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1. Introduction 
This report examines a number of parallel algorithms for solving random-dot stereograms. A new 

class of algorithms based on the Boltzmann Machine is introduced and compared to previously 

developed algorithms. The report includes a review of the stereo correspondence problem and of 

cooperative techniques for solving this problem. The use of energy functions for characterizing the 

computational problem, and the use of stochastic optimization techniques for solving the problem are 

explained. 

1.1. Motivation 

Stereo vision usually operates on real images acquired either through the retina or through 

photographic/electronic means. It is also possible to obtain depth perception from pairs of images 

containing seemingly random and uncorrected dots. If the dots are replicated in both images with 

some areas being shifted horizontally, they can be matched to obtain a correspondence, from which 

depth values can be derived. 

The restricted domain of random-dot stereograms is worth studying for several reasons. For 

researchers trying to understand human visual perception, it is interesting because the presence of a 

depth effect in the absence of any obvious monocular cues indicates that stereo fusion is possible 

without the necessity of object recognition or segmentation1. For researchers studying the 

computational side of stereo, it is interesting because there exist a large number of possible matches 

without any external source of information to disambiguate them. This makes the correspondence 

problem more difficult, but allows the process to be studied using tokens, without making a 

commitment to any particular primitive feature to be used for matching. 

The second major component of the work described in this report deals with cooperative2 

algorithms. These algorithms are also known as "relaxation", "connectionist" or "local" algorithms 

or architectures. One attraction of these systems is that very high performance can be obtained 

through massive parallelism, i.e. the replication of relatively slow/simple processors with only local 

interconnections. Another attraction is that this architecture maps more closely to the neural 

machinery found in the brain than does a serial machine. 

Within the class of cooperative algorithms, we are most interested in those whose behaviour can be 

However, band-pass filtered versions of the stereograms will exhibit low-frequency "blobs". 

2 
Marr [Marr 82] defines cooperative methods as "a type of nonlinear, iterative algorithm" and later as "local operations 

[that] appear to cooperate in forming global order". 
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characterized by the use of energy functions. This allows the computation (a functional minimization) 

to be specified and analyzed cleanly. The use of energies can also be related to probabilistic models 

through the use of "exponential families", in which the log probability of a global configuration is 

proportional to the negative of its energy. The stochastic algorithms (based on the Boltzmann 

Machine) that we will examine can find globally optimal solutions to problems that cannot be solved 

with deterministic gradient descent techniques. 

1.2. Previous work 

The first investigations into random-dot stereograms began with their invention by Julesz [Julesz 

60]. In addition to generating the stereograms, Julesz also proposed a simple "spring" model that 

could solve the correspondence problem [Julesz 71]. More recent algorithms for solving these 

stereograms include [Sperling 70, Dev 74, Marr 76, Marroquin 83, Prazdny 85, Mayhew 80, Mayhew 

85, Szeliski 85]. Research into recovering depth information from real stereo image pairs also has a 

long history. More recent examples of such stereo algorithms include [Marr 79, Grimson 80, Mayhew 

81, Baker 82, Arnold 83, Kass 84, Ohta 85, Yuille 84]. These stereo algorithms are discussed in more 

detail in Section 2. 

The use of cooperative (relaxation) algorithms to vision problems began with Waltz filtering [Waltz 

75] and the development of relaxation labeling techniques [Rosenfeld 76, Hinton 77, Hummel 83]. 

The development of the Boltzmann Machine algorithm [Hinton 84] was a combination of ideas from 

neural networks [Hopfield 82] and stochastic optimization techniques [Metropolis 53, Kirkpatrick 83]. 

Other examples of cooperative algorithms include surface interpolation [Terzopoulos 84a] and the 

use of regularization techniques [Poggio 84]. These cooperative algorithms are discussed in more 

detail in Section 3. 

1.3. Organization 

This report is organized as follows. Section 2 formulates the stereo correspondence problem and 

analyses it in terms of three aspects: computational theory, representation and algorithms. Section 3 

introduces the Boltzmann Machine as well as related cooperative algorithms, computational networks 

and optimization techniques. Section 4 gives some examples of the new algorithms based on the 

Boltzmann Machine that can be used to solve the correspondence problem. Section 5 discusses 

more complex models that could be used, but that have not yet been implemented. Section 6 

compares the new stochastic cooperative algorithm with three previously developed algorithms. 

Section 7 concludes by discussing how the new techniques offer better performance, and what 

problems remain to be investigated. 
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2. The stereo correspondence problem 
This section discusses in more detail the stereo correspondence problem, using the paradigm 

suggested by Marr [Marr 82]. First, the computational theory is described, i.e. how stereo images are 

generated, and what is involved in Solving the correspondence problem. Second, various alternative 

representations are discussed. Third, possible algorithms for the solution are introduced. While this 

section surveys the range of possible representations and algorithms, the detailed description of 

particular algorithms is left to subsequent sections. 

2.1. Computational theory 

An examination of the computational theory of stereoscopic depth reconstruction begins with the 

image formation process. From the resulting "stereo" pair of images, the set of candidate 

correspondences can then be calculated. The selection of the "correct" correspondences is then 

formulated as the computational problem to be solved. This task involves finding solutions that satisfy 

three constraints: compatibility, uniqueness and continuity. Each of these is discussed in turn. 

2.1.1. Image formation 

In the general case of stereo depth perception (e.g. normal human vision, stereoscopic slide 

viewers, or aerial photograph interpretation), the left and right images are formed by the usual 

process of perspective projection and photometric optics. The geometric aspect (projective 

geometry) determines how three dimensional points in the world map into the two dimensional left 

and right image planes (Figure 2-1). The photometric optics dictate how the effects of lighting, 

surface properties and viewing angle interact to produce a particular intensity at a point on the image 

plane. In the general problem of vision, all of these factors (geometry, lighting, surface properties) 

must be extracted from the perceived images. 

Random-dot stereograms provide a much more limited domain than general vision. A very simple 

geometric arrangement, with orthographic projection and epipolar scanline geometry is used (Figure 

2-2). As well, surfaces in the world are assumed to be painted a uniform white, with black dots 

distributed at random over the surfaces. The surfaces are fronto-parallel, and the dot positions and 

size are quantized to a uniform grid. The resulting image pair is devoid of any interesting 

characteristics when viewed monocularly (Figure 2-3). 

