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1 Introduction 

The goals of object replication on distributed computing systems are increased parallelism, reduced 
communications costs, and increased resilience in the presence of failures. In particular, replication can 
permit increased object availability - continued access to an object despite the failure of one or more of the 
nodes on which it is stored. Unfortunately, it is difficult to achieve high performance and availability while 
ensuring that the semantics of replicated data objects are identical to those of their non-replicated 
counterparts. 

In this paper, we describe and analyze a scheme for replicating directories that permits concurrent 
operations and arbitrarily high data availability, A measure of availability appropriate to this work is the 
number of node failures that a directory can tolerate while still guaranteeing that an operation can be 
performed. The semantics of the replicated directory are identical to a directory stored on a single node and 
accessed serially. Thus the replication algorithm is said to be transparent. 

We define a directory as an abstract data object that maps keys to values. Keys are chosen from a set of 
constants called the key space. The only condition we impose on the key space is that it be totally ordered. In 
other words, there must be an ordering function ' > ' with the property that for any two members of the key 
space x and y, one and only one of the following conditions hold: x>y, y> x or x = y. We make no other 
assumptions about the structure of die key space; it can be finite, countably infinite, or uncountably infinite, 
and either dense (like the rationals) or sparse (like the integers). For all of the examples in this paper, we use 
the set of finite length alphabetic strings as the key space, with lexical comparison as the ordering function. 
Whenever we use words like 'less than', 'above' or 'in between' in reference to keys, we mean according to the 
ordering function. 

Directory operations execute as part of distributed transactions, which provide uniform synchronization and 
recovery properties for operations on arbitrary shared abstract types. (Transactions have been described by 
many; see, for example, a survey by Gray or recent work by Spector et al. [Gray 80, Spcctor et al. 85a].) The 
replicated directory is an example of a distributed abstract data type that is constaictcd from a collection of 
more primitive, non-distributed types. Transactions simplify the maintenance of the invariants necessary to 
make this replication algorithm work. 

Directories arc accessed and modified with the following operations: 

• Insert(IN K.Key, V:Value) - Associates the value V with the key K. Once inserted, the key is 
said to be in the directory. This operation is permitted only when K is not already in the directory. 

• Updatc(IN K:Kcy, V:Value) - Associates the (new) value V with the key K. This operation is 
permitted only when K is already in the directory. 

• Delete(IN K:Key) - Removes K from the directory. This operation is permitted only when K is 
in the directory. After this operation is performed, K will no longer be in the directory. 
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• Lookup(IN K:Kcy; OUT IsIn.Boolcun, V:Valuc) - Returns TRUE, and the value associated 
with K, if K is in the directory. Returns FALSE and an undefined value if K is not in the 
directory. 

Attempting to perform an operation that is not permitted generates an exception. It does not affect the 

contents of the directory. Minor modifications of our scheme may be used to implement sets, multisets or 

similar abstractions. 

The replication algorithm described here is an extension of one initially presented by Daniels and 

Spcctor [Daniels and Spector 83]. It is based on Gifford's weighted voting algorithm [Gifford 79, Gifford 81], 

and has similar performance and reliability advantages. However, unlike Gifford's algorithm, this algorithm 

efficiently associates a separate version number with each possible key at every replica. This permits 

concurrent operations on different entries and solves certain problems in the implementation of the Delete 

operation. Unlike most replication algorithms, which are concerned with simple objects having only read and 
write operations, this algorithm uses the semantic properties of directories, and thereby gains increased 

performance. 

ITiis research on replication was done as part of die TABS (Transaction-based Systems) Project, which 
constructed a distributed transaction facility that supports operations on shared abstract data types [Spector 
and Schwarz 83, Schwarz and Spector 84, Spector et al. 85b. Spector et al. 85a]. This directory replication 
algoridim was implemented and videotaped to demonstrate the facility's operation. Groups at Cornell, MIT, 
and Georgia Institute of Technology are also investigating the wider use of transactions [Allchin and 
McKcndry 83, Allchin 83, Birman et al. 83, Liskov and Schciflcr 83, Wcihl and Liskov 83, Wcihl 83]. 

In the following sections, we survey related replication work and provide motivation for our directory 
replication algorithm. We describe the algorithm in detail and present efficient algorithms for each directory 
operation. A basic structural property of the replicated directory, which permits the construction of an 
efficient algorithm for the Delete operation, is proven. We show that the system's concurrency performance 
can be improved by relaxing the synchronization requirements for the directory replicas. We present 
performance data obtained by simulation and develop a mathematical model of the system simulated. We 
analyze the model and compare the results of the simulation and the analysis. These results demonstrate that 
the algorithm's space and time requirements are good in all configurations of the system. Finally, we discuss 
the advantages and uses of the algorithm. 
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2 Related Work and Motivation 

2.1 Related Work 

There are non-distributed and distributed approaches to data replication. In the non-distributed 
approaches, a single controlling node utilizes dual-copy, or mirrored, storage. Storage is typically on disks that 
are located in close proximity to each other. Data is written sequentially to both copies, but read from only 
one. Should a controlling node crash, another node gains control of the storage. Mirroring is commonly used 
on commercially available systems; for examples, see descriptions of the ACP or Tandem T16 systems [IBM 
Corporation 75, Bartlett 81]. 

Distributed replication techniques use a collection of cooperating nodes to store replicas of the data. Many 
of these techniques provide higher reliability and availability than mirroring, though they generally have 
higher overhead and complexity. For example, an object replicated with mirroring will not survive a single 
physical disaster that destroys both copies, while replication techniques employing geographical distribution 
will be less affected by such a physical disaster. 

In this section we briefly survey the field of distributed replication algorithms. We present our motivation 
for developing a replication strategy for directories based on the weighted voting technique. 

One fundamental distributed replication strategy is unanimous update: every update operation must be 
done on all replicas, but reads may be directed to any replica. This replication strategy guarantees single copy ' 
semantics if the systems storing each replica guarantee data consistency locally. Unfortunately, the 
availability for updates of any object is poor when large numbers of replicas are used. Update availability can 
be increased by using the communication system to buffer updates to replicas that are not available. The 
SDD-1 distributed database system uses this approach [Rothnie et al. 77]. A similar approach is taken in the 
available copies method [Bernstein and Goodman 84]. None of these methods handle network partitions. 

A second approach to replication is based on keeping primary and secondary copies of data. The primary 
copy receives all updates and then relays the updates to the secondary copies [Alsberg and Day 76]. An 
inquiry may be sent to a secondary copy, but the result might not reflect the most recent updates. Because 
responses to inquiries might not reflect recent updates, it is difficult for a primary/secondary copy replication 
strategy to duplicate the semantics of a non-replicated object. Techniques for alleviating this problem have 
been developed. For example, each file open operation in the Locus distributed file system ensures the 
currency of data by consulting a known synchronization site [Popek et al. 81]. Locus maintains availability 
after synchronization site failure by nominating a new synchronization site. 

A third basic approach to replication is weighted voting [Gifford 79, Gifford 81]. We describe this approach 
in more detail since it forms the basis of our algorithm. A file is stored as a collection of replicas, called 
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representatives, each of which is assigned a certain number of votes. A representative consists of a copy of the 
file and a version number. The entire collection of representatives is called a file suite. Write operations write 
an updated copy of the file to each representative in a group called a write quorum and associate a new version 
number with all of these representatives. The new version number is higher than any version number 
previously associated with the file. Read operations read from each representative in a read quorum and 
return the data from die representative with the highest version number. Write operations establish a higher 
version number by incrementing the highest version number encountered in a read quorum. 

A write quorum consists of any set of representatives whose votes total at least W and a read quoaim 
consists of any set of representatives whose votes total at least R. The constants R and Ware chosen so that 
their sum is greater than the total number of votes assigned to all representatives, N. Thus, every read 
quorum has a non-null intersection with every write quorum and each inquiry is guaranteed to access at least 
one current copy of the data. Current copies will always have a higher version number than non-current 
copies so the read operation will always return current data. The values chosen for R and W control a 
tradeoff between the cost and availability of read and write operations. 

Abbadi, Skeen and Christian extend the available copies approach to handle partitions [Abbadi et al. 85]. 
In diis approach, the nodes maintain virtual partitions, which arc logical groups corresponding to perceived 
actual partitions. The unanimous update approach is used within each virtual partition. Only a virtual 
partition containing a majority of the replicas for any object can access that object. 

Abbadi and Toucg extend the virtual partions approach to gain added flexibility [Abbadi and Toucg 86]. In 

this system, nodes maintain views, similar to the virtual partitions described above. Within each view, the 

weighted voting technique is used. Performance and availability tradeoffs between read and write operations 

can be controlled by choosing appropriate quorum sizes. 

All of the replication methods above apply to files, data objects supporting only read and write operations. 

Herlihy describes a technique called generalized quorum consensus whereby the weighted vodng technique 

can be systematically applied to any abstract data type [Herlihy 86]. This technique is completely general but 

results in implementations that are costly in terms of communications, storage, and computation. Herlihy 

suggests some optimizations to decrease these costs, but the emphasis in his work is on complete generality 

and theoretical investigation of quorum intersection issues rather than on providing efficient 

implementations. 

2.2 Motivation for the Use of Weighted Voting 

Weighted voting has several attributes that make it appealing as die basis for the design of a replicated 
directory. The sizes of the read and write quorums may be varied to adjust the relative cost and availability of 
the operations. For example, read quorums can be made much smaller than write quorums if data is read 
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more frequently than it is written. Vote assignments can be adjusted to further refine availability tradeoffs. 

For instance, a node that is more likely to fail can be given fewer votes, so its absence will have less effect on 

system availability. 

Anodier appealing attribute of weighted voting algorithms is tiiat they automatically function correctly in 
the face of network partitions. They do so passively, without die need for dynamic reconfiguration, as in the 
virtual partitions and views techniques. Such dynamic reconfiguration adds great complexity to replication 
algorithms, and can substantially reduce availability during periods of reconfiguration. 

Finally, algorithms based on weighted voting arc simplified because consistency and recovery arc primarily 
the responsibility of an underlying transaction facility. The use of a common underlying transaction facility 
greatly simplifies the task of ensuring that operations on multiple distributed objects interact properly. 

While weighted voting is an appealing approach to replication, the basic algorithm cannot be directly 
applied to directories without undesirable concurrency limitations. Even though die semantics of directories 
permit concurrent operations on different keys, only a single transaction at a time could modify the directory 
if it were stored as a file suite. This is because each copy of the entire directory would have a single version 
number, which would cause the serialization of all operations that modified die directory. Furthermore, any 
modification to die directory would require sending the entire updated directory to each representative in a 
write quorum. For a large directory, this would result in excessive communications costs. In the following 
section, we develop an algoridim for replicated directories from the weighted voting algoridim for files. Our 
algorithm rectifies the deficiencies described above. 

The use of version numbers in weighted voting has certain disadvantages. In order to write a file, a node 
must know the highest version number currently associated with the file. This requires access to a read 
quorum of representatives. Therefore, even if the write quorum size (WO is smaller than the read quorum size 
(/?), it requires the services of R representatives to perform a write operation. If one were to configure a suite 
with R < Wy the desired increase in availability of the write operation would never materialize, while the 
availability of the the read operation (and the write operation) would decrease. Thus, the use of version 
numbers is seen to restrict the permissible range of availability tradeoffs between the read and write 
operations. 

The restriction of permissible quorum choices described above comes about because one must perform a 
"read operation" on a file's version number before performing a write operation on the file. It could be 
eliminated if one could determine a higher version number dian those already used widiout consulting the 
version numbers present. Gifford suggests the use of timestamps instead of version numbers for tliis 
purpose [Gifford 81] and Hcrlihy's techniques use timestamps [Herlihy 86, Herlihy 85]. The advantages of 
die timcstamp approach are not without cost. It is critical tiiat timestamps reflect the serialization order on 
transactions. This requires support from the transaction system. Herlihy discusses this issue in die works 
cited above. 
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The algorithm presented in this paper is equally compatible widi version numbers and dmcstamps. Our 

initial implementation used version numbers because die TABS system lacked support for timestamps.1 The 

description of our algorithm in this paper reflects our initial use of version numbers. 

3 Development of the Algorithm 

In the previous section, we noted that weighted voting could not be directly applied to a directory file 
without excessive concurrency limitations and communications costs. It might seem that these limitations 
could be overcome if each entry in a directory representative were assigned a separate version number. (An 
entry is defined as the physical data associated with a key at a representative and consists of the key and an 
associated value.) However, if such an approach were used, some representatives might not have an entry for 
a key that had an entry at other representatives. Because of this fact, it would not always be possible to 
determine from an arbitrary read quorum whether a particular key were in the directory. This problem is 
illustrated in the example that follows. 

The directory suite for the example will contain 3 representatives. In this example and those that follow, we 
will assume that each representative has one vote, diough all results generalize to directory suites with 
arbitrary distributions of votes. The read quorum size for die example is 2 votes and the write quorum size is 
3 votes. The notation N-R-W will refer to a suite having N representatives, a read quorum size of R and a 
write quorum size of W. Thus we call the suite in our example a 3-2-2. 

Initially representatives A and B contain entries for keys "a" and V \ and each entry has version number 1 
as shown in Figure l 2 . Subsequently an entry for "b" is inserted into representatives A and C with version 
number 1 (Figure 2). If a request to look up the key "b" is sent to representatives B and C at this point, 
representative B will respond "not present," and representative C will respond "present with version number 
1." If "b" is then removed from the directory by deleting its entry from representatives A and B (Figure 3), 
requests to look up "b" on representatives B and C will still elicit the responses "not present," and "present 
with version number 1." Thus, if a directory representative fails to associate a version number with keys for 
which it has no entry, the responses from a read quorum may not be sufficient to determine if a given key is in 
the directory. 

The ambiguity demonstrated above is associated with deletions and will not occur if deletions are not 
permitted. Alternatively, deletions could be implemented by marking entries to be deleted and tiien 
performing a "garbage collection" operation periodically. However, that operation is expensive and would 
itself be a concurrency botdeneck. A diird strategy is to eliminate the ambiguity by consulting additional 

Support for timestamps has since been added to TABS, 

value field is omitted from all figures for clarity. 
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Version Number: 1 
Key: "a"  

Version Number: 1 
Key: " c M  

Version Number: 1 
Key: "a"  

Version Number: 1 
Key: "c"  

Representative A Representative B Representative C 

Figure 1: A 3-2-2 Directory Suite - Initial Configuration 

Version Number: 1 
Key: "a"  

Version Number: 1 
Key: "b"  

Version Number: 1 
Key: "c"  

Version Number: 1 
Key: "a"  

Version Number: 1 
Key: "c"  

Version Number: 1 
Key: "b"  

Representative A Representative B Representative C 

Figure 2: Directory Suite After Inserting "b" 

Version Number: 1 i 
Key: "a" | 

Version Number: 1 
Key: "c"  

Version Nuinber: 1 
Key: M a "  

Version Number: 1 
Key: "c"  

Version Number: 1 
Key: "b"  

Representative A Representative B Representative C 

Figure 3: Directory Suite After Deleting "b" 

representatives whenever an inquiry to an initial set of representatives does not result in a read quorum of 

replies all indicating "present" or "not present" Unfortunately, this approach drastically reduces availability. 

