , but at least one a l ternate func t ion is 
classi f ied as U N K N O W N , then the cur ren t func t ion is re ta ined. No func t ion is marked for 
the Chang ing Funct ion Phase, and no l inks are marked for the Unl ink ing Phase. 

W e desire to change to a S U P E R I O R func t ion as soon as we can de termine w h i c h , if any, it is. When 

it is c lear that no S U P E R I O R func t ions exist because al l the a l ternate func t ions are classi f ied as 

INFERIOR or R E D U N D A N T , then we must sett le for a func t ion equiva lent to the cu r ren t one. When there 

are no S U P E R I O R func t ions but stil l are U N K N O W N func t ions , we must wait to de te rmine if any of the 

U N K N O W N func t ions may be classi f ied as S U P E R I O R . 

W h e n break ing t ies be tween func t ions wi th equ iva lent f rac t ions cor rec t , w e choose the func t ion 

requi r ing the fewest inputs. By preferr ing the simplest func t ion avai lable, w e make more cont ro l led 

l inks avai lable to be reconnec ted to other potent ia l ly useful nodes. Th is g ives the node a pre ference 

for the s implest exp lanat ion for an observed phenomena (Occam 's Razor) . 

W h e n a new func t ion is se lected f rom one to th ree con t ro l led l inks are marked for rep lacement in 

the Unl ink ing Phase. If the new func t ion is to be a cons tan t , then all th ree cont ro l led l inks are 

unneeded and they are all marked for rep lacement . If a one input func t ion is se lec ted, then the 

necessary l ink is reta ined whi le the other two are marked for rep lacement . If a two input func t ion is 

se lec ted, then the two necessary l inks are reta ined whi le the th i rd is des ignated for rep lacement . 

O n c e w e have examined the possib le func t ions and made our de te rmina t ion for the best func t ion to 

compu te , we need to examine as many new possib le func t ions as possib le. Th is is accompl i shed by 

rep lac ing cont ro l led l inks to nodes whose potent ia l w e have a l ready examined . 
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3.12 Analyzing Links at a Node 

Each node analyzes the s ignals received f rom its con t ro l led l inks du r ing the Analysis Phase. The 

cont ro l led l inks may be t ransmit t ing signals that are of no value to the node; if so the node wil l seek to 

identi fy and replace the useless l inks. 

A cont ro l led l ink to an input node may be connec ted to a node w h i c h ou tpu ts a constant . S ince a 

node can compu te any pairwise boo lean func t ion , a l ink to a node compu t i ng a cons tan t prov ides no 

useful in format ion. As an example, assume the X l ink is c o n n e c t e d to a node that a lways ou tpu ts 

TRUE. In Table 3-4, the 2 Input co lumn shows the pai rwise boo lean func t ion of X and Y and the 1 

Input co lumn shows the equivalent func t ions if X is a lways TRUE. S ince the node compu tes all the 

func t ions in the 1 Input co lumn wi th its Y l ink, there is no advantage to hav ing the X l ink connec ted to 

a node that outputs TRUE. Ana logous cases ho ld for the X l ink a lways s ignal ing FALSE, and 

constants on the other l inks. Any l inks de te rmined to be D E P E N D E N T w i th the func t ions TRUE or 

FALSE, are marked for rep lacement in the Unl ink ing Phase. 

2 I n p u t 1 I n p u t 2 I n p u t 1 I n p u t 

FALSE FALSE X and Y Y 
X n o r Y FALSE X eqv Y Y 

~X and Y FALSE Y Y 
~X FALSE ~X o r Y Y 

X and ~Y ~Y X TRUE 
~Y ~Y X o r ~Y TRUE 

X x o r Y ~Y X o r Y TRUE 
X nand Y ~Y TRUE TRUE 

T a b l e 3 - 4 : Simpl i fy ing Pairwise Func t ions wi th Constant Input 

Two cont ro l led l inks may be connec ted to nodes w h i c h ou tpu t the same func t ion or inverses of one 

another . In this case, only one of the l inks is useful s ince w e can de te rmine the second given the 

ou tpu t of the first. Table 3-5 i l lustrates the case whe re the X and Y l inks ou tpu t the same func t ion . 

The 1 Input co lumn shows the func t ion of the Y l ink tha t is equ iva lent to the func t ion of the X and Y 

l inks shown in the 2 Input co lumn . Each Analysis Phase, all pai rs of l inks are c lassi f ied as ei ther 

I N D E P E N D E N T or DEPENDENT . If any pair of l inks is marked as D E P E N D E N T , then one l ink in the pair 

chosen arbi trar i ly is marked for rep lacement in the Unl ink ing Phase. 

In ei ther of the two cases above, the l ink be ing rep laced may be part of the cur ren t func t ion . For 

example, if it is de termined that the X l ink is redundan t and the func t ion be ing compu ted is X OR Y, 

then the X l ink wh i ch are func t ion depends on wil l be rep laced. In cases l ike th is, we mark the node to 

rep lace its two- input funct ion by the one- input func t ion equiva lent . 
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2 I n p u t 1 I n p u t 2 I n p u t 1 I n p u t 

FALSE FALSE X and Y Y 
X n o r Y ~Y X eqv Y TRUE 

~X and Y FALSE Y Y 
~X ~Y ~X o r Y TRUE 

X and ~Y FALSE X Y 
~Y ~Y X o r — Y TRUE 

X x o r Y TRUE X o r Y Y 
X nand Y ~Y TRUE TRUE 

T a b l e 3 - 5 : Simpl i fy ing Pairwise Func t ions w i th Ma tch ing Inputs 

3.13 Analyzing Output at a Node 

A node that is not a member of a top c o m m u n i t y shou ld not c o m p u t e a cons tan t . The tu tor 's 

c lass i f icat ion of the input vec tors may make a cons tan t the best response f rom the network , there for 

the nodes in the top commun i t i es may need to ou tpu t a cons tan t . From the prev ious sec t ion , w e 

know that nodes canno t useful ly employ, a l ink to a node that ou tpu ts a cons tan t . Unl ink ing f rom 

nodes wh i ch ou tpu t a cons tan t is inef f ic ient s ince each node that l inks to the node that ou tpu ts a 

cons tan t must independent ly de te rm ine to unl ink f rom the node . It is more ef f ic ient to let t he node 

de tec t when it ou tpu ts a cons tan t . Each Analys is Phase, w e c o m p a r e the cu r ren t func t ion to a 

cons tan t func t ion and de te rmine if they are D E P E N D E N T or I N D E P E N D E N T . If they are de te rmined to be 

DEPENDENT , all l inks are marked for rep lacement in the Un l ink ing Phase and a randomly se lec ted 

func t ion is marked to be the new func t ion in the Func t ion Chang ing Phase. 

It shou ld be emphas ized that p roh ib i t ing the node f rom c o m p u t i n g a cons tan t func t ion is not 

suf f ic ient . Cons ider a 'node that ou tpu ts .X OR Y, whe re X is ~ A and Y is A OR B. The node wil l ou tpu t 

TRUE s ince ~ A OR A OR B wil l a lways evaluate to TRUE. Test ing the X and Y l inks against a cons tan t 

and each other wi l l y ie ld the I N D E P E N D E N T c lass i f i ca t ion . T h o u g h the inputs are not comple te ly 

dependen t , they may be part ial ly dependen t a case our c lass i f ica t ion s c h e m e wi l l not recogn ize . As a 

result , the test for a node that ou tpu ts a cons tan t must be expl ic i t . 

3.14 Freeing Links 
In t he Unl ink ing Phase, the l inks des igna ted to be un l inked are f reed . Before be ing un l inked, the 

node ident i f ier of the subord ina te node is r eco rded so the node may avoid reconnec t i ng to th is same 

node . The connec t i on of the l ink to the subord ina te n o d e is then severed . T h e l ink is now f ree to 

c o n n e c t to another dest inat ion node in the L ink ing Phase. 
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3.15 Changing Functions 

A node that is chang ing its func t ion sends a New-Func t i on s igna l to all of its super iors . If a node 

rece ives a New-Func t ion s ignal f rom a l ink, all h is tor ies of f unc t i ons that are dependen t on that l ink 

are re in i t ia l ized. The node also de te rmines if the cu r ren t func t ion is dependen t on the s ignal ing l ink, if 

so it sends a New-Func t ion s ignal to its super io rs . W h e n a node c h a n g e s its f unc t i on , all of the nodes 

w h i c h have been t rack ing its usefu lness must be in fo rmed of the c h a n g e . It w o u l d be con fus ing to a 

node to merge stat is t ics of a subord ina te w h o w a s former ly c o m p u t i n g X AND Y and is now 

c o m p u t i n g X NAND Y, for examp le . The New-Func t i on s igna l s c h e m e per fo rms th is ro le. 

3.16 Making Links 

In the L ink ing Phase, any l inks w i thou t subo rd ina te nodes are r econnec ted . The nodes in each 

c o m m u n i t y are a l lowed to c o n n e c t the i r con t ro l l ed l inks to any n o d e f rom a set of o ther commun i t ies . 

Th is set of commun i t i es may vary for d i f ferent commun i t i es . A m o n g the set of commun i t i es w h i c h 

may be c o n n e c t e d to , any node inc lud ing s p o k e s m a n are e l ig ib le . T h e only rest r ic t ion is that a l ink 

may not c o n n e c t to a node wi th w h i c h a l ink was un l inked f rom in the Un l ink ing Phase of the cur ren t 

cyc le . Th is prevents l ink ing to node that has jus t been s h o w n to not be useful in the cur ren t cyc le . 

Th is rest r ic t ion is wa ived if the set of nodes that can be l inked wi th w o u l d o therwise be nul l . 

3.17 Calculating the Confidence Level of a Node 

Every node main ta ins a measu re of its c o n f i d e n c e . Nodes w i th c o n f i d e n c e have demons t ra ted that 

they are rece iv ing re in fo rcements that are bet ter t han c h a n c e , mean ing be ing more than 5 0 % cor rec t . 