The actual method of stereogram formation used in this report is as follows. The original depth data 

is assumed to be quantized to 7 depth levels (-3 to +3). Figure 24(a) shows the original depth 

"stack" that has been unfolded by laying the depth layers side by side (the leftmost plane is the 

nearest). To create the random-dot stereogram, we start with the deepest (rightmost) plane, and 
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Figu re 2-1 : Projective geometry 

4 * 3 

ione. 

Figu re 2-2: Geometry of random-dot stereogram formation 

Figure 2-3: A random-dot stereogram pair 
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Figure 2-4: Strip depth representation and display 
a) original surface b) stereogram c) compatibilities d) solution 
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paint each surface point (i.e. where there exists a surface patch) either white or black at random. The 

dot density (probability of generating a black dot) is a user-controlled parameter. Each (x,y,d) point 

maps to (x,y) in the left image and (x+dy) in the right. If opaque surfaces are being modeled, then 

both white and black points overpaint the left and right images. If transparent surfaces are used, then 

only black points get painted (the background is initially white). The stereogram corresponding to 

Figure 24(a) using an opaque surface model is shown in Figure 2-4(b). 

The recovery of depth information from a pair of stereo images can be thought of as the inversion of 

this image formation process [Horn 77, Marr 82]. Three constraints which are useful for solving this 

problem (compatibility, uniqueness and continuity) are examined next. 

2.1.2. Compatibil ity 

The compatibility constraint can be expressed as "points (features) in one image should match like 

points in the other image". This constraint can be expressed as an array of compatibilities3, where 

each compatibility can be thought of as the answer to the question "can point / from the left image 

match point rfrom the right image?", i.e. could they arise from the same surface point? Any such 

matching (correspondence) implies that a piece of surface exists at some known spatial location 

(which can be determined by triangulation if the camera model is known). The determination of which 

matches are true and which correspond to false targets is the stereo correspondence problem. 

For stereo matching on real images, there are many possible choices for compatibility measures. 

Algorithms that try to match each pixel directly are called correlation based, while those which first 

extract features and then match them are called feature based. Within this latter class, commonly 

used compatibility measures include intensity data [Ohta 85], zero-crossing in the band-pass images 

[Marr 79, Grimson 80], intensity derivatives [Kass 84], edge orientations [Arnold 83] or edge intensity 

profiles [Baker 82]. These compatibilities can have associated confidence (or cost) values derived 

from the intensity data. 

In our restricted random-dot stereogram domain, points can match only if they are on the same 

scanline {yf^y)* are within 3 pixels of each other fl^-xj <3 since there are only 7 disparity levels), 

and have the same intensity. Some researchers working in solving random-dot stereograms consider 

matches only on black-to-white or white-to-black transitions (edges) [Prazdny 85]. For the purpose of 

this research however, only two possible simple matching rules are considered. Compatibilities can 

be defined either as matches between two points of the same intensity (black-black or white-white) or 

*The term compatibility used here (first introduced in [Marr 76]) should not be confused with the compatibilities used In 

relaxation labeling [Hummel 83]. 
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only between two black points. The resulting data in the former case will be called the dense 

compatibility map, while the latter will be called the sparse compatibility map. Note that for low-

density stereograms with sparse compatibilities, and for high-density stereograms with dense 

compatibilities, the maps using intensity based matches are similar to the edge based compatibilities. 

The compatibility maps (sparse and dense) arising from the random-dot stereogram previously 

introduced are shown in Figure 2-4(c) and (d). The compatibilities are calculated as: 

c[x,y,d] = match (left[x,y],right[x + d,y]) (1) 

These compatibilities (and not the stereo pair) are what form the input to the correspondence 

algorithm. 

2.1.3. Uniqueness 

The uniqueness constraint can be paraphrased as "almost always, a feature in one image matches 

exactly one feature in the other image". In early work on the computer solution of random-dot 

stereograms [Julesz 71, Sperling 70, Dev 74], the uniqueness constraint was applied along the depth 

axis, in effect requiring that each (x,y) location have a unique depth value. Marr and Poggio [Marr 

76] pointed out that the uniqueness constraint should operate along both lines of sight (see [Marr 

82] for a more detailed discussion). 

For the case of random-dot stereograms, the uniqueness constraint implies that there should only 

be one point in a given (x,y,d) column and only one in a given (x+dy,d) column, where d is the free 

variable. Because of occlusion, this constraint cannot always be met. There are two possible types of 

violations: either some points can have no matches, or some points can have two matches. Thus, 

depending on which types of violations are permitted, we have two approaches to implementing the 

uniqueness constraint. 

The first approach, allowing some points to have no matches, is consistent with what happens 

during occlusion, i.e. when some surface points are visible from one eye only (assuming opaque 

surfaces). Note that if the image data is noisy (i.e. some features may be detected only in one image), 

then this ability to skip matches is necessary. Stereo algorithms that work with real images [Ohta 85] 

commonly include this ability in the matching process. 

The second approach, allowing some points to have more than one match, is more in keeping with 

the results observed when humans obtain fusion in a random-dot stereogram. Figure 2-5 shows a 

stereogram to which noise has been added. Observe that when fused, the noise points seem to 

"float", i.e. they match the nearest possible points, rather that becoming invisible. This may have to 
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Figure 2-5: A noisy random-dot stereogram pair 

do with the sharpness of the point features, and indicates a tendency to interpret these stereograms 

as having "transparent" qualities when necessary. * 

The uniqueness constraint causes the stereo correspondence problem to have many locally optimal 

solutions (since the inclusion or exclusion of a match in the solution will conflict with other matches). 

Thus, some kind of search is required to find the correct correspondence. The implications of this 

search requirement are discussed in Section 3.3. 

2.1.4. Continuity 

The third constraint that applies to the correspondence problem is continuity, i.e. "neighboring 

points have similar depth values". The most straightforward implementation of this constraint occurs 

in relaxation schemes (e.g. [Marr 76]) where neighboring match hypotheses at similar depths 

reinforce each other. This is the approach taken in the algorithms examined in this report. Other 

interpretations of the continuity constraint include "figural continuity" [Mayhew 81] and "inter-

scanline matching" [Ohta 85]. If the features in the image are sufficiently distinct, matching can be 

performed independently on each epipolar line using no continuity assumptions (e.g. the 2-D version 

of [Ohta 85]). The continuity constraint for stereo matching is related to the smoothness constraint 

used for surface interpolation [Poggio 84]. 