None of the solutions presented thus far satisfy our demands for concurrency and availability. What is 
really needed is a scheme whereby version numbers can be associated with every possible key in the key space 
at each representative. This can be accomplished by partitioning the key space into disjoint sets and 
associating a version number with each set at every representative. The same partitions need not be used at 
all representatives. 

One approach to partitioning is to divide the key space into ranges based on the order relation on the keys. 
The simplest partitioning scheme divides the key space into a number of fixed ranges. However, it is difficult 
to guarantee sufficient concurrency with such a static partitioning technique. If a small number of ranges are 
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used, then at most that number of transactions can modify a directory concurrently. If transactions modify 

entries in more than one range, concurrency will be further limited. Even if a large number of ranges arc 

used, an uneven distribution of accesses could limit concurrency. 

A more general method of partitioning is to allow the partitions at each representative to vary over time, on 

the basis of the entries currently in diat representative. Such a dynamic partitioning technique is desirable for 

directories having sizes or access patterns that vary widely over time. A simple method of dynamically 

partitioning the key space at a representative is to create a partition for each key that has an entry in that 

representative and a partition for each range of keys between successive entries. 'ITicse ranges are called gaps. 
This method forms the basis of our algorithm. 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: "a"  

Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

I Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: M a "  

Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Representative A Representative B Representative C 

Figure 4: Directory Suite Containing Keys "a" and "c" 

In this dynamic partitioning approach, lookup requests sent to a representative containing an entry for the 

key being looked up return the version number of the entry. Lookup requests on keys for which no entry is 

stored return the version number of the gap in which the key lies. Update requests increment the version 

number of the entry for the key being updated, insertion requests split a gap, and deletions coalesce the gaps 

and entries in a range of keys into a single gap. The details of these operations will be discussed at length in 

Section 4. 

The suite containing entries for keys "a" and V in representatives A and B of our previous example 
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Version Number: 0 
Key: <Low> 

T 

Gap Version 
Number: 0 

Version Number: 1 
Key: "a"  

Gap Version 
Number: 0 

Version Number: 1 
Key: M b "  

I Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: "a"  

Gap Version 
Number: 0 

Version Number: 1 
Key: M c "  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: "b"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Representative A Representative B Representative C 

Figure 5: Directory Suite After Inserting "b" 

(Figure 1) would be represented as in Figure 4. 3 If the key "b" is inserted into a write quorum consisting of 
representatives A and C, the suite in Figure 5 results. Note that, in representatives A and C, the entry for key 
"b" is assigned version number 1, which is one greater than die version number of die gap between "a" and 

If a request to look up "b" were sent to representatives B and C at this point, representative B would 
respond "not present with version number 0" and representative C would respond "present with version 
number 1." Using these responses, a client could determine that "b" was in die directory since die entry had 
a higher version number than the gap. If "b" were subsequently deleted from representatives A and B, then 
the two gaps on either side of "b" on representative B would be coalesced. On both representatives, the gap 
between "a" and "c" would be assigned version number 2 (Figure 6). Now, if a request to look up "b" were 
sent to representatives B and C, B would respond "Not present widi version number 2" and C would respond 
"present with version number number 1." This response indicates tiiat the key no longer exists, resolving the 
ambiguity that occurred in the initial example, wherein version numbers were associated only with entries. 

The directory representatives in Figure 4 contain the special keys LOW and HIGH, which delimit the first and last gaps in the 
representatives. 
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Version Number: 0 
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1 Gap Version 
Number: 0 

Version Number: 1 
Key: "a"  
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Number: 2 

Version Number: 1 
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Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: "a"  

Gap Version 
Number: 2 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
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Version Number: 1 
Key: "b"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Representative A Representative B Representative C 

Figure 6: Directory Suite After Deleting "b" 

4 Details of the Algorithm 

This section presents the details of the algorithm sketched in the previous section. The descriptions are 
illustrated with program text in a Pascal-like language that includes a remote procedure call primitive [Birrell 
and Nelson 84]. Remote procedures are declared like ordinary procedures except that the first parameter is 
always the identifier of a remote server and that other parameters may be declared as IN, or OUT. 
Parameters are passed by value in messages. Remote procedure calls have the same syntax as local procedure 
calls and the general purpose distributed transaction facility which is assumed as the underpinning of this 
algorithm guarantees that the remote procedure calls have exactiy-once semantics. Hence, the only exception 
mechanism provided is RcportError. Transactions are aborted by node failures, timeout and other system 
determined errors. Clarity is emphasized over performance in the programs. Optimizations that would be 
used in practical implementations arc described in accompanying text. 

Operations on directory representatives and directory' suites arc presented in die first two subsections. The 
next two subsections develop an essential component of die deletion algoridim. Arguments for the 
correctness of the replication algorithm are then presented. The final subsection discusses ways of modifying 
the algorithm's synchronization policies to provide higher concurrency. 
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4.1 Directory Representatives 

In a replicated directory, each directory represcntadve is an instance of an abstract object that stores one 
(approximate) copy of the directory data. Arbitrarily complex atomic transactions may be constructed using 
the basic operations provided by directory representatives. Thus, directory representatives must synchronize 
concurrent operations performed by different transactions and store critical information in a fashion that 
recovers from failures. Gifford's weighted voting algorithm makes similar requirements of its file 
representatives. 

Every instance of a directory representative contains two distinguished keys, HIGH and LOW. HIGH is 
greater than any key in the key space and LOW is less tiian any key in the key space. HIGH and LOW 
simplify the delete operation by ensuring tiiat all keys have a real predecessor and real successor in the 
directory. Real predecessor and real successor have an intuitive meaning, but arc defined precisely in 
Section 4.2. 

Directory representatives provide two operations that arc analogous to typical directory primitives: 
DirRepLookup and DirRepInscrt. DirRepInsert is defined to be useful for both the Insert and Update 
operations on directory suites. In addition, directory representatives provide specialized operations that arc 
used to implement the directory suite deletion operation: DirRcpPredecessor, DirRcpSuccessor, 
DirRepSuperseder, and DirRcpCoalcscc. Figure 7 gives procedure headings for each of these operations. In 
Figure 7 the last line of each description specifies the locks set by the operation for synchronization. These 
locks are discussed below. 

DirRcpPredecessor returns the key and version number of the entry in the representative that is the 
immediate predecessor of the key passed as an argument; it also returns die version number of the gap 
between die keys. (Note that a version number is maintained for the gap between each pair of entries, even if 
the key space has no keys in the range that the entries delimit,) DirRcpSuccessor is analogous to 
DirRcpPredecessor. Deletions are performed on a directory representative using the DirRcpCoalcsce 
operation, which deletes any entries appearing in a range between two specified entries and assigns a single 
version number to the resultant gap. Thus, DirRepCoalcscc coalesces a collection of keys and gaps into a 
single gap. 

DirRepSuperseder is used in implementing die delete operation on directory suites. The operation searches 
a range starting with key x and ending with key y, and returns the entry closest to x with a version number 
greater dian die one passed as a parameter. If the search reaches key y without locating an entry to return, 
then the entry for (if one exists) is returned. The operation locates the first entry that "supersedes" a gap 
with the specified version number. 

Each directory representative must synchronize the concurrent operations of different transactions. While 
this might be accomplished in many ways, the discussion presented here will assume diat type-specific locking 
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DirRepLookup(IN s e r v e r : D i r R e p , x : k e y ; 
OUT P r e s e n t . b o o l e a n , v e r : v e r s i o n , v a l : v a l u e ) ; 

{ I f t h e r e i s an e n t r y f o r x, r e t u r n s TRUE, t h e v e r s i o n number of 
t h e e n t r y , and i t s v a l u e ; o t h e r w i s e r e t u r n s FALSE and t h e 
v e r s i o n number of t h e gap c o n t a i n i n g x, 

Locks R e p L o o k u p ( x . x ) . } 

D i r R e p I n s e r t ( I N s e r v e r : D i r R e p , x : k e y , v : v e r s i o n , z : v a l u e ) ; 
{ C r e a t e s an e n t r y fo r key x wi th v e r s i o n number v and v a l u e z , 

Updates t h e e n t r y f o r key x i f one a l r e a d y e x i s t s . 

Locks R e p M o d i f y ( x , x ) . } 

Di r R e p P r e d e c e s s o r ( I N s e r v e r . D i r R e p . x : k e y ; 
OUT P r e d : k e y , P r e d V e r : v e r s i o n , P r e d V a l : v a l u e , G a p V e r : v e r s i o n ) ; 

{ R e t u r n s t h e key, v e r s i o n number, and v a l u e of t h e e n t r y wi th t h e 
h i g h e s t key l e s s than x . Also r e t u r n s t h e v e r s i o n number of t h e gap 
between x and i t s p r e d e c e s s o r . There need no t be an e n t r y f o r x . 

Locks RepLookup(Pred .x ) } 

D i r R e p S u c c e s s o r ( I N s e r v e r . D i r R e p , x : k e y ; 
OUT S u c c : k e y , S u e c V e r : v e r s i o n , S u c c V a l : v a l u e , G a p V e r : v e r s i o n ) ; 

{ Analogous t o above p r o c e d u r e . 

Locks RepLookup(x ,Succ) } 

D i r R e p C o a l e s c e ( I N s e r v e r : D i r R e p , l : k e y , l v e r : v e r s i o n , l v a l r v a l u e , 
h : k e y , h v e r : v e r s i o n , h v a l : v a l u e , g a p v e r : v e r s i o n ) ; 

{ I n s e r t s e n t r i e s f o r 1 and h i f they a r e n o t p r e s e n t . 
D e l e t e s e n t r i e s f o r any keys between ( b u t not i n c l u d i n g ) 1 and h . 
The r e s u l t i n g gap is a s s i g n e d v e r s i o n number g a p v e r . 

Locks R e p M o d i f y ( l , h ) . } 

D i r R e p S u p e r s e d e r ( I N s e r v e r : D i r R e p . x : k e y , v : v e r s i o n , y : k e y 
OUT s u p e r s e d e d : b o o l e a n . S u p e r s e d e r : k e y , 

S u p V e r : v e r s i o n , S u p V a l r v a l u e ) ; 
{ S e a r c h e s t h e range between x and y , s t a r t i n g from x . R e t u r n s TRUE, 

t o g e t h e r w i t h t h e key , v e r s i o n number, and v a l u e of t h e f i r s t 
e n t r y examined between x and y ( e x c l u s i v e ) wi th v e r s i o n 
number g r e a t e r than v. R e t u r n s TRUE and t h e e n t r y f o r y i f i t 
e x i s t s and no e n t r y c l o s e r t o x has v e r s i o n number g r e a t e r 
than v. R e t u r n s FALSE i f t h e r e i s no e n t r y f o r y and no e n t r y 
between x and y w i th v e r s i o n number g r e a t e r t han v . 

Locks R e p L o o k u p ( x . S u p e r s e d e r ) . } 

Figure 7: Directory Representative Operations 
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is used [Korth 83, Schwarz and Spector 84]. In type-specific locking, every operation on an abstract object 

acquires a lock that is a member of die set of locks associated widi diat object. A lock compatibility relation is 

used to determine whether a lock may be acquired by a particular transaction. 

The lock classes used in synchronizing a directory representative are analogues of the lock classes for a 
single-copy directory, given by Schwarz [Schwarz and Spector 84]. However, instead of locking single keys, 
the lock classes arc generalized to lock an entire range of keys and the granting of a lock depends on whether 
a range of keys to be locked intersects the range of keys already locked by some other transaction. Inquiry 
operations (DirRcpLookup, DirRcpPredecessor, DirRcpSuccessor, and DirRepSuperseder) set 
RepLookup(o\r) locks, where the range of keys cxplicidy or implicitly accessed by the operation consists of 
the keys greater than or equal to o and less than or equal to T . A RepModify(<r,T) lock is obtained on the 
range of keys modified by the DirRepInsert and DirRepCoalesce operations. 

The lock compatibility relation for operations on directory representatives.is illustrated in Figure 8. In the 
figure, [<T...T] and [<J\..T'J are arbitrary non-intersecting ranges of keys, and [<J...T] and [a"...r"] are arbitrary 
intersecting key ranges. Locks arc compatible except that a RepModify lock may not specify a range which 
intersects the range already specified by another RepModify lock, a RepModify lock may not specify a range 
which intersects the range already specified by a RcpLookup lock, and a RcpLookup lock may not specify a 
range which intersects a range already specified by a RepModify lock. For example, the compatibility relation 
specifies that a transaction may noi be granted a RepModify(a , ,,TM) lock if another transaction already holds a 
RepModify(o-,r) lock. 

Lock Held 
Lock Requested None RepLookup(a,r) RepModify(a,T> 

RcpLookupfa'y) OK OK Ok 
RcpModifyta'.T') OK OK Ok 
RcpLookup(aM,<r") OK OK No 
RepModify(a",T") OK No No 

Note: [a..r] intersects [a". .T M ] and[a..r] does not intersect [<J\.T] 

Figure 8: Compatibility of Directory Representative Lock Classes 

As specified above, the lock compatibility relation is sufficiently strong to guarantee diat the actions of 

transactions operating on a directory representative are serializablc [Traiger ct al. 82], provided that two phase 

locking is used. This form of synchronization simplifies the correctness arguments given in Section 4.4. 

(Section 4.5 presents modifications to these locking rules that permit greater concurrency.) 

Each directory representative is responsible for recovery processing. Recovery processing is necessary to 
undo the effects of partially completed transactions after a crash or when a transaction abort is requested by a 
client. In any recovery scheme it is necessary for a directory representative to record enough information 
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reliably to redo or undo the effects of those operations that modify the state of the representative. The details 
of recovery processing are specific to the implementation of a directory representative and depend on the 
recovery approach used by the underlying transaction system. Gray et al., Lindsay et al., and Schwarz, among 
others, present more details on general recovery algorithms [Gray et al. 81, Lindsay et al. 79, Schwarz 84]. 

To redo insert and update operations, die representative must have available the key, version number, and 
value of the modified entry. To undo updates, the old value and version number of the entry must also be 
recorded. Inserts are undone by coalescing the gaps on cither side of the entry which was inserted. It is not 
necessary to record an old version number when performing an insertion, since the version number of the 
gaps on cither side of an inserted key is die same as the old version number. 

A coalesce operation may be redone in a straightforward manner. To be prepared to undo a coalesce 

operation, a representative must reliably record the key, value, version numbers of all entries deleted by the 

coalesce operation, and the version numbers of the gaps between entries. 

