NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Weighted Voting Algorithm for
Replicated Directories

(Revised Issuc)
Joshua J. Bloch, Dean S. Daniels and Alfred Z. Spector
July 3, 1986

Abstract

Weighted voting is used as the basis for a replication technique for directories. This technique affords
arbitrarily high data availability as well as high concurrency. Efficient algorithms are presented for all of the
standard dircctory operations. A structural property of the replicated dircctory that permits the construction
of an cfficient algorithm for deletions is proven. Simulation results are presented and the system is modeled
and analyzed. The analysis agrees well with the simulation, and the space and tme performance are showi to
be good for all configurations of the system,

Technical Report CMU-C5-86-132, Revision of CMU-CS-84-114
Copyright © 1986 Joshua J. Bloch, Dean S. Daniels and Alfred Z. Spector

This work was sponsored in part by the Defense Advanced Research Projects Agency, ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory under Contract ¥33615-84-K-1520 and in part by the NSF
under Contract MCS-83108805

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policics, cither expressed or unplicd, of any of the sponsoring agencies
or the US government.

Table of Contents

1 Introduction
2 Related Work and Motivation
2.1 Related Work
2.2 Motivation for the Use of Weighted Voting
3 Devclopment of the Algorithm
4 Dectails of the Algorithm
4.] Directory Representatives
4.2 Dircctory Suites
4.3 An Efficient Algorithm for the Real Predecessor Operation
4.3.1 Proofs
4.3.2 The Algorithm
4.3.3 Enhanccments to the Real Predecessor Algorithm
4.4 Correctness Arguments
4.5 More on Synchronization and Recovery
5 Performance Characterization
5.1 Simulation Results
5.2 Analytic Model
5.2.1 Construction of the Model
5.2.2 Method of Analysis
5.2.3 Formulation of Balance Equations
5.2.4 Solution of Balance Equations
5.2.5 Results
5.2.6 Discussion of the Analysis
5.3 Discussion of Performance Characterization
6 Discussion

l. Detailed Formulation of Balance Equations

1 Introduction

The goals of object replication on distributed computing systems are increased parallelism, reduced
communications costs, and increased resilience in the presence of failures. In particular, replication can
permit increased object availability - continued access to an object despite the faiture of one or more of the
nodes on which it is stored. Unfortunately, it is difficult to achieve high performance and availability while
ensuring that the semantics of replicated data objects arc identical to those of their non-replicated

counterparis.

In this paper, we describe and analyze a scheme for replicating directories that permits concurrent
operations and arbitrarily high data availability. A measure of availability appropriate to this work is the
number of node failures that a directory can tolerate while still guarantecing that an operation can be
performed. The semantics of the replicated directory are identical to a directory stored on a single node and
accessed serially. Thus the replication algorithm is said to be transparent,

We define a directory a< an abstract data object that maps keys to values. Keys are chosen from a set of
constants called the key space. The only condition we impose on the key space is that it be totally ordered. In
other words, there must be an ordering function * > with the property that for any two members of the key
space x and y, one and enly one of the following conditions hold: x>y, y>» x or x = y. Wc¢ make no other
assumptions about the structure of the key space; it can be finite, countably infinite, or uncountably infinite,
and cither densc {like the rationals) or sparse (like the integers). For all of the examples in this paper, we us¢
the set of finite lcngth alphabetic strings as the key space, with lexical comparison as the ordering function.
Whenever we use words like less than’, *above’ or 'in between’ in reference to keys, we mean according to the
ordering function.

Directory operations execute as part of distributed transactions, which provide uniform synchronization and
recovery propertics for operations on arbitrary shared abstract types. (Transactions have been described by
many; sce, for example, a survey by Gray or recent work by Spector ct al. {Gray 80, Spector et al. 85a).) The
replicated directory is an cxample of a distributed abstract data type that is constructed from a collection of
more primitive, non-distributed types. Transactions simplify the maintenance of the invariants neccssary to
make this replication algorithm work.,

Directories are accessed and modified with the foliowing operations:

e Insert(IN K:Key, V:Value) - Associates the value V with the key K. Once inscrted, the key is
said to be in the directory. This operation is permitted only when K is not already in the directory,

o Update(IN K:Key, V:Value) - Associates the (new) value V with the key K. This operation is
permitted only when K is already in the dircctory.

o DeletefIN K:Key) - Removes K from the directory, This operation is permitted only when K is
in the directory. After this operation is perfonmed. K will no longer be in the directory.

2

o Lookup(IN K:Key; OUT Isln:Boolean, V:Value) - Returns TRUE, and the value associated
with K, if K is in the dircctory. Returns FALSE and an undefined value if K is not in the
directory,
Attempting to perform an operation that is not permitted gencrates an exception. It does not affect the
contents of the directory. Minor modifications of our scheme may be used to implement sets, multisets or
similar abstractions.

The replication algorithm described here is an extension of one initially presented by Daniels and
Speetor [Danicls and Spector 83]. It is based on Gifford's weighted voting algorithm [Gifford 79, Gifford 81}, .
and has similar performance and reliability advantages. However, unlike Gifford's algorithm, this algorithm
efficiently associates a separate version number with cach possible key at every replica. This permits
concurrent operations on different entries and solves certain problems in the implementation of the Delete
operation. Unlike most replication aigorithms, which are concerned with simple objects having only read and
write operations, this algorithm uses the semantic propertics of directories, and thereby gains increased
performance.

This rescarch on replication was done as part of the TABS (Transaction-based Systems) Project, which
constructed a distributed transaction facility that supports operations on shared abstract data types [Spector
and Schwarz 33, Schwarz and Spector 84, Spector ct al. 85b. Spector et al. 85a}. This directory replication -
algorithm was impiemented and videotaped to demonstrate the facility’s operation. Groups at Cornell, MIT,
and Georgia Institute of Technology are also investigating the wider usc of transactions [Allchin and
McKendry 83, Alichin 83, Birman ct al. 83, Liskov and Scheifler 83, Weihl and Liskov 83, Weihl 83}

In the following sections, we survey related replication work and provide motivation for our directory
replication algorithm. We describe the algorithm in detail and present efficient algorithms for cach directory
operation. A basic structural property of the replicated dircctory, which permits the construction of an
efficient algorithm for the Delete operation, is proven. We show that the system's concurrency performance
can be improved by relaxing the synchronization requirements for the directory replicas. We present
performance data obtained by simulation and develop a mathematical model of the system simulated. We
analyze the model and compare the results of the simulation and the analysis. These results demonstrate that
the algorithnt’s space and time requirements are good in all configurations of the system. Finally, we discuss
the advantages and uses of the algorithm.

2 Related Work and Motivation

2.1 Related Work

There arc non-distributed and distributed approaches to data replication. In the non-distributed
approaches, a single controlling node utilizes dual-copy, or mirrored, storage. Storage is typically on disks that
are located in close proximity to each other. Data is written sequentially to both copies, but read from only
one. Should a controlling node crash, another nede gains control of the storage, Mirroring is commonly used
on commercially available systems; for examples, see descriptions of the ACP or Tandem T16 systems [[BM
Corporation 75, Bartlett 81).

Distributed replication techniques use a collection of cooperating nodes to store replicas of the data. Many
of these techniques provide higher reliability and availability than mirroring, though they generally have
higher overhead and complexity. For example, an object replicated with mirroring will not survive a single
physical disaster that destroys both copics, while replication techniques cmﬁloying geographical distribution
will be Icss affected by such a physical disaster.

In this scction we briefly survey the field of distributed replication algorithms, We present our maotivation
for developing a replication strategy for directories based on the weighted voting technique.

One fundamental distributed replication strategy is unanimous update: cvery update operation must be
done on all replicas, but reads may be directed to any replica. This replication strategy guarantees single copy
scmantics if the systems storing each rcplica guarantce data consistency locally. Unfortunately, the
availability for updates of any object is poor when large numbers of replicas are used. Update availability can
be increased by using the communication system to buffer updates to replicas that are not available. The
SDD-1 distributed databasc system uses this approach [Rothnie et al. 77}, A similar approach is taken in the
available copies method [Bernstein and Goodman 84]. None of these methods handle network partitions,

A second approach to replication is based on keeping primary and sccondary copies of data. The primary
copy reccives all updates and then relays the updates to the secondary copies [Alsberg and Day 76]. An
inquiry may be sent to a sccondary copy, but the resuit might not reflect the most recent updates. Because
responses to inquiries might not reflect recent updates, it is difficult for a primary/sccondary copy replication
strategy to duplicate the scmantics of a non-replicated object. Techniques for atleviating this problem have
been developed. For example, each file open operation in the Locus distributed file system ensures the
currency of data by consulting a known synchronization site [Popek et al. 81]. Locus maintains availability
after synchronization site failure by nominating a new synchronization site.

A third basic approach to replication is weighted voting {Gifford 79, Gifford 81]. We describe this approach
in more detail since it forms the basis of our algorithm. A file is stored as a collection of replicas, called

representatives, cach of which is assigned a certain number of votes. A represcntative consists of a copy of the
file and a version number. The entire cullection of representatives is called a file suite. Write operations write
an updated copy of the file to each representative in a group called a write quorum and associate a new version
number with all of these representatives. The new version number is higher than any version number
previously associated with the file. Read operations read from each representative in a read quorim and
return the data from the representative with the highest version number. Write operations establish a higher
version number by incrementing the highest version nunber encountered in a read quorum.