As has been pointed out by Prazdny [Prazdny 85], the continuity constraint is valid only for opaque 

surfaces, and away from depth discontinuities. The alternative that he has suggested is the 

coherence principle: points must lie on coherent (smooth) surfaces, but neighboring points are not 

required to lie on the same surface. This principle has been the basis for several stereo matching 

algorithms, using both global support functions [Prazdny 85, Mayhew 85] and local relaxation 

[Szeliski 85]. 

Another constraint related to continuity is the ordering constraint, which deals with the presence of 
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"reversals" between the two images. The image formation geometry is used to derive consistency 

rules for matches (assuming opaque surfaces). Stereo matching algorithms that use the dynamic 

programming approach [Baker 82, Arnold 83, Ohta 85] generally have some simple ordering 

constraint implicitly built in. A more comprehensive treatment of ordering constraints can be found in 

[Yuille84]. 

When implementing the continuity constraint, a distinction must be made between those algorithms 

that explicitly interpolate depth values so that a dense depth map is obtained, and those where depth 

values are only represented at the matches (sparse depth map). This decision, which should properly 

be discussed in the representation section, influences the computational definition of continuity. 

Most methods that use relaxation schemes (e.g. [Marr 76] and the new algorithm presented in this 

report) use the dense map, and thus define continuity to be a property of the depth surface (points 

must have similar depth to their immediate spatial neighbors). Schemes that are based on dynamic 

programming (e.g. [Ohta 85]) or on support functions (e.g. [Prazdny 85]) use the sparse depth map, 

and define continuity to be agreement with some other matches, which may be spatially far removed. 

2.2. Representation 

The choice of representations for solving the correspondence problem can be important. Specifying 

the representation includes both choosing the frame of reference and the method of encoding the 

data within that frame. 

For the stereo correspondence task, the frame of reference usually chosen is retinotopic, i.e. 

aligned with the vertical, horizontal and depth coordinates of the imaging system (or eye). The 

representation of depth and other surface information in a retinotopic4 coordinate system is the basis 

of Marr's 2^D sketch [Marr 82]. The mapping from this representation to egocentric or object 

centered reference frames is left to higher-order processes. 

Within the retinocentric framework, a number of methods can be used for encoding the disparity 

(depth) information. Those matching techniques that produce only a sparse set of matches (e.g. 

dynamic programming) have an implicit representation that defines a sparse set of disparity values. 

For cooperative algorithms, however, the method of encoding is of greater significance. The three 

encoding methods that we will examine here are: rate encoding, non-overlapping interval encoding, 

and overlapping ("coarse") encoding. 

Marr also uses the term "viewer-centered" 
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The first type of depth representation, rate encoding, is the simplest. In this representation, there is 

a single real value for representing the depth at each (x,y) point. A neural analog of this would be if 

the firing rate of a neuron were related to the depth at that point. This representation is the one 

commonly used for surface interpolation algorithms (e.g. [Terzopoulos 84a]). Its drawbacks are: (a) it 

only works for opaque surfaces (because it cannot encode several depths at one point), (b) it makes 

implementation of the true (double column) uniqueness difficult, and (c) it can't represent multiple 

(competing) hypotheses about the depth value during the search. Its advantage is that it is easy to 

manipulate, and convergence results can be proved in simple cases (e.g. for smooth surface 

interpolation). 

The second representation, interval encoding, uses a different unit to represent each of several 

possible discrete depth hypotheses at a given location. The value (level) of each unit is then free to 

represent the confidence in the given depth hypothesis. The neural analog of this is when each 

neuron represents a different (x,y,d) location. This is the standard representation used in cooperative 

stereo matching algorithms. The ability to represent multiple hypotheses also means that it is more 

difficult to ensure that the system converges to a correct answer (or that it converges in a reasonable 

time). 

The third representation is distributed (or "coarse") encoding. Here, several units with overlapping 

responses are used to represent a depth hypothesis. The pattern of activity of the units encodes the 

actual depth value. The neural analog of this method is similar to the overlapping response 

characteristics of cortical neurons. The advantage of this method is that the convergence properties 

of the collection of units can be improved (in terms of the energy formalism introduced in 3.2, this 

helps the system get over "energy barriers"). Distributed encoding includes the possibility of using 

multiple-resolution representations to improve the performance of the system. 

Having chosen the method of disparity encoding, there are still several choices for the 

representation of individual hypotheses. Three such possibilities are: deterministic binary, analog, or 

stochastic. In a binary representation, each unit is either on or off (0/1). One example of such units 

is the binary threshold units used in the Marr-Poggio cooperative algorithm [Marr 76]. In an analog 

representation, each unit takes on a real value, which can be related to the value being encoded 

(activation level), or the strength of the hypothesis. It is possible for such analog networks to have 

behaviors that are in the limit binary [Hopfield 84]. Finally, the value of a unit can be encoded by a 

probabilistic distribution over a range of discrete values. This method is used in the Boltzmann 

Machine (see Section 3.4). 
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2.3. Algorithms 

A large number of algorithms for stereo matching have been proposed in the past. Many of these 

algorithms have already been mentioned in this chapter in the context of the computational theory 

(i.e. what is to be solved). What further distinguishes various algorithms is in how a solution is found 

that [optimally] satisfies the constraints expressed in the computational theory. 

For feature based stereo, the most popular approaches for finding a good set of correspondences 

are based on the ideas of local relaxation, dynamic programming and/or multiple-resolution 

processing. Local relaxation (cooperative) algorithms use a high degree of parallelism combined with 

low connectivity and iteration to arrive at solutions that are locally consistent (or locally optimal). 

Dynamic programming techniques use a serial search to find the globally optimal solution, but 

generally do not have parallel implementations (but see[Guerra 83] for an example of limited 

parallelism). Multiple-resolution techniques first perform the matching on small low-resolution 

images, and then use these results to guide the matching on larger high-resolution images. 

While cooperative algorithms usually arrive at solutions that are only locally optimal, it is possible to 

obtain globally optimal solutions by using stochastic (probabilistic) algorithms. These algorithms are 

discussed in the next section. 