4.2 Directory Suites 

A directory suite consists of a set of N directory representatives, an assignment of votes to representatives, 
and the read and write quorum sizes R and W. The quorum sizes are chosen to conform to the constraints 
described beiow. Directory suites implement the operations Lookup, Insert, Update, and Delete, as specified 
in Section 1. Operations on directory representatives are combined to implement a replicated directory based 
on the weighted voting rules described in Section 2. 

It can be seen from the specifications for the directory operations in Section 1 that the operations that 
modify the directory (Insert, Update and Delete) must first look up the key being modified in order to ensure 
the legality of the operation. Thus all operations require access to R representatives, and no additional 
availability can be gained by choosing W<R. Therefore we assume W>R. Recall from section 2.1 that 
R+W>N. Combining these two inequalities, we have 2W>N. Thus any value between * a n < * ^» 
inclusive, can be chosen for W. R will generally be set to N- W+1, the smallest value necessary to ensure 
the required quorum intersection. 

The Lookup operation calls the procedure ILookup, which is shown in Figure 9, and discards the version 
number, returning only a boolean indicating the presence of the key in the directory, and the value associated 
with key, if it is present. ILookup first calls CollectRcadQuorum, a function that returns identifiers for a read 
quorum of directory representatives. Then, DirRcpLookup operations are performed on the quorum and the 
entry with die highest version number is returned. 

CollectRcadQuorum and its companion function, CollcctWriteQuorum, bind identifiers to instances of 

directory representatives. This may involve message exchanges to establish communications sessions, so it is 



15 

ILookup(IN k:key;OUT P r e s e n t : b o o l e a n , V e r : v e r s i o n , V a l . v a l u e ) 
{ I n t e r n a l lookup p r o c e d u r e . Re tu rn T r u e , t h e v e r s i o n number, and t h e 

v a l u e a s s o c i a t e d wi th k i f i t i s in t h e d i r e c t o r y ; F a l s e o t h e r w i s e . } 

var 
{ r ead quorum has R members } 
quorum : a r r a y [ l . . R ] of D i rRep ; 
RepsVer : v e r s i o n ; 
RepsVal : v a l u e ; 
R e p s P r e s e n t . b e s t i s i n : b o o l e a n ; 
i : i n t e g e r ; 

beg in 
{ c o l l e c t a r ead quorum f o r t h i s o p e r a t i o n } 
quorum := Col 1ectReadQuorum; 

Ver := Lowes tVers ion - 1 ; { a c o n s t a n t } 
{ send i n q u i r i e s t o each quorum member } 
f o r i := 1 t o R do 

beg in 
Di r R e p L o o k u p ( q u o r u m [ i ] , k , R e p s P r e s e n t , R e p s V e r , R e p s V a l ) ; 
i f RepsVer>Ver then 

beg in 
Ver := RepsVer; 
Val := RepsVal ; 
P r e s e n t := R e p P r e s e n t ; 

end 
end ; 

end 
Figure 9: ILookup Operation 

desirable for the implemcntors of these operations to cache information to be used in subsequent invocations. 
Efficiency and availability are improved if the quorums returned by these functions overlap as much as 
possible. 

The Insert operation is quite simple. Insert first uses ILookup to look up the key to be inserted in a read 
quorum and obtain the highest version number currently associated with the key. A version number one 
higher than this number is used for the new entry, which is then inserted into a write quorum of 
representatives. Figure 10 illustrates this operation. The Update operation is similar. 

Delete must delete an entry from a write quorum by coalescing a range of keys that includes the entry to be 
deleted and assigning a version number to the resulting gap that is higher than that of any entry or gap 
previously contained in the range. To avoid asserting the nonexistence of keys that arc actually in directory, 
the range to be coalesced may not contain keys in the directory other than the one to be deleted. Delete 
coalesces a range that extends from the real predecessor of the key to be deleted to its real successor, dicrcby 
ensuring that there arc no keys in the directory that lie in die coalesced range. The real predecessor of a key k 
is the highest key less than k that is in the directory. The real successor of a key is defined analogously. The 
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I n s e r t ( n k e y : k e y , n v a l : v a l u e ) ; 
{ I n s e r t a new e n t r y wi th key nkey and v a l u e nval } 
var 

{ w r i t e quorum has W members } 
quorum : a r r a y [ l . . W ] of Di rRep ; 
i : i n t e g e r ; 
k : key; 
ve r : v e r s i o n ; 
val : v a l u e ; 
i s i n : b o o l e a n ; 

beg in 
{ f i r s t , lookup key t o f i n d t h e c u r r e n t v e r s i o n number } 
I l o o k u p ( n k e y , i s i n , v e r , v a l ) ; 
{ val i g n o r e d } 
i f i s i n t hen R e p o r t E r r o r ; 

{ f i n d a w r i t e quorum } 
quorum := C o l l e c t W r i t e Q u o r u m ; 

{ The new e n t r y ' s v e r s i o n number must be h i g h e r than i t s 
p r e v i o u s v e r s i o n number a s r e t u r n e d by t h e Lookup c a l l } 

v e r : = v e r + l ; 

{ I n s e r t t h e e n t r y in each quorum member } 
f o r i : = 1 t o W do 

D i r R e p I n s e r t ( q u o r u m [ i ] , n k e y , v e r , n v a l ) ; 

end 
Figure 10: Insert Operation 

coalesce operation inserts the real predecessor and successor into representatives where they are not already 

present, to delimit the newly formed gap. The entries between a key's real predecessor and its real successor 

on a representative comprise the key's delete list on that representative. The delete list is so named because it 

consists of the entries that are expunged when performing the coalesce operation required to delete a key. 

Locating the real predecessor and real successor of a key to be deleted is complex. There may be ghost 
entries located between the key to be deleted and its real predecessor or real successor. A ghost is defined as 

an entry for a key that is no longer present in the directory suite. In addition, the real predecessor or real 

successor of a key might not be present in some members of the read quorum. 

These problems are partially illustrated in the following example. Consider the suite in Figure 5. Suppose 
we delete key "a", using representatives A and C as the write quoaim for the delete. This operation is 
straightforward, resulting in the suite shown in Figure 11. Now suppose we delete key "b", using 
representatives B and C as the write quorum. Figure 11 shows that the real successor of the key "b" is the key 
"cM . However, no entry for "c" appears in appears in representative C, and the ghost of entry "a" appears 
between "b" and LOW (the real predecessor of "b") in representative B. To delete "b" from representatives B 
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Version Number: 0 
Key: <Low> 

Gap Version 
Number: 2 

Version Number: 1 
Key: "b"  

Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

I Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: "a"  

Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 2 

Version Number: 1 
Key: "b"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Representative A Representative B Representative C 

Figure 11: Directory Suite from Figure 4 After Deleting "a" 

and C, the real successor, "c", must be inserted into representative C. The coalescing of the range from LOW 

to "c" eliminates the ghost of entry "a" from representative B. The resulting suite is shown in Figure 12. 

A simple Delete procedure is illustrated in Figure 13. Finding the real predecessor and successor of a key is 
the heart of this operation. Given an input key, RealPrcdcccssor returns the key, value, and version number 
of the input key's real predecessor. RealPrcdecessor also returns the version number for the gap between the 
key and its real predecessor. The RealSucccssor operation is analogous. The straightforward procedure 
given by Daniels and Spector [Daniels and Spector 83] for performing the real predecessor operation suffers 
from a serious drawback: it requires that messages be sent between the node determining die real predecessor 
and the nodes containing each member of a read quorum, for every ghost between the key being deleted and 
its real predecessor in all representatives of die quorum. While this message traffic can be reduced by 
combining messages, and while the simulations and analysis show that average performance is not too bad, 
the number of fixed length messages that must be transmitted for a single Delete operation is potentially 
unbounded. 4 All other directory suite operations, as presented previously [Daniels and Spector 83], require 
only a constant number of small, fixed length communications; it would be highly desirable to have an 

in fact, it is bounded by 2R * (the cardinality o f lhc key space), where R is the read quorum size. For finite key spaces, this expression 
will be large but finite. 
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Version Number: 0 
Key: <Low> 

Gap Version 
Number: 2 

Version Number: 1 
Key: "b"  

T 

Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 3 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 3 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Representative A Representative B Representative C 

Figure 12: Directory Suite from Figure 11 After Deleting "b" 

algorithm for the real predecessor operation (hence the Delete operation) that has this property as well. We 

develop such an algorithm in the next section. 

4.3 An Efficient Algorithm for the Real Predecessor Operation 

An algorithm for finding the real predecessor must in effect prove that a certain key is the real predecessor. 

Such a proof involves showing that all entries in between a key and its real predecessor in each representative 

of a read quorum are superseded by a gap with a higher version number in some other representative of the 

quorum. The number of ghosts between an entry and its real predecessor is potentially unbounded in each 

representative, so at first the prospects for the existence of an algorithm that requires only a constant number 

of fixed length messages might appear dim. 

However, directory suites have a property that constrains the system states that can occur. Because of this 
property, the minimum version number necessary for an entry to be current in a region guaranteed to contain 
the real predecessor can be determined in one round of messages. With this information, a single additional 
round of messages suffices to find the real predecessor. To state and prove the property that permits this 
efficient location of the real predecessor, we must introduce several terms. 

A region is a set of keys; tiiat is, a subset of die key space. A range is a region containing every key in the 
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D e l e t e ( d e l k : k e y ) ; 
{ D e l e t e t h e key de lk from t h e d i r e c t o r y } 
va r 

quorum: a r r a y [ l . . W ] of Di rRep ; 
i : i n t e g e r ; 
i s i n : boo lean 
s u c c , p r e d , k: key ; 
p v a l , s v a l , v a l : v a l u e ; 
p v e r , p g v e r , s v e r , s g v e r , v e r : v e r s i o n ; 

beg in 
I L o o k u p ( d e l k , i s i n , v e r , v a l ) ; { val i g n o r e d } 
i f n o t i s i n then R e p o r t E r r o r ; 

{ Find t h e p r e d e c e s s o r and s u c c e s s o r of de lk } 
R e a l P r e d e c e s s o r ( d e l k , p r e d , p v a l , p v e r , p g v e r ) ; 
R e a l S u c c e s s o r ( d e l k , s u c c , s v a l , s v e r , s g v e r ) ; 

{ The v e r s i o n number of t h e c o a l e s c e d gap must be h i g h e r t han 
t h e maximum of any v e r s i o n numbers in t h e r ange c o a l e s c e d } 

ver := M a x ( v e r , p g v e r , s g v e r ) ; 

{ f i n d a w r i t e quorum } 
quorum := Col 1ec tWri teQuorum; 

{ e n s u r e t h a t t h e p r e d e c e s s o r and s u c c e s s o r e x i s t in e v e r y 
member of t h e quorum and c o a l e s c e t h e r ange in each member } 

fo r i : = 1 t o W do 
Di r R e p C o a l e s c e ( q u o r u m [ i ] , p r e d , p v e r , p v a 1 , s u c c , s v a 1 , s v e r , v e r + l ) ; 

end 
Figure 13: Delete Operation 

key space between some key and another key. These definitions are consistent with our informal use of die 

term in previous sections. The notation (A: ) refers to the range from k to fc2 excluding ky and &2, the 

endpoints of the range. 

A gap between entries for keys k and k is said to cover the region (A: ) and all of its subrcgions (subsets). 
The remaining terms arc defined in the context qf an entire directory suite. A gap g is said to be current over 
the region r if the following conditions hold: 

1. The gap g covers r. 

2. No gap in some other representative covering any non-null subregion of r has a higher version 
number dian gdoes. 

3. No entry in some other representative for a key in rhas a higher version number than gdoes. 

Intuitively, a gap is current over a region for which it expresses the most up to date information. A gap's 
region of currency is the entire region over which it is current.5 

Formally, the union of all regions over which it is current. 
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For example, consider the suite in Figure 14. Gap g covers ("c'.HIGH) and all of its subregions, e.g. 
( " d ' V T G a p g is current over rg'\"k"), for example. Gap g s region of currency is ( , ,c" l"d , ,)U( , ,e ,M-IIGH). 

We are now ready to state the property. 

Version Number: 0 
Key: <Low> 

1 Gap Version 
Number: 0 

Version Number: 1 
Key: "c"  

Gap Version 
Number: 0 

Gapg 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 1 
Key: "d"  

Gap Version 
Number 2 

Version Number: 1 
Key: "e"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Version Number: 0 
Key: <Low> 

Gap Version 
Number: 0 

Version Number: 2 
Key: "b"  

Gap Version 
Number: 0 

Version Number: 1 
Key: "d"  

T 

Gap Version 
Number 2 

Version Number: 1 
Key: "e"  

Gap Version 
Number: 0 

Version Number: 0 
Key: <High> 

Representative A Representative B Representative C 

Figure 14: Suite for illustration of region of currency and related terminology 

Theorem 1. In any occurring system state, every gap's region of currency can be expressed as the union of a 

finite number of ranges whose endpoints are keys currently in the directory. 

Before we can prove Theorem 1 or present the real predecessor algorithm we must introduce one more term 

and present two lemmas. A collection of ranges { r . | " = 1 } , r

i-(kn,kil) is said to be canonical if the ranges are 

in order (kn < and non-intersecting (kn < The following lemma justifies the use of the term 

canonical 

Lemma 1. For any finite collection of ranges over a dense key space, there exists a unique canonical 
collection of ranges whose union comprises the same set as die union of the original collection. This is 
referred to as the canonical fonn of the original collection. (A key space is dense if, for every pair of keys 
k^k^ with kx<kr there exists a key k} such that kx<k3<k2.) Further, the endpoints of the ranges in the 
canonical form arc all endpoints of some range in the original collection. 
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Lemma 2. If a gap g is current over a range and k and k2 are in the directory, then k is &2's real 
predecessor. i 

4.3 .1 Proofs 

This section may be skipped without loss of continuity. However, it is advised that the reader study the 
proof of Theorem 1 if a diorough understanding of the internal workings of the data structure is desired. 

A rigorous proof of Lemma 1 would be tedious, but a detailed proof sketch follows. If a collection of ranges 
is not in order, it can be reordered. If any pair of ranges in the resulting collection overlap, dicir union is a 
range. Thus the pair of ranges can be replaced by the range that is their union. The endpoints of the union 
are both endpoints of one of the original ranges. This procedure is repeated undl none of the remaining 
ranges intersect. At this point, the collection is in canonical form, and the union of the ranges in the 
collection is identical to the union of the ranges in the original collection. Any two canonical collections of 
ranges over a dense key space that are not identical have different unions, hence the canonical form of the 
collection is unique. 

Lemma 2 follows immediately from the definition of currency over a region. By this definition, if g is 
current over (fc ), their are no entries for keys in (fc ) with a higher version number than g's. Thus there 
are no keys in between k and k2 in die directory, and kx is k^s real predecessor. 