Nodes w i thou t con f i dence have no t demons t ra ted that the re in fo rcements they are receiv ing are 

bet ter than chance . To de te rm ine if a node has con f i dence , w e use the c lass i f icat ion method 

d iscussed previously. W e de te rm ine if the cu r ren t f unc t i on w o u l d be c lassi f ied as S U P E R I O R when 

c o m p a r e d against a func t ion ob ta in ing a f rac t ion co r rec t of 50%. If the cu r ren t func t ion wou ld have 

been c lassi f ied S U P E R I O R then w e classi fy it as be ing C O N F I D E N T , o therw ise w e classi fy it as be ing 

U N C O N F I D E N T . Th is d is t inc t ion is impor tan t s ince C O N F I D E N T nodes may issue internal re in fo rcement 

s ignals wh i le U N C O N F I D E N T nodes may not . C O N F I D E N T nodes may be o rdered based on how 

con f iden t they are, w i th nodes hav ing the greater f rac t ion co r rec t be ing cons ide red more con f iden t 

than their fe l lows. 
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3.18 Recording History at a Node 

In o rder to make in fo rmed dec i s ion , a n o d e must have an unde rs tand ing of its ro le in the network . 

To ach ieve th is each node main ta ins a h is tory of severa l of its f unc t i ons . T h e n o d e does not expl ic i t ly 

reta in a memory of all past events , but ra ther a stat is t ica l s u m m a r y of past events . Each node 

main ta ins all of t he h is tor ies i temized be low excep t for nodes in the t o p c o m m u n i t y w h i c h need not 

ma in ta in an ou tpu t h istory. 

• Re in fo rcement h istory. Th i r ty -e ight va lues, o n e per potent ia l f unc t i on the n o d e cou ld 
c o m p u t e . Reco rds the f rac t ion of P O S I T I V E and N E G A T I V E r e in fo rcemen ts rece ived w h i c h 
w e r e P O S I T I V E . 

• L ink h istory. Th ree va lues, one per con t ro l l ed l ink, w h i c h reco rds t he f rac t ion of cyc les 

the l ink was in t he O N s tate. 

• L ink pair h is tory. Th ree va lues, one per pai r of con t ro l l ed l inks, w h i c h reco rds the 
f rac t ion of cyc les bo th l inks were in the same sta te . 

• Ou tpu t h is tory. S ing le va lue w h i c h reco rds t he f rac t ion of cyc les the n o d e w a s in the O N 
state. 

These h is tor ies have been we igh ted to g ive mo re recen t even ts mo re impo r tance . Unwe igh ted 

h is tor ies inh ib i ted ef fect ive learn ing because t he na tu re of t he c lass i f i ca t ion m e t h o d let f unc t i ons w i th 

long h is tor ies d o m i n a t e f unc t i ons w i th shor t h is tor ies . Of ten a n o d e f o u n d a g o o d func t ion and bui l t 

up a long h is tory to at test to its goodness . Later , w h e n a bet ter f unc t i on w a s avai lab le the shor tness 

of its h is tory p revented its super io r i ty f r om be ing recogn i zed . As an examp le a node that rece ived 90 

P O S I T I V E r e in fo rcemen ts c o m p a r e d to 10 N E G A T I V E r e i n fo rcemen ts c o u l d not demons t ra te a 

super io r i t y over a func t ion rece iv ing 800 P O S I T I V E r e i n fo rcemen ts and 200 N E G A T I V E re in fo rcements . 

Th is leads to a c lose -m indedness a long the l ines of " i t has a lways been g o o d e n o u g h , w h y cons ider 

any th ing e lse?" The me thod of we igh t i ng h is tor ies a l lev iates th is p r o b l e m . 

T h e h is tor ies a re ma in ta ined as fo l lows. Each h is to ry is saved as a va lue, x , be tween -n and n w h e r e 

2n c a n be in te rp re ted as the ef fect ive m e m o r y leng th of t he h is tory. T h e h is tory is in i t ia l ized, usual ly 

to 0. Wheneve r a re in fo rcemen t is rece ived , t he va lue is sca led t o w a r d s 0 by x/n. Addi t iona l ly , if the 

re in fo rcement w a s P O S I T I V E , X is i nc remen ted by 1 , a n d if it w a s N E G A T I V E , X is d e c r e m e n t e d by 1 . T h e 

impac t of t he cu r ren t event is 1 , and the e f fec t ive impac t of past even ts d im in ishes exponent ia l l y as 

they b e c o m e more remote in the past. If a n o d e rece ives P O S I T I V E and N E G A T I V E re in fo rcements w i th 

equa l f requency , t he va lue wi l l exponent ia l l y dr i f t t o w a r d s 0 ind ica t ing a ba lance be tween the two . If 

t he re in fo rcemen ts a re a lways P O S I T I V E , t he va lue wi l l c l imb t o w a r d s /?, w h i c h can be reached bu t 

never e x c e e d e d , ind ica t ing pu re P O S I T I V E r e in fo rcemen t . T h e va lues f r om 0 to n ind ica te inc reas ing 
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d e g r e e s of net P O S I T I V E r e i n fo rcemen t . T h e va lue ((x + n)/2n) g ives the f rac t ion co r rec t ou t of 2n 

events . W h e n measu r i ng s ta tes or a g r e e m e n t of s ta tes, w e make the app rop r ia te subs t i tu t ions for t he 

f rac t i on of P O S I T I V E a n d N E G A T I V E r e i n fo r cemen ts . H is to r ies a re a lways in i t ia l ized to 0, excep t for t he 

R e i n f o r c e m e n t h is tory w h i c h is in i t ia l ized to the va lue of the h is tory of the cu r ren t f unc t i on . 

T h e use of w e i g h t e d h is to r ies g ives a c o m m o n leng th to al l h is tor ies w h i c h fac i l i ta tes c o m p a r i n g 

t h e m . T h e ma themat i ca l c o m p a r i s o n s a re m u c h s imp le r t han w i th an exac t h istory. T h e we igh ted 

h is to ry a lso so lves the p r o b l e m of g o o d func t i ons w i th long memor i es d o m i n a t i n g bet ter a l ternat ives 

w i th sho r te r memor i es . Un fo r tuna te ly , w e mus t a c c e p t the conve rse , name ly that it takes longer to 

re fu te poo r f unc t i ons . Af ter in i t ia l iza t ion, t he w e i g h t e d h is tory has an e f fec t ive memory of 2n events . 

W e c h o o s e 0 for all bu t the Re in fo r cemen t h is tory for w h i c h w e c h o o s e the va lue of the cu r ren t 

f un c t i o n h is tory . A reasonab le ini t ial va lue mus t be c h o s e n s i nce the d u r i n g the f irst few cyc les the 

a s s u m e d h is to ry sha l l d o m i n a t e the ear ly cyc les act iv i ty . For examp le , if t he h is tory we re in i t ia l ized to 

0, it w o u l d i nd i ca te a h is to ry of equa l P O S I T I V E a n d N E G A T I V E r e i n fo rcemen t , fo r a f unc t i on tha t a lways 

rece ives N E G A T I V E r e i n fo r cemen t it wi l l take severa l cyc les to o v e r c o m e th is in i t ia l izat ion. The 

u n w e i g h t e d h is to ry d o e s no t have th is d r a w b a c k . A n o t h e r advan tage to the we igh ted h is tory is its 

abi l i ty to qu i ck l y r ecogn i ze w h e n its r e i n fo r cemen t pa t te rn has c h a n g e d . Cons ide r a n o d e w h i c h has 

lea rned t he op t ima l f unc t i on d e m a n d e d by its supe r i o r w h o re in fo rces it. If it has an unwe igh ted 

h is to ry of 10,000 even ts and s u d d e n l y its supe r io rs asked it to so lve a d i f fe ren t task, it w o u l d take 

t h o u s a n d s of even ts be fo re t he n o d e rea l ized tha t its super io r w e r e re in fo rc ing it d i f ferent ly . Wi th a 

w e i g h t e d h is to ry a h u n d r e d events may su f f i ce . 

3.19 Receiving Internal Reinforcements 

Nodes may rece ive re i n fo r cemen ts f r om any of the i r super io rs . T h e n o d e rece iv ing re in fo rcemen t 

mus t d e t e r m i n e w h i c h if any to ut i l ize. To a c c o m p l i s h th is t he n o d e measures the Con f idence -Leve l of 

e a c h n o d e tha t is the i r super io r . If no supe r i o r is C O N F I D E N T , t hen only N E U T R A L r e i n fo rcemen t s igna ls 

can b e rece ived . If any supe r i o r is C O N F I D E N T , t hen on ly t he re i n fo r cemen t f r om the super io r w i th the 

g rea tes t c o n f i d e n c e is u t i l i zed. In the event of m o r e than one supe r i o r w i th equa l con f i dence , the 

n o d e w h o s e re i n f o r cemen t w a s ut i l ized in the p rev ious cyc l e wi l l be ut i l ized in th is cyc le , o the rw ise 

c y c l e s a re b r o k e n arb i t rar i ly w h i c h he lps t o ma in ta in con t i nu i t y in t he re i n fo r cemen t s igna ls be tween 

cyc les . W e p reven t t he n o d e f r om ut i l iz ing m o r e t han o n e re i n fo r cemen t s igna l per cyc l e to insure 

that t he r e i n fo r cemen ts rece ived are i ndependen t . T h e i n d e p e n d e n c e assumpt ion is vital to the 

c lass i f i ca t ion m e t h o d . If a n o d e had severa l supe r i o r s w h o w e r e compu ta t i ona l l y equ iva lent , t hen 

they w o u l d al l p r o d u c e t he s a m e r e i n f o r c e m e n t s igna ls . T h e n o d e w o u l d in terpre t these as 

i n d e p e n d e n t r e i n fo r cemen t s igna ls , t h u s g iv ing t h e m more s i gn i f i cance they deserve . To prevent th is 

poss ib i l i ty , on ly t he supe r i o r w i th the g rea tes t c o n f i d e n c e is r e c o g n i z e d . 
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3.20 Issuing Internal Reinforcements 

Every n o d e c a n rece ive a n d t ransmi t r e i n f o r c e m e n t in t he In terna l R e i n f o r c e m e n t Phase . T h e s e 

r e i n f o r c e m e n t s igna ls a re used to c h o o s e the c u r r e n t f unc t i on as p rev ious ly d i s c u s s e d . W h e n a n o d e 

is C O N F I D E N T is has t h e r igh t to re i n fo rce t h e n o d e s it has c o n t r o l l e d l inks to . A n o d e issues 

r e i n f o r cemen t t h r o u g h every c o n t r o l l e d l ink. 