3. The Boltzmann Machine 
This section describes the Boltzmann Machine, the parallel computation network that is the basis 

for the new stereo matching algorithm presented in this report. The Boltzmann Machine evolved from 

two ideas: constraint satisfaction networks (in particular Hopfield's "neural networks" with 

asynchronous updating), and the use of energy minimization as a characterization of the 

computational task (including Kirkpatrick's simulated annealing optimization techniques). These are 

presented first, followed by a description of the Boltzmann Machine. The learning algorithm used 

with the Boltzmann Machine is also mentioned. 

3.1. Constraint satisfaction networks 

Constraint satisfaction networks have long been used in vision to arrive at interpretations that not 

only agree with the data, but that are also self-consistent. Early work concentrated on finding all 

possible labelings that were consistent under some fixed rules {strong constraints). It was found that 

efficient cooperative algorithms were possible with relaxation (iterative methods) where constraints 

are propagated in a local fashion [Waltz 75]. Relaxation labeling techniques were developed where 

confidence (plausibility) values were associated with each possible label at a node. Updating rules 
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based on the compatibilities between labels force the system into locally consistent 

interpretations [Hummel 83]. 

A separate class of cooperative algorithms has been studied by researchers interested in neural 

modeling. The Boltzmann Machine is based on the work done by Hopfieid in neural networks 

[Hopfield 82]. In such a network, each unit is a "binary threshold unit" (Figure 3-1) that takes of a 

value of 1 or 0, depending on whether the total input from the other units exceeds a threshold5 

(Figure 3-1). 

The total input is simply a linear sum of the states of the neighboring nodes multiplied by the weights 

on the arcs 

This formulation is identical to that used in the Marr-Poggio cooperative stereo algorithm [Marr 76]. 

Where the two algorithms differ is in the sequencing of the updates. The Marr-Poggio algorithm uses 

synchronous updating, i.e. all units change state simultaneously. In contrast, Hopfield's nets use 

asynchronous updating, i.e. only one unit changes its value at a time. When asynchronous updating 

is used in conjunction with symmetric weights ( w „ = w..), the system settles into a configuration that is 

a local minimum of the energy function 

E = - V > j a s a + Y > / (3) 
a ^ ij i j t—J i i 

While Hopfield nets were originally designed as associative memories (where each local minimum 

encodes a datum), they can obviously be used for cooperative stereo algorithms (being a variant of 

the Marr-Poggio algorithm). 

5Hopfield uses values of + 1 and -1, but his systems are equivalent to 1,0 systems with suitably adjusted thresholds. 
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3.2. Energy minimization 

The ability to characterize the behaviour of a cooperative network in terms of an energy function 

may not seem at first to have much advantage. There are, however, several good reasons why this 

energy formulation is very useful: 

• It allows the definition of the computational problem to be separated from any particular 
implementation (e.g. whether dynamic programming search or local relaxation is used to 
find the minimum). 

• Various tradeoffs between desired constraints can be expressed as sums of potential 
(cost) functions. This approach is known as weak constraint satisfaction. 

• The energy of a given state (or configuration) can be related to its probability through the 
use of exponential families [Geman 84] (the technical details are discussed below). This 
allows the overall probability distribution to be built up by specifying the global energy as 
a sum of local energy contributions, without requiring that the local probabilities be 
independent. 

• Cooperative algorithms can be found that compute the globally optimal solution. When 
the problem is convex, it has only one minimum, and gradient descent techniques can be 
used. Examples of such systems include the finite-element solutions of some variational 
problems [Terzopoulos 84a], When many local minima exist, the stochastic gradient 
techniques discussed below can be used. 

3.3. Search 

Systems whose energy functions have many local minima are said to have frustration. Systems 

which have multiple optimal solutions are typically underconstrained and are said to be ill-posed. 

One approach to solving such systems is to use regularization (additional smoothness constraints) to 

make the system convex [Poggio 84]. The alternative is to actually search for the globally minimum 

solution. 

When a cooperative algorithm is desired, adding noise to the system (using a stochastic updating 

rule) will allow it to escape local minima. If the updating rule is based on the Boltzmann distribution, 

then the system can be analysed by the use of statistical mechanics [Metropolis 53]. The steady-state 

probability of a given system state is then related to its energy by the Boltzmann distribution 

Pa=\<rVr, where Z = £ V V r
 (4) 

z fi 

The probability of being in the lowest energy state at equilibrium can thus be made arbitrarily high by 

decreasing the value of the parameter 7, which is usually called "temperature". 

While the steady-state distribution is thus readily characterized, these distributions tell us nothing 

about how long it will take to achieve equilibrium. For low temperatures, the time to reach equilibrium 
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becomes progressively longer. One way to achieve equilibrium faster is to use simulated annealing, 

i.e. to start with a high temperature and to slowly cool the system. This approach has been 

successfully used for the (approximate) solution of combinatorial optimization problems (such as 

circuit placement) in systems with a high degree of frustration [Kirkpatrick 83]. For the stereo 

correspondence problem, we expect the degree of frustration to be lower, so that faster annealing 

schedules and fewer iterations should be possible. 

3.4. The Boltzmann Machine 

The Boltzmann Machine is an algorithm/network6 that combines the ideas presented above. The 

binary threshold unit in Hopfield's nets is replaced by a stochastic binary threshold unit, whose 

probability of taking on an output of 1 when sampled is determined by the sigmoid distribution 

1 
Pk=o(AEk)= (5) 

The shape of this curve and its dépendance on Tare shown in Figure 3-2. 

•to -8 - 2 O T 4 
Figure 3-2: Sigmoid function 

Units are sampled asynchronously, either in random, permuted or sequential order. While the 

sampling strategy does not affect the equilibrium distribution, permuted sampling has empirically 

been found to have the fastest convergence. The temperature of the system is started at some high 

value, and is then cooled according to some annealing schedule until the network has "frozen" into 

its final configuration. 

The Boltzmann Machine is thus an example of a stochastic optimization technique applied to a very 

simple energy function (a sum of quadratic terms). It is also a simple case of the more general Markov 

Random Field model, where units are not restricted to being binary, and energy functions can be 

6 T h e network (setting of weights) determines the computation to be performed, while the updating rules (sampling and 
temperature control) complete the description of the algorithm. 
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more complex (see [Geman 84] for an overview). The use of MRF models, while not being part of the 

"pure" Boltzmann Machine model, has been studied in the context of stereo correspondence 

algorithms and is discussed in this report. When the temperature is reduced to 0, the Boltzmann 

Machine performs gradient descent (it becomes equivalent to a Hopfield net), and can thus be used to 

solve convex problems as well. Finally, it should be noted that under some restrictive conditions, the 

stochastic gradient-descent algorithm can be replaced by a "winner-take-all" network [Marroquin 

83] (this algorithm is discussed in a later section). 