Now we turn our attention to Theorem 1. We assume that die key space is dense. This assumption is made 
without loss of generality by the following argument. Any totally ordered set can be embedded in a dense set: 
given a sparse key space K there exists a dense key space Kd such that KClKj. (For example, the integers 
from 1 to 10 can be embedded in the rationals from 1 to 10.) If we prove diat Theorem 1 holds for a key 
space, we have also proved it for any subset of that key space, as the user could arbitrarily restrict his 
operations to members of that subset. Thus a proof that Theorem 1 holds for all dense key spaces implies that 
it also holds for all sparse key spaces. Note that this has no implications with regard to actual system 
implementation. It merely facilitates the proof. 

The proof of Theorem 1 is by structural induction. For the base case, we observe that the theorem holds for 
a suite in its initial state: each representative contains a single gap whose region of currency is (LOW, 
HIGH), and the directory contains the (dummy) keys LOW and HIGH. 

For the induction step, we must show that if the theorem holds for a given system state, tiicn it holds for all 
states reachable from that state via a single Insert, Update or Delete operation. We shall consider these 
operations in turn. For each operation, we must show diat the gaps contained in die representatives 
comprising die write quorum and the gaps contained in the representatives outside the write quorum satisfy 
the required condition after die operation. We further subdivide these gaps into those whose region of 
currency changes as a result of the operation and tiiosc whose region of currency remains unchanged. 
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First wc show that the induction holds for for Inserts. The Insert operation does not remove any key from 
the directory, so any range whose endpoints were in the directory prior to die Insert will still have its 
endpoints in the directory after the Insert. Therefore, all gaps whose region of currency remains unchanged 
by tiic Insert will still satisfy the induction hypothesis after the operation (given only that they satisfied it 
before). Thus, wc need only consider the gaps whose regions of currency are altered by the Insert operation. 

The regions of currency of gaps in representatives outside of the write quorum for an Insert operation are 

affected only if they arc current over the region {&}, where k is the key being inserted. The new entry for this 

key will have a higher version number dian these gaps, so the insertion will have the effect of removing {k} 
from their regions of currency. By hypothesis, the old region of currency of each of these gaps is expressible 

as a finite union of ranges whose endpoints are keys in the directory. Let us call these ranges { r . | " = 1 } , 
r

i

zz(kix1ki^. Lemma 1 allows us to assume without loss of generality that the collection of ranges is in 

canonical form. 

Since the gaps in question contain k in their region of currency, one of the r. must contain k. Let us call this 

range r . (The value of q may be different for each gap in question.) When {k} is deleted from such a gap's 

region of currency, the resulting region will be 

But k and all of the k.. are in the directory after the insertion, so the induction hypothesis is preserved in all 
u 

representatives outside of the write quorum. 

Within the write quorum one of tv/o things can happen. If an entry is already present for &,6 no gap's 
region of currency will be affected by the operation. If no entry for k exists, then the gap g into which the key 
falls will be split into two new gaps. Let us call them gx and gr By the induction hypothesis, g s region of 
currency can be expressed as a finite union of ranges whose endpoints are in the directory. Let us call them 

l/Lj}- We assume the ranges are in canonical form, by Lemma 1. If k is in g's region of currency, it is in 
one of the rf Let us call this range rq. Then g^s region of currency will be 

( r f lE } U { ( * f l . * » ' 
and £2's region of currency will be 

{(kqlMU{r.\lq+1} 
(Figure 15). All the endpoints of the ranges comprising ^ and g2's regions of currency are in the directory 
after the insert If the key being inserted falls outside of the original gap's region of currency, let q be the 
largest integer such tiiat *<* . Then g^s region of currency will be {^|f = 1} and g2's region of currency will 
be Thus, the induction hypodiesis is preserved in all representatives for Insert operations. 

^ i s entry is necessarily a ghost, as the Insert operation would not be permitted if k were alreody in the directory. 
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Figure 15: Effect of the insert operation on regions of currency, within write quorum 

Next we show that the induction holds for Update operations. Like Insert operations, we need only 
consider the gaps whose regions of currency arc altered by the operation, as Updates do not remove any keys 
from the directory. No gaps in representatives outside of the write quorum have their regions of currency 
affected by diis operation. It increases only the version number associated with die key being updated, k, and 
no gap could have had {k} in its region of currency before the update operation took place. The highest 
version number associated with k at that dmc belonged to an entry and not a gap, as updates can only occur 
on keys that arc already in the directory. Within the write quorum the effects of the Update operation on 
regions of currency are identical to those of die Insert operation, and the identical argument shows that the 
induction hypothesis is preserved. (Unlike die case of the Insert operation, the key being updated will never 
fall within a range in a gap's region of currency, because no gap can be current over a range containing a key 
in the directory.) 
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Finally wc show that the induction holds for Delete operations. In each representative in the write quorum, 
a new gap is created whose region of currency is (/?,s), where p is the real predecessor of the key being deleted 
and s die real successor. If p was not already present in a representative, it is inserted. The region of currency 
of the new gap extending backward fromconsists of the ranges before p previously in the canonical form of 
the region of currency of the gap from which the new gap was split off. Similarly, if 5 is inserted, the gap 
extending forward from swill have as its region of currency the ranges after 5 previously in the canonical form 
of the region of currency of the gap from which the new gap was split off. (Figure 16) 

Before Delete(Mk") 

Representative r Region of Currency 

After Delete( , fk") 

Region of Currency Representative r 

Figure 16: Effect of the delete operation on regions of currency, within write quorum 

The keys p and s are, by definition, currently in the directory, so all of the gaps whose regions of currency are 

modified sdll sadsfy die induction hypothesis. 

The gaps whose regions of currency were not modified could not have had any ranges bounded by k in the 
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canonical forms of their regions of currency. If this were the case, the gaps would of necessity have covered or 
bordered k. In cither case, the deletion of k from the representative would have modified the gaps' region of 
currency, which, a priori, did not happen. Thus, these gaps satisfy the induction hypodicsis given only that 
dicy satisfied it before the delete and the induction hypothesis holds within the write quorum. 

Outside of the write quorum the situation is as follows: The new gap in die representatives of the write 
quorum covers (p,s). Gaps whose regions of currency did not intersect this region arc unaffected. The new 
gap has a higher version number than all others in this region, so any portions of odier gaps' regions of 
currency that lay in (p,s) are no longer in their regions of currency. Thus, die deletion has the effect of 
removing ranges entirely contained within (p,s) from the canonical forms of the gaps' regions of currency. By 
Lemma 2, any range in the canonical form that had k as one endpoint must have had p or s as its other 
endpoint and so was contained in (p,s). Thus, all ranges remaining in the canonical form after the deletion are 
bordered by keys other than k that were previously in the directory. But these keys are still in the directory 
after the deletion, so the induction hypothesis is preserved for gaps outside of the write quorum in a Delete 
operation. This completes the proof. 

4.3 .2 The Algorithm 

In this section we describe our real predecessor algorithm. An argument for the correctness of the 
algoridim is presented as die algoridim is described. A formal statement of the algoridim is given in Figure 
17. 

The node determining £'s real predecessor asks each representative in a read quorum to return the gap that 
covers k or has k as its high boundary. All of these "predecessor gaps" cover some range in common, which 
we call (ktk). (kx is die highest of the low endpoints of the returned gaps.) Furthermore, the gaps represent 
information from an entire read quorum so no representative contains any higher version numbered 
information pertaining to (k,k). Thus, the predecessor gap with the highest version number, which we call 
gcun, is current over the region (k$ k). 

By Theorem 1 and Lemma 1, gcurr's region of currency can be expressed in canonical form as a union of 
ranges bounded by keys in the director)'. Since (k^ k) is in g 's region of currency, it must be contained 
entirely in one of these ranges. The high end point of this range is k (since k is in the directory prior to the 
delete operation), and the low end point is k's real predecessor, by Lemma 2. Of course, the low end point 
must lie within g or at its low boundary, which we call k . 

In the final stage of die algorithm, each representative in the read quorum is asked to return die entry for 
the highest key less than k within the range of gcun whose version number is higher than g 's. If a 
representative contains no entry in the specified range with a sufficiently high version number, it returns a 
message to that effect. At tliis point, two things can happen. If none of die representatives can return an 
entry, gcurr's low end point, &2, is k's real predecessor. If one or more such entries exist, die highest key for 
which an entry is returned, p, is k's real predecessor, by die following argument. 
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All keys for which entries are returned must lie outside g 's region of currency. Thus, p lies outside of 
%currs r c £ i ° n °f currency. Therefore, the key diat delimits die range in the canonical form of gcurr's region of 
currency in which (k^k) lies must be > p. But no key between p and K exclusive, is currently in the directory; 
if there were such a key, at least one of die representatives in the write quorum would have contained a 
current entry for it, which it would have returned in the final stage of the algorithm. Thus p is k's real 
predecessor, and the highest version numbered entry returned for p is current. 

4.3 .3 Enhancements to the Real Predecessor Algorithm 

As in the other procedures presented, efficiency is sometimes sacrificed for clarity in die RcalPrcdecessor 
procedure of Figure 17. There are several additional improvements that would be made in any practical 
implementation of the algorithm. The procedure would check if the second round of information exchange 
were necessary before doing it. If the highest predecessor key returned in response to die first request for 
information has a higher version number than any of the returned gaps that cover it, then diis key must be the 
real predecessor, and there is no need to continue searching. 

This technique can be used to reduce message traffic even further by having each representative return 
several gaps and entries preceding die key being deleted rather than just one. The procedure would check if 
any key for which it had information (entry or covering gap) from all representatives had a higher version 
number than any covering gap. If this is the case, then the highest such key is the real predecessor, and no 
second stage is necessary. The number of entries returned by the representatives in the first stage of the 
algorithm controls a performance trade off between execution time at the nodes and inter-node message 
traffic. If many entries are returned, it is likely diat the second round of information exchange will not be 
necessary; however, the execution time at each node is proportional to the number of entries sent. The 
number of entries between the key being deleted and its real predecessor will on average be half of the key's 
delete list size. (Recall that die delete list consists of all of the entries between a key's real predecessor and its 
real successor.) Thus, the formula developed in Section 5.2.4 diat enables us to predict the average length of a 
delete list can aid in choosing an appropriate number of entries to return in the first stage. In fact, the 
limiting behavior described in Section 5.2.5 shows that diat the second stage of the algorithm can almost 
always be avoided if several entries are returned in the first stage. 

Even if the second stage is required, it may not be necessary to ask for additional information from all of the 
representatives in the read quorum. Any representative that has already sent entry or gap information for the 
entire range diat has been determined to contain the real predecessor (the range covered by £ c w r r ) has no 
more information to add and need not participate in the second round. 

The real predecessor and real successor can be determined simultaneously by putting requests and 
responses for both tasks in each message, thus reducing by almost one-half the message traffic required to 
find the real predecessor and successor. In the actual implementation, there would be a single 
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Real P r e d e c e s s o r ^ IN k : k e y ; OUT p r e d : k e y , p v a l : v a l u e , p v e r , g v e r : v e r s i o n ) ; 
{ R e t u r n s t h e key, v a l u e and v e r s i o n number of k ' s r e a l p r e d e c e s s o r , 
and t h e h i g h e s t v e r s i o n number in t h e r ange bounded by k and k ' s 
r e a l p r e d e c e s s o r , e x c l u s i v e . } 
var quorum: a r r a y [ l . . R ] of D i rRep , 

MaxGapVer,CandGapVer,CandKeyVer: v e r s i o n , 
MaxGapKey,CandKey: key , 
CandKeyVal: v a l u e ; 
MaxGapRep: i n t e g e r ; 
CandFlag : b o o ! e a n ; 

beg in 
quorum := Col 1ec tReadQuorum() ; 

{Get i n fo on p r e d e c e s s o r gaps in each r e p in t h e read quorum & f i n d 
ou t which rep has t h e gap w/ t h e h i g h e s t v e r s i o n number, ( g - c u r r ) } 

MaxGapVer := Lowes tVers ion - 1 ; {A C o n s t a n t } 
fo r i := 1 t o R do 

beg in 
Di r R e p P r e d e c e s s o r ( q u o r u m f i ] , k , C a n d K e y , C a n d K e y V e r , C a n d K e y V a l , 

CandGapVer) ; 
i f CandGapVer > MaxGapVer t h e n 

beg in 
MaxGapVer := CandGapVer; 
MaxGapKey := pred := CandKey; 
pver := CandKeyVer; 
pval := CandKeyVal; 
MaxGapRep ;= i ; 

end 
end; 

{Find c l o s e s t e n t r y which s u p e r s e d e s g - c u r r in any rep in t h e 
read quorum. Th i s w i l l be t h e r e a l p r e d e c e s s o r . } 

fo r i := 1 t o R do 
i f i <> MaxGapRep then 

begin 
Di rRepSuperseder (quorum[ i ] ,k .MaxGapVer ,MaxGapKey , 

CandFlag ,CandKey,CandKeyVer ,CandKeyVal) ; 
i f CandFlag { I f t h i s rep has a c a n d i d a t e f o r r e a l p r e d . . . } 

{and i t ' s c l o s e r t han t h e c l o s e s t c a n d i d a t e t h u s f a r , or 
e q u a l l y c l o s e wi th a h i g h e r v e r s i o n number t h e n . . , } 

and (CandKey > pred 
or (CandKey = pred and CandKeyVer > p v e r ) ) then 

beg in { T e n t a t i v e l y s e l e c t t h e c a n d i d a t e } 
pred := CandKey; 
pval := CandKeyVal; 
pver := CandKeyVer 

end 
end 

end 
Figure 17: Real Predecessor Operation 
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"RcalNcighbors" procedure instead of separate RealPrcdccessor and RealSuccessor procedures. The 

procedure would initially ask for gaps and entries surrounding die key on both sides. If tiiis did not provide 

enough information to find the key's real predecessor and successor, it would send a request for a 

"supcrscder" of cidicr or both "current gaps," as required. 

In the procedure for the Delete operation in Figure 13, the key to be deleted is looked up prior to 

determining its real neighbors. In practice the lookup would be combined witii the first.stage of the real 

neighbors determination. 

The critical factor determining the execution speed of the directory operation procedures presented is the 
number of small, fixed length messages sent in performing the operation. Thus we use diis number as a 
complexity measure for our algorithms. Our real predecessor algorithm, with die improvements described, is 
extremely fast in the average and worst cases. The average performance of this algoridim is close to the trivial 
lower bound of one exchange of messages with each member of a read quorum. The worst case performance 
is two rounds. The Delete operation requires one additional round to coalesce the range between the real 
predecessor and successor. 

The procedure, including the improvements, is easy to implement. It also has the following useful property. 
The correctness of the algorithm does not depend on the fact that the key whose real predecessor is being 
determined is actually in the directory. Thus, one can locate die real neighbors of any key, regardless of 
whether it is in the directory. This could, for instance, be used to implement a "range delete" operation, 
which deleted all of the keys between one key and another. This operation would require no more message 
transmissions than the deletion of a single key. 

4.4 Correctness Arguments 

The correctness of a directory suite's operations depends on Lookup always returning current information 

about a key. Because every read quorum intersects every write quorum, Lookup will return current 

information as long as that information has a version number greater than that of any non-current 

information. These correctness conditions are the same as those required for Gifford's file replication 

algorithm. 