T h e r e i n f o r c e m e n t s c h e m e is ou t l i ned in Tab le 3-6 w h i c h i l lus t ra tes r e i n f o r c e m e n t t h r o u g h t he X 

l ink, t he cases for the o the r l inks a re a n a l o g o u s . If t h e n o d e rece ived a N E U T R A L r e i n f o r c e m e n t s igna l , 

t h e N E U T R A L r e i n f o r c e m e n t s igna l is i ssued . T h e n o d e has rece ived th is s igna l b e c a u s e it has no t 

p layed a s ign i f i can t ro le in t he c lass i f i ca t ion by t h e ne two rk , o r t he tu to r i ssued an U N C E R T A I N 

r e i n f o r c e m e n t s igna l . It s h o u l d b e r e m e m b e r e d tha t t h e l ink is t r ansmi t t i ng a b o o l e a n s igna l , a n d tha t 

t h e inverse s igna l c o u l d have b e e n sent . Had t h e s igna l b e e n i nve r ted , t h e n o d e may have o u t p u t a 

d i f fe ren t s igna l . If a d i f fe ren t s igna l b e e n sen t a n d t h e n o d e ac tua l l y rece i ved a non -neu t ra l 

r e i n f o r c e m e n t it c a n b e s h o w n tha t t h e n e w r e i n f o r c e m e n t w o u l d be t h e o p p o s i t e of its c u r r e n t 

r e i n fo rcemen t . S o the n o d e c a n hypo thes i ze a c c u r a t e l y t h e r e i n f o r c e m e n t it w o u l d have rece i ved had 

t h e X l ink sen t an inver ted s igna l . If t h e n o d e rece i ved a P O S I T I V E r e i n f o r c e m e n t a n d inver t ing t he X 

l ink s igna l w o u l d a lso have resu l ted in a P O S I T I V E r e i n fo r cemen t , t hen t he X l ink h a d no c o n t r o l over 

t he r e i n f o r c e m e n t s igna l so w e s e n d t h r o u g h t h e X l ink a N E U T R A L r e i n f o r c e m e n t s igna l . T h e s a m e 

w o u l d app ly if b o t h had b e e n N E G A T I V E r e i n f o r c e m e n t s igna ls . If t h e n o d e rece ived a P O S I T I V E 

r e i n f o r c e m e n t a n d an inver ted X l ink s igna l w o u l d have resu l ted in a N E G A T I V E r e i n fo r cemen t , t h e n w e 

k n o w t h e X l ink w a s c r u c i a l in t h e r e i n f o r c e m e n t rece i ved by t he n o d e . For t h e n o d e to rece i ve a 

P O S I T I V E r e i n f o r cemen t , t h e X l ink mus t c o n t i n u e to o u t p u t t h e resu l t it is n o w , so w e issue a P O S I T I V E 

r e i n f o r c e m e n t t h r o u g h t h e X l ink. T h e o p p o s i t e c a s e o c c u r s w h e n t h e n o d e rece ives a N E G A T I V E 

r e i n fo r cemen t , a n d an inver ted X l ink s igna l w o u l d have resu l ted in a P O S I T I V E r e i n f o r cemen t . W e 

issue a N E G A T I V E r e i n f o r c e m e n t t h r o u g h t h e X l ink to e n c o u r a g e t h e n o d e c o n n e c t e d to v ia t he l ink to 

c h a n g e the o u t p u t it c o m p u t e s . 

R e i n f o r c e m e n t t o X L i n k 

R e i n f o r c e m e n t 
R e c e i v e d 
By Node 

R e i n f o r c e m e n t 
R e c e i v e d By Node i f 

X L i n k S i g n a l I n v e r t e d 

R e i n f o r c e m e n t 
I s s u e d t o 

X L i n k 
R e a s o n 

p o s i t i v e 
p o s i t i v e 
n e g a t i v e 
n e g a t i v e 
n e u t r a l 

p o s i t i v e 
n e g a t i v e 
p o s i t i v e 
n e g a t i v e 

n e u t r a l 
p o s i t i v e 
n e g a t i v e 
n e u t r a l 
n e u t r a l 

X L i n k - no e f f e c t 
X L i n k - c o r r e c t 
X L i n k - w r o n g 
X L i n k - no e f f e c t 
d e s i r e d s i g n a l u n k n o w n 

T a b l e 3 - 6 : R e i n f o r c e m e n t S c h e m e 
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Tab le 3-7 g ives examp les of r e i n fo r cemen t to the X l ink for t w o func t i ons . In the first examp le , the 

n o d e is c o m p u t i n g the f unc t i on X. T h e ou tpu t of t he n o d e is iden t ica l to the s ta te s igna led by the X 

l ink. Obse rve that t he re i n fo r cemen t i ssued t h r o u g h the X l ink is iden t ica l to the re i n fo r cemen t 

rece ived by t he n o d e itself. T h e n o d e is ac t i ng as an in te rmed ia ry b e t w e e n its super io r and its X l ink 

subo rd i na te , a n d is mere ly pass ing i n fo rma t ion b e t w e e n these t w o nodes . In the s e c o n d examp le , the 

OR f u n c t i o n is be ing c o m p u t e d . W h e n the Y l ink is s i gna l i ng O N , t he X l ink rece ives N E U T R A L 

r e i n fo rcemen t , s ince it c a n n o t a f fec t t he ou tpu t of t he n o d e . W h e n the Y l ink is s igna l ing O F F , t he X 

l ink rece ives e i ther a P O S I T I V E or N E G A T I V E r e i n f o r c e m e n t s i nce its ou tpu t is c ruc ia l to the 

re i n fo r cemen t rece ived by the n o d e . 

R e i n f o r c e m e n t R e i n f o r c e m e n t 
R e i n f o r c e m e n t Node R e c e i v e d I s s u e d t h r o u g h 

F u n c t i o n X Y R e s u l t Node R e c e i v e d i f X I n v e r t e d X L i n k 

0 0 0 p o s i t i v e n e g a t i v e p o s i t i v e 
0 0 0 n e g a t i v e p o s i t i v e n e g a t i v e 
0 1 0 p o s i t i v e n e g a t i v e p o s i t i v e 
0 1 0 n e g a t i v e p o s i t i v e n e g a t i v e 
1 0 1 p o s i t i v e n e g a t i v e p o s i t i v e 
1 0 1 n e g a t i v e p o s i t i v e n e g a t i v e 
1 1 1 p o s i t i v e n e g a t i v e p o s i t i v e 
1 1 1 n e g a t i v e p o s i t i v e n e g a t i v e 

0 0 0 p o s i t i v e n e g a t i v e p o s i t i v e 
0 0 0 n e g a t i v e p o s i t i v e n e g a t i v e 
0 1 1 p o s i t i v e p o s i t i v e n e u t r a l 
0 1 1 n e g a t i v e n e g a t i v e n e u t r a l 
1 0 1 p o s i t i v e n e g a t i v e p o s i t i v e 
1 0 1 n e g a t i v e p o s i t i v e n e g a t i v e 
1 1 1 p o s i t i v e p o s i t i v e n e u t r a l 
1 1 1 n e g a t i v e n e g a t i ve n e u t r a l • 

T a b l e 3 - 7 : R e i n f o r c e m e n t Examp les 

3.21 Initialization of the Network 

T h e ne two rk c a n be in i t ia l ized as fo l l ows . M a r k every c o n t r o l l e d l ink for c o n n e c t i o n , a n d every n o d e 

to have its f unc t i on c h a n g e d to a randomly se lec ted f unc t i on f r o m a m o n g t hose e l ig ib le f unc t i ons . 

Execu te t he C h a n g i n g F u n c t i o n s and Un l i nk ing Phases success ive ly , and the ne two rk is ready to 

b e g i n . 



3.22 Explanation of Cycle Timing 

C o n c e p t u a l l y e a c h c y c l e is b r o k e n in to severa l d i s t inc t phases . As i m p l e m e n t e d s o m e of t hese 

phases a re ca r r i ed ou t s imu l taneous ly . T h e f i rst th ree phases can b e p r o c e s s e d at the s a m e t ime. 

Bo th r e i n f o r cemen t phases c a n be ca r r i ed ou t s imu l taneous ly . No o ther ove r lap is poss ib le . 