3.5. Learning 

In addition to implementing weak constraint satisfaction and finding globally optimal solutions to 

non-convex problems, the Boltzmann Machine can be made to actually learn the weights that 

determine a particular algorithm. The learning algorithm is based on the elegant relationship between 

the performance of the network (characterized as an entropy measure G) and the joint probabilities of 

node pairs p{. (see [Hinton 84] for a detailed explanation). 

The stereo correspondence problem could in theory be "learned" by studying examples of random-

dot pairs (or more specifically the input compatibilities) and the final "correct" surface 

interpretations. Only a few weights would have to be learned because of the spatial isotropy inherent 

in the system. While this does not appear to be a difficult task to implement, it has not yet been tried, 

and remains one of the areas for future research. 

4. Simple networks 
This section introduces some new stereo correspondence algorithms based on the Boltzmann 

Machine. Three different kinds of networks are presented. The first subsection shows how hand-built 

networks can be used. The second subsection shows how a network can be derived from the a priori 

and image formation statistics, in effect solving the inverse problem of optimally estimating the 

original surface from the stereo pair. The third subsection extends the binary Boltzmann Machine 

model to use n-ary (rate) encodings. 

4.1. Hand-wired networks 

Hand-wired networks are the simplest to implement. The networks used in previous cooperative 

stereo algorithms have all been of this kind (e.g. [Dev 74, Marr 76]). Among the parameters that can 

be varied when specifying the network are the number of excitatory neighbors, the shape of the 

inhibition (single or double column) and the relative weights assigned to the excitatory, inhibitory, 

threshold and input links. 
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One such simple network is a four neighbor excitatory region with single column inhibition. The 

equation for the input to the decision unit is 

- A / ? .= a Y] Y? s . . . - v + 5-c A (6) 
x,y4 x,y,d ^ ¿—1 x%y.d 1 xj\d v ' 

x\y\d € NA(x,y,d) x\y\d € M£xy,d) 
with the neighborhoods 

NA(x,y,d)= {{x'yMx-x'f + iy-yf < 1} ~ (7) 

and 

Mb(x,ytd)={(Jc^.c/Ok7 € 0 . . . 6and</V# (8) 

for the model with 7 disparity levels. The resulting energy equation (c.f. equation (2)) has the 

following weights: 

w J a \\(x\y\d^NA(x^ 
xj.d,x\y\d \ _ f i j f { x i y M ^ M ^ y i d ) 

and 

ex*d=1-*-cx*d 

The choice of the a./J.yand 5 parameters has to be determined empirically. Their values should be 

chosen so that in the final solution, there is exactly one point on at each depth, neighboring points 

have similar depth values, and the surface follows areas of high "compatibility" density. 

Other simple networks can be obtained by changing the size and shape of the excitatory and 

inhibitory regions. For example, the excitatory .V region can be replaced by the 

Nz(x,y,d)={(* V . d)\(x- xO2 + (y-yf < 2} (9) 

or 

Nn(x,y,d) = {(x ',y'M*-*02 + (y-yf < 4} (10) 

neighborhoods. The single column AT inhibitory region can be replaced by the double column 

M(x,y,d)=M\J{(x' + d/-d,y,d')\d'eO... 6 and d'^d} (11) 
12 6 

inhibitory region. 

Various combinations of these neighborhoods and parameters have been proposed in previous 

work. For example, Marr and Poggio [Marr 76] use Nu and Mu neighborhoods, with parameter values 

(a,/?,y,5)=(1,2,4,0). These values were chosen to work well with their cooperative algorithm, and are 

justified in a subsequent paper [Marr 78]. Marroquin's "winner-take-all" network [Marroquin 83] uses 

a N9 neighborhood with no inhibition built into the local cost function. These two algorithms are 
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discussed in more detail in Section 6. 

4.2. Derived networks 

The previous section has presented a number of networks that can be used to solve the 

correspondence problems. The parameters in these networks are adjusted by hand to give good 

performance on the sample images that are used. An alternate approach is to start with an a priori 

model of the surface and of the random coloring process that generates the stereo pair, and to derive 

the network to be used to solve the correspondence. This is similar to the work in "optimal 

restoration" that has been done by Geman and Geman [Geman 84], and is a direct solution of the 

inverse problem of estimating scene parameters (in this case depth) from the image (stereo pair). 

The a priori surface model that we will start with will be the Markov Random Field (MRF) model. 

Such models are characterized by an energy function defined over the possible states of the system 

(in this case, over the possible surfaces that can be generated). The probability of any particular 

surface being generated is then related to its energy by the Boltzmann distribution. These models are 

related to the "regularization" methods for solving surface interpolation [Poggio 84], in that the cost 

function that is being minimized can also be used as an energy function in the generative surface 

model. 

The particular MRF model that we will consider is a modification of the one used in [Geman 84]. 

The energy of a given surface is of a similar form to those proposed for the solution of the 

correspondence problem in the previous subsection. It has an excitatory neighborhood that 

implements the smoothness constraint and an inhibitory neighborhood (single or double column) that 

implements uniqueness. There is no contribution from the compatibilities (i.e. S = 0), since this is a 

surface model. 

Given an a priori model of the surfaces, we can then derive the (stochastic) equations of left and 

right image formation, and then the equations for the compatibility matrix. We will characterize the 

dot density of the random painting process by the parameter d. As well, when the dots are being 

projected to the left and right image planes, there is a probability n that the dot intensity will be 

reversed (n stands for noise). 

Assume that there is actually a surface patch passing through the point (x,ytd), i.e. S d=lt where S 

stands for the surface. This point (x,ytd) projects to the point (x,y) in the left image and (x+d,y) in the 

right. Ignoring the problems of occlusion that occur near depth edge boundaries, we can calculate 

the probability of the four possible combinations of intensities for the left and right image points 
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Prob(L,R\S=l)aa 

^(0,0|l)=(l-^Kl-«)2+rf-/i2 

/J
L/J(0.1|l)=/,

i/?(l,0|l)=/Kl-«) 

^(l,l|l)=d(l-")2+(l-<V 

The [marginal] probability of any point in the left or right image being on is 

PoK=<m-n)+a-d)n. 