Two phase locking and the lock compatibility matrices specified in Section 4.1 are strong enough to 
guarantee the serializability of transactions at any single representative. Traiger et al. [Traigcr et al. 82] have 
shown that if all nodes participating in a distributed transaction execution follow two phase locking protocols 
that guarantee die serializability of transactions at individual nodes, then the resulting global schedule is 
equivalent to some serial schedule of transactions. Thus, die directory replication algoridim preserves the 
serializability of transactions that use it. 
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The Insert and Update operations both set the version number of the entries they modify to be greater than 
die greatest version number previously associated with die keys of diose entries. Therefore, the current data 
for each key has a version number greater than that of any non-current data for diat key. 

Delete coalesces the range between the real predecessor and real successor of the key to be deleted. By the 
definitions of real predecessor and real successor, there can be no current entries (other than the entry to be 
deleted) in die range to be coalesced. The operation assigns to the gap covering the coalesced range a new 
version number that is higher than any version number previously associated with any key in diat range. 
Therefore, as with Insert and Update, die current data for each key in the range has a version number greater 
than that of any non-current data for that key. 

4.5 More on Synchronization and Recovery 

Directory representatives, as described in Section 4.1, arc synchronized to ensure that all transactions using 
their operations can be made scrializable.7 In addition, all information in a representative is recoverable and 
operations can be completely redone or undone by recovery processing. Thus, arbitrary directory 
representative operations may be composed in atomic transactions. This property simplifies the correctness 
arguments for die directory replication algorithm by allowing the algorithm to ignore the consequences of 
concurrency and failures during directory suite operations. However, the use of directory representative 
operations is not arbitrary, and the restrictions that the directory replication algorithm imposes on their use 
can be exploited to enhance the synchronization and recovery performance of directory representatives. The 
resultant directory representative objects may show non-serial behavior [Schwarz and Spector 84] if they are 
used outside of this directory replication algorithm. 

The basis for improvements to concurrency and simplification of recovery in Delete is Gifford's observation 
[Gifford 81] that data and its version number in one representative may be replaced at any time by more 

current data with a higher version number from another representative. It is easy to sec that the contents of 
the directory, as observed by the results of Insert, Update, Delete, and Lookup operations are unaffected by 
such a replacement. Of course, care must be taken to prevent an independently executing update from being 
overwritten with the data and version number from the other representative. A temporary write lock on the 
data being replaced is sufficient concurrency control for this purpose. 

Improvements to concurrency and recovery can be accomplished with modifications to DirRcpCoalcscc. 
The Delete operation is the only invoker of DirRcpCoalcscc, and it always passes the real predecessor and 
real successor of a key to be deleted as arguments; therefore the only current entry modified by 
DirRcpCoalcscc is the entry being deleted from the directory. To increase concurrency and simplify 
recovery, the DirRcpCoalcscc operation can be redefined to take three additional arguments. The first new 

For these transactions to be scrializable, all other types of objects used by the transaction must also preserve scriali/ability. 
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argument is the key of the entry being deleted. If the transaction performing die DirRcpCoalesce is aborted 

this key is used to determine the entry that must be restored. When the DirRcpCoalesce operation is undone, 

the gaps on cither side of the entry being deleted receive the current version numbers for those gaps, which 

arc determined along with the real predecessor and real successor and passed as the second and third 

additional arguments to DirRcpCoalesce. It is unnecessary to restore any ghost entries during the undo of a 

DirRcpCoalesce operation. 

Concurrency can be increased by releasing die RcpModify locks set by DirRcpCoalesce on all keys, except 
for the key of the entry actually being deleted, as soon the operation completes. The locks do not need to be 
retained, because the operation does not modify data other than version numbers in these gaps, and version 
numbers are used in very well defined ways by the weighted voting algorithm. 

Additionally, RepLookup locks on data less than the real predecessor and greater than real successor of a 
key being deleted need not be held beyond the first phase of the RealPrcdecessor and RealSuccessor 
operations. These locks are obtained only to guarantee that the algorithm for determining the real 
predecessor and successor sees a consistent version of the directory suite. 

5 Performance Characterization 

In this section, we present the results of simulations and construct and analyze a model of the algorithm as 
applied in the simulations. The system studied in the simulations and the model consists of a directory suite 
initially containing a certain number of keys into which Inserts, Updates and Deletes occur sequentially with 
equal likelihood. The keys to be inserted are chosen randomly from thos£ not in die directory, and the keys 
to be updated or deleted are chosen randomly from those in the directory. Read and write quorums are 
selected randomly. (Lookups are not performed as they have no effect on the contents of the directory suite.) 

The key space used in the simulations consists of the integers from one to one billion. The madiematical 
model is described in sufficient generality to apply to any finite key space. It docs not make sense to consider 
the system with an infinite key space, as keys to be inserted arc chosen at random from those not already in 
the directory. If an infinite key space were used, diis would amount to selecting an object at random from art 
infinite set, an operation which is not well defined. Interestingly, the cardinality of the key space docs not 
affect the analysis except insofar as it affects the validity of several simplifying assumptions. This fact is 
discussed at greater length in Section 5.2.6. 

Various performance measures can be used to evaluate the performance of our algorithm. In our view, the 
most important performance measure is the number of rounds of message exchanges with a read or write 
quorum necessary to perform each directory operation. Widi one exception, this measure is a constant which 
docs docs not vary from instance to instance of a given operation. The exception is the Delete operation, 
which, with the suggested enhancements, requires cither two or three rounds of messages depending on the 
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results of the first round. (See Section 4.3.3.) The communications cost of the directory operations are 
summarized in Figure 5. 

Rounds t o Rounds t o T o t a l # To t a l # 
O p e r a t i o n Read Quorum W r i t e Quorum Rounds Messages 

I n s e r t 1 1 2 2(R+W) 
Update 1 1 2 2(R+W) 
D e l e t e 1 or 2 1 2 or 3 2(R+W) or < 2(2R-1+W) 
Lookup 1 0 1 2R 

Figure 18: Communications Costs of Directory Operations 

The node doing a directory operation has to send RPC's to read and write quorums and, in the case of read 
quorums, scan the responses to determine die current information. Thus the work done by this node is 
proportional to the total number of messages required for an operation, and is generally small. More 
interesting is the v/ork done by die nodes storing the directory representatives. All directory representative 
operations except for the second and third steps of the Delete operation amount to either looking up or 
updating the information associated with a single key or gap. The time required to perform this operation 
depends on the number of entries in the representative and data sttucture used to store the entries. If 
balanced trees arc used, the time is proportional to the log of the number of entries. The storage space 
required at each representative is proportional to the number of entries stored at the representative. 

Thus, the first performance measure we concentrate on in our performance studies, which we call the size 
ratio, is die ratio of entries in a directory representative to keys in the directory. The size ratio indicates the 
storage required at each representative as a function of the storage required for a single site directory. A size 
ratio of one indicates that a node has exactly as many entries as a single site directory containing the same 
keys. The simulations measure the size ratio dirccdy, while die analytic model allows us to break the size ratio 
down into three composition ratios based on a classification of directory entries into three categories. The size 
ratio is the sum of the three composition ratios. 

In the second step of the Delete operation (DirRepSuperseder) each representative has to scan the delete list 
for the key being deleted. In the third step (DirRcpCoalcscc), each representative has to coalesce the delete 
list into a single gap. In both steps, the total work required is proportional to the delete list length. Thus, the 
second performance measure we study in our simulations and analysis is the average delete list length. The 
average is taken over all keys in the directory. 

As explained in Section 4.3.3, the second step of the Delete operation is necessary only if one or more nodes 
in the read quorum did not return their entire delete list in the first step. Thus knowing the expected value of 
the average delete list length allows us to ask for enough information in the first step so that the second step 
will usually be unnecessary. Of course this would not be feasible if the expected value of the average delete 
list length were high. However, this turns out not to be die case. 
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In summary, the size ratio characterizes the space complexity of our algorithm. The size ratio and average 
delete list length characterize the significant components of, the time requirements of our algorithm. 
Knowledge of the average delete list length is useful in ensuring that the first round of the delete operation 
returns enough data so that die second round in unnecessary. The size ratio and average delete list length are 
the performance measures that form the basis of our performance studies. In the analysis, the size ratio is 
further subdivided into composition ratios which tell us more about how the storage space is being used. 

5.1 Simulation Results 

The shaded bars in Figures 19 and 20 show the size ratios and delete list lengths measured in simulations for 
a variety of directory configurations. (The unshaded bars show predicted values obtained from the 
mathematical model in Section 5.2.) In the simulations, each directory suite initially contained one thousand 
entries. The duration of each simulation was twenty thousand operations, and performance measures were 
gathered during the final ten thousand operations. 

1.2 

1.1 

1.0 

.9 

.8 

.7 I 1 

i I I I I ! i 
E 

i 
• I A, 

P, 

stue 
redi 

ii 

cte d 

• O 3-2-2 3-1-3 5-3-3 5-2-4 9-5-5 9-4-6 9-3-7 9-2-8 9-1-9 
Configuration 

Figure 19: Size Ratios for Various Directory Suites 

The simulation results in Figure 19 show that the size ratio remains very close to one for all of the suite 
configurations tested. Thus the storage required at each representative and the time required to locate an 
entry at a representative arc only slightly higher dian for a single site directory. The results in Figure 20 show 
that the average delete list length is less than a single entry for every configuration tested. This implies that 
the second and third steps of the Delete operation will run very quickly at the representatives, and the second 
step will rarely be necessary if a few entries are returned in the first step. 

More detailed simulation results for 3-2-2 directory suites with one hundred, one diousand, and ten 
diousand keys initially in die directory arc shown in Figure 21. The duration of each of these simulations was 
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Figure 20: Delete List Lengths for Various Directory Suites 

two hundred thousand operations, with performance data gathered during the final one hundred thousand 
operations. 

1000 Kevs 100 Keys 

Ave Max StdDev 
1.11 1.27 0.03 

Ave Max StdDev 
0.44 9 0.81 

Size Ratio 
Avg Max Std Dev 
1.11 1.19 0.02 

Delete List Size 
Avg Max Std Dev 
0.44 9 0.81 

10000 Kevs 

Avg Max Std Dev 
1.11 1.13 0.01 

Avg Max Std Dev 
0.44 10 0.81 

Figure 21: Detailed Simulation Results for three 3-2-2 Directory Suites 

These additional simulations indicate that die average values of the performance measures do not depend 
on the initial number of keys in the directory suite. Thus, average space requirements appear to be 
proportional to die number of keys in the directory, just as in a single site directory. The time requirements 
depend on the number of keys in the directory in the same manner as for a single site directory. The standard 
deviation of the size ratio decreases as the number of entries increases. This is easily explained by the fact diat 
the numerator and denominator of the size ratio are the number of entries in a representative and the number 
of keys in the directory, respectively. Similar variation should be observed in both of these random processes 
regardless of the directory size, but a given variation in the numerator or denominator will cause a greater 
change in the fraction if the denominator (the number of keys in the directory) is large. 

The maximum delete list size observed was 10. This is an indication of die worst case time to perform die 
directory representative operations for the second and tiiird steps of die delete operation. Care should be 
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taken not to interpret this as the true worst case time for any possible run. Theoretically, a delete list can be as 

long as the number of keys that have ever been deleted from die directory. The longer a run, the higher the 

maximum observed delete list is likely to be. However, the fact that the largest delete list observed in tiirce 

runs of one hundred tiiousand operations each was only 10 entries indicates that large delete lists will 

probably not be a problem in practice. 

5.2 Analytic Model 

The algorithm as applied in the simulations was modeled and analyzed to predict various performance 

characteristics. The goals of the analysis were to increase our confidence in the simulations by corroborating 

their results, to gain further insight into the behavior of the algorithm, and to produce a fast, reliable mediod 

for determining the performance of the algorithm in a given application. 

In this section, we describe the model and our method of analysis, and present the analysis. A set of 

formulae to predict performance characteristics are derived in die analysis. These formulae are used to check 

the results obtained from the simulations and predict performance trends exhibited by the algorithm under 

various conditions. 

5.2.1 Construction of the Model 

The system can be modeled as a Markov chain in a straightforward fashion. One state corresponds to each 

possible contents of the entire directory suite, henceforth called a system state. The transitions correspond to 

the changes in system state effected by the operations. Transition probabilities are induced by the fact that 

the operation to be performed (Insert, Update, or Delete), die key to be operated upon, and the write quorum 

are chosen at random. 

In the simulations, the system appeared to display equilibrium behavior: each system attribute being 
monitored approached an average value that did not vary over multiple runs of sufficient length. For a 
Markov model to be of use to us in calculating these values, it too must display this equilibrium behavior. It 
is sufficient that the model achieve stochastic equilibrium. The simplest class of Markov chains achieving 
stochastic equilibrium are those that are finite and irreducible. (By finite, we mean that they contain a finite 
number of states, and by irreducible, we jnean that each state can be reached from every other state.) 

The straightforward model described above does not possess either of the requisite properties. It is not 
finite, as version numbers can grow without bound. Repeatedly updating a single key produces an infinite 
sequence of distinct states. Neither is die straightforward model irreducible: once the system leaves any state, 
it can never get back to diat state. This can be seen by observing that the version numbers associated with a 
fixed key in a fixed representative in successive states form an increasing sequence. Any operation results in 
the version number associated with some key increasing in some representative and it can never return to its 
original value. However, die model displays an extremely high degree of lumpability [Kcmcny and Sncll 60]. 
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That is to say, many states are practically identical to some other state, so sets of similar states can be lumped 
together to produce a smaller, simpler model. Wc shall attempt to construct a new model that possesses the 
desired properties by diis process of lumping. 

This is not the straightforward task that it might appear to be. The obvious way to deal with die fact that 
version numbers increase without bound is to equate states with identical ordering of pairs of keys by version 
number, thus eliminating the absolute version numbers. However, attempts to lump states based on order 
relations between version numbers alone run into complications. Even if such an attempt succeeded, the 
model produced might well be finite but not irreducible. An alternative approach, which involves 
abandoning the version numbers entirely, produces the desired result. Before we describe it, we must take 
care of some preliminaries. 

All of the entries in each representative of a directory suite can be divided into three classes that correspond 
to terms introduced in previous sections. A current entry is an entry for a key that is still in the directory that 
has highest version number associated with that key in any representative. Current entries are the only entries 
that contain up to date information. An outdated entry is a non-current entry for a key that is still in the 
directory. If an entry is outdated then some other representative contains an entry for the same key with a 
higher version number. A ghost entry is an entry for a key diat is no longer in the directory suite. A ghost 
entry can be diought of as the ghost of a key that used to "live" in die directory. It should be clear diat all 
entries in a representative fall into one and only one of these classes. 