T h e Un l i nk i ng , C h a n g i n g , a n d L ink ing Phases a re c o n d u c t e d separa te ly to m in im ize d i s r u p t i o n to 

t he n e t w o r k d u r i n g t rans i t ions . Nodes w h i c h a re c h a n g i n g the i r f u n c t i o n , s i gna l a N e w - F u n c t i o n to 

the i r super io rs . T h e N e w - F u n c t i o n s igna l c a u s e s its rec ip ien ts to lose c o n f i d e n c e and re in i t ia l ize the i r 

s ta t is t ics . Th is loss of i n fo rma t i on shou ld be avo ided w h e n it is unnecessa ry . If n o d e P has 

des igna ted t h e l ink to n o d e Q to be rep laced , a n d n o d e Q is a b o u t to c h a n g e its f u n c t i o n , t h e n t h e r e is 

no need for n o d e P to rece ive t he N e w - F u n c t i o n s igna l f r om n o d e Q. P lac ing t h e Un l i nk ing Phase 

b e f o r e the C h a n g i n g Func t i on Phase a l l ows the i r c o n n e c t i n g l ink t o be f reed p reven t i ng t h e r e c e p t i o n 

of t he s igna l . S imi lar ly if n o d e R w ishes to make a l ink to n o d e Q, then t he re is no need for n o d e R to 

rece ive t he s igna l e i ther . There fo r , the L i nk ing Phase is p l aced af ter t he C h a n g i n g Func t i on Phase so 

tha t t he N e w - F u n c t i o n s igna ls a re t ransmi t ted be fo re the new l ink c o n n e c t i o n is made . In b o t h cases , 

n o d e s P a n d R had no reason to k n o w tha t n o d e Q w a s c h a n g i n g i ts f u n c t i o n . 
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4. Results 

4.1 Overview 

To demons t ra te the capabi l i t ies of the CONSENSUS system it was run against three instances of the 

learn ing task. The first ins tance requi res c lassi fy ing all possib le func t ions of three inputs, wh ich vary 

s ign i f icant ly in d i f f icul ty . The ne twork was deve loped on th is p rob lem and later appl ied to the 

fo l lowing p rob lems. The second instance is the shi f ter p rob lem, here the network must recogn ize an 

impor tan t regular i ty , but has more inputs to con tend w i th . In the th i rd instance, the network cont ro ls 

a s imula ted o rgan ism in a more comp lex env i ronment . 

4.2 A Simple Test 

For a s imple non-tr iv ia l test, the fo l lowing task was posed to the network : Learn to recogn ize and 

cor rec t ly classi fy each of the possib le un ique boo lean func t ions of 3 var iables. The binary input 

vec to rs cons is ts of 3 e lements , a l lowing 8 (2 3 ) un ique input vectors . W e requi red the network to 

classi fy each vec tor as e i ther V A L I D or I N V A L I D , wh i ch a l lows 256 (2 8 ) possible funct ions. From among 

these 256 poss ib le func t ions only 14 are un ique, the remainder be ing equivalent if you can rename 

inputs and recogn ize inverses. F igure 4-1 enumera tes the func t ions , gives the f requency wi th wh ich 

they or an equiva lent occu rs , and d iagrams a Karnough map of the func t ion . 

To solve th is p rob lem, the network was con f igu red to have three commun i t ies organized into three 

layers wi th each commun i t y composed of 24 nodes. The nodes in each commun i t y are permi t ted to 

l ink to any node be low them inc lud ing the input nodes. The network" was run against each un ique 

func t ion for 1024 cyc les . T h e number of min terms co r rec t (out of a max imum of 8) for the network is 

tabu la ted in Tab le 4 - 1 . 

The learn ing p rocess was observed to occu r in rough ly three phases. The first phase occurs dur ing 

the init ial 20 to 30 cyc les . The network beg ins w i th a random init ial izat ion of func t ions and 

connec t i ons of dub ious value. Dur ing the first few cyc les the top commun i t y nodes identi fy the 

aspects of the random ini t ia l izat ion that were especia l ly poor . These func t ions that per form badly are 

qu ick ly rep laced by bet ter func t ions that genera l ly c o m p u t e sl ight ly bet ter than chance . In th is 

p rob lem, top commun i t y nodes wou ld be expec ted to be ini t ial ized such that they wou ld compu te 4 of 

the 8 min terms cor rec t ly . Typical ly , after this first phase there are essential ly no top commun i ty nodes 

get ter fewer than 4 min terms co r rec t and the major i ty are get t ing be tween 5 and 7 minterms cor rec t . 

The spokesman in the top commun i t y usual ly have at least 6 minterms cor rec t and often have all 8 
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minterms cor rec t . Activi ty in this first phase is con f ined pr inc ipal ly to the nodes in the top commun i t y 

because unti l the nodes in the top commun i t y ga in con f idence , no re in fo rcement is issued to the 

nodes to the lower levels. Whi le per fo rmance after this phase is of ten surpr is ing ly g o o d , the 

know ledge is not robust . There are of ten many cr i t ica l nodes in the network . These nodes are cr i t ica l 

because a change in their funct ion wou ld drast ical ly af fect the pe r fo rmance of the network as a 

who le . 

S low progress is character is t ic of the second phase. Most of the nodes in the top commun i t y now 

possess con f idence and are re inforc ing their subord inates. Several nodes in the lower levels are able 

to identi fy features that are useful to their super iors . The posi t ive re in fo rcement f rom their super io rs 

a l lows these nodes to " l ock o n " to the feature they have ident i f ied. O n c e a node has " l ocked o n " to a 

feature, o ther nodes at h igher levels are of ten able to de te rmine h o w to use th is feature to improve 

their per fo rmance. This phase ranges f rom 50 to 300 cyc les in du ra t ion . At its conc lus ion , most top 

commun i t y nodes have either 7 or 8 minterms cor rec t , t hough on di f f icul t p rob lem nodes wi th 6 

minterms cor rec t can be found . The spokesman has all of the min terms cor rec t and many nodes in 

the lower level now possess conf idence. The know ledge is relat ively robust at th is po int . 

The th i rd phase consists of very s low learning. Nodes in the top commun i t y make s low progress 

whi le search ing for a way to get their last minterm cor rec t . When a node has all but one minterm 

cor rec t , it must of ten exp lore a large number of possibi l i t ies be fo re it f inds a way to get all the 

minterms cor rec t . Nodes in the lower level occas ion ly f ind improvements in their func t ions . The 

New-Funct ion s ignal they generate dur ing their t rans i t ion to a new func t ion can cause many nodes 

above them to lose con f idence and reinit ial ize their histor ies. After losing con f i dence , these nodes 

are vu lnerable to the temptat ion of chang ing their cu r ren t func t ion for one that is a lmost as good but 

is temporar i ly per fo rming as wel l as or bet ter than the cur ren t f unc t i on . Nodes that y ie ld to the 

temptat ion must then relearn the minterms they now have incor rec t . The ne twork genera l ly makes 

very s low progress and eventual ly reaches an apparent equ i l ib r ium between the s low improvements 

of the top commun i t y nodes and the consequences of the waves of New-Func t ion s ignals. 

On these prob lems, the network obtains 8 out of 8 min terms co r rec t in 512 cyc les and mainta ins this 

t h rough 1024 cycles. The network had the easiest t imes wi th the func t ions of two inputs or less (A, C, 

L, and M). These are the funct ions possessing the greatest regular i ty. The ne twork had the greatest 

d i f f icul ty w i th func t ions G and H. These func t ions have several min terms w h i c h are d ispersed f rom 

each other. Funct ions are di f f icul t to learn if they have few under ly ing regular i t ies. Ad jacent 

minterms wi th the same value form regular i t ies. Funct ions such as B or C wi th a p reponde rance of 

one minterm value have many adjacent minterms of the same value. Func t ions wi th the equal number 
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of min terms of each value canno t help but possess some degree of regular i ty. The nodes w i th a s l ight 

p reponde rance of one minterm value offer the fewest under ly ing regular i t ies. 

C y c l e s 
F u n c t i o n 32 64 128 256 512 

A F a l s e 8 • * * * 

B X " Y * Z 7 7 7 8 8 

C X * Y 8 8 8 8 8 

D X - (Y x o r Z ) 7 7 7 8 8 

E ( X ~ Y * Z ) v ~ ( X * Y ~ Z ) 6 6 7 8 8 

F X * (Y v Z ) 8 8 8 8 8 

G (X " Y ) v ( ~ X A ~ Y ~ Z ) 7 7 7 7 8 

H (X * (Y x o r Z ) ) v ( - X - Y - Z ) 8 8 7 7 8 

I (X A Y) v (~Y * Z ) 8 8 8 8 8 

J X x o r (Y ~ Z) 8 8 8 8 8 

K (X * Y ) v (Z - (X x o r Y ) ) 7 7 7 8 8 

L X 8 8 8 8 8 

M X x o r Y 7 7 8 8 8 

N X x o r Y x o r Z 6 7 8 8 8 

* - e v e r y node i n c o m m u n i t y has 8 

T a b l e 4 - 1 : Resul ts on Boo lean Funct ions of 3 Var iables 

4.3 The Shifter Problem 

As a more d i f f icu l t test, the ne twork was asked to solve the fo l lowing prob lem : Learn to recogn ize 

shi f ts of the input vector . The binary input vector was d iv ided into two componen ts , S and V. The 

c o m p o n e n t S cons is ts of a s ingle e lement and des ignates the t ransformat ion on componen t V to be 

pe r fo rmed to p r o d u c e O, the output vector . The c o m p o n e n t V cons is ts of four e lements numbered V t 

t h rough V 4 and the vector O cons is ts of four e lements numbered 0 1 t h rough 0 4 . If S is O N , O shou ld 

rece ive the co r respond ing e lements of V, for example 0 2 receives V 2 < If S is O F F , O shou ld rece ive the 

e lements of V shi f ted one p lace, for example 0 2 receives V r When a shif t t ook p lace, 0 1 shou ld 

receive V 4 to p roduce a rotat ion of the last e lement . There are 32 (2 5 ) un ique input vectors w h i c h 

were presented wi th equal probabi l i ty . W e requi red the network to p roduce O, the output vector . For 

each e lement of O, the ne twork must de termine wh i ch of 2 3 2 func t ions implement the requ i red 

f unc t i on . 