A write quorum consists of any set of representatives whose votcs total at lcast W and a read quorum
consists of any set of representatives whose votes total at least R. The constants R and W are chosen so that
their sum is greater than the total number of votes assigned to all representatives, N, Thus, every read
quorum has a non-null intersection with every writc quorum and each inquiry is guaranteed to access at least
one current copy of the data, Current copies will always have a higher version number than non-current
copies so the read opcration will always return current data. The values chosen for R and W control a
tradeoff between the cost and availability of read and write operations.

Abbadi, Skeen and Christian extend the available copics approach to handle partitions [Abbadi et al. 85].
in this approach, the nodes maintain virtual partitions, which are logical groups corresponding to perceived
actual partitions. The unanimous update approach is used within cach virtual partition. Only a virtual
partition containing a majority of the replicas for any object can access that object.

Abbadi and Toucg extend the virwal partions approach to gain added flexibility [Abbadi and Toucg 86}. In
this system, nodes maintain views, similar to the virtual partitions deseribed above. Within each view, the
weighted voting technique is used. Performance and availability tradcoffs between read and write operations
can be controllied by choosing appropriate quorum sizes.

All of the replication methods above apply to files, data objects supporting only read and write operations.
Herlihy describes a technique called generalized quorum consensus whereby the weighted voting technique
can be sysicmatically applied to any abstract data type [Herlihy 86]. This technique is completely zeneral but
results in implementations that are costly in terms of communications, storage, and computation. Herlihy
suggests some optimizations to decrease these costs, but the emphasis in his work is on complete generality
and theorctical investigation of quorum intersection issues rather than on providing cfficient

implementations.

2.2 Motivation for the Use of Weighted Voting

Weighted voting has scveral attributes that make it appealing as the basis for the design of a replicated
directory. The sizes of the read and write quorums may be varicd to adjust the relative cost and availability of
the operations. For example, read quorums can be made much smaller than write quorums if data is read

more frequently than it is writien. Vote assignments can be adjusted to further refine availability tradcoffs,
For instance, a node that is more likely to fail can be given fewer votes, so its absence will have less effect on

system availability.

Another appealing attribute of weighted voting algorithms is that they automatically function correctly in
the face of network partitions. They do so passively, without the need for dynamic rcconfiguration, as in the
virtual partitions and views techniques. Such dynamic reconfiguration adds great complexity to replication
algorithms, and can substantially reduce availability during periods of reconfiguration.

Finally, algorithms based on weighted voting arc simplified because consistency and recovery are primarily
the responsibility of an underlying transaction facility. The usc of a common underlying transaction facility
greatly simplifies the task of ensuring that operations on multiple distributed objects interact properly.

While weighted voting is an appealing approach to replication, the basic algorithm cannot be directly
applied to directories without undesirable concurrency limitations. Even though the semantics of directories
permit concurrent operations on different keys, only a single transaction at a time could modify the directory
if it were stored as a file suite. This is because cach copy of the entire directory would have a single version
number, which would cause the serialization of all gperations that modified the directory. Furthermore, any
modification to the directory would require sending the entire updated directory to each representative in a
write quorum. For a large dircctory, this would result in excessive communications costs. In the following
section, we develop an algorithm for replicated directories from the weighted voting algorithm for files. Qur
algorithm rectifies the deficiencics described above.

The use of version numbers in weighted voting has certain disadvantages. In order to write a file, a node
must know the highest version number currently associated with the file. This requires access to a read
guorum of representatives. Thercfore, even if the write quorum size (W) is smaller than the read quorum size
{R), it requires the services of R representatives to perform a write opefétion. If onc were to configure a suite
with R < W, the desired increase in availability of the write operation would never materialize, while the
availability of the the rcad operation {and the write operation) would decrease. Thus, the use of version
numbers is scen to restrict the permissible range of availabitity tradeoffs between the read and write
operations.

The restriction of permissible quorum choices described above comes about because one must perform a
"read opcration"” on a file’s version number before performing a write operation on the file. It could be
climinated if onc could determine a higher version number than those alrcady used without consulting the
version numbers present. Gifford suggests the use of timestamps instcad of version numbers for this
purposc [Gifford 81] and Herlihy's tcchniqucs usc timestamps [Herlihy 86, Herlihy 85]. The advantages of
the timestamp approach arc not without cost. It is critical that timestamps reflect the serialization order on
transactions. 'This requires support from the transaction system, Herlihy discusses this issuc in the works
cited above,

The algorithm presented in this paper is equally compatible with version numbers and timestamps. Our
initial implementation used version numbers because the TABS system lacked support for timestamps.1 The
description of our algorithm in this paper reflects our initial use of version numbers.

3 Development of the Algorithm

In the previous section, we noted that weighted voting could not be directly applicd to a directory file
without excessive concurrency limitations and communications costs. [t might scem that these limitations
could be overcome if cach entry in a dircctory representative were assigned a separate version number. (An
entry is defined as the physical data associated with a key at a represcntative and consists of the key and an
associated value.) However, if such an approach were used, some representatives might not have an enury for
a key that had an entry at other representatives. Because of this fact, it would not always be possible to
determine from an arbitrary read quorum whether a particular key were in the directory. This problem is
illustrated in the example that follows.

The directory suite for the example will contain 3 representatives. In this example and those that follow, we
will assume that each representative has one vote, though all results generalize to directory suites with
arbitrary distributions of votes. The read quorum size for the example is 2 votes and the write quorum size is
3 votes. ‘The notation N-R-W will refer to a suite having N representatives, a read quorum size of R and a
write quorum size of W. Thus we call the suite in cur cxample a 3-2-2,

Initially representatives A and B contain entries for keys "a" and "¢”, and each cntry has version number 1
as shown in Figure 1% Subsequently an eniry for "b" is inserted into representatives A and C with version
number 1 (Figure 2). If a request to look up the key “b" is sent to representatives B and C at this point,
representative B will respond "not present,” and representative C will respond “present with version number
1" If"b" is then removed from the directory by deleting its entry from representatives A and B (Figure 3),
requests to look up “b" on representatives B and C will still elicit the responses "not present,” and "present
with version number 1." Thus, if a directory representative fails to associate a version number with keys for
which it has no entry, the responses from a read quorum may not be sufficient to determine if a given key is in
the directory.

The ambiguity demonstrated above is associated with deletions and will not occur if deletions are not
permitted. Alternatively, deletions could be implemented by marking entries to be deleted and then
performing a "garbage collection” operation periodically. However, that operation is expensive and would
itself be a concurrency bottlencck. A third strategy is to eliminate the ambiguity by consulting additional

1Suppon for timestamps has since been added to TABS.

7’I'hc value ficld is omitted from all figures for clarity.

Version Number: 1 Version Number: 1

Key: "a" Key: "a"

Version Number: 1 Version Number: 1

Key: "c" Key: "¢"

Representative A Representative B Representative C

Figure §: A 3-2-2 Dircctory Suite - Initial Configuration

Version Number: 1 Version Number: 1 Version Number: 1

Key: "ag" Key: "a" Key: "h"

Version Number:; 1 Version Number: 1

Key: "b" Key: "¢

Version Number: 1

Key: "c"

Representative A Representative B Representative C
Figure 2! Directory Suite After Inserting "b”

Version Number: 1 Version Numnber: 1 Version Number:; 1

Key: "a" Key: "a" Key: "o"

Version Number: 1 Version Number: 1

Key: "c" Key: "c"

Representative A Representative B Representative C

Figure 3: Directory Suite After Deleting "b"

representatives whenever an inquiry to an initial sct of representatives does not result in a read quorum of
replics all indicating "present” or "not present.” Unfortunately, this approach drastically reduces availability,

None of the solutions presented thus far satisfy our demands for concurrency and availability. What is
really necded is a scheme whereby version numbers can be associated with every possible key in the key space
at each representative. This can be accomplished by partitioning the key space into disjoint sets and

associating a version number with cach set at every representative, The same partitions need not be used at
all representatives.

One approach to partitioning is to divide the key space into ranges based on the order relation on the keys.
The simplest partitioning scheme divides the key space inte a number of fixed ranges. However, it is difficuit

to guarantee sufficicnt concurrency with such a static partitioning wehnique. If a small number of ranges are

used, then at most that number of transactions can modify a directory concurrently, If transactions modify
entrics in more than one range, concurrency will be further limited. Even if a large number of ranges arc
used, an uneven distribution of accesses could limit concutrency,

A more gencral method of partitioning is to allow the partitions at each representative to vary over time, on
the basis of the entries currently in that representative. Such a dynamic partitioning technique is desirable for
directorics having sizes or access patterns that vary widely over time. A simple method of dynamically
partitioniné the key space at a representative is to create a partition for cach key that has an entry in that
representative and a partition for cach range of keys between successive entrics. "These ranges are called gaps.
This method forms the basis of cur algorithm.