Let us call a representative with all version numbers removed and with the class of each entry (current, 
outdated or ghost) appended to the entry the concise representation of the representative. Note that the 
concise representation contains no explicit information about the gaps between entries. By extension, we call 
the collection of concise representations of all representatives in a suite the concise representation of the suite. 
The concise representation has two properties that make it useful: 

1. Given the concise representation of a system state, an operation to be performed on the suite 
(Insert(key), Update(key) or Deletc(key)) and the write quorum selected for the operation, one 
can determine die concise representation of the resulting system state. 

2. All of the important information concerning a system state is fully determined by its concise 
representation; that is, all system states sharing a concise representation coincide in all important 
attributes. By important attributes, we mean the performance measures: delete list length and 
composition ratios, and several other attributes for which wc assert that equilibrium distributions 
exist in the analysis of our model. 

The proof of Property 1 is a somewhat tedious case analysis, which is implicitly performed for other reasons 
in Appendix I. The intuition behind the proof is that version numbers are used solely to find out which class 
an entry belongs to, when performing the various operations on die suite. 

Property 2 must be proven separately for each important attribute. It is true for the composition ratios, as 
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the concise representation of a representative clearly contains the same number of current, outdated and 

ghost entries as the representative itself. It is true for average delete list lengdi, as delete lists consist of all of 

die ghost entries between two keys in die directory, and system states sharing a concise representation 

represent the same directory, and have ghost entries for the same keys at corresponding representatives. The 

reader can easily check that tliis property holds for all other system attributes on which we assert the existence 

of an equilibrium distribution in the analysis. 

We are now ready to describe the method by which we simplify our model. We define a new model where 

all system states sharing each concise representation are lumped together to form die model states. Property 1 

above tells us that die induced transition probabilities in this model are well defined. This is required for the 

model to be a well defined Markov chain. 

The new model is finite by the following argument. The key space is finite, and each representative contains 
entries for some subset thereof. Each entry belongs to one of the three classes; dius, there are only a finite 
number of possible concise representations for representatives. A suite consists of a fixed number of 
representatives, so there arc only a finite number of possible concise representations for system states. This 
places a finite an upper bound on the number of states in our model. 

The model is irreducible by the following argument. From any system state, it is possible to reach a system 
state where all representatives contain no entries. This can be accomplished as follows: first delete all of the 
keys in the directory in any order with any write quorums. At this point, all of the representatives can only 
contain ghost entries, and if a single key is inserted into the directory and then deleted using the same write 
quorum, all of the representatives in the quorum will be completely empty. Repeat this insert/delete process 
as many times as necessary to include each representative in at least one write quorum. All system states 
where none of the representatives contain any entries have the same concise representation hence they are 
represented by a single state in the model. But this state also represents the initial system state, from which all 
other system states can be reached. Thus, any model state reachable from the initial state can be reached from 
every state. 

The Markov model achieves stochastic equilibrium, because it is finite and irreducible. There is one other 
property that the model must have in order to fulfill our requirements: it must not lump together system 
states that 3 ie not really equivalent. In other words, all system states represented by each model state must be 
functionally identical in the sense that they coincide in all attributes for which we wish to infer the existence 
of an equilibrium distribution. However, this is precisely what Property 2 tells us. 
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5.2.2 Method of Analysis 

Our model is guaranteed to achieve stochastic equilibrium, so it is theoretically possible to determine die 
precise probability of being in any state. In practice, this would be impossible due to the huge size of die 
system. Also, the resulting probability distribution would not be particularly informative as such, and the 
processing necessary to derive any useful figures from it would be prohibitive due to its size. However, die 
existence of diis model proves that any attributes common to all system states represented by each state of the 
model have well defined average values. Thus it makes sense to formulate relationships among such averages 
and solve for them. 

The performance characteristics of primary concern to us are all indmatcly related to die composition of 
each representative in terms of the diree classes into which entries arc divided. As a consequence of the 
existence of our model we can assert that a dynamic equilibrium exists in each of diese classes in each 
representative. These assertions can take the form of balance equations equating the rates of flow into and out 
of each category in a single representative. Such equations hold equally well for all of the representatives in 
the suite due to the symmetry of the system. In the course of the analysis, we focus our attention on a single 
representative, but the results apply to every representative in the suite. 

These balance equations are naturally constructed in terms of three independent variables, and the system 
parameters N and W (defined in Section 5.2.3). In constructing die balance equations, we make some 
simplifying assumptions in the form of approximations in the equations. Each approximation will be noted 
and justified. The resulting equations constitute a linear system than can be solved easily. Expressions for die 
desired performance measures can be constructed from the independent variables, though we need to make a 
simplifying approximation in one derivation. 
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5.2.3 Formulation of Balance Equations 

The following variables arc used in formulating die balance equations. Script capitals represent stochastic 

variables, small letters represent unknowns in the balance equations, and capital letters represent constants 

(system parameters). 

C The number of current entries in the representative under observation. 

0 The number of outdated entries in the representative under observation. 

Q The number of ghost entries in the representative under observation. 

8 The total number of entries in the representative under observation. 
Note thatS = e + 0 + (j. 

36 The number of keys currently in die directory. 

9^ The number of entries in the delete list of a key k currently in the directory, in the 
representative under observation. (The delete list of a key consists of all of die ghost 
entries between the real predecessor and real successor of die key in a representative.) 

9 ( 2 * € D i r 3 J / 3 6 . ^ l s ^ e average delete list size in the representative under observation. 
Note diat 3) is only defined in states where 3G 0 (i.e. die directory contains one or more 
keys). 

cf E[C/3G] The expected value is taken over all states that represent directories containing 
one or more keys. C/3G is the fraction of keys in the directory that have current entries in 
the representative under observation. Thus, c/ is equal to the probability that a randomly 
chosen key in the directory has a current entry in the representative under observation. 

o' E[0/3G] The expected value is taken over all states that represent directories containing 
one or more keys. 0/36 is the fraction of keys in die directory that have outdated entries in 
the representative under observation. Thus, o' is equal to the probability diat a randomly 
chosen key in the directory has.an outdated entry in the representative under observation. 

d E[9] The expected value is taken over all states that represent directories containing one 
or more keys, d is the expected size of a delete list for a key chosen at random from those 
in the directory. 

N The number of representatives in the directory suite being modeled. 

W The write quorum size for the directory suite being modeled. 
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A formal statement of the rate balance assertion for current entries is: 
Efrhc number of entries entering the current class in a chosen representative in one operation] 

= E[Fhe number of entries leaving the current class in a chosen representative in one operation]. 

The expected values arc computed over a space consisting of all the state transitions in our model. Analogous 
assertions arc made for outdated and ghost entries. The expected values can be recast in terms of c', of and d. 
These expansions, though relatively straightforward, arc somewhat tedious, as they entail examining the inner 

workings of the directory suite operations in great detail. They can be found in Appendix I. 

The expansions yield die following balance equations, for current, outdated and ghost entries respectively: 

(N+W)c'+Wo'=2W 

, N-W , 

o — c 
N+W 

5.2 .4 Solution of Balance Equations 

The solution to the balance equations derived in the previous section is: 
, 2WJN+W)  

C ~N(N+3W) 

° ~N{N+3W) 

d _ 4(iV- W) 
~ N+3W 

The first performance measure for which we desire a formula is the expected value of the average delete list 

size: 
Zf[9] 

= d. 

The second performance measure is the expected value of the size ratio: 
E[8/3G] 

= E[(C + 0 + g)/3G] 
= E[C/3G] + E[0/3G] + E[Q/3G] 
= c ' + o ' + ElQ/X]. 

The three terms of this expression (E[C/3G], E[0/3G] and E[(j/3G]) arc the composition ratios. While we 
cannot exactly express the third term of this expression in terms of our unknowns wc can make a very good 
approximation based on the fact that almost every ghost in a representative appears in two delete lists, tiiat of 
its real predecessor and that of its real successor. The exceptions arc the ghosts before the first key in the 
directory and those after the last, which only appear in a single delete list. But in the vast majority of states, 
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very few ghosts fall into this category. Thus the sum of the sizes of all delete lists in a representative is 

approximately equal to twice the number of ghosts. A formal statement of tliis assumption is: 

keD'ir 

Dividing bodi sides of this equation by 23G and taking expected values over all states representing non-empty 

directories, we get: 
JfceDir 

E [ Q / 3 G ] = E [ ( £ 3A)/23G] 

d 

Substituting back, our formula for die size ratio becomes: 

E[S/%]=c' + o'+4 
^2(N+W) 
" N+1W 

5.2.5 Results 
Figure 19 (p. 32) compares the average size ratios observed in the simulations with predictions obtained 

from the formula developed in the previous section. Figure 20 (p. 33) compares actual and predicted average 
delete list lengdis. The predicted values are nearly identical to the observed values. We compared simulation 
and analysis results for many other system attributes and observed this level of agreement uniformly. 

Figure 22 shows the predicted average composition ratios in a 20 - ( 2 1 - W) - W suite, for all possible values 
of W. Figure 23 shows predicted delete list lengths for these suites. Varying die quorum sizes in a fixed size 
directory suite in this manner controls a fairly complex performance tradeoff: increasing the write quorum 
size increases the availability of the read operation while decreasing its cost, and decreases the availability of 
the write operation, increasing its cost. In the delete operation, die work done at each node decreases, but the 
number of messages that must be sent increases. At one end of the spectrum (W=20) there is the universal 
update strategy; at die other ( W = l l ) , there is a strategy where roughly half the representatives arc written 
and half are read. Note that in the universal update strategy, the size ratio is 1 and there are no outdated or 
ghost entries, as the representatives arc just copies of the single site directory. The graphs show that for the 
spectrum under investigation, the representatives contain at worst 20% more entries than a single site 
directory and the average delete list size remains shorter than a single entry. 

Figures 24 and 25 show respectively the predicted average composition ratios and delete list lengths in 
(2 / -1) - / - / suites. Increasing read quorum, write quorum and suite sizes simultaneously, as illustrated in 
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Figure 22: Expected Composidon Ratios in a 20 - (21 — W) - WSuite 

these graphs represents a fairly straightforward performance tradeoff: As the sizes increase, the availability of 
the system increases, but the number of messages that must be transmitted for all operations increases as well. 
Specifically, the number of representatives that can be destroyed while still maintaining availability in a 
(2/— 1) - / - / suite is /— 1. The flatness of the curves shows that the amount of work at each node in a Delete 
operation, and the size and makeup of each representative do not vary appreciably over the spectrum. Thus 
the cost scales up proportionately to the increased availability with no added penalty for very high availability. 

Finally, we present some fairly surprising results concerning the limiting behavior of the performance 
measures. First let us examine the expected length of a delete list, ± Recall, the formula for d is: 

4(N-W) 
N+3W 

Let us maximize it subject to the (real) constraints that N>1 and j< W<N. As wc would expect, diis 
expression grows as die write quorum decreases. Thus the expression achieves its maximum when Wis set to 
TV 

, its lowest permissible value. So: 
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Figure 23: Expected Delete List Lengths in a 20 - (21 - W) - W Suite 

d< 

N 

f 9 20 
W 

In otlier words, tlic average size of a delete list will not grow beyond .8, no matter what values we pick for the 

parameters. 

A similar result holds for the size ratio (E[S/36]). The expression for this quantity is: 
2(N+W) 
N+3W' 

Standard methods show that this expression, subject to the same constraints as before, also achieves its 

maximum when W=-, independent of N. Thus its value is bounded by: 

N 

2 

These two performance measures completely specify the significant time and space requirements of the 

system. Therefore, average performance cannot degrade without bound, regardless of what values wc choose 

for the parameters. 

In die simulations and analysis, wc assumed that the directory modification operations (Insert, Update and 
Delete) occur with equal likelihood. In practice, die operation mix will vary from application to application. 



43 

.Ql I I I I l i l l 

2 3 4 5 6 7 8 9 10 
i 

Figure 24: Expected Composidon Rados in a (2/— 1) - i - / Suite 

It is straightforward to extend the analysis to cover other operation mixes. This is accomplished by 
substituting the frequency of each operation for die appropriate terms in the balance equations, instead of 
assuming diat all such terms are 1/3 (Appendix I). We extended the analysis along these lines. For brevity's 
sake, we will not present the details of the analysis, but briefly summarize the results. 

We allow the probability that the operation is an Update, which we call P % to vary from zero to one. If the 
Insert probability is unequal to the Delete probability, the number of keys in the directory will dwindle to 
zero or increase without bound; thus we assume they are equal. Under diis assumption, Pu completely 
specifies all the operation frequencies. The extended analysis consisted of recasting the balance equations in 
terms of P % solving them and studying the solutions. 

For a 3-2-2 suite, the average delete list length does not vary significantly over die entire spectrum of Pu 

values, achieving a minimum of .43 at Pu=0 and a maximum of .5 at Pv= 1. Similarly, the size ratio achieves 
a minimum of 1.07 at / >

f / = 0 and a maximum of 1.25 at 7 >

£ / = 1. In fact, the favorable limiting behavior results 
presented above can be generalized. For all legal values of A-, W and P % die average delete list size will 
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Figure 25: Expected Delete List Lengths in a (2z-1) - / - / Suite 

always be <1, and the size ratio will always be <L5. Thus the performance of the system remains good for any 

(random) operation mix. 

5.2 .6 Discussion of the Analysis 

TTie primary purpose of this section is to discuss the validity of the analysis and applicability of the results. 

Since the model itself is exact the correctness of die assumptions embodied in the analysis determine its 

validity. Therefore, we shall enumerate and examine the four assumptions: 

1. In each balance equation, we assumed that the three operations (Insert, Update and Delete) occur 
with equal probability, (p. 51) 

2. In the balance equation for current entries, we assumed that the probability that a representative 
contains an entry for the real predecessor of a randomly chosen key in the directory was equal to 
the probability that it contained a randomly chosen key in the directory, (p. 52) 

3. In die balance equations for current and ghost entries we ignored the possibility of a ghost entry 
becoming outdated or current in the Insert operation, (pp. 53, 55) 

4. In the formula for E[Q/36] we assumed that each Ghost in a representative appeared in exacdy 
two delete lists, (p. 39) 

The first assumption holds in all states of the model except those representing directories containing every 
key in the key space or no keys at all. One cannot insert a key if there are no more keys to insert, and one 
cannot delete a key if there are no keys in the directory. However, these "boundary states" represent a 
negligible fraction of all system states and occur with extremely low probability, assuming die key space is 
reasonably large. If the key space is small, it takes a much shorter run of inserts to fill the directory or deletes 
to empty it; tiius these boundary states occur with much greater likelihood. In fact, the key space used in the 
simulations was large enough that tiiesc states were never encountered. 
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The second assumption concerns the probability that a representative contains an entry for the real 
predecessor of a chosen key. In any given system state, the number of keys in the directory diat have an entry 
in a given representative can differ by at most one from the number of keys whose real predecessor has an 
entry in this rcprcscntadve. This is so because all of the keys in die directory except the last one arc the real 
predecessor of another key in the directory. Thus, the probability that a randomly selected key from the 
directory has an entry in this rcprcscntadve differs by at most 1/3G from die probability diat the real 
predecessor of a randomly selected key has an entry in the representative. But if die key space is large, 3G will 
be large in die system states that occur witii high probability and this assumption will be almost correct. 