To so lve the p rob lem, the ne twork was con f igu red to have e ight commun i t i es organ ized into two 

layers. S ince a top commun i t y can p roduce only a s ing le bi t of output , one top commun i t y is needed 

for each e lement in O, the ou tpu t vector . Essential ly there are four ne tworks opera t ing in paral le l . 
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Each network cons is ts of one commun i t y in the first layer wh ich c o n n e c t s only to input nodes, and 

one commun i t y in the second layer w h i c h is a top commun i t y and may c o n n e c t only to nodes in its 

coun te rpar t in the first layer. Each commun i t y was c o m p o s e d of 10 nodes , the max imum a l lowed by 

the cur ren t s imulator g iven the earl ier requ i rements . It shou ld be noted that the ne twork was g iven no 

advanced know ledge abou t the S and V c o m p o n e n t s and must d iscover this on its o w n . The network 

was run for 1024 cyc les and the number of m in te rms co r rec t (out of a max imum of 32) is tabu la ted in 

Tab le 4-2. 

In this p rob lem, the first phase domina tes the f irst 150 cyc les. At the comp le t i on of the first phase 

the spokesman are - 9 0 % co r rec t ut i l iz ing nodes w h i c h - 7 5 % cor rec t . T h e second phase cons is ts of 

rough ly 450 cyc les , as the nodes improve to - 9 5 % accu racy and the spokesman b e c o m e 100% 

accura te . Dur ing the th i rd phase, the nodes p r o d u c e s low progress in improv ing their accu racy . 

Spokesman C y c l e s Nodes Spokesman C y c l e s Nodes 

32 18 . 6 5 22 . 7 5 544 2 9 . 0 0 
64 2 1 . 6 5 22 . 7 5 576 2 9 . 5 0 
96 22 . 7 8 22 . 7 5 608 2 9 . 7 0 

128 24 . 3 0 27 . 7 5 640 2 9 . 8 5 
160 24 . 7 5 28 . 7 5 672 2 9 . 8 5 
192 25 . 2 0 28 . 5 0 704 2 9 . 8 5 
2 2 4 25 . 2 0 27 . 0 0 736 2 9 . 8 5 
256 25 .65 27 . 7 5 768 2 9 . 8 5 
288 26 85 30 . 0 0 800 3 0 . 0 5 
3 2 0 27 05 30 . 0 0 832 3 0 . 0 5 
352 27 10 30 . 0 0 864 3 0 . 0 5 
3 8 4 27 20 30 . 0 0 896 2 9 . 8 5 
416 27 60 30 . 0 0 928 3 0 . 0 5 
448 28 15 3 1 . 0 0 960 3 0 . 2 0 
480 28 28 3 1 . 0 0 992 3 0 . 4 0 
5 1 2 29 12 32 . 0 0 1024 3 0 . 4 0 

T a b l e 4 - 2 : Pe r fo rmance on Shi f ter Prob lem 

3 2 . 0 0 

4.4 The Tadpole Problem 

As a f inal task, the ne twork w a s asked to d i rec t a s imula ted tadpo le in a s imple env i ronment . The 

tadpo le l ives in a one-d imens iona l p o n d , it must c o m e to su r face for oxygen and d ive to the bo t tom for 

f o o d w i thou t wa i t ing too long lest it d ie f rom s tarvat ion or asphyx ia t ion . T h e p o n d has e ight d is t inc t 

dep ths , oxygen may only be ob ta ined at the su r face , dep th 0, and food may only be ob ta ined at the 

b o t t o m , dep th 7. The tadpo le ' s lungs may ho ld up to 15 un i ts of oxygen , and its s t o m a c h may ho ld up 

to 15 units of f ood . Each cyc le , it consumes 1 uni ts of oxygen and 1 uni t of f ood . It d ies w h e n it has 

no oxygen or f ood . W h e n at t he sur face , it ful ly rep len ishes its oxygen . When at the bo t tom, it fu l ly 

rep len ishes his f ood . Each cyc le it can ei ther sw im upwards or d o w n w a r d s . Sw imming upwards 
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decreases its dep th by one except when at the sur face , in w h i c h case it remains there. Sw imming 

downwards increases its depth by one except when at the bo t tom, in wh i ch case it remains there. 

The tadpole is aware of how many units of oxygen and food it has. The tadpo le was star ted at the 

sur face wi th a ful l comp lement of oxygen and food , in the event it d ied the tadpo le was re incarnated 

in th is state. 

To al low the network to con t ro l the tadpo le , w e must establ ish a co r respondence between the 

tadpo le env i ronment and the network env i ronment . To present the ne twork w i th a b inary input vec tor 

the fo l lowing was done . The tadpole 's food supp ly can be represented by a four bi t number , as can 

the oxygen supply. We used the 3 h igh order bi ts f rom the food supp ly and the 2 h igh order bi ts f rom 

the oxygen supply to create a 5 bit b inary input vec tor to the ne twork . T h e V A L I D c lass i f icat ion was 

taken to mean swim downwards , and the I N V A L I D c lass i f icat ion was taken to mean sw im upwards . 

The tutor insists the tadpole swim downwards when it has less food than oxygen , and sw im upwards 

when it has less oxygen than food . When it has an equal amoun t of food and oxygen , the tu tor is 

indi f ferent and gives an U N C E R T A I N c lass i f icat ion. To con fuse the network , the tu tor may g ive an 

incor rec t c lassi f icat ion on any cyc le . The tu tor wi l l c lassify the vec to r cor rec t l y 8 0 % of the t ime, 

however each of the two al ternat ives wil l be des igna ted 10% of the t ime. These c lass i f icat ions are 

used regardless to the cur rent dep th of the tadpo le . The state of the ne twork was not specia l ly 

al tered in the event the tadpole per ished. 

The nature of the prob lem demonst ra tes several capabi l i t ies of the ne twork . Wi th a b inary input 

vector of 5 e lements, up to 32 (2 5 ) un ique input vec tors may be presented . The ne twork may need to 

cons ider up to 2 3 2 d i f ferent funct ions. Unl ike the prev ious p rob lems, the input vec tors wil l not be 

presented wi th equal f requency. The f requency wi th wh i ch each input vec to r is presented may vary 

s igni f icant ly dur ing the course of the task. The tadpo le has incomple te in fo rmat ion rece iv ing only 5 

inputs when 8 are requ i red to complete ly des ignate the state of his oxygen and food suppl ies . To the 

tadpo le , the tutor is inconsistent . Wi th fewer inputs the ne twork has a reso lu t ion that is too coarse to 

complete ly d is t inguish all possible states of the tadpo le . The tu tor l ies 2 0 % of the t ime, so cau t ion 

must be exerc ised in interpret ing any speci f ic re in fo rcement . 

The network has conf igured to have three commun i t i es o rgan ized in to th ree layers wi th each 

commun i t y composed of 24 nodes. The nodes in each commun i t y are permi t ted to l ink to any node 

be low them inc lud ing the input nodes. The ne twork was run for 512 cyc les . F igure 4-2 shows the 

tadpo le under cont ro l of the network. The le f t -hand char ts s h o w the dep th of the tadpo le as a 

func t ion of t ime. The r ight -hand char ts show the ne tworks know ledge at the end of each l ife or the 

end of the s imulat ion. For each possib le comb ina t ion of inputs, the ac t ion the ne twork wou ld choose 

is d isp layed, a c ross indicat ing sw imming d o w n w a r d s o therwise sw imming upwards . 
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The first life of the tadpo le lasts 23 cycles. The tadpole meanders near the top , then swims to the 

bo t tom, l ingers there, and then per ishes whi le sw imming to the sur face. The network has no real 

unders tand ing at this early stage. The apparent ly intel l igent sw imming sequences are the result of 

the random init ial izat ion of the network. 

The second life of the tadpo le lasts 17 cyc les. The tadpo le l ingers near the top , then sw ims to the 

bo t tom and tr ies to qu ick ly return to the sur face. The network now has a genera l unders tand ing that 

when food is less than oxygen sw imming downwards is requi red. It unders tands the converse about 

the need to swim upwards when oxygen is the more cr i t ical commodi ty . It is overly conce rned about 

lack of food . This is due to its star t ing at the sur face, the tadpo le typical ly f inds oxygen early wh i le 

lack ing food wh i ch shou ld lead it to be more conce rned about food . 

In its th i rd l ife, the tadpole has learned the ropes. It has learned to methodica l ly sw im upwards and 

d o w n w a r d s replenish ing its oxygen and food. Early in its life it pauses for one cyc le at the bo t tom, 

later it avoids th is pause. The tadpole con t inued this cyc l ica l sw imming for the last 472 cyc les of the 

s imula t ion . It recognizes that it l ives in one of two states, needing oxygen or needing food . It 

recogn izes its cur ren t state and swims up or d o w n appropr ia te ly . Once the tadpo le has c o m m e n c e d 

the sw imming cyc le , the network only receives 11 un ique input vectors. The remain ing input vectors 

are never encoun te red by the tadpo le anymore. The tadpo le has a per fect encod ing for these input 

vectors s ince they a lways al low it to choose the cor rec t ac t ion . 

4.5 Review 

The network has shown its capabi l i ty to handle several d i f ferent p rob lems. The ne twork has faced 

env i ronments w i th inputs of varying f requencies, inconsis tent tu tors , and wi th and w i thou t impor tan t 

under ly ing regular i t ies. In each case, the network has been able to f ind a sui table encod ing to solve 

the task presented to it. These tasks show some variety in their in te rconnec t ion schemes. We intend 

to exp lo re the system's abil i ty to p roduce its own in te rconnec t ion scheme in fu ture research. 
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F i g u r e 4 - 2 : Tadpo le Pe r fo rmance 
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5. Discussion 

5.1 Introduction 

In p rev ious sec t ions the s t ruc tu re of the ne twork has been deta i led toge ther w i th its pe r fo rmance on 

several p rob lems. In this sec t ion several aspects of the ne twork shal l be d iscussed inc lud ing the 

not ion of con f i dence and its role in the re in fo rcement scheme and the func t ion of commun i t i es . The 

issue of c o n v e r g e n c e wil l be addresses a long v/ith some l imi tat ions on the network . 