Version Number: 0 Version Number: 0 Version Number: 0
Key: {Low> Key: {Low> Key: {Low>
‘ . . A
Gap Version Gap Version .
Number: 0 Number: Q
Version Number: 1 Version Number: 1
Key: "a" Key: "a"
Gap Version Gap Version . Gap Version
Number: 0 Number: 0 Number: 0
Version Number: 1 Version Number: 1
Key: "¢" Key: "¢"
Gap Version Gap Version
Number: 0 Number: 0 v
Version Number: G Version Number: 0 Version Number: 0
Key: <High> Key: <High> Key: <High>
Representative A Representative B Representativa C

Figure 4: Directory Suite Containing Keys "a" and "¢"

In this dynamic partitioning approach, lookup requests scnt to a representative containing an entry for the
key being looked up return the version number of the entry. Lookup requests on keys for which no entry is
stored return the version number of the gap in which the key lies. Update requests increment the version
number of the cntry for the key being updated, insertion requests split a gap, and deletions coalesce the gaps
and entrics in a range of keys into a single gap. The details of these operations will be discussed at length in
Scction 4.

The suite containing cntrics for keys "a” and "c" in representatives A and B of our previous example

Version Number: 0 Version Number: 0 Version Number: 0
Key: {Low> Key: <Low> Key: {Low>
i A
Gap Version Gap Version
Number: 0 Number: 0
Version Number: 1 Version Number: 1 Gap Version
Key: "a" Key: "a" Number: 0
A
Gap Version I
Number: Q0
v
Version Number: 1 Gap Version Version Number: 1
Key: "b" Number: 0 Key: "b"
F 3
Gap Version
Number: 0
v
Version Number: 1 Version Numbet: 1 Gap Version
Key: "c” Key: "¢" Nurpber: 0
Gap Version Gap Version
Number: 0 Number: @ v
Version Number: 0 Version Number: 0 Version Number:
Key: <High> Key: <High> Key: <High>
Representative A Representative B Representative G

Figure 5: Directory Suite After Inscrting "d”

{Figurc 1) would be represented as in Figure 43 1fthe key "b" is inserted into a write quorum consisting of
representatives A and C, the suite in Figure 5 results. Note that, in representatives A and C, the entry for key
"b" is assigned version number 1, which is one greater than the version number of the gap between "a" and
g,

If a request to look up "b" were sent to represcntatives B and C at this point, representative B would
respond "not present with version number 0" and representative C would respond "present with version
number 1." Using these responses, a client could determine that "b™ was in the directory since the entry had
a higher version number than the gap. If "b" were subscquently deleted from representatives A and B, then
the two gaps on either side of "b" on representative B would be coalesced. On both representatives, the gap
between "a™ and "¢ would be assigned version number 2 (Figure 6). Now, if a request to loeok up "b" were
sent to representatives B and C, B would respond "Not present with version number 2" and C would respond
"present with version number number 1. This response indicates that the key no longer exists, resolving the

ambiguity that occurred in the initial example, wherein version numbers were associated only with entries.

3'l‘hc: directory tepreseniatives in Tigure 4 contan the special keys LOW and HIGIL which defimit the first and last gaps in the
representatives,

10

Version Number: § Version Number: 0 Version Number: 0
Key: {Low> Key: <L.ow> Key: {Low>
, X A
Gap Version Gap Version
Number: 0 Number: Q
Version Number: 1 Version Number: 1 Gap Version
Key: "a” Key: "a" Number: 0
A A
v
Gapg Version Gap Version Version Numhber: 1
Number: 2 Number: 2 Key: "b"
A
v 4
Version Number: 1 Version Number: 1 Gap Version
Key: "¢" Key: "c" Number: 0
Gap Version Gap Version
Number: O Number: 0
4
Version Number: 0 Version Number: 0 Version Number: 0
Key: <High> Key: (High> Key: <High>
Representative A Representative B Representalive C

Figure 6: Dircctory Suite After Deleting "b"

4 Details of the Algorithm

This section presents the details of the algorithm sketched in the previous section. The descriptions are
illustrated with program text in a Pascal-like language that includes a remote procedure call primitive [Birrell
and Nelson 84]. Remote procedurcs are declared like ordinary procedures except that the first parameter is
always the identifier of a remote server and that other parameters may be declared as IN, or OUT,
Parameters arc passed by value in messages. Remote procedure calls have the same syntax as local procedure
calls and the general purpose distributed transaction facility which is assumed as the underpinning of this
algorithm guarantees that the remote procedure calls have exactly-once semantics. Hence, the only exception
mechanism provided is ReportError. Transactions are aborted by node failures, timeout and other system
determined errors. Clarity is emphasized over performance in the programs. Optimizations that would be
used in practical implementations are described in accompanying text.

Operations on directory representatives and dircctory suites are presented in the first two subsections. The
next two subscctions develop an essential component of the deletion algorithm. Arguments for the
correctness of the replication algorithm are then presented. The final subsection discusses ways of modifying
the algorithm’s synchronization policies to provide higher concurrency.

11

4.1 Directory Representatives

In a replicated directory, cach dircctory representative is an instance of an abstract objcct that storcs one
{approximatc) copy of the dircctory data. Arbitrarily complex atomic transactions may be constructed using
the basic opcrations provided by directory represcntatives. Thus, directory representatives must synchronize
concurrent operations performed by different transactions and store critical information in a fashion that
recovers from failures. Gifford’s weighted voting algorithm makes similar requircments of its file

represcntatives.

Every instance of a directory representative contains two distinguished keys, HIGH and LOW. HIGH is
greater than any key in the key space and LOW is less than any key in the key space. HIGH and LOW
simplify the delete operation by cnsuring that all keys have a real predecessor and real successor in the
directory. Real predecessor and real successor have an intuitive meaning, but are defined precisely in
Section 4.2,

Directory representatives provide two operations that arc analogous to typical directory primitives:
DirRepl.ookup and DirRepinsert. DirReplnsert is defined to be uscful for both the Insert and Update
operations on directory suites. In addition, directory representatives provide specialized operations that are
used to implement the directory suite delction operation: DirRepPredecessor, 1)irRepSuccessor,
DirRepSuperseder, and DirRepCoalesce. Figure 7 gives procedure headings for cach of these operations. In
Figure 7 the last line of cach description specifies the locks sct by the operation for synchronization. These
locks are discussed below.

DirRepPredecessor returns the key and version number of the entry in the representative that is the
immediate predecessor of the key passed as an argument; it also returns the version number of the gap
between the keys. (Note that a version number is maintained for the gap between each pair of entries, even if
the key space has no keys in the range that the entrics delimit.) DirRepSuccessor is analogous to
DirRepPredecesser. Delctions are performed on a directory representative using the DirRepCoalesce
operation, which deletes any entries appearing in a range between two specified entrics and assigns a single
version number to the resultant gap. Thus, DirRepCoalesce coalesces a collection of keys and gaps into a
single gap.

DirRepSuperseder is used in implementing the delete operation on directory suites. The operation searches
a range starting with key x and ending with kcy y, and returns the entry closest to x with a version number
greater than the one passed as a parameter. If the search reaches key y without focating an entry to return,
then the entry for y (if onc cxists) is returned. The operation locates the first entry that "supersedes” a gap
with the specified version number., -

Each directory representative must synchronize the concurrent operations of different transactions. While
this might be accomplished in many ways, the discussion presented here will assume that type-specific locking

12

DirReplLookup(IN server:DirRep,x:key:
OUT Present:boolean,ver;version,val:value);
{ If there is an entry for x, returns TRUE, the version number of
the entry, and its value; otherwise returns FALSE and the
version number of the gap containing x.

Locks Replookup(x,x}. }

DirRepInsert(IN server:DirRep,x:key,v:version,z:value);
{ Creates an entry for key x with version number v and value z.
Updates the entry for key x if one already exists.

Locks RepModify{x.,x).}

DirRepPredecessor(IN server:DirRep,x:kay;
QUT Pred:key,PredVer:version,Predval:value,GapVer:version};
{ Returns the key, version number, and value of the entry with the
highest key less than x. Also returns the version number of the gap
between x and its predecessor. There need not be an entry for x.

Locks RepLookup(Pred,x) }

DirRepSuccessor{IN server:DirRep,x:kay;
OUT Succ:key,SuccVer:version,SuccVal:value,GapVer:version);
{ Analogous to above procedure,.

Locks Replookup(x,Succ) }

DirRepCoalesce(IN server:DirRep,):key,lver:version,ival:value,

_ h:key,hver:version,hval:value,gapver:version);

{ Inserts entries for 1 and h if they are not present.
Deletes entries for any keys between (but not including) 1 and h.
The resulting gap is assigned version number gapver.

Locks RepModify(1,h). }

DirRepSuperseder{IN server:DirRep,x:key,v:version,y:key
OUT superseded:boolean,Superseder:key,
SupVer:version,SupVal:value);

{ Searches the range betwsen x and y, starting from x. Returns TRUE,
together with the key, version number, and value of the first
entry examined between x and y (exclusive) with version
number greater than v. Returns TRUE and the entry for y if it
exists and no entry closer to x has version number greater
than v. Returns FALSE if there is no entry for y and no entry
between x and y with version number greater than v.

tocks ReplLookup(x,Superseder).}

Figure 7. Directory Representative Operations

13

is used [Korth 83, Schwarz and Spector 84). In type-specific locking, every operation on an abstract object
acquires a fock that is a member of the set of locks associated with that object. A lock compatibility relation is
used to determine whether a lock may be acquired by a particular transaction.