Thus, if the two points L(x,y) and R(x+d,y) are not in correspondence, i.e. S^d=0, then we have the 

probabilities 

^(0,l|0)=/>^(1.0|0)=pon(l-pOB) 

Knowing both the a priori surface model and the image formation equations, we can in theory find 

the Maximum a Posteriori (MAP) estimate of the original surface given the stereo pair. Instead of 

using this image pair directly, however, we will first calculate the compatibilities (as discussed in 

Section 2.1.2), and then use these as the input to the correspondence algorithm. Note that in this 

process, some of the information inherent in the stereo pair is lost. However, it makes the subsequent 

processing simpler since (as we will see) the compatibilities end up adding a linear term to the surface 

model equation. 

The formulation for the compatibilities depends on whether we use the dense or sparse 

compatibilities. 

W 0 | 5 ) = / > ^ 0 - 0 i 5 ) + ^ 0 - 1 i 5 ) + / > ^ 1 - 0 i 5 > a n d W 1 | 5 ) = ? i * ( u | 5 ) 

The MAP estimate is that configurations of surface points {SXJ,J which maximizes the conditional 

probability 

which is equivalent to minimizing 

£ = - l o g P(S)-log / > ( q S ) ~ F ' - ] [ > g P(C \S) 
xyd 

The first term is the energy associated with the surface model, while the second relates to the log 

likelihood of the compatibilities given the surface. Note that expansion of the P(C\S) term into a 
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product of local probabilities assumes independence between the A C ^ J S ^ , which is only 

approximately true. 7 We can calculate the difference in energies between a unit S d being on and 

being off 

When Cxyd=l, then the log term is positive (excitatory), and when Cxyd=Q, then the log term is 

negative (inhibitory). The overall contribution of the compatibility information to the solution can be 

modeled by a link between the compatibility and surface element units, and an added inhibition term 

(Figure 4-1). 

'• ( S » r < l ) 

"CD 

Figu re 4-1 : Network derived from image formation model 

The plots of the excitation, inhibition and (excitation - inhibition) terms as a function of the dot 

density d and the noise n are shown in Figures 4-2 and 4-3. From these graphs, we see that using 

dense compatibilities works best for densities close to 50%, and that most of the contribution comes 

from negative information (i.e. inhibition) when the compatibility is 0. Sparse compatibilities work best 

at low dot densities, using positive information when the compatibility is 1. The effect of noise is in 

general to diminish the relative weight of the compatibilities as compared to the a priori surface model 

(smoothness and uniqueness constraints). 

The above model is a simplification of the image formation process for the stereo pair. For one 

thing, the original surface model is not necessarily a good match to the surface, which is usually 

generated by hand (e.g. the "floating square" or "wedding cake") and not by taking a sample from 

the surface model MRF. As well, the simplified imaging model does not take into account the 

problems of occlusion. However, the noise parameter can in some way compensate for this, since 

7 T h e P(C JS J have 0 correlation for d=so% and dense compatibilities, and correlations of less that 0.1 for commonly 
used values Of d and n. 
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Figure 4-2: Plots of excitation and inhibition from dense compatibilities 
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FigjLi r e 4-3: Plots of excitation and inhibition from sparse compatibilities 
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occlusions are sufficiently rare that their occurrence can be treated (in the first order) as random 

noise. 

4.3. Multi - level units 

The networks introduced thus far have all been composed of binary units, where each unit 

represents a particular correspondence, or equivalently, a depth point S - It is also possible to use 

a rate encoding, where only one unit is used for each (x,y) position, and its value represents the 

current depth, i.e. d(xty). To use these multi-level (rate encoded) units, we need only change the 

updating rule of the correspondence algorithm so as to leave only one (binary) unit on in each (x,y) 

column after each step. There are two different updating rules possible. 

The first rule picks a new candidate level dnew(*>y) and calculates the energy gap between this state 

and the old state. A transition is then taken under the same conditions as that used with the 

Boltzmann Machine, i.e. if the sigmoid of the energy gap exceeds a uniform random number.8 The 

second rule calculates the energy gaps for all of the possible d(x,y) values. The probability that level d 

with energy gap A £ y . s chosen is then 

M l ~*£/t with Z = X > " A i 7 r  

Z d 
This second rule is called the heat-bath equation, since it directly places the unit (x,y) in thermal 

equilibrium with respect to the other [fixed] units. Using the heat-bath equation leads the system to a 

faster thermal equilibrium, but is computationally more expensive for each step. 

When using this multi-level representation, the single column uniqueness constraint is directly 

satisfied, since only one possible correspondence exists in each (x,y) column. Note that it is also now 

impossible to have 0 or 2 matches in a column, i.e. the weak uniqueness constraint (characterized by 

a penalty term added to the energy function) has turned into a strong constraint. To implement the 

true double column uniqueness, a penalty can be added to the energy term (as in the binary case) 

whenever 8,y)=cKxy) + 5. 

The multi-level representation is the usual choice for many image processing tasks such as surface 

interpolation [Terzopoulos 84a] or gray-level restoration [Geman 84]. For the stereo correspondence 

problem, it directly implements one kind of uniqueness constraint, and may thus lead to a faster 

solution. However, this representation is unable to represent competing depth hypotheses 

simultaneously, and thus cannot be used to solve certain kinds of stereograms, such as those with 

8 l f Id (x.y)-d (x,y)\ = 0 or 1, we have a random Markov walk. This can be approximated by an analog network [Koch 
1 new old 

85] with noise. 
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transparency. 

5. More complex models 
This section discusses some possible extensions to the models introduced in the previous section. 

The first two extensions, line processes and separate representations for correspondence and 

interpolation, could be achieved by simply increasing the size of the networks and using more 

complicated (e.g. ternary) energy terms. The third extension, coarse coding, can also be 

accommodated within the Boltzmann Machine model, and deals with the question of structuring the 

energy landscape for easier search. The last set of extensions are in reality alternative cooperative 

networks that could be used instead of the Boltzmann Machine. None of the extensions described in 

this section have yet been implemented or evaluated. 