The third assumption is that ghost entries cannot enter the outdated or current class in an Insert operation. 
This actually occurs when a key that has been deleted from the directory is reinserted while a ghost for the 
original incarnation of the key still exists in some representative. This event is extremely unlikely when the 
key space is large compared to the number of entries in a representative. The simulations were not run long 
enough for the directory to contain a sizable fraction of the key space, thus they erred in the same direction as 
this assumption. This assumption would seem to break down in ghost prone configurations where N is much 
greater than W. However, as long as the representatives contain ghosts for a negligible fraction of the key 
space, the assumption remains valid. 

The fourth assumption is very similar to the second. All ghosts in a representative except tiiosc before the 
first key in the directory and after die last key in die directory do occur in two delete lists. The otiicr ghosts 
occur in only one delete list. However, in all reasonably likely states, the ghosts are fairly well distributed 
among the keys in die director}', thus on average, only a small constant number of ghosts will be on only one 
delete list. For rcprescntadves containing reasonably many entries, these few ghosts will be "swamped" by 
the ghosts that appear on two delete lists, and 5/2 will be almost identical to Q/3G. If the key space is 
reasonably large, the approximation will be good in all reasonably likely states and the assumption will be 
valid. 

In summary, all of the assumptions quickly become reasonable as die key space gets large. This is the only 
point where the cardinality of the key space enters into our analysis. It was not used explicitly in any of the 
equations. None of die assumptions break down when N or W get large (assuming the key space is large); 
thus, the results concerning limiting behavior are valid. This also implies that the formulae can be used with 
confidence for any parameter values. 

A note should be added concerning the equilibria observed in die simulations. These equilibria definitely 
did not represent true equilibrium state distributions over our entire model. This is clearly demonstrated by 
the fact that the simulations did not generate identical average values for the number of keys in the directory 
(3G) from run to run. The observed average values for 3G were clearly related to die initial number of keys in 
die directory in each run. This is not at all surprising, when one considers that the number of states in the 
model is exponential in the cardinality of die key space, and the simulations were run for far fewer steps than 
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the key space cardinality itself. We proved diat a simulation of sufficient length would display equilibrium 

behavior over die entire model, but our runs were not of sufficient length. This leaves unexplained the fact 

diat the runs exhibited predictable equilibrium behavior for all of die performance measures of concern to us. 

The explanation for this phenomenon lies in the fact that our simplified model is still highly lumpable. 

Moderately sized "clumps" of contiguous states with reasonably high probabilities of occurrence, such as 

those traversed in each run of the simulation, have the same average values for the performance variables as 

those predicted for the entire model. In fact, our analysis captures these clumps better than it captures the 

entire state space, as the clumps tend not to contain the "boundary states" where the assumptions break 

down. 

5.3 Discussion of Performance Characterizat ion 

The system simulated and analyzed was not entirely realistic. Read and write quorums would not be chosen 
randomly in practice. A node would more naturally communicate with easily accessible nodes. Also, because 
of die cost of establishing a communication session, the node would probably continue to communicate with 
the same nodes until it had no need for further communication or a failure occurred. Thus, in practice, the 
read and write quorums used by any given node would probably change infrequently. The random 
distribution of operations and keys was also unrealistic. However, we conjecture that the performance 
observed under real conditions will be as good as or better than that of the system studied. 

One possible usage pattern for the system is the following: a single read/write quorum that changes 
infrequently is used for all operations. This is a special case of the scenario described in the previous 
paragraph. Wc performed additional simulations to investigate the behavior of the system under this usage 
pattern. These simulations were identical to the ones previously described except that before each operation, 
a decision to change the quorum was made with probability />. Whenever it was determined that the quorum 
was to change, a single, randomly chosen member of the quorum was replaced with a representative chosen at 
random from those not already in the quorum. Thus, on any given iteration at most one member of the write 
quorum changed. This usage pattern could occur if a directory suite were being used by a single requester. 

Simulations were performed on 3-2-2 directories initially containing 100 keys, with p values of 0.1, 0.01, 
0.001, and 0.0001. Two hundred thousand operations were performed in each simulation and data was 
collected during the final one hundred thousand operations. The results showed that as the value of p 
decreases, die average delete list size decreases significantly from the value observed under random usage. 
The size ratios did not change significantly from the size ratios observed under random usage. These results 
indicate that the total number of outdated and ghost entries remains close to the total under random usage, 
but they are now concentrated outside of die write quorum. Thus, the delete lists actually encountered 
tended to be shorter than diosc observed under random usage. 
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The results of this simulation arc consistent with our conjecture that the performance of the system will be 

at least as good under realistic usage patterns as it was under the random usage studied in die simulations and 

analysis. 

As previously noted, die algorithm can be used with infinite key spaces. In fact, a natural choice for die key 
domain is the set of all alphanumeric strings, which is in principle infinite. The system studied in die 
simulations and analysis was not well defined for infinite key spaces, so it is natural to ask how well die results 
of the analysis apply to key spaces which arc in principal infinite. In practice, the effect of using theoretically 
infinite key spaces is identical to diat of using large but finite key spaces. Namely, it keeps the system away 
from boundary states where the assumptions made in the analysis break down. Thus, the analysis captures 
actual usage patterns over infinite key spaces as well as it captures any other actual usage patterns. 

One disadvantage of our analysis technique is that it can only be used to determine expected values for die 
performance measures. Thus we can only characterize the average case performance of our algorithm. It 
would be nice to have additional information on the probability distributions of the performance measures. 
The simulations give us some information along these lines, and we can gain some insight by reasoning 
directly about die worst case performance of our algorithm. 

The simulations and our intuition indicate that under realistic access patterns the size ratio will not vary 
much from its average value. But it is worth noting that one could construct a pathological sequence of 
operations wherein ghosts were allowed to accumulate in one representative while the directory remained 
almost empty, causing the.size ratio to grow without bound. TTiis could be accomplished by selecting one 
write quorum for all Insert operations and a second write quorum for all Delete operations that intersected 
the first in only one representative. However there is no reason this should occur in practice. 

Similar pathological sequences of operations to those described in the previous paragraph can cause delete 
lists to grow without bound in the representatives outside of the write quorum for Deletes. As long as the 
pattern continues, the long delete lists will not actually be encountered. If these representatives are eventually 
used in the write quorums for Deletes again, the first few Deletes at these representatives will encounter long 
delete lists. Thus these first few Deletes will run slowly at these representatives, but in the process, diey will 
purge die representatives of excess ghosts, so future Delete operations will run quickly. Furthermore it 
should be noted that even in such a patiiological case, a maximum of dirce rounds of messages are sufficient 
to perform the Delete operation; the extra work is all local to the representatives. This sort of situation is very 
unlikely to occur in practice, and even if it does occur, it should not cause problems, as even a very long delete 
list (say 100 entries) can be scanned and purged quickly if an efficient data structure is used to store the 
representative. If it is particularly important for some application that all Delete operations run fast, care can 
be taken to ensure that all representatives are frequently used in the write quorums for Delete operations, and 
so kept clean of excess ghosts. 
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6 Discussion 

The comparison of weighted voting with non-distributed techniques such as mirroring is a complex topic 

that tliis paper will not attempt to cover. However, it appears that there is a clear tradeoff between function 

and performance. Weighted voting provides higher survivability, reliability, availability, and easier 

maintenance than mirroring, but requires more inter-node communication and incurs the inefficiency and 

complexity of an underlying transaction mechanism. The advantages of weighted vodng primarily result 

from the storage of data at autonomous nodes that can be physically separated. Though the overhead of 

transaction and communication mechanisms may be reduced (or accepted because of their utility in 

constructing complex systems), directory suite operations will always require at least one non-local operation 

to preserve availability. 

Our algorithm may be used in various ways to implement replicated directories diat support a high volume 
of operations. If Lookup operations predominate, suite configurations with a large number of representatives 
and a write quorum much larger than the read quorum permit a high degree of parallelism; readers may 
simultaneously execute on the nodes that have copies of the data. For supporting a large volume of Insert, 
Delete or Update operations, it may be best to represent die directory as a collection of subdirectories, each 
using only a moderate number of directory representative servers. rrhen, multiple updates on the various 
subdirectories can occur in parallel. However die availability of the subdirectories may be lower due to the 
smaller suite sizes. 

Directory suites can be configured to take advantage of locality of reference with respect to keys. In 
particular, quorums can be chosen that permit reads to be done locally and non-local writes to be distributed 
among all the non-local representatives. For example, consider a 4-2-3 directory suite with key values in the 
range of 1 to 100, and locality such that transactions of Type A operate on entries having keys 1 to 50, and 
transactions of Type B operate on entries having keys 51 to 100. Wc assume that representatives Al and A2 
are local to transactions of Type A and representatives Bl and B2 are local to transactions of Type B. As 
shown in Figure 26, Type A transactions read from representatives Al and A2 and direct their updates to Al, 
A2, and either Bl or B2. Transactions of Type B behave analogously. In this example, all inquiries can be 
done locally and the non-local write that is required for modification operations is evenly distributed among 
the remote representatives. 

Throughout the paper, we have assumed that the four directory operations use the same read and write 
quorum sizes in a given suite. Herlihy points out that additional quorum choices are opened up if this 
restriction is dropped [Herlihy 86]. In his work, each operation has its own read and write quorum size, 
referred to as the operation's initial and final quorum size, respectively. Our algoridim can be easily extended 
to handle such quorum choices. The directory representative operations which are now performed at R or W 
nodes in the course of an operation are instead performed at an initial or final quorum for die operation, 
respectively. All of our correctness arguments remain valid. However, if such a quorum choice is employed, 
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Figure 26: A 4-2-3 Directory Suite Partitioned for Locality 

it is essential that dmestamps be used rather than version numbers, as initial quorums will not generally 
contain the most recent entry associated with a key. 

The new quorum choices provided by Herlihy's method increase the availability of the Update operation at 
the expense of die Lookup operation. Thus, such quorum choices could result in increased performance for 
Update intensive directories. It would be straightforward to extend our. analysis to cover such quorum 
choices. In constructing die balance equations, the terms representing the probabilities of being in the read or 
write quorum for an operation would be replaced by the probability of being in the appropriate initial or final 
quorum. While we have not performed diis analysis, we strongly conjecture that the performance of our 
algorithm would remain good for the new quorum choices. Specifically, wc conjecture that die average delete 
list length and size ratio would still be bounded by small constants. 

As mentioned in the introduction, wc have implemented a version of this algorithm on the TABS prototype 
distributed transaction facility. In doing so, we have resolved some details not addressed in diis paper. For 
example, our implementation stores data for directory representatives as B-trees [Comer 79], and version 
numbers for gaps are stored in fields of their bounding entries. Physical shared/exclusive mode locking, 
rather than range locking, was used since the implementation was unlikely to have concurrency control 
botdenecks. As might be expected, the major complexity lay in the implementation of the directory 
representatives, primarily because tiiey were stored as B-trecs. 

In summary, we have presented a replication algorithm for directories that exhibits favorable performance 
and availability properties. As is the case with Gifford's weighted voting algorithm, the exact configuration of 
suites can be tailored to control availability and performance tradeoffs. This algoridim achieves high 
concurrency while maintaining consistency by dynamically partitioning die key space into ranges at each 
representative and associating a version number with each range. We proved a property of directory suites 
that permits deletions to be done in only one or two exchanges of small, fixed length messages with a read 
quorum and one exchange with a write quorum. Thus all operations can be performed in a small constant 
number of rounds of messages. We presented a novel analysis of our algorithm which agreed remarkably well 
with simulation results. The analysis indicates that the space and time costs associated with our algorithm are 
low for any permissible suite configuration. 
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I. Detailed Formulation of Balance Equations 

Let us first construct the balance equation for current entries. A formal statement of the rate balance 

assertion is: 
EfThc number of entries entering die current class in a chosen representative in one operation] 

= Effhc number of entries leaving the current class in a chosen representative in one operation]. 
These expected values are computed over a space consisting of all of the possible state transitions in our 
model. We expand the expectation values on both sides of the equation by breaking the space up into three 
subspaces: the transitions diat result from Insert operations. Update operations and Delete operations: 

P[Opr is Insert] x E[Thc number of entries entering the current class in one Insert opr] 
+ P[Opr is Update] x E[The number of entries entering the current class in one Update opr] 
+ P[Opr is Delete] x K[T!ic number of entries entering die current class in one Delete opr] 

= P[Opr is Insert] x K[The number of entries leaving the current class in one Insert opr] 
4- P[Opr is Update] x E[The number of entries leaving the current class in one Update opr] 
+ P[Opr is Delete] x E[The number of entries leaving the current class in one Delete opr]. 

V/e will assume that all of the probabilities in this equation arc i, as Inserts, Deletes and Updates occur with 
almost equal likelihood. The reason that they do not occur with exactly equal likelihood is that Deletes and 
Updates cannot occur in states where the directory contains no keys, and Inserts cannot occur in states where 
the suite already contains every key in the key space. However, these states represent a negligible fraction of 
the state space and they all occur with extremely low probability. Each term has one of these factors, so under 
the assumption, tiiey all cancel out. 

To derive the first balance equation in terms of the unknowns, we expand die expected values in the order 
they appear in the equation. The first term is: 

Effhc number of entries entering the current class in one Insert operation]. 
A single entry will enter the current class if and only if the representative under observation is chosen for the 
write quorum of the Insert operation. Thus the expected value is merely the probability that the 
representative is chosen. Since there are N representatives in the suite, and H^are chosen at random for the 

w 
write quorum, diis is —. 

N 

The second term is: 
EfThc number of entries entering the current class in one Update operation]. 

Again, an entry can enter the current class only if the representative is chosen for the write quorum. This 
time, however, the entry for the key being updated will not necessarily enter the current class, as the 
representative could already have contained a current entry for this key. In that case, no entry that was not 
already current would become current. Thus, the value of the term is: 

Pflhc representative is chosen for die write quorum] 
x (1 — PpThe representative already contains a current entry for the key being updated]). 

The probability that the representative is chosen for the write quorum is —. The key to be updated is chosen 
N 

at random from those in the directory so: 
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P[Thc representative already contains a current entry for the key being updated] 
= PfThc representative contains a current entry for a randomly chosen key in die directory] 
= c ' 

Thus, the value of the second term is: 
W 

The diird term is: 
EfHie number of entries entering the current class in one Delete operation]. 

When a Delete operation occurs, entries for the real predecessor and real successor of die key being deleted 
are inserted into each member of the write quorum where they do not already appear. They are inserted with 
their latest version number so they become additional current entries in those representatives. This is die only 
way entries can enter the current class in a Delete operation. Thus the number of entries entering the current 
class in die observed rcprcscntadve in one Delete operation is zero if the representative is not chosen for the 
write quorum. If it is chosen for the write quorum, then one entry will become current if the representative 
does not contain an entry for the real predecessor of the key being deleted, and anotiier entry will become 
current if the representative does not contain an entry for the real successor. 