The lock classes used in synchronizing a dircctory representative are analogues of the lock classes for a
single-copy directory, given by Schwarz [Schwarz and Spector 84]. However, instead of locking single keys,
the Jock classes are generalized to lock an entire range of keys and the granting of a lock depends on whether
a range of keys to be locked intersects the range of keys aiready locked by some other transaction. Inquiry
operations (DirReplookup, DirRepPredccessor, DirRepSuccessor, and DirRepSuperseder) sct
RepLookup(o,r) locks, where the range of keys explicitly or implicitly accessed by the operation consists of
the keys greater than or equal to o and less than or equal to . A RepModify(o,7) lock is obtained on the
range of keys modified by the DirReplnsert and DirRepCoalesce operations,

The lock compatibility relation for operations on directory representatives.is illustrated in Figure 8. In the
figure, [6...7] and [¢"...7"] are arbitrary non-intersecting ranges of keys, and [o0...7] and [o"..7"] are arbitrary
intersecting key ranges. Locks are compatible except that a RepModify lack may not specify a range which
intersects the range already specified by another RepModify lock, a RepModify lock may not specify a range
which intersects the range already specified by a Repl.ookup fock, and a RepLookup lock may not specify a
range which intersects a range already specified by a RepModify lock. For example, the compatibility relation
specifies that a transaction may not be granted a RepModify(o™,7") lock if another transaction already holds a
RepModify(o,7) lock,

: Lock Held
Lock Requested None RepLookup(e,r) RepModify{a,T)
RepLookup{a’,»’ OK OK Ok
RepModify(o’,7") 0K OK Ok
RepLookup{c”,7™) OK OK No
RepModify(a",7") OK No No

Note: [0..7] intersects [o"..7") and [0..7] does not intersect [o’..7’]
Figure 8: Compatibility of Directory Representative Lock Classes

As specified above, the lock compatibility relation is sufficiently strong to guarantce that the actions of
transactions operating on a dircctory representative are serializable [Traiger et al. 82), provided that two phase
locking is used. This form of synchronization simplifies the correctness arguments given in Section 4.4,
{Scction 4.5 presents modifications to these locking rules that permit greater concurrency.)

Each directory represcentative is responsible for recovery processing. Recovery processing is necessary to
undo the effects of partially completed transactions after a crash or when a transaction abort is requested by a

client. In any recovery scheme it is necessary for a directory representative to record enough information

14

reliably to redo or undo the cffects of thosc operations that modify the state of the representative. The details
of recovery processing arc specific to the implementation of a directory representative and depend on the
recovery approach used by the underlying transaction system. Gray et al., Lindsay et al., and Schwarz, among
others, present more details on general recovery algorithms [Gray et al. 81, Lindsay et al. 79, Schwarz 84].

To redo insert and update operations, the representative must have available the key, version number, and
value of the modified entry. To undo updates. the old value and version number of the entry must also be
recorded. Inserts are undonc by coalescing the gaps on cither side of the entry which was inserted. It is not
necessary to record an old version number when performing an insertion, since the version number of the -
gaps on cither side of an inserted key is the same as the old version number.

A coalesce operation may be redone in a straightforward manner. To be prepared to undo a coalesce
operation, a representative must reliably record the key, value, version numbers of all entries deleted by the
coalesce operation, and the version numbers of the gaps between entries.

4.2 Directory Suites

A directory suite consists of a set of N directory representatives, an assignment of votes to representatives,
and the read and write quorum sizes R and W. The quorum sizes are chosen to conform to the constraints
described beiow. Dircctory suites implement the operations Lookup, Insert, Update, and Delete, as specified
in Section 1. Operations on directory representatives are combined to implement a replicated directory based
on the weighted voting rulcs described in Section 2.

It can be scen from the specifications for the dircctory operations in Scction 1 that the operations that
modify the directory (Insert, Update and Delete) must first look up the key being modificd in order to ensure
the legality of the operation. Thus all operations require access to R representatives, and no additional
availability can be gained by choosing W<R. Therefore we assume’ W2 R. Recall from section 2.1 that
R+ W>N. Combining these two inequalities, we have 2W>N. Thus any value between L¥_|+ 1 and N,
inclusive, can be chosen for W. R will generally be set to N—W+-1, the smallest value necessary to cnsure
the requircd quorum intersection. ' .

The Lookup operation calls the procedure ILookup, which is shown in Figure 9, and discards the version
number, returning only a boolean indicating the presence of the key in the directory, and the value associated
with key, if it is present. 1Lookup first calls CollectReadQuorum, a function that returns identificrs for a read
quorum of directory representatives. Then, DirRepLookup operations are performed on the quorum and the
entry with the highest version number is returned.

CollectReadQuorum and its companion function, CollectWriteQuorum, bind identifiers to instances of
directory representatives. This may involve message exchanges to cstablish communications sesstons, so it is

15

TLookup(IN k:key;0UT Present:boolean,Ver:version,Val:value)
{ Internal lookup procedure. Return True, the version number, and the
value associated with k if it is in the directory; False otherwise.}

var
{ read quorum has R members }
quorum : array[1..R] of DirRep;
RepsVer : version;
RepsVal : value;
RepsPresent,bestisin : boolean;

i : integer;
begin
{ collect a read quorum for this operation}
quorum := CollectReadQuorum;
Ver := LowestVersion - 1; { a constant }
{ send inquiries to each quorum member }
for i := 1 to R do
bagin

DirRepLookup(quorum[i],k,RepsPresent,RepsVer RepsVal);
if RepsVer>Ver then

begin
Ver := RepsVer;
Val := RepsVal;
Present := RepPresent;
end

and;
end

Figure 9: ILookup Opcration
desirable for the implementors of these operations to cache information to be used in subseguent invocations,
Efficicncy and availability are improved if the quorums returned by these functions overlap as much as
possible,

The Insert operation is quite simple. Insert first uses ILookup to look up the key to be inserted in a read
guorum and obtain the highest version number currently associated with the key. A version number one
higher than this number is used for the new entry, which is then inserted inte a writc quorum of
representatives. Figure 10 illustrates this operation. The Update operation is similar.

Delete must delete an entry from a write quorum by coalescing a range of keys that includes the entry to be
deleted and assigning a version number to the resulting gap that is higher than that of any cntry or gap
previously contained in the range. To avoid asscrting the nonexistence of keys that are actually in directory,
the range to be coalesced may not contain keys in the directory other than the onc to be deleted. Delete
coalesces a range that cxtends from the real predecessor of the key to be deleted to its real successor, therchy
ensuring that there are no keys in the directory that lie in the coalesced range. The real predecessor of a key k&
is the highest key less than k that is in the dircctory. The real successor of a key is defined analogously, The

16

Insert({nkey:key,nval:value);
{Insert a new entry with key nkey and value nval }
var :

{ write gquorum has W members }

quorum : array[1l..W] of DirRep;

i : integer;

k : kay:

ver : version;

val : value;

isin: boolean;

begin
{ first, lookup key to find the current version number }
ILookup{nkey,isin,ver,val};
{ val ignored }
if isin then ReportError;

{ find a write quorum }
quorum := CollectWriteQuorum;

{ The new entry's version number must be higher than its
previous version number as returned by the Lookup call }
ver:=ver+l;

{ Insert the entry in each quorum member }
for i:= 1 to W do
DirRepInsert{quorum[i],nkey,ver,nval};

end
Figure 10: Insert Operation
coalesce operation inserts the real predecessor and successor into representatives where they are not already
present, to delimit the newly formed gap. The cntries between a key's real predecessor and its real successor
cmuwmmmMammmmﬂm%kMHMMmmMWMMM&ﬂm@MﬂMEmmmﬁMwmh
consists of the entries that are expunged when performing the coalesce operation required to delete a key.

Locating the real predecessor and real successor of a key to be deleted is complex. There may be ghost
entrics located between the key to be deleted and its real predecessor or real successor, A ghost is defined as
an entry for a key that is no longer present in the directory suite. In addition, the real predecessor or real
successor of a key might not be present in some members of the read quorum.