5.1. Line process 

In addition to the usual (x,y,d) lattice for solving the correspondence, it is possible to introduce a 

"dual" lattice between adjacent (x,y) points [Geman 84]. This dual lattice encodes the presence of 

"edge elements" which indicate a discontinuity in depth. Such edge elements receive support from 

nearby aligned edge elements, and inhibit the continuity constraint across the edge. In [Geman 

84] these edge elements are called a "line process" because the edge element interactions are along 

the discontinuity contour. Terzopoulos [Terzopoulos 84a, Terzopoulos 84b] deals with how depth 

(and orientation) discontinuities can be used in a finite-element (relaxation) implementation of surface 

interpolation. Marroquin [Marroquin 84] shows how stochastic minimization can be used to locate 

these discontinuities. 

5.2. Separate correspondence and interpolation 

In the models that we have examined so far, the correspondence problem (determining which points 

match) and the depth interpolation problem (determining the depth at each pixel) are solved 

simultaneously using the same representation. This is necessary since all of the interactions among 

candidate correspondences are mediated by strictly local (4, 8 or 12 neighbor) interactions. 

It is also possible to solve the correspondence problem by using two separate but interacting 

representations. The first representation implements the uniqueness requirement, i.e. the inhibition 

among competing matches within a line of sight. The second representation implements the 

smoothness constraint, i.e. the depth interpolation using the candidate matches provided by the first 

representation. The first representation can use the usual binary (x,ytd) hypotheses, while the second 

is an implementation of a standard depth interpolator (e.g. [Terzopoulos 84a]) using multi-level (rate 
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encoded) units. The overall system still has a well defined energy function that can be minimized by 

using a combination of stochastic and deterministic gradient descent algorithms. 

5.3. Coarse coding 

The two types of depth representation that have been studied thus far are rate encoding and interval 

encoding. A third possible representation is distributed (or coarse) coding, where the units have 

overlapping response fields. One advantage of such units is that it is possible to have more 

"degeneracy" in the system. At high temperatures, the "virtual" energy barriers between various 

states (e.g. rivalrous correspondences) are reduced because there are many different ways to move 

from one representation to another [Hinton 86a]. An energy barrier with many paths over it acts like a 

lower "virtual" barrier with few paths over it. Another advantage is that the coarse coding of higher 

dimensional spaces (such as the (x,y,d) space) can result in greater accuracy with fewer units [Hinton 

86b]. 

An example of using coarse coding (in one dimension) would be if each unit represented three 

adjacent depths, and each depth were represented by the conjunction of three overlapping units. In 

this case, it is easier to move from one depth hypothesis to another, since there are many ways to 

partially turn on the new representation while turning off the old (more degeneracy). 

5.4. Real-valued units 

Another variation on the binary stochastic (Boltzmann Machine) model previously presented is to 

replace the units with real-valued deterministic units [Hopfield 84]. These units are linear summation 

units followed by a saturating non-linearity, and can thus be regarded as the mean-field 

approximations to the Boltzmann Machine units [Rumelhart 86] [Hopfield 85]. The amount of non-

linearity is initially low, with most of the units operating in their linear range. As the non-linearity is 

increased, the units tend to 0 or 1. Thus, the solution moves from the center of the hypercube that 

forms the state space to one of its corners. 

The advantage of such units is that local confidence in hypotheses can be directly transmitted using 

a real number, rather than waiting for the probabilistic effect of one unit on another. These networks, 

if properly formulated, can also be shown to be monotonically decreasing in energy, but like 

deterministic binary networks, they can get trapped in local minima. However, these local minima are 

not as harmful, since initially the search proceeds by first moving into areas of broad global minima 

(principle of least commitment). 

The converse of using real-valued units to represent hypotheses is to use probabilistic units to 
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represent real values. In this model, the "flicker" of a stochastic unit is used to encode the real value 

[Hopfield 84]. The types of interaction that such units can have, however, is limited to simple 

summation, possibly followed by a non-linearity. 

One place where such units could be used is in those problems that could be solved by an "analog" 

network [Koch 85]. These networks are used to solve simple finite difference equations such as those 

used for surface interpolation [Terzopoulos 84a] or shape from shading [Horn 86]. At each step, the 

value of a node is replaced by some weighted average of its neighbors. A binary stochastic unit 

whose output probability is a linear sum of the probabilities of its inputs could be used to simulate 

such analog units. This system would have much slower convergence to the desired solution (if it 

converged at all), but would have a lower communication bandwidth betweerpnodes since only binary 

values are transmitted. 

6. Comparison of algorithms 
This section compares the performance of the new correspondence algorithm introduced in 

Section 4.1 against three other previously developed methods: Marr and Poggio's cooperative stereo 

algorithm [Marr 76], Marroquin's winner-take-all networks [Marroquin 84], and Prazdny's coherence 

principle [Prazdny 85]. 

Three sample stereograms are used to illustrate the performance of the algorithms. These 

stereograms are shown in Figure 6-1, along with their associated dense and sparse compatibilities 

(Figure 6-2). The first stereogram is a floating central square, with dot density 20%. The second is a 

pyramid (or "wedding cake") with dot density 20%. The third is a set of transparent steps going 

through a centrai transparent plane, with a dot density of 20%. 

6.1. Simple networks with annealing (Boltzmann Machine) 

As discussed in Section 4.1, simple networks can be used to solve random-dot stereograms if 

simulated annealing is used. The simplest possible has a four neighbor excitatory region, and single 

column inhibition. It will solve stereograms if it is annealed sufficiently slowly (Figure 6-3(a)), but does 

not work well if simple gradient descent is used (Figure 6-3(b)). 

A slightly more complex network with an eight neighbor excitatory network can be used to solve 

more difficult stereograms such as the pyramid (Figure 6-3(c)). However, even careful annealing 

does not guarantee that the lowest energy solution is found. In the previous example, if the broken 

ring on the pyramid is filled in by hand (Figure 6-3(d)), a lower energy solution results. This indicates 

that even simulated annealing cannot always find (in a reasonable amount of time) the best solution in 



Figu re 6-1: Sample stereograms 
(a) 20% square (b) 20% pyramid (c) 20% steps 



Figu re 6-2: Associated compatibilities 
(a) 20% square dense compatibilities (b) sparse compatibilities 
(c) 20% pyramid dense compatibilities (d) sparse compatibilities 

(e) 20% steps dense compatibilities (f) sparse compatibilities 
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the presence of large numbers of almost equally good minima and high energy barriers. 