We introduce some notation for events to simplify the discussion that follows: 
P = {The representative contains an entry for the real predecessor of the key being deleted} 
S = {The representative contains an entry for die real successor of die key being deleted} . 

On the basis of the previous observations, die value of the term being expanded is: 

Pfrhe representative is chosen for the write quorum] x(P[/*] + P[.SC]) 

= ^ ( ( l -P [ /> ] ) + ( l -P [5 ] ) ) , . 
While P[P] and P[S] cannot be exacdy expressed in terms of our unknowns, they can be very closely 
approximated. The key to be deleted is chosen at random from those in the directory, and its real predecessor 

is merely the key immediately preceding it in the directory. If the key being deleted is the first key in the 
directory, its real predecessor is the dummy key LOW, which is always present in every representative. Thus 
the probability that the real predecessor is present in die representative (P[P]) is just slightly higher than the 
probability that a randomly chosen key in the directory is present in the representative. For a large key space 
like the one used in the simulations they will be practically identical. By symmetry, the same argument holds 

for the real successor. In fact, it shows that P[P]=P[5]. Therefore, we make the assumption that: 
P[/>]=P[The representative contains an entry for a randomly chosen key in the directory] 

= Pp'he representative contains a current entry for a randomly chosen key in die directory] 
+ P[The representative contains an outdated entry for a randomly chosen key in the dir.] 

= c' + o'9 

The third term becomes: 

2 - ^ ( l - ( c ' + o0). 

Now wc come to the terms on the right hand side of the balance equation. The first term on die right hand 

side is: 
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E[The number of entries leaving the current class in one Insert operation]. 
This term vanishes, as no entries leave the current class in Insert operations. 

The second term on the right hand side is: 
EfThc number of entries leaving die current class in one Update operation]. 

If die representative under observation contains a current entry for the key being updated, and the 
reprcsentadve is not chosen for the write quorum, dien the current entry becomes outdated. Thus the value 
of this term is: 

(1 - PfThe reprcsentadve is chosen for the write quorum]) 
x PfThe reprcsentadve contains a current entry for a randomly chosen key in the directory] 

The third term on the right hand side is: 
EfThe number of entries leaving the current class in one Delete operation]. 

If the representative under observation contains a current entry for the key being deleted, the entry will leave 
the current class regardless of whether or not the representative is chosen for the write quorum. If it is 
chosen, the entry will be deleted outright; otherwise, the entry will become a ghost. Thus the value of this 
term is: 

. PfThe representative contains a current entry for the key being updated] 
= c ' . 

Combining all these terms, the balance equation for current entries is: 
W W W W 
^ + ^ ( l - c 0 + 2 ^ ( l - ( c / + o0) = d - - ) c / + c / . 
N N N N 

Simplifying, we get: 
(AM- W)c'+Wo'=2W. 

We now construct the balance equation for outdated entries. By an argument identical to die one used in 
the construction of the first balance equation, a formal statement of the rate balance assertion becomes: 

EfThe number of entries entering the outdated class in one Insert operation] 
+ EfThe number of entries entering die outdated class in one Update operation] 
+ EfThe number of entries entering the outdated class in one Delete operation] 

= EfThe number of entries leaving the outdated class in one Insert operation] 
-J- EfThe number of entries leaving the outdated class in one Update operation] 
+ EfThe number of entries leaving die outdated class in one Delete operation]. 

We shall assume that entries cannot enter the outdated class in Insert operations, so the first term of the left 
hand side of the equation vanishes. In fact, if a key is inserted when ghosts for a previous incarnation of that 
key still remain in representatives outside of the write quorum for the Insert operation, those ghosts will 
become outdated. However, this is an extremely unlikely event, hence this term of the equation is negligible 
compared to the others. Furthermore, it is not expressible in terms of the unknowns. 
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Entries cannot enter the outdated class in the Delete operation, so the third term of the equation also 

vanishes. In die Update operation an entry can become outdated as follows. If the representative is not 

chosen for the write quorum and it contains a current entry for the key being updated, then the entry 

becomes outdated. Thus the value of the second terms is: 
(1 - Pf The representative is chosen for die write quorum]) 

x Pf The representative contains a current entry for a randomly chosen key in the directory] 

Entries cannot leave the outdated class in Insert operations, so the first term of the right hand side of the 
equation vanishes. In an Update operation, an entry can leave the outdated class as follows. If the 
representative is chosen for the write quorum and it contains an outdated entry for the key being updated, 
then this entry is replaced by a current one. Thus, the second term on the right hand side is: 

PfThc representative is chosen for the write quorum] 
x Pf Hie representative contains an outdated entry for the key being updated] 

= Pfrhc representative is chosen for the write quorum] 
x Pf The representative contains an outdated entry for a randomly chosen key in die directory] 

= — o . 
N 

In a Delete operation, an entry can leave the outdated class as follows: If the representative contains an 

outdated entry for the key being deleted, then the entry disappears if die representative is chosen for the write 

quorum, and it becomes a ghost if the representative is not chosen for the write quorum. Thus the third term 

on the right hand side is: 
Pfrhc representative contains an outdated entry for the key being deleted] 

= PfFhc representative contains an outdated entry for a randomly chosen key in the directory] 

Putting it all together, the balance equation for outdated entries is: 
W W 

) c ' = — o ' + o'. 
N N 

Simplifying, diis becomes: 
, N-W , 0 — c 

N+W 

Finally, we construct the balance equation for ghost entries. A formal statement of the balance assertion 

becomes: 
EfThc number of entries entering the ghost class in one Insert operation] 

+ EfHie number of entries entering the ghost class in one Update operation] 
+ EfThc number of entries entering the ghost class in one Delete operation] 

= EfThc number of entries leaving the ghost class in one Insert operation] 
+ EfThc number of entries leaving the ghost class in one Update operation] 
+ EfThe number of entries leaving die ghost class in one Delete operation]. 

Entries can only enter the ghost class in Delete operations; thus, the first and second terms of the equation 
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vanish. An entry becomes a ghost in a representative if its key is being deleted and that representative is not 
chosen for die write quorum of the delete operation. Thus the second term is: 

(1 - P[The representative is chosen for the write quorum]) 
x P[The reprcsentadve contains an entry for a randomly chosen key in the directory] 

Entries rarely leave die ghost class in Insert operations, thus we shall assume the first term on the right hand 
side vanishes. (This is essentially die same assumption we made on page 53 when constructing the balance 
equation for outdated entries.) Entries cannot leave the ghost class in Update operations, thus the second 
term on the right hand side actually does vanish. If die representative is chosen for the write quorum of the 
Delete operation then all of the ghosts constituting the delete list of die key being deleted will be removed 
from the representative. Thus the third term of the right hand side is: 

P[The representative is chosen for the write quorum] 
x EfThe size of the delete list of the die key being deleted] 

= P p h c representative is chosen for the write quorum] 
x EpTic size of the delete list of the a randomly chosen key in the directory] 

Putting die terms together, the balance equation for ghosts is: 

= (l--SXc' + aO. 

( l - - ) ( c ' + oO 
Simplifying: 

N-W 
(c'+oO. 



56 

References 

[Abbadi and Toucg 86] 
Amr El Abbadi. Sam Toucg. 
Availability in Partitioned Replicated Databases. 
In Proceedings of (he Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database 

Systems. 1986. 

[Abbadi et al. 85] Amr El Abbadi, Dale Skcen, Flaviu Cristian. 
An Efficient Fault-Tolerant Protocol for Replicated Data Management. 
In Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of 

Database Systems. March, 1985. 

[Allchin 83] James E. Allchin. 
An Architecture for Reliable Distributed Systems. 
PhD thesis, Georgia Institute of Technology, September, 1983. 

[Allchin and McKcndry 83] 
J. E. Allchin, M.S. McKendry. 
Synchronization and Recovery of Actions. 
In Proceedings of the Second Annual Symposium on Principles of Distributed Computing, 

pages 31-44. ACM, August, 1983. 

[Alsberg and Day 76] 
P. A. Alsberg, J. D. Day. 
A Principle for Resilient Sharing of Distributed Resources. 
In Proceedings of the Second International Conference on Software Engineering, pages 

562-570. October, 1976. 

[Bartiett 81] Joel Bartlett. 
A NonStop™ Kernel. 
In Proceedings of the Eighth Symposium on Operating System Principles. ACM, 1981. 

[Bernstein and Goodman 84] 
P. Bernstein and N. Goodman. 
An algorithm for concurrency control and recovery in replicated distributed databases. 
ACM Transactions on Database Systems 9(4):596-6l5, December, 1984. 

[Birman et al. 83] K. P. Birman, D. Skecn, A. El Abbadi, W.C. Dietrich, T. Raeuchle. 
Isis: An Environment for Constructing Fault-Tolerant Distributed Systems. 
Technical Report 83-552, Cornell University, 1983. 

[Birrell and Nelson 84] 
Andrew D. Birrell, Bruce J. Nelson. 
Implementing Remote Procedure Calls. 
ACM Transactions on Computer Systems 2(l):39-59, February, 1984. 

[Comer 79] Douglas Comer. 
The Ubiquitous B-Tree. 
ACM Computing Surveys 11(2): 121-137, June, 1979. 

[Daniels and Spector 83] 
Dean S. Daniels. Alfred Z. Spector. 
An Algorithm for Replicated Directories. 
In Proceedings of the Second Annual Symposium on Principles of Distributed Computing, 

pages 104-113. ACM, August, 1983. 
Also available in Operating Systems Review 20(1), January 1986, pp. 24-43. 



57 

[Gifford 79] David K. Gifford. 
Weighted Voting for Replicated Data. 
In Proceedings of the Seventh Symposium on Operating System Principles, pages 150-162. 

ACM, December, 1979. 

[Gifford 81] David K. Gifford. 
Information Storage in a Decentralized Computer System. 
PhD diesis, Stanford University, 1981. 
Available as Xerox Palo Alto Research Center Report CSL-81-8, March 1982. 

[Gray 80] James N.Gray. 
A Transaction Model. 
Technical Report RJ2895, IBM Research Laboratory, San Jose, California, August, 1980. 

[Gray et al. 81] James N. Gray, et al. 
The Recovery Manager of the System R Database Manager. 
ACM Computing Surveys 13(2):223-242, June, 1981. 

[Herlihy 85] Maurice P. Herlihy. 
Availability vs. atomicity: concurrency control for replicated data. 
Technical Report CMU-CS-85-108, Carnegie-Mellon University, February, 1985. 

[Herlihy 86] Maurice P. Herlihy. 
A Quorum-Consensus Replication Method for Abstract Data Types. 
ACM Transactions on Computer Systems 4(1), February, 1986. 

[IBM Corporation 75] 
ACP System: Concept and Facilities 
GH20-1473-1 edition, IBM Corporation, White Plains, New York, 1975. 

[Kemcny and Snell 60] 
John G. Kcmeny, J. Laurie Snell. 
Finite Markov Chains. 
D. Van Nostrand & Co., New York, 1960. 

[Korth 83] Henry F. Korth. 
Locking Primitives in a Database System. 
Journal of the ACM 30(1): 55-79, January, 1983. 

[Lindsay et al. 79] 
Bruce G. Lindsay, et al. 
Notes on Distributed Databases. 
Technical Report RJ2571, IBM Research Laboratory, San Jose, California, July, 1979. 
Also appears in Droffen and Poole (editors), Distributed Databases, Cambridge University 

Press, 1980. 

[Liskov and Schcifler 83] 
Barbara H. Liskov, Robert W. Schcifler. 
Guardians and Actions: Linguistic Support for Robust, Distributed Programs. 
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983. 

[Popek et al. 81] G. Popck, B. Walker, J.Chow, D. Edwards, C. Kline, G. Rudisin, G. Thiel. 
LOCUS: A Network Transparent, High Reliability Distributed System. 
In Proceedings of the Eighth Symposium on Operating System Principles, pages 169-177. 

ACM, 1981. 



58 

[Rothnie etal. 77] 
J. B. Rothnie, N. Goodman, P.A. Bernstein. 
The Redundant Update Methodology of SDD-I: A System for Distributed Databases (The 

Fully Redundant Case). 
Technical Report CCA-77-02, Computer Corporation of America, 1977. 

[Schwarz 84] Peter M. Schwarz. 
Transactions on Typed Objects. 
PhD thesis, Carnegie-Mellon University, December, 1984. 
Available as Technical Report CM U-CS-84-166, Carnegie-Mellon University. 

[Schwarz and Spcctor 84] 
Peter M. Schwarz, Alfred Z. Spcctor. 
Synchronizing Shared Abstract Types. 
ACM Transactions on Computer Systems 2(3):223-250, August, 1984. 
Also available as Technical Report CMU-CS-83-163, Carnegie-Mellon University, 

November 1983. 

[Spector and Schwarz 83] 
Alfred Z. Spector, Peter M. Schwarz. 
Transactions: A Construct for Reliable Distributed Computing. 
Operating Systems Review 17(2): 18-35, April, 1983. 
Also available as Technical Report CMU-CS-82-143, Carnegie-Mellon University, January 

1983. 

[Spcctor et al. 85a] 
Alfred Z. Spector, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, Randy 
Pausch. 
Distributed Transactions for Reliable Systems. 
In Proceedings of the Tenth Symposium on Operating System Principles, pages 127-146. 

ACM, December, 1985. 
Also available in Concurrency Control and Reliability in Distributed Systems, Van Nostrand 

Rcinhold Company, New York, and as Technical Report CMU-CS-85-117, Carnegie-
Mellon University, September 1985. 

[Spector et al. 85b] 
Alfred Z. Spector, Jacob Butcher, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, 
Charles E. Fincman, Abdclsalam Hcddaya, Peter M. Schwarz. 
Support for Distributed Transactions in the TABS Prototype. 
IEEE Transactions on Software Engineering SE-ll(6):520-530, June, 1985. 
Also available in Proceedings of the Fourth Symposium on Reliability in Distributed 

Software and Database Systems, Silver Springs, Maryland, IEEE, October, 1984 and as 
Technical Report CMU-CS-84-132, Carncgic-Mcllon University, July, 1984. 

[Traiger et al. 82] Irving L. Traigcr, Jim Gray, Cesarc A. Galtieri, Bruce G. Lindsay. 
Transactions and Consistency in Distributed Database Systems. 
ACM Transactions on Database Systems 7(3):323-342, September, 1982. 

[Weihl 83] William E. Weihl. 
Data Dependent Concurrency Control and Recovery. 
In Proceedings of the Second Annual Symposium on Principles of Distributed Computing, 

pages 63-75. ACM, August, 1983. 



59 

[Weihl and Liskov 83] 
W. Weihl, B. Liskov. 
Specification and Implementation of Resilient, Atomic Data Types. 
In Symposium on Programming Language Issues in Software Systems. June, 1983. 