These problems are partially illustrated in the following example, Consider the suite in Figure 5. Suppose
we delete key "a”, using representatives A and C as the write quorum for the delete. This operation is
straightforward, resulting in the suite shown in Figure 11. Now supposc we delete key "b", using
representatives B and C as the write quorum, Figure 11 shows that the real successor of the key "b" is the key

¢”. However, no entry for "¢ appears in appcars in representative C, and the ghost of entry "a" appears
between "b” and LOW (the real predecessor of "b”) in representative B. To delete "b" from representatives B

17

Version Number: 0 Version Number: Q Versien Number: 0
Key: {Low> Key: {Low> Key: <Low>
A . A
Gap Version
Number: 0
Gap Version Version Number: 1 Gap Version
Number: 2 Key: "a" Number: 2
v h 4
Version Number: 1 Gap Version Version Number: 1
Key: "b" Number: 0 Key: "b"
A
Gap Version I
Number: 0
Version Number: 1 Version Number: 1 Gap Version
Key: "¢” Key: "c" Number: 0
Gap Version Gap Version
Number: 0 Number: 0 v
Versionh Number: 0 Version Number: O Version Number: 0
Key: <High> Key: <High> Key: {High>
Representative A Representative B Representative C

Figure 11: Directory Suite from Figure 4 After Deleting "a”

and C, the real successor, "¢", must be inserted into representative C. The coalescing of the range from LOW

LI

to "¢"” eliminates the ghost of entry "a” from representative B. The resulting suite is shown in Figure 12,

A simple Delete procedure is illustrated in Figure 13. Finding the real predecessor and successor of a key is
the heart of this operation. Given an input key, RealPredecessor returns the key, value, and versien number
of the input key's real predecessor. RealPredecessor also returns the version number for the gap between the
key and its real predecessor. The RealSuccessor operation is analogous. The straightforward procedure
aiven by Daniels and Spector {Danicls and Spector 83) for perfonming the real predecessor operation suffers
from a scrious drawback: it requires that messages be sent between the node determining the real predecessor
and the nodes containing each member of a read quorum, for every ghost between the key being deleted and
its real predecessor in all representatives of the quorum. While this message traffic can be reduced by
combining messages, and while the simulations and analysis show that average performance is not too bad,
the number of fixed length messages that must be transmitted for a single Delete operation is patentially
unbounded.® All other directory suitc operations, as presented previously [Daniels and Spector 83], require
only a constant number of small, fixed length communications; it would be highty desirable to have an

4in fact. it is bounded by 2R * {the cardinality of the key space), where R is the read quorum size. For finite key spaces, this cxpression
will be large but finite.

18

Version Number: 0 Version Number: Q Version Number: 0
Key: {Low> Key: (Low> Key: {Low>
A A A
Gap Version
Number: 2
Gap Version Gap Version
4 Number: 3 Number: 3
Version Number: 1
Key: "b"”
Gap Version
Number: 0
4 A 4
Version Number: 1 Version Number: 1 Version Number; 1
Key: "¢" Key: "¢* Key: "¢"
Gap Version Gap Version Gap Version
Number: 0 Number: 0 Number: 0
Version Number: 0 Version Number: 0 Version Number:
Key: {Higho Key: {High> Key: <High>
Representative A Representative B Representative C

Figure 12: Directory Suite from Figure 11 After Deleting "b"

algorithm for the real predecessor operation (hence the Delete opcration) that has this property as well. We
devclop such an algorithm in the next section.

4.3 An Efficient Algorithm for the Real Predecessor Operation

An algorithm for finding the real predecessor must in effect prove that a certain key is the real predecessor,
Such a proof involves showing that all entries in between a key and its real predecessor in each represcntative
of a read quorum are superseded by a gap with a higher version number in some other representative of the
quorum. The number of ghosts between an entry and its real predecessor is potentially unbounded in each
representative, so at first the prospects for the existence of an algorithm that requires only a constant number
of fixed length messages might appear dim.

However, directory suites have a property that constrains the system states that can occur. Because of this
property, the minimum version number necessary for an entry to be current in a region guaranteed to contain
the real predecessor can be determined in one round of messages. With this information, a single additional
round of messages suffices to find the real predecessor. To state and prove the property that permits this

efficicnt location of the real predecessor, we must introduce several terms.

A region is a set of keys; that is, a subsct of the key space. A range is a region containing cvery key in the

19

Delete(delk: key):
{ Delete the key delk from the directory }
var

quorum: array[l..W] of DirRep;

i: integer;

isin: boolean

succ, pred, k: key;

pval, sval, val: value;

pver, pgver, sver, sgver, ver: version;

bagin
ILookup(delk,isin,ver,val); { val ignored }
if not isin then ReportError;

{ Find the predecessor and successor of delk }
RealPredecessor(delk,pred,pval,pver,pgver);
RealSuccessor(delk,succ,sval,sver,sgver);

{ The version number of the coalesced gap must be higher than
the maximum of any version numbers in the range coalesced }
ver := Max(ver,pgver,sgver);

{ find a write quorum }
quorum := CollectWriteQuorum;

{ ensure that the predecessor and successor exist in every

memober of the quorum and coalesce the range in each member }
for di:= 1 to W do
DirRepCoalesce{quorum[i],pred,pver,pval,succ,sval,sver,ver+l});
end .

Figure 13;: Delete Operation

key space between some key and another key. These definitions are consistent with our informal use of the
term in previous sections. The notation (kl,kz) refers to the range from ka to I‘:2 excluding &, and k;’ the
endpoints of the range.

A gap between entries for keys kl and kz is said to cover the region (krkz) aud all of its subregions (subsets).
The remaining terms arc defined in the context of an entire directory suitc. A gap g is said to be current over
the region rif the following conditions hold:

1. The gap gcovers r.

2. No gap in some other representative covering any non-null subregion of r has a higher version
number than g doces.

3. No cntry in some other representative for a key in r has a higher version number than g does.

Intuitively, a gap is current over a region for which it expresses the most up to date information, A gap’s
region of currency is the entire region over which it is current.®

Sl’ormally. the union of all regions aver which it is current,

20

For cxample, consider the suite in Figure 14. Gap g covers ("¢" HIGH) and all of its subregions, e.g.
("d","f"). Gap gis current over ("'g","k"), for cxample. Gap g's region of currency is ("c”,"d")U("e" HIGH).

We are now ready to state the property.

Version Number: 0 Version Number: Version Number: 0
Key: <L.ow> Key: {Low> Key: {Low>
. A .
Gap Version Gap Version Gap Version
Number: 0 Number: 0 Number: 0
Version Number: 1 Version Number: 2
Key: "¢" Key: "b"
A
Gap Version
Number: 0
v
Version Number: 1 Version Number: 1
Ke!l Dld" Key. lld"
Gap Version
Number: 0 Gap Version Gap Versmon
Number 2 Number 2
Gap g Version Number: 1 Version Number: 1
Key: "a" Key: "e"
Gap Version Gap Version
v Number: 0 Number:; 0
Version Number: 0 Version Number: 0 Version Number: 0
Key: (High> Key: <High> Key: {High>
Representative A Representative B Representative C

Figure 14: Suite for illustration of region of currency and related terminology

Theorem 1. In any occurring system state, every gap's region of currency can be expressed as the union of a
finite number of ranges whose endpoints are keys currently in the directory.

Before we can prove Theorem 1 or present the real predecessor algorithm we must introduce one more term

and present two lemmas. A collection of ranges {r; l" b r=C(k, .k) is said to be canonical if the ranges are

=1

in order (kﬂ <k } and non-intersecting (&, < }. The followmg lemma justifics the use of the term

G+ 2= (1+ M

canonical.

Lemma 1. For any finite collection of ranges over a dense key space, therc exists a unique canonical
collection of ranges whose union comprises the same sct as the union of the original collection. This is
referred to as the canonical form of the original collection. (A key space is densc if, for every pair of keys
k. k,. with k <k, there exists a key k, such that k1<k3<k2.) Further, the endpoints of the ranges in the
canonical form are all endpoints of some range in the original collection.

21

Lenuna 2. If a gap g is current over a range (lcl.kz), and k1 and k2 arc in the directory, then kl is kl’s real
predecessor. '

4.3.1 Proofs

This section may be skipped without loss of continuity. However, it is advised that the reader study the
proof of Theorem 1 if a thorough understanding of the internal workings of the data structure is desired.

A rigorous proof of Lemma 1 would be tedious, but a detailed proof sketch follows. [f a collection of ranges
is not in order, it can be reordered. [f any pair of ranges in the resuiting collection overlap, their union is a
range. Thus the pair of ranges can be replaced by the range that is their union. The endpoints of the union
are both endpoints of one of the original ranges. This procedure is repeated until none of the remaining
ranges intersect. At this point, the collection is in canonical form, and the union of the ranges in the
collection is identical to the union of the ranges in the original collection. Any two canonical collections of
ranges over a dense key space that are not identical have different unions,-hence the canonical form of the
collection is unique.

Lemma 2 follows immediately from the definition of currency over a region. By this definition, if g is
current over (&,k,), their are no entries for keys in (k&) with a higher version number than g's. Thus there
are no keys in between k1 and k2 in the dircctory, and I\c1 is kz’s rcal predecessor.

Now we turn our attention to Theorem 1. We assume that the key space is dense. This assuinption is made
without loss of gencrality by the following argument. Any totally ordered sct can be embedded in a dense set:
given a sparsc key space KS there exists a densc key space K 4 such that X S_QK 4 (For example, the integers
from 1 to 10 can be cmbedded in the rativnals from 1 to 10.} [f we prove that Theorem 1 holds for a key
space, we havc also proved it for any subset of that key space, as the uscr could arbitrarily restrict his
operations to members of that subset. Thus a proof that Theorem 1 holds for all densc key spaces implies that
it also holds for all sparse key spaces. Note that this has no implications with regard to actual system
implementation. It merely facilitates the proof,

The proof of Theorem 1 is by structural induction. For the base case, we observe that the theorem holds for
a suite in its inidal state; cach representative contains a single gap whose region of currency is (LOW,
HIGH), and the directory contains the (dummy) keys LOW and HIGH.

For the induction step, we must show that if the theorem holds for a given system state, then it holds for all
states reachable from that state via a single Insert, Update or Delete operation. We shall consider these
operations in wurn. For cach operation, we must show that the gaps contained in the represcntatives
comprising the write guorum and the gaps contained in the representatives outside the write quorum satisfy
the required condition after the operation, We further subdivide these gaps into those whose region of

currency changes as a result of the operation and those whose region of currency remains unchanged.

22

First we show that the induction holds for for Inserts. The Insert operation does not remove any key from
the dircctory, so any range whose cndpoints were in the dircctory prior to the Insert will still have its
endpoints in the dircctory after the Insert. Therefore, all gaps whose region of currency remains unchanged
by the Insert will still satisfy the induction hypothesis after the operation (given only that they satisfied it
before). Thus, we nced only consider the gaps whose regions of currency are altered by the Insert operation.

The regions of currency of gaps in representatives outside of the write quorum for an Insert operation are
affected only if they are current over the region {k}, where & is the key being inserted. The new entry for this
key will have a higher version number than these gaps, so the insertion will have the effect of removing {4}
from their regions of currency. By hypothesis, the old region of currency of cach of these gaps is expressible
as a finite union of ranges whose endpoints are keys in the dircctory. Let us call these ranges {r£|?= 1},
ri=(k“.k,.2). Lemma 1 allows us to assume without loss of generality that the colicction of ranges is in
canonical form.

Since the gaps in question contain & in their region of currency, one of the r, must contain k. Let us call this
range s . (The value of ¢ may be different for each gap in question.) When {4} is delcted from such a gap’s
region of currency, the resulting region will be

g-1 "

{r) T BORCk 0, Rk WUTF| L)
But £ and ali of the &, are in the dircctory after the insertion, so the induction hypothesis is preserved in alt
representatives outside of the write quorum.

Within the write quorum one of two things can happen. If an entry is already present for k8 no gap's
region of currency will be affected by the operation. If no entry for & exists, then the gap g into which the key
falls will be split into two new gaps. Let us call them g and g,. By the induction hypothesis, g's region of
currency can be expressed as a finite union of ranges whose endpoints are in the dircctory. Let us call them
{rr. |:__ 1}. We assume the ranges are in canonical form, by Lemma 1. If kis in g's region of currency, it is in
one of the re Let us call this range e Then g 's region of currency will be

(Al V(T 3
and gz’s region of currency will be

(G VLA
(Figure 15). All the endpoints of the ranges comprising g, and g's regions of currency are in the dircctory

after the insert. If the key being inserted falls outside of the original gap’s region of currency, let q be the

largest integer such that k(km. Then g's region of currency will be {rjlle} and g s region of currency will

be {r|"

ili=q +1}‘ Thus, the induction hypothesis is preserved in all representatives for Insert operations.

6This cntry is necessarily a ghost, as the Insert operation would not be permitted if k were already in the directory.

Before Insert("m")

Represemtative r

Region of Currency

23

After Insert("m")

Region of Currency

Representative r

T3 i

!

Gapg I

!

:

Gapg

[_ Key: "r"

Figure 15: Effect of the insert operation on regions of currency, within write quorum

Next we show that the induction holds for Update operations.
consider the gaps whose regions of currency arc altercd by the operation, as Updates do not remove any keys
from the directory. No gaps in representatives outside of the write quorum have their regions of currency
affected by this operation. It increases only the version number associated with the key being updated, &, and
no gap could have had {4} in its region of currency before the update operation took place. The highest
version number associated with & at that time belonged to an cntry and not a gap, as updates can only occur
on keys that are alrcady in the directory. Within the write quorum the cffects of the Update operation on
regions of currency are identical to those of the Insert operation, and the identical argument shows that the
induction hypothesis is preserved. (Unlike the case of the Insert operation, the key being updated will never

fall within a range in a gap’s region of currency, because no gap can be current over a range containing a key

in the directory.)

Like Insert operations, we nced only

24

Finally we show that the induction holds for Delete operations. [n cach representative in the write quorum,
a new gap is created whose region of currency is (p,s), where p is the real predecessor of the key being deleted
and s the real successor. If p was not already present in a representative, it is inserted. ‘The region of currency
of the new gap extending backward from p consisis of the ranges before p previously in the canonical form of
the region of currency of the gap from which the new gap was split off. Similarly, if s is inserted, the gap
extending forward from s will have as its region of currency the ranges after s previously in the canonical form
of the region of currency of the gap from which the new gap was split off. (Figure 16)

Before Delete("k") After Delete("k")
Representative r Region of Currency Region of Currency Representative r
l Key: "b" l—n—-—-neal Predecessor rKey: "p"]
3 A A
I Key: "d" h

>~Ghosts

1 Key: 1" P

]

| Key: "k" E

A
M] M
i l Key "s" |
A
h 4 A 4

| Key: "v" | Real Successor / I Key: "v" J

Figure 16: Effcct of the delete operation on regions of currency, within write quorum

The keys p and s are, by definition, currently in the directory, so ali of the gaps whose regions of currency are

modificd still satisfy the induction hypothesis.

The gaps whose regions of currency were not modificd could not have had any ranges bounded by kin the

25

canonical forms of their regions of currency. If this were the case, the gaps would of necessity have covered or
bordered £, In cither case, the deletion of & from the representative would have modified the gaps’ region of
currency, which, a priori, did not happen. Thus, these gaps satisfy the induction hypothesis given only that
they satisficd it before the delete and the induction hypothesis holds within the write quorum.

QOuiside of the write quorum the situation is as foilows: The new gap in the representatives of the write
quorum covers (p.s). Gaps whose regions of currency did not intersect this region are unaffected. The new
gap has a higher version number than all others in this region, s¢ any portions of other gaps’ regions of
currency that lay in {p,s) are no longer in their regions of currency. Thus, the deletion has the effect of -
removing ranges entirely contained within (p,s) from the canonical forms of the gaps’ regions of currency. By
Lemma 2, any range in the canonical form that had & as one endpoint must have had p or s as its other
endpoint and so was contained in (p.s). Thus, all ranges remaining in the canonical form after the deletion are
bordered by keys other than k that were previously in the directory, But these keys are still in the directory
after the deletion, so the induction hypothesis is preserved for gaps outside of the write quorum in a Delete
operation. This completes the proof.

4.3.2 The Algorithm

In this section we describe our real predecessor algorithm. An argument for the correctness of the
algorithm is presented as the algorithm is deserihed. A formal statement of the algorithm is given in Figure
17.

The node determining &°s real predecessor asks each representative in a read quorum to return the gap that
covers k or has & as its high boundary. All of these "predecessor gaps™ cover some range in common, which
we call (k .k). (k1 is the highest of the low endpoints of the returned gaps.) Furthcrmore, the gaps represent
information from an entire read quorum so no representative contains any higher version numbered
information pertaining to (k.k). Thus, the predecessor gap with the highest version number, which we call
is current over the region (&, 4).

gcurr‘

By Theorem 1 and Lemma 1, g ’s region of currency can be expressed in canonical forin as a union of
ranges bounded by keys in the directory. Since (kl, k) is in gcw's region of currency, it must be contained
entirely in one of these ranges. The high end point of this range is & (since k is in the directory prior to the
delete operation), and the low end point is &'s real predecessor, by Lemma 2. Of course, the low end point
must lie within g or at its low boundary, which we call k,.

In the final stage of the algorithm, cach representative in the read quorum is asked to return the entry for

the highest key less than & within the range of g whose version number is higher than gcu"’s. If a

curf
representative contains no entry in the specified range with a sufficiently high version number, it returns a
message to that effect. At this point, two things can happen. If none of the representatives can return an
entry, gcw‘s low ¢nd point, k.. is k's real predecessor. If one or more such entrics exist, the highest key for

whicht an entry is returned, p, is k's real predeeessor, by the following argument.

26

All keys for which entrics are returned must lie outside g s region of currency. Thus, p lies outside of
gﬂm‘s region of currency. Therefore, the key that delimits the range in the canonical form of gw"'s region of
currency in which (kl,k) lics must be = p. But no key between p and k, exclusive, is currently in the directory;
if therc were such a key, at least onc of the representatives in the write quorum would have contained a
current entry for it, which it would have rcwrned in the final stage of the algorithm. Thus p is &’s real
predecessor, and the highest version numbered entry returned for p is current.

4.3.3 Enhancementis to the Reai Predecessor Algorithm

As in the other procedures presented, efficiency is sometimes sacrificed for clarity in the RealPredecessor
procedure of Figure 17. There are several additional improvements that would be made in any practical
implementation of the algorithm. The procedure would check if the second round of information exchange
were necessary before doing it. If the highest predecessor key returned in response to the first request for
information has a higher version number than any of the returned gaps that cover it, then this key must be the
real predecessor, and there is no need to continue searching, ’

This technique can be used to reduce message traffic even further by having each representative return
several gaps and entrics preceding the key being deleted rather than just one. The procedure would cheek if
any key for which it had information (entry or covering gap) from all representatives had a higher version
number than any covering gap. If this is the case, then the highest such key is the real predecessor, and no
second stage is necessary. The number of entries returned by the representatives in the first stage of the
algorithm controls a performance trade off between exccution time at the nodes and inter-node message
traffic. If many entries are returned, it is likely that the sccond round of information exchange will not be
necessary; however, the exccution time at cach node is proportional to the number of catries sent. The
number of entries between the key being deleted and its real predecessor will on average be half of the key’s
delete list size. (Recall that the delete list consists of all of the entries between a key's real predecessor and its
real successor.) Thus, the formula developed in Section 5.2.4 that cnables us to predict the average length ofa
delete list can aid in choosing an appropriate number of entries to return in the first stage. In fact, the
limiting behavior described in Section 5.2.5 shows that that the second stage of the algorithm can almost
always be avoided if several entries are returncd in the first stage.