6.2. A Cooperative Stereo Algorithm (Marr-Poggio) 

This algorithm, first described in [Marr 76] and later analysed in [Marr 78], is a simple hand-wired 

network (as described in Section 4.1) which uses a deterministic cooperative algorithm with 

synchronous updating. The network is initialized to the compatibility array, and the inhibitory and 

excitatory neighborhoods designed so that the network settles into a reasonable interpretation of the 

stereogram. 

The performance of this algorithm on some random-dot stereograms is quite reasonable (Figure 

6-4(a)). Using a small amount of heat after the initial solution has been found can slightly improve the 

results (Figure 6-4(b)). However, doing a full annealing, which finds the global minimum, yields a poor 

result (Figure 6-4(c)). This is because the global minimum of the energy function used does not 

correspond to the desired solution. In this case, it is not simulated annealing which results in poor 

performance. Rather, the attempt to interpret the updating rules as doing a functional minimization 

fails since the energy function contains no term for the compatibilities (these are in the initial 

conditions). On some more difficult stereograms (Figure 6-4(d)), the Marr-Poggio algorithm does not 

produce very good results. 

6.3. Winner-take-all (Marroquin) 

A winner-take-all [Marroquin 84] network is a recently developed variation on the Marr-Poggio 

algorithm. Like the latter algorithm, the solution matrix is initialized to the compatibilities, updating is 

synchronous, and each unit receives support from neighbors at the same disparity. However, there is 

no inhibitory input from units in the same line of sight. Instead, at each step units within one depth 

column that do not have a maximal input are turned off. Thus, the solution must be initialized to the 

dense compatibility matrix. Eventually, a single winner remains in each column. 

This algorithm has been proven to work correctly unless sufficiently large "incorrect" clumps exist 

in the compatibility matrix. In practice, it works well on random-dot stereograms (Figure 6-5(a)), but 

has problems dealing with occlusions, since the initial compatibilities in such areas may be 0. On 

more difficult stereograms (Figure 6-5(b)) it performs similarly to simulated annealing. 
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Figure 6-3: Simulated annealing results 
(a) 20% square with slow annealing (b) with gradient descent 

(c) 20% pyramid with full annealing (d) lower energy configuration 
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Figu re 6-4: Marr-Poggio algorithm results 
(a) 20% square (b) with some heat 

(c) with full annealing (d) 20% pyramid 
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6.4. Coherence (Prazdny) 

The coherence principle is an alternative to the continuity constraint that can be used as part of a 

parallel non-iterative correspondence algorithm [Prazdny 85]. The principle requires that points lie 

on some coherent (relatively smooth) surface, but does not require neighboring matches to be on the 

same surface. This allows the solution of transparent random-dot stereograms (Figure 6-6(a)). 

Prazdny's algorithm works by determining for each possible match a single "disparity cell" value 

that is the sum of the similarity support received from its neighbors. The support function 

H ( W = 1 e-»r<f'**-t 
c\i-j[VW 

\drd\ 

is based on the disparity gradient which is the slant of the line through the two points / and j . 

The strength of the support function is inversely proportional to the image plane distance between the 

points. Coherence is implemented by choosing only one value at point j (the one nearest to d) to add 

to the disparity cell for df After all of the disparity cell values have been calculated, the match with the 

highest support within a disparity column is selected. This process is done separately for each eye, 

and the results are combined. 

An alternative support function that uses some iteration and in addition has a fixed disparity 

gradient limit has also been proposed by Mayhew [Mayhew 85]. It is also possible to approximate the 

effect of the support function by using heat diffusion. This allows the high connectivity inherent in 

Prazdny's algorithm to be simulated by iteration on a network with strictly local connectivity [Szeliski 

85]. The resulting performance on random-dot stereograms is quite similar (Figure 6-6(b)). 

7. Conclusions 
This report has examined a number of cooperative (parallel) algorithms for the solution of random-

dot stereograms. A summary of its contents is as follows. 

The stereo correspondence problem can be analysed in terms of its computational theory, 

representation and algorithms. A computational theory based on Marr's three rules of compatibility, 

uniqueness and continuity is implemented by most algorithms. Recently, the coherence principle has 

been proposed as an alternative to the continuity constraint. The representation of depth for 

correspondence algorithms can be either rate encoded (unique depth), interval encoded (multiple 

depth hypotheses) or coarse coded (overlapping fields). The most common stereo matching 

programs rely either on dynamic programming, multiple-resolution techniques, or parallel 

(cooperative) algorithms. 
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The problem of stereo correspondence can be formulated as the global minimization of an energy 

function. This formulation defines the computation separately from the implementation, and can also 

be related to Bayesian models of image formation. The calculation of the global minimum usually 

requires search, and stochastic optimization techniques can be used to find this minimum. In certain 

cases, this stochastic search can be implemented by a Boltzmann Machine, a network of simple 

stochastic binary threshold units. 

The required network for solving the random-dot stereograms can be built by hand. An alternative 

is to derive the correct network from the a priori surface and image formation models. It is also 

possible to extend the Boltzmann Machine model to use n-ary (instead of binary) units. Other 

extensions to the basic model are possible, but have not been implemented. The extensions 

discussed in this report are: line processes, separating the correspondence from the interpolation, 

coarse coding, and real-valued units. 

An informal comparison has been made between the new correspondence algorithm based on the 

Boltzmann Machine and three previously developed algorithms. Very simple (four neighbor) networks 

used in conjunction with annealing (stochastic optimization) can do a reasonable job on easy 

stereograms. However, even slow annealing combined with larger networks will not always find the 

minimum energy configuration. To find the optimal solution, it may be necessary to structure the 

network to have a better energy landscape. Algorithms that look for local minima (locally consistent 

interpretations) can do a reasonable job, but cannot handle more difficult cases (like very sparse 

stereograms). Algorithms (such as winner-take-all) tailored specifically to random-dot stereograms 

can do well. Using support functions in conjunction with the coherence principle makes it possible to 

solve a larger class of stereograms (such as transparent stereograms). 

While the new algorithm presented in this report and the three comparison algorithms all do a 

reasonable job on most stereograms, there are still many interesting questions associated with this 

work. The more complex models that were introduced have yet to be implemented, and may prove to 

have significant advantages over existing techniques. Finally, it remains to be seen if these 

techniques can be extended to recover depth from stereo using real-world image pairs. 
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