5.2 The Notion of Confidence 

The no t ion of con f i dence is impor tant to mak ing the re in fo rcement s c h e m e ef fect ive. Th is scheme 

del iberate ly a t tempts to suppress " n o i s y " re in fo rcement s ignals . Noisy re in fo rcement s ignals are of 

dub ious va lue to a §ystem based on stat ist ical in ference. These s igna ls retard the rate of learn ing by 

genera t ing add i t iona l tr ials that con ta in litt le in fo rmat ion . Cons ider the co in - f l ipp ing exper iment , 

be fore you need only s tudy a s ingle co in , if you must s tudy several ind is t ingu ishab le co ins when you 

al ready know that ail but one is fair, the randomness of the fair co ins makes it more d i f f icu l t to s tudy 

the h y p o t h e t i c a l ^ " f a i r " co in . A node that is C O N F I D E N T has estab l ished that its pe r fo rmance is bet ter 

than c h a n c e . A C O N F I D E N T node is aware that it serves an impor tan t f unc t i on in the ne twork . Nodes 

wh i ch are U N C O N F I D E N T wou ld be expec ted to have a large noisy c o m p o n e n t in any re in fo rcement 

s ignals they might send s ince they have not es tab l ished that they are pe r fo rm ing bet ter than chance . 

S ince only nodes that are C O N F I D E N T may issue re in fo rcements o ther than N E U T R A L , the largest 

potent ia l s o u r c e of noisy re in fo rcements has been suppressed . The d is t inc t ion be tween nodes w i th 

d i f fer ing degrees of con f i dence , a l lows subord ina tes to respond to the super io r w i th the greatest 

con f i dence and hence the least noisy re in fo rcements . Th is a p p r o a c h con t ras ts w i th that taken by 

most o ther researchers . They accep t the p resence of noisy re in fo rcements s ince thei r models rely on 

mak ing numerous smal l changes . They expec t that the er rors wi l l cance l each o ther out, leaving a 

mean ing fu l change . W e at tempt to make a smal ler number of more substant ia l mod i f i ca t ions , but 

must not a l low the p resence of noisy re in fo rcements to s low d o w n our de te rm in ing w h i c h substant ia l 

mod i f i ca t ions are best. 

5.3 The Role of Spokesman and Communities 

Each c luster has a d is t ingu ished node re fer red to as the spokesman. T h e spokesman samples the 

states of the o ther nodes in the c luster and adopts the most c o m m o n l y found state. Essential ly, he 

adopts the state of the major i ty of his b re th ren . His state represents the c o m b i n e d k n o w l e d g e of the 

nodes in the c luster . 
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The basic not ion is that col lect ively the nodes have more know ledge than any node has indiv idual ly. 

Funct ion H f rom the 3-variable tests provides a g o o d example . A node in the f irst layer can do no 

better than get t ing 5 of the 8 minterms cor rec t . F igure 5-1 shows the 19 func t ions that a f irst layer 

node cou ld compu te wh ich have 5 minterms cor rec t . The inverses of these func t ions have 3 

minterms cor rec t , and exhaust the al ternat ives avai lable to the node . Clearly func t ion H is beyond any 

indiv idual f irst level node. It is also beyond any s e c o n d level node wi th access only to f irst level nodes 

s ince the best any second level node can do is 7 minterms cor rec t . A th i rd level node is capab le of 

ca lcu la t ing of func t ion H. 

However, func t ion H is not beyond the capabi l i ty of a commun i t y of nodes . If the f irst level 

commun i t y cons is ted of 19 nodes, each compu t i ng 1 of the 19 func t ions in F igure 5 - 1 , the spokesman 

wou ld have all the min terms cor rec t . Whi le the under ly ing regular i t ies for th is func t ion are min imal 

each of the nodes wi th 5 minterms cor rec t has cap tu red some under ly ing regular i ty. Whi le each node 

knows very l itt le, each has some unders tand ing of the p rob lem. Col lect ively the nodes have suf f ic ient 

unders tand ing to solve the prob lem. Major i ty vot ing recogn izes the 3 t rue min terms w i th a one vo te 

marg in , and rejects the minterm (~X) AND Y AND (~Z) by one vote. The remain ing minterms are 

easily recognized to be false. Whi le this example is unusua l , it ind icates the potent ia l power of a 

co l lec t ion of nodes each possessing min imal know ledge . 

The commun i t y benef i ts f rom the independent p ieces of know ledge each of the nodes possess. If 

each of the nodes were to compu te the same func t ion then the major i ty vo t ing wou ld yield no 

advantage. However, when each node has independent ly acqu i red a moderate ly g o o d record , the 

g roup wil l have acqu i red an excel lent record . As Table 5-1 demonst ra tes , a co l lec t ion of 15 nodes 

each independent ly cor rec t 8 0 % of the t ime wi l l have a major i ty co r rec t over 9 9 % of the t ime. Nodes 

wi th perfect know ledge (100% correct ) or no know ledge (50% cor rec t ) der ive no benef i t f rom g roup 

ac t ion . Nodes wi th a moderate degree of know ledge (70% or more) do der ive great benef i t f rom 

g roup ac t ion . Groups of as few as 5 nodes can p roduce major improvements w i th g roups as large as 

15 p roduc ing even more. In pract ice, obta in ing per fect knowledge* in a s ing le node is a d i f f icu l t task, 

but obta in ing a moderate degree of know ledge is not. By co l lec t ing a number of independent nodes 

wi th some knowledge, the commun i t y has g o o d knowledge . 

A cruc ia l not ion in the vot ing scheme is the independence of the nodes. W e prov ide no expl ic i t 

mechan ism for ensur ing independence of the nodes. Instead, w e rely on the randomness of the 

connec t ions and func t ions in the network . We select commun i t y s izes on the order of 20 or more 

nodes wi th the expecta t ion that the nodes wil l have several independent methods of get t ing a large 

f ract ion cor rec t . Wi th several independent methods avai lable, it can be expec ted that each of the 
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F i g u re 5 - 1 : C o m m u n i t y Example 
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P r o b a b i 1 i t y 
R i g h t 1 

P r o b a b i l i t y M a j o r i t y Wrong Fo r S i z e 
3 5 7 9 15 

. 5 0 0 

. 6 0 0 

. 7 0 0 

. 8 0 0 

. 9 0 0 
1 . 0 0 0 

. 5 0 0 0 

. 4 0 0 0 

. 3 0 0 0 

. 2 0 0 0 

. 1 0 0 0 

. 0 0 0 0 

. 5 0 0 0 

. 3 5 2 0 

. 2 1 6 0 

. 1040 

. 0 2 8 0 

. 0 0 0 0 

. 5 0 0 0 

. 3 1 7 4 

. 1 6 3 1 

. 0 5 7 9 

. 0 0 8 6 

. 0 0 0 0 

. 5 0 0 0 

. 2 8 9 8 

. 1260 

. 0 3 3 3 

. 0 0 2 7 

. 0 0 0 0 

. 5 0 0 0 

. 2 6 6 6 

. 0 9 8 8 

. 0 1 9 6 

. 0 0 0 9 

. 0 0 0 0 

. 5 0 0 0 

. 2 1 3 1 

. 0 5 0 0 

. 0 0 4 2 

. 0 0 0 0 

. 0 0 0 0 

T a b l e 5 - 1 : Ef fects of Independen t Major i ty Vot ing 

methods wil l be ut i l ized by approx imate ly an equal number of nodes. Whi le there is no guaran tee of 

this, it has been observed to work wel l in prac t ice . Commun i t i es are not large w i th the expec ta t ion 

that each node wil l f ind an equal ly g o o d me thod , but rather so that each of the avai lable methods is 

represented w i th rough equal i ty. The spokesman nodes per fo rm s ign i f icant ly bet ter than 

conven t iona l nodes w h e n the convent iona l nodes e n c o m p a s s several i ndependen t methods . 

5.4 The Credit-Assignment Problem 

The downfa l l of many learn ing methods has been the " c red i t - ass ignmen t " p rob lem. A learn ing 

me thod must be able to de termine how to modi fy its parameters in o rder to improve its unders tand ing 

of the des ignated task. In their paper [12] , H in tcn , Se jnowsk i , and Ack ley state : 

The major techn ica l s tumbl ing b lock w h i c h prevented the genera l iza t ion of s imp le 
learn ing a lgor i thms to more comp lex ne tworks was this : To be capab le of in terest ing 
computa t ions , a ne twork must con ta in non- l inear e lements that are not d i rect ly 
cons t ra ined by the input , and when such a ne twork does the w r o n g th ing it appears 
imposs ib le to dec i de w h i c h of the many c o n n e c t i o n s s t reng ths is at faul t . 

The CONSENSUS system at tempts to do th is by g iv ing each node an unders tand ing of the ro le of 

itself and its ne ighbors in the network . Each node in the ne twork is a non- l inear e lement that a t tempts 

to cor re la te two lower-order concep ts into a h igher -o rder c o n c e p t for use by its super io rs . T h e 

re in fo rcement s c h e m e , inc lud ing the no t ion of con f i dence , a l lows it to t rans late g loba l re in fo rcement 

s ignals into mean ing fu l local re in fo rcement s ignals to de te rm ine w h i c h part of the ne twork must be 

improved . 

The t rans la t ion of g loba l re in fo rcements to loca l re in fo rcements is ca r r ied ou t inc rementa l l y at each 

node . The top layers rece ive their re in fo rcement f rom the env i ronment . Wh i le the top layer nodes are 

w i thou t con f i dence , they w i thho ld re in fo rcement f r om the lower layers, a l low ing the i r immed ia te 

subord ina tes to exper iment freely. W h e n the nodes in the top commun i t y have con f i dence , they 

re in fo rce their subord ina tes . Each node ref ines the g loba l re in fo rcement into a un ique local 

re in fo rcement for each node it re in forces. The re in fo rcement s c h e m e at tempts to ident i fy the nodes 
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responsib le for the g lobal re in forcement and r e w a r d / p u n i s h that node accord ing ly . Nodes wh ich 

canno t affect the g lobal re in forcement receive neutra l re in forcement . The subord inates of the top 

layer nodes re in force their subord inates in k ind . 