Even if the sccond stage is required, it may not be necessary to ask for additional information from all of the
representatives in the read quorum. Any represcntative that has already sent entry or gap information for the
entire range that has been determined to contain the real predecessor (the range covered by gcm) has no
more information to add and need not participate in the sccond round.

The real predecessor and real successor can be determined simultancously by putting requests and
responses for both tasks in cach message, thus reducing by almost one-half the message traffic required to
find the real predecessor and successor. In the actual implementation, there would be a single

27

RealPredecessor{IN k:key; OUT pred:key,pval:value,pver,gver:version);
{Returns the key, value and version number of k's real predecessor,
and the highest version number in the range bounded by k and k's
real predecessor, exclusive.}
var quorum: array[1..R] of DirRep,

MaxGapVer,CandGapVer,CandKeyVer: version,

MaxGapKey,CandKey: key,

CandKeyVal: value;

MaxGapRep: integer;

CandFlag: boolean;
begin

quorum := CollectReadQuorum();

{Get info on predecessor gaps in each rep in the read quorum & find
out which rep has the gap w/ the highest version number. (g-curr)}
MaxGapVer := LowestVersion - 1; {A Constant}
for i := 1 to R do
begin
DirRepPredecessor(quorumfi],k,CandKey,CandKeyVer, b CandKeyVal,
CandGapVer);
if CandGapVer > MaxGapVer then
begin
MaxGapVer CandGapVer;
MaxGapKey pred := CandKey;
pver := CandKeyVer;
pval := CandKeyVal;
MaxGapRep := i;
end
end;

{Find cliosest entry which supersedes g-curr in any rep in the
read quorum. This will be the real predecessor. }
for i := 1 to R do
if i <> MaxGapRep then
begin
DirRepSuperseder{qguorum[i],k,.MaxGapVer, ,MaxGapKey,
CandFiag,CandKey,CandKeyVer,CandKeyVval);
if CandFlag {If this rep has a candidate for real pred...}
{and 1t's closer than the closest candidate thus far, or
gqually close with a higher version number then...}
and {(CandKey > pred
or {CandKey = pred and CandKeyVer > pver)) then
begin {Tentatively select the candidate}

pred := CandKey;

pval := CandKeyVal;

pver := CandKeyVer
end

end
end

Figure 17: Real Predecessor Operation

28

"RealNeighbors” procedure instcad of scparate RealPredecessor and RealSuccessor procedures. The
procedure would initially ask for gaps and entrics surrounding the key on both sides. If this did not provide
enough information to find the key’s real predecessor and successor, it would send a request for a
"superseder” of cither or both "current gaps,” as required.

In the procedure for the Delete operation in Figure 13, the key to be deleted is looked up prior to
determining its real ncighbors. In practice the lookup would be combined with the first.stage of the real
neighbors determination.

The critical factor determining the execution speed of the directory operation procedures presented is the
number of small, fixed length messages sent in performing the operation. Thus we use this number as a
complexity measure for our algorithms. Our real predecessor algorithm, with the improvements described, is
extremely fast in the average and worst cases. The average performance of this algorithm is close to the trivial
lower bound of one exchange of messages with each member of a read quorum. The worst case performance
is two rounds. The Delete opcration requires one additional round to coalesce the range between the real
predecessor and successor,

The procedure, including the improvements, is casy to implement. 1t also has the following uscful property.
The correctness of the algorithm does not depend on the fact that the key whaose real predecessor is being
determined is actually in the directory. Thus, onc can locate the real neighbors of any key, regardiess of
whether it is in the dircctory. This could, for instance, be used to implement a "range delete” operation,
which deleted all of the keys between one key and another. This operation would require no more message
transmissions than the deletion of a single key.

4.4 Correctness Arguments

The correctness of a directory suite’s operations depends on Lookup always returning current information
about a key. DBecause every rcad quorum intersects every write quorum, Lookup will rcturn current
information as long as that information has a version number greater than that of any non-current
information. These correctness conditions are the same as those required for Gifford's file replication
algorithmi.

Two phase locking and the lock compatibility matrices specified in Section 4.1 are strong enough to
guarantee the scrializability of transactions at any single represcntative. Traiger et al. [Traiger et al. 82] have
shown that if all nodes participating in a distributed transaction execution follow two phasc locking protocols
that guaranice the serializability of transactions at individual nodes, then the resulting global schedule is
equivalent to some serial schedule of transactions. Thus, the directory replication algorithm preserves the
serializability of transactions that use it.

29

The Insert and Update operations both set the version number of the entrics they modify to be greater than
the greatest version number previously associated with the keys of those entrics. Therefore, the current data
for each key has a version number greater than that of any non-current data for that key.

Delete coalesces the range between the real predecessor and real successor of the key to be deleted. By the
definitions of real predecessor and real successor, thete can be no current eniries (other than the entry to be
deleted) in the range to be coalesced. The operation assigns to the gap covering the coalesced range a new
version number that is higher than any version number previously associated with any key in that range.
Therefore, as with Insert and Update, the current data for cach key in the range has a version number greater
than that of any non-currcnt data for that key.

4.5 More on Synchronization and Recovery

Directory representatives, as described in Section 4.1, arc synchronized to ensure that ali transactions using
their operations can be made serializable.” In addition, all information in a fcpresentativc is recoverable and
operations can be completely redone or undone by recovery processing. Thus, arbitrary directory
representative operations may be composed in atomic transactions, This property simplifics the correctness
arguments for the directory replication algorithm by allowing the algorithm to ignore the conscquences of
concurrency and failures during directory suite operations. However, the use of directory representative
operations is not arbitrary, and the restrictions that the directory replication algorithm imposes on their use
can be cxploited to enhance the synchronization and recovery performance of directory representatives, The
resuitant dircctory representative objects may show non-serial behavior [Schwarz and Spector 84] if they are
used outside of this directory replication algorithm.

The basis for improvements to concurrency and simplification of recovery in Delete is Gifford's observation
[Gifford 81] that data and its version number in one representative may be replaced at any time by more
currcat data with a higher version number from another represcntative, It is easy to sce that the contents of
the directory, as observed by the results of Insert, Update, Delete, and Lookup operations arc unaffected by
such a replacement. Of course, care must be taken to prevent an independently executing update from being
overwritten with the data and version number from the other representative, A temporary write lock on the
data being replaced is sufficient concurrency control for this purpose.

Improvements to concurrency and recovery ¢an be accomplished with modifications to DirRepCoalesce.
The Delete operation is the only invoker of DirRepCoalesce, and it always passes the real predecessor and
real successor of a key to be deleted as arguments; therefore the only current cntry modified by
DirRepConlesce is the entry being deleted from the directory. To increase concurrency and simplify
recovery, the DirRepCoalesce operation can be redefined to take three additional arguments. The first new

71’or these transactions to be serializable, all other types of objects used by the transaction must also preserve seriatizability,

30

argument is the key of the entry being deleted. If the transaction performing the DirRepCoalesce is aborted
this key is used to determine the entry that must be restored. When the DirRepCoalesce operation is undone,
the gaps on cither sidc of the entry being deleted receive the current version numbers for those gaps, which
are determined along with the rcal predecessor and real successor and passed as the second and third
additional arguments to DirRepCoalesce. [t is unnecessary to restore any ghost entrics during the undo of a
DirRepCoalesce operation.

Concurrency can be increased by releasing the RepModify locks set by DirRepCoaulesce on all keys, except
for the key of the entry actually being deleted, as soon the operation corapletes. The lecks do not need to be
retained, because the operation does not modify data other than version numbers in these gaps, and version
numbers are used in very well defined ways by the weighted voting algorithm,

Additionally, RepLookup locks on data less than the real predecessor and greater than real successor of a
key being deleted nced not be held beyond the first phase of the RealPredecessor and RealSuccessor
operations. These locks are obtained only to guarantee that the algorithm for determining the real
predecessor and successor sees a consistent version of the directory suite.

5 Performance Characterization

In this section, we present the results of simulations and construct and analyze a model of the algorithm as
applicd in the simulations. The system studied in the simulations and the model consists of a directory suite
initially containing a certain number of keys into which Inserts, Updates and Deletes occur sequentially with
equal likelihood. The keys to be inserted are choscn randomly from thosé not in the directory, and the keys
to be updated or deleted are chosen randomly from those in the directory. Read and write quorums are
sclected randomly. (Lookups are not performed as they have no cffect on the contents of the directory suite.)

The key space used in the simulations consists of the integers from one to onc billion. The mathematical
model is described in sufficient gencrality to apply to any finite key space. It docs not make sensc to consider
the system with an infinite key spacc, as keys to he inserted arc chosen at random from those not already in
the directory. If an infinite key space were used, this would amount to selecting an object at random from air
infinite set, an opcration which is not well defined. Intcrestingly, the cardinality of the key space does not
affect the analysis except insofar as it affects the validity of several simplifying assumptions. This fact is
discussed at greater length in Section §.2.6.

Various performance measures can be used to evaluate the perfonmance of our algorithm. In our view, the
most important performance measure is the number of rounds of message exchanges with a read or write
quorum necessary to perform each directory operation. With one exception, this measure is a constant which
does does not vary from instance to instance of a given operation. The exception is the Delete operation,
which, with the suggested enhancements, requires cither two or three rounds of messages depending on the

i1

results of the first round. (Sce Section 4.3.3.) The communications cost of the dircctory operations are

summarized in Figure 5.

Rounds to Rounds to Total # Total #
Operation Read Quorum Write Quorum Rounds Messages
Insert 1 1 2 2(R+W)
Update 1 1 2 2 (R+W)
Delete 1 or 2 1 2 or 3 2(R+UW) or £ 2(2R-1+W)
Lookup 1 0 1 2R

Figure 18 Comununications Costs of Dircctory Operations

The node doing a directory operation has to send RPC’s to read and write quorums and, in the case of read
quorums, scan the responses to determine the current information. ‘Thus the work done by this node is
proportional to the total number of messages required for an operation, and is gencrally small. More
interesting is the work done by the nodes storing the directory representatives. All directory representative
operations except for the sccond and third steps of the Delete operation amount to cither looking up or
updating the information associated with a single key ar gap. The time required to perform this operation
depends on the number of entries in the representative and data structurc used to store the entries. [f
balanced trees arc used, the time is proportional to the log of the number of entrics. The storage space
required at each representative is proportional to the number of entries stored at the representative,

Thus, the first performance measure we concentrate on in our performance studies, which we call the size
ratio, is the ratio of entries in a directory representative to keys in the directory. The size ratio indicates the
storage required at each represcntative as a function of the storage required for a single site directory. A size
ratio of onc indicates that a node has exactly as many entrics as a single site directory contatning the same
keys. The simulations measure the size ratio directly, while the analytic model allows us to break the size ratio
down into three composition ratios based on a classification of directory entries into three categories. The size
ratio is the sum of the three composition ratios. -

In the second step of the Delete operation (1YirRepSnnerseder) each representative has to scan the delete list
for the key being deleted. In the third step (DirRepCoalesce), each representative has to coalesce the delete
list into a single gap. In both steps, the total work required is proportional to the delete list length. Thus, the
second performance measure we study in our simulations and analysis is the average delete list length, The

average is taken over all keys in the directory.

As explained in Scction 4.3.3, the second step of the Delete operation is necessary only if one or more nodes
in the read quorum did not return their entirc delete list in the first step. Thus knowing the cxpected value of
the average dclcte list Iength allows us to ask for enough information in the first step so that the second step
will usually be unnccessary. Of course this would not be feasible if the expected value of the average delete
list length were high. However, this turns out not to be the case.

32

In summary, the size ratio characterizes the space complexity of our algorithm. The size ratio and average
delete list length characterize the significant components of the time requirements of our algorithm,
Knowledge of the average delete list length is useful in ensuring that the first round of the delete operation
returns cnough data so that the second round in unnccessary. The size ratio and average delete list length are
the performance measurcs that form the basis of our performance studies. In the analysis, the size ratio is
further subdivided into composition ratios which tell us more about how the storage spacc is being used.

5.1 Simulation Resulls

The shaded bars in Figures 19 and 20 show the size ratios and delete list lengths measured in simulations for
a varicty of directory configurations. (The unshaded bars show predicted values obtained from the
mathematical model in Scction 5.2.) In the simulations, each directory suite initially contained one thousand
entries. The duration of cach simulation was twenty thousand operations, and performance measures were
gathered during the final ten thousand operations,

2 — | NN Actual
1.1} [C] predicted
\ N 5

1.0} < . NN N <
\ NEEREEN

.8l N N NN
| 1
AN JNR
‘ N | | ININTN
a2z 313 533 524 955 946 937 928 919

Configuration

Figure 19: Size Ratios for Various Dircctory Suites

The simulation results in Figure 19 show that the size ratio remains very close to one for all of the suite
configurations tested. Thus the storage required at each representative and the time required to locate an
entry at a representative are only slightly higher than for a single site directory. The resuits in Figure 20 show
that the average delete list length is less than a single entry for every configuration tested. This implies that
the second and third steps of the Delete operation will run very quickly at the representatives, and the second
step will rarcly be necessary if a few entries are returned in the first step.

More detailed simulation results for 3-2-2 directory suites with one hundred, one thousand, and ten

thousand keys initially in the directory are shown in Figure 21. The duration of cach of these simulations was

33

- %
-8 k\\ Actual
— D Predicted

v/

UYL LSV
LI,

/A1

-3 5.2.4 9-55

~
©

-2-8 9-1-9
Configuration

Figure 20: Delete List Lengths for Various Directory Suites

two hundred thousand operations, with performance data gathered during the final one hundred thousand

operations.
100 Keys 1000 Keys 10000 Kevs
Size Ratio
Avg Max Std Dev Avg Max Std Dev Avg Max Std Dey,
111 127 0.03 111 119 0.02 111 1,13 0.01
Delete List Size

Avg Max Std Dev Avg Max Std Dev Avg Max Std Dev
044 9 0381 044 9 0381 ' 044 10 0381

Figure 21: Detailed Simulation Results for three 3-2-2 Directory Suites

These additional simulations indicate that the average valucs of the performance measures do not depend
on the inital number of keys in the directory suite. Thus, average spacc requirements appear to be
proportional to the number of keys in the directory, just as in a single site directory. The time requirements
depend on the number of keys in the directory in the same manner as for a single site directory. The standard
deviation of the size ratio decreases as the number of entrics increases. This is casily explained by the fact that
the numerator and denominator of the sizc ratio are the number of entries in a representative and the number
of keys in the directory, respectively. Similar variation should be observed in both of these random processcs
regardless of the dircctory size, but a given variation in the numerator or denominator will cause a greater
change in the fraction if the denominator (the number of keys in the dircctory) is large.

The maximum delete list size observed was 10. This is an indication of the worst case time to perform the
directory representative operations for the second and third steps of the delete operation. Care should be

34

taken not to interpret this as the truc worst case time for any possible run. Theorctically, a delete list can be as
long as the number of keys that have ever been deleted from the directory. The longer a run, the higher the
maximum observed delcte list is likely to be. However, the fact that the largest delete list observed in three
runs of one hundred thousand operations cach was only 10 entries indicates that large delete lists will
probably not be a problem in practice.

5.2 Analytic Madel

The algorithm as applicd in the simulations was modeled and analyzed to predict various performance |
characteristics. The goals of the analysis were to increase our confidence in the simulations by corroborating
their results, to gain further insight into the behavior of the algorithm, and to produce a fast, reliable method
for determining the performance of the algorithm in a given application.

In this section, we describe the model and our method of analysis, and present the analysis. A set of
formulae to predict performance characteristics are derived in the analysis. These formulac arc used to check
the results obtained from the simulations and predict performance trends exhibited by the algerithm under
various conditions.

5.2.1 Consiruction of the Model

The system can be modeled as a Markov chain in a straightforward fashion. One state corresponds to each
possible contents of the entire directory suite, henceforth called a system state. The transitions correspond to
the changes in system state cffected by the operations. Transition probabilitics are induced by the fact that
the operation to be performed (Insert, Update, or Delete), the key to be operated upon, and the write quorum
are chosen at random.

In the simulations, the system appeared to display equilibrium behavior: each system autribute being
monitored approached an average value that did not vary over multiple runs of sufficicnt length, For a
Markov model to be of use to us in calculating these values, it too must display this equilibrium behavior. It
is sufficient that the model achicve stochastic equilibrium, The simplest class of Markov chains achieving
stochastic equilibrium are those that are finite and irreducible. (By finite, we mean that they contain a finite
number of states, and by irreducible, we mean that each state can be reached from every other state.)

The straightforward model described above does not possess cither of the requisite properties. It is not
finite, as version numbers can grow without bound. Repeatedly updating a single key produces an infinite
sequence of distinct states. Neither is the straightforward model irreducible: once the systern leaves any state,
it can never get back to that state. This can be seen by observing that the version numbers associated with a
fixed key in a fixed representative in successive states form an increasing sequence. Any operation results in
the version number associated with some key increasing in some representative and it can never return to its

original value. However, the model displays an extremely high degree of fumpability [Kemeny and Snell 60].

35

That is to say, many states are practically identical to some other state, so sets of similar states can be lumped
together to produce a smaller, simpler model. We shall attempt to construct 2 new modcl that possesses the
desired propertics by this process of lumping.

This is not the straightforward task that it might appear to be. The obvious way to deal with the fact that
version numbers increase without bound is to cquatc states with identical ordering of pairs of kcys by version
number, thus eliminating the absolute version numbers., However, attempts to lump states based on order
relations between version numbers alone run into complications. Even if such an attempt succeeded, the
model produced might well be finite but not irreducible. An alternative approach, which involves
abandoning the version numbers entircly, produces the desired result. Before we describe it, we must take
care of some preliminaries.

All of the entries in each representative of a directory suite can be divided into three classes that correspond
to terms introduced in previous sections. A current entry is an entry for a key that is still in the directory that
has highest version number associated with that key in any representative, Current entries are the only catries
that contain up to date information. An outdated entry is a norl-currcn't