The CONSENSUS system changes the func t ions at nodes and l inks in the network in order to 

deve lop an internal model that captures the s t ruc ture of its env i ronment . The dec is ion method and 

re in forcement scheme give it the means to at tempt to de termine where faults lie and to cor rec t them. 

5.5 Interconnection Scheme 

The organizat ion of the nodes into communi t ies imposes s t ruc tu re on the network. The s implest 

organizat ion is to randomly in terconnect nodes. Th is has the benef i t of be ing s imple, but is ineff ic ient 

s ince the network must start f rom scra tch for all knowledge . The g roup ing of nodes into communi t ies 

a l lows the co l lect ive knowledge of the commun i t y members to be ut i l ized. The spokesman serves this 

role and purpose by s ignal ing the consensus of his compat r io ts . In addi t ion to the int rospect ive 

benef i ts of communi t ies , the commun i t y provides a basis for external organ izat ion. S ince the nodes 

of each commun i ty may be connec ted to the nodes of a speci f ied subset of all communi t ies we have a 

l imited capabi l i ty to " p r o g r a m " the network by spec i fy ing the in te rconnec t ion scheme. An obv ious 

appl icat ion is to speci fy a scheme whereby nodes examine similar inputs together , in the case of a 

two-d imens iona l image, we can have nodes look only at pixels that are near one another. In the case 

of inputs of d i f fer ing natures, we cou ld organize the connec t i ons by input type, such as having some 

commun i t i es examine temperature , some pressure, and others fo rce . These in terconnect ion 

schemes can be speci f ied in the lower layers to faci l i tate the learning on specia l prob lems before the 

h igher-order concepts- reach the upper layers. This scheme al lows us to speci fy the in terconnect ion 

in the large, whi le retain ing randomness in the smal l . 

5.6 The Tradeoff Between Speed of Learning and Stability 

The parameters af fect ing the rate of learning are the conf idence- leve l , the equ iva lence factor, and 

dependence factor. To speed up the learn ing, in the shor t te rm, the conf idence- leve l cou ld be 

reduced , the equ iva lence factor increased, and the dependence factor increased. The d rawback to 

speed ing up the rate of learning is that the network becomes unstable. It is unstable because it is 

vu lnerable to the chance presentat ion of a few unusual input vectors . 

The rate of learning wou ld be increased if the conf idence- leve l were reduced f rom 99%, s ince each 

node wou ld require fewer samples to make a dec is ion . Increasing the equ iva lence factor wou ld al low 

a greater number of func t ions to be classi f ied as equivalent , and it wou ld take less t ime for each 
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funct ion to be so c lass i f ied. Increas ing the d e p e n d e n c e fac tor w o u l d make it eas ier to d raw the 

conc lus ion that a pair of l inks was redundant . Increas ing the equ iva lence and d e p e n d e n c e fac tors 

wou ld dec rease the sensi t iv i ty of the nodes to f ine g radat ions of pe r fo rmance , in more comp lex 

p rob lems th is loss wou ld be of s ign i f i cance. 

S ince the network is cons tan t l y respond ing to the inpu t vec tors in p ropo r t i on to thei r f requency in 

the immedia te past, the presenta t ion of a very smal l subset of t he poss ib le input vec to rs on many 

consecu t i ve cyc les wou ld lead the network to bel ieve that the f requency of p resenta t ion of the input 

vec to rs had changed . Reduc ing the to le rance of these parameters makes the ne twork respond more 

qu ick ly to these changes , s ince it requi res fewer samples to make a dec is ion . When the tu to r 

presents such a subset of the input vec tors by c h a n c e , the ne twork may make an unwar ran ted 

reconf igura t ion thus los ing its accumu la ted k n o w l e d g e . Keep ing the to le rances of the parameters 

h igh pro tec ts the ne twork f rom shor t te rm s e q u e n c e s of examp les by c h a n c e . The under l y ing 

ph i losophy of the ne twork is to make a few wel l i n fo rmed dec is ions ra ther t han many less i n fo rmed 

dec is ions , reduc ing the to le rance of the parameters wou ld a l low the ne two rk to m a k e dec is ions on 

less in fo rmat ion , con t rad i c t i ng our ph i losophy. 

Learn ing schemes based on re laxat ion techn iques f ace an ana logous p rob lem. T h e rate of learn ing 

can be inc reased by pe r fo rm ing the re laxat ion faster, in the spec i f ic case of the Bo l t zmann mach ine 

by lower the tempera tu re faster. The dange r they face is that the faster the re laxat ion is pe r f o rmed 

the less l ikely t he sys tem wi l l zero in on the g loba l max ima. For CONSENSUS, t he p rob lem is no t 

f ind ing the g loba l max ima, bu t s tay ing there in the face of a c h a n c e presenta t ion of an 

unrepresentab le set of input vec tors . 

5.7 Tolerating the Environment and Tutor 

The ne twork does no t requ i re that the examp le input vec tors span the s p a c e of al l poss ib le inpu t 

vec tors . The ne twork responds to the input vec to rs in p ropo r t i on to the f r equency of the i r 

appearance ; the more of ten a vec to r appears , the mo re the ne twork wi l l respond to that input . For 

input vec to rs that do no t occur , the ne twork may c h o o s e any c lass i f i ca t ion . T h e ne twork wi l l c h o o s e 

the c lass i f ica t ion that is most cons is ten t w i th t he regular i t ies inherent in the input vec to rs that have 

been presented to it. The f requency w i th wh i ch an i npu t vec to r is p resen ted may vary; the ne twork 

wil l r espond to tha t inpu t vec to r in p ropor t i on to its f requency in the immed ia te past. 

The ne twork can to lera te non-determin is t ic and vary ing c lass i f i ca t ions by the tutor . T h e 

c lass i f icat ion of an input vec tor by the tu tor as V A L I D , I N V A L I D , or U N C E R T A I N need not be determin is t i c 
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or cons is tent . For example , the tu tor may classify a g iven input vec to r as V A L I D 9 0 % of the t ime and 

I N V A L I D 1 0 % of the t ime. The network wi l l classify t he input vector as V A L I D to max imize its posi t ive 

re in fo rcement . The ne twork wou ld also choose a V A L I D c lass i f ica t ion if the input vector were 

U N C E R T A I N 9 0 % of the t ime and V A L I D for 1 0 % of the t ime. The abi l i ty to handle a non-determin is t ic 

tu to r rel ieves the tu tor of any requ i rement for in terna l cons is tency . The tu tor 's c lass i f ica t ion scheme 

may c h a n g e w i th t ime; the ne twork wi l l respond to the c lass i f icat ion used in the immed ia te past. 

In an effort to maximize its posi t ive re in fo rcement f rom the tutor, the network wi l l concen t ra te on the 

input vec to rs that appear most f requent ly wi th the V A L I D or I N V A L I D c lass i f i ca t ion . Input vectors that 

a re c lassi f ied as U N C E R T A I N or do not appear wi l l be c lassi f ied in the manner most conven ien t to the 

ne twork in its pursu i t of the more impor tan t input vectors . Th is is ana logous to an e lect r ica l eng ineer 

freely ut i l iz ing do-no t -ca res in a Ka rnough map to p r o d u c e the s implest c i rcu i t poss ib le that fits his 

des ign requ i rements . In a p inch , the ne twork may even intent ional ly c h o o s e the w r o n g c lassi f icat ion 

for in f requent input vec tors if it a l lows it to bet ter classi fy the more f requen t input vec tors . When the 

tu to r c h a n g e s its c lass i f ica t ion of, or f requency of, some input vec tors , the ne twork wil l respond . 

After a shor t per iod of exposu re to the new re in fo rcement cr i ter ia , the ne twork wi l l recon f igu re itself in 

response . 

5.8 Convergence 

Unti l now, w e have avo id ing the issue of conve rgence . To be capab le of ach iev ing conve rgence , 

the ne twork must be ab le to escape local max ima and set t le into the g loba l max ima . For comp lex 

sys tems this can be a very d i f f icu l t task s ince it is in feasib le to exhaust ive ly search t h e ent i re space . 

T h e CONSENSUS ne twork has the capabi l i ty to escape many, b.ut not al l , local max ima and set t le into 

a g loba l max ima. 

CONSENSUS constant ly con templa tes major c h a n g e s in its func t ions , hence it is not l imi ted to smal l 

loca l changes . A sys tem con f ined to mak ing smal l loca l c h a n g e s has a l imited hor i zon in search ing 

for super io r a l ternat ives. A search c o n d u c t e d f rom the top of a smal l hi l l w i th a l imi ted hor izon wil l 

never " s e e " a moun ta in range in the d is tance . Wi th each node at every level in the h ierarchy 

cons tan t ly p rob ing for a l ternat ives w i th one con t ro l l ed l ink, t he ne twork is not con f i ned to local 

changes . In genera l , wh i le the lower level nodes a re con temp la t ing m inor changes , t he upper level 

nodes wi l l be con temp la t ing major changes . Th is g ives the ne twork the oppor tun i t y to cons ider more 

than local changes . W h e n con f ron ted w i th two equiva lent a l ternat ives, t he ne twork chooses 

randomly be tween them. Th is gives it t he capabi l i ty to fu l ly exp lo re p la teaus in the search space. 

Whi le there may be no bet ter a l ternat ives avai lable f rom the cu r ren t pos i t ion , there may be bet ter 

a l ternat ives avai lable f rom a pos i t ion equ iva lent to the cur ren t pos i t ion . 
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The con t inuous p rob ing for al ternat ive connec t i ons gives the nodes the oppor tun i ty to exp lore all 

potent ial a l ternat ive connec t ions subject to the restr ic t ion of mainta in ing the l inks for the cur rent 

funct ion. Unless the cur rent funct ion requires two l inks nei ther of wh i ch is used in the opt imal 

func t ion , the method of randomly ass igning l inks wil l lead to the opt imal l ink and func t ion ass ignment 

in t ime. For the random in terconnects to achieve per fect ion wou ld be expec ted to take exponent ia l 

t ime, by tr ial and error, so this has l imited pract ical i ty. 

Once a conf igura t ion is reached that is a lways cor rec t , its componen ts wil l a lways receive posi t ive 

re in forcement and have no incent ive to change their computa t ions . The only method by wh ich the 

conf igura t ion cou ld be d is rup ted , is the t ransmiss ion of the New-Funct ion s ignal (see Sect ion 3.15) as 

lower level nodes at tempt to improve their per fo rmance. The momentary lack of con f idence in the 

s t ruc ture leaves it vu lnerable to undesi rab le changes . Except for th is weakness, the network wil l not 

leave a g loba l max ima. 

5.9 Parallelism 
The major operat ions in the network can be conduc ted in paral le l . The except ion is the delay due to 

the propagat ion of s ignals th rough the network. The length of the p ropagat ion delay is propor t iona l 

to the height of the network. The paral lel p rocess ing at the nodes is possib le because nodes require 

only local know ledge to func t ion . The da ta on al ternat ive computa t ions is mainta ined local ly at each 

node. Decis ions regard ing re in forcements can be made str ict ly on the basis of in format ion f rom the 

local l inks. The only g lobal cont ro l requi red is a c lock to regulate the phases of each cyc le . 

5.10 Restrictions 
A major restr ic t ion of the network is the restr ic t ion on the nodes to compu t ing boo lean funct ions . 

This poses no inherent restr ic t ion on the capabi l i ty of the network , s ince any computab le funct ion has 

an equivalent boo lean func t ion . For th is reason and s impl ic i ty , th is invest igat ion has only cons idered 

boolean computa t ions at the nodes. In pract ice, the boo lean func t ion l imitat ion restr icts the fan- in of 

the network to two . Comput ing arbi t rary boo lean func t ions on more than two var iables qu ick ly 

becomes impract ica l . The low fan- in wil l require tall ne tworks for more compl i ca ted prob lems. It is 

not c lear how wel l the network wil l scale wi th increasing network height . In pr inc ip le , there is no 

reason why the dec is ion method canno t be appl ied to more convent iona l sum-of -weights-and-

compare- to- th resho ld models. Such models are unable to compu te the exclus ive-or and equ iva lence 

func t ions , but th is d rawback is ou twe ighed by a l lowing a greater fan- in wh i ch al lows shor ter ne tworks 

to per form the same task. 
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The explorat ion of al ternat ive hypotheses is great ly s impl i f ied f rom the know ledge that invert ing a 

computa t ion changes a reward to pun ishment and v ice versa. However, this prevents the network 

f rom solv ing the two-arm bandi t p rob lem. The two-arm bandi t p rob lem is character ized by forc ing the 

network to choose between two good al ternat ives (or two bad al ternat ives). Whi le bo th al ternat ives 

are g o o d , one al ternat ive is better than the other. A network opera t ing on the assumpt ion that the 

al ternat ive to a g o o d cho ice is a bad cho ice wil l be unaware that the al ternat ive is actual ly a better 

cho ice . The CONSENSUS network wou ld be unab le to solve such a p rob lem. A solut ion to this 

prob lem wou ld require that the network actual ly a t tempt the al ternat ive computa t ions , but this 

possibi l i ty has not been exp lo red . 

5.11 Issues Avoided 

No at tempt has been made to deal w i th sequences of input vectors . The model has no capabi l i ty to 

memor ize state, and its behavior must therefore be a func t ion of the cur ren t input vector only. The 

issue of a l lowing cyc les in the network has also been avo ided. The cho ice of a h ierarchica l 

organizat ion prevents the occu r rence of cyc les. The issue de layed re in forcement has been avo ided 

s ince the network assumes all re in forcement is immedia te . These are all impor tan t issues, but beyond 

the scope of the present work . 
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6. Conclusions 
The gu id ing pr inc ip le in CONSENSUS has been that dec is ions shou ld be de fe r red unt i l su f f i c ien t 

ev idence accumu la tes to make an in fo rmed dec i s ion . It is the basis fo r the fo l lowing features w h i c h 

most d is t ingu ish CONSENSUS f rom other neura l ne tworks . 

T h e use of stat ist ical in fe rence for t he c lass i f i ca t ion me thod ref lects th is gu id ing p r inc ip le by wa i t ing 

for the accumu la t i on of stat ist ical ev idence to suppo r t any p roposed c h a n g e . Changes are not made 

unti l the accumu la ted stat ist ical ev idence g ives overwhe lm ing suppo r t to any p roposed c h a n g e , 

thereby min imiz ing the c h a n c e of error . T h e c lass i f ica t ion me thod seeks to make a smal l number of 

major changes each w i th g o o d con f i dence . 

A few large c h a n g e s are made each wi th g o o d con f i dence . Th is is in cont ras t to more conven t iona l 

systems wh i ch rely on the accumu la t i on of many smal l c h a n g e s each made w i th l i t t le con f i dence . 

These methods rely on the er rors to cance l each o ther out . S ince any g iven c h a n g e may be in er ror , 

changes must b e kept smal l . This rest r ic ts t hem to con temp la t i ng only very local changes . S ince w e 

have greater con f i dence in our changes w e may con temp la te more g loba l changes . 

Nodes have an awareness of thei r ro le in t h e ne twork . They seek to max im ize the f low of 

in fo rmat ion t h r o u g h the network . Th is is accomp l i shed by avo id ing redundan t c o n n e c t i o n s a n d 

avo id ing the compu ta t i on of cons tan ts . 

The not ion of con f i dence in con junc t i on w i th the re in fo rcement s c h e m e seeks to t rans la te g loba l 

re in fo rcements into mean ing fu l local re in fo rcements w i t hou t t ransmi t t ing re in fo rcements of d u b i o u s 

value. Un in fo rmed nodes d o not issue re in fo rcement s ince they d o no t possess con f i dence . Nodes 

possess ing con f i dence re in fo rce the i r subo rd ina tes based on thei r unders tand ing of the ro le of 

themselves and their subord ina tes . 

T h e g roup ing of nodes into commun i t i es exp lo i t s t he fact tha t o f ten the k n o w l e d g e of t he g r o u p 

exceeds that of any of its members . Ob ta in ing per fec t k n o w l e d g e at a node is o f ten ex t reme ly 

d i f f icu l t , bu t ob ta in ing g o o d know ledge is m u c h easier. T h e major i ty of a g r o u p of nodes , each 

possess ing independent l y g o o d know ledge , wil l have near ly per fec t know ledge . 

Th is comb ina t i on of fac tors gives a new a p p r o a c h to the " c red i t - ass ignmen t " p rob lem. S imu la t ions 

of t he CONSENSUS system has s h o w n its abi l i ty to so lve s imp le learn-by-example p rob lems . 

Ques t ions regard ing the scalabi l i ty and u l t imate capab i l i t y are cu r ren t l y unreso lved . 
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I. Complexity of Boolean Networks 

The worse-case lower and upper b o u n d s on the number of layers requ i red to c o m p u t e an arbi t rary 

boo lean func t ion of n inputs can be ca lcu la ted if the p resence of the spokesman are ignored . 

To ca lcu la te a wors t -case lower b o u n d , recogn ize that an arb i t rary func t ion must be able to access 

all of the inputs. The rest r ic t ion of a f ixed fan- in , /, f r om the lower layers a l lows the ca lcu la t ion of a 

lower b o u n d , s ince the uppermost n o d e must have ind i rec t access to every input . A first layer node 

can c o m p u t e a func t ion of up to f inputs, a s e c o n d layer node can c o m p u t e a func t ion func t ion of up 

to f2 inputs, and the genera l case is that a n th layer n o d e can c o m p u t e a func t ion of up to f inputs. 

F rom th is it can de te rmined that C E I L ( L O G / n) layers are requ i red to c o m p u t e a func t ion of n inputs. In 

the spec ia l case of / or fewer inputs, one layer is requ i red . Th is a l lows the computa t ion of cons tan ts 

w h i c h t h e input l ines are not capab le of indiv idual ly. F rom th is a wors t -case lower bound of M A X ( C E I L 

( L O G , n ) , 1) can be p laced on the number of layers requ i red . 

To ca lcu la te a wors t -case upper b o u n d , imag ine the cons t ruc t i on of an AND-OR (Dis junct ive 

Canon ica l Form) ne twork . This requi res two steps, the f irst to ca lcu la te up to 2n minterms, and the 

second to OR the min terms together . Each minterm c o u l d be a func t ion of all n inputs . Several layers 

of nodes are needed each compu t i ng the AND func t i on , excep t in the f irst layer where some of the 

inputs may need to be negated. The min imal number of layers is a func t ion of the fan- in of the nodes. 

F rom the lower b o u n d ca lcu la t ions, C E I L ( L O G / n) layers wi l l be requ i red . To do the second part, 

several layers of nodes compu t i ng OR are requ i red to comb ine the min terms. C E I L ( L O G , 2n) layers are 

requi red to OR toge ther 2n min terms. Th is can be s impl i f ied to C E I L ( H L O G , 2) layers. This cou ld also 

be ach ieved by us ing an OR-AND (Conjunct ive Canon ica l Form) network . By us ing the form requi r ing 

the fewest min terms or maxterms, at most 2*n"1* m in te rms or max te rms are needed . Again a m in imum 

of one layer is requ i red to hand le the case of f or fewer inputs . By summing the requ i rements for the 

two phases, an upper b o u n d of M A X ((n 1) * C E I L ( L O G , 2)) + C E I L ( L O G , n ) , 1) layers can be 

de te rm ined . 

It can also be s h o w n that as / increases to 2 ( / 7 * 1 \ t he upper b o u n d decreases to two layers, one for 

the AND and one for the OR s ince a s ingle layer is capab le of pe r fo rm ing each of these func t ions . 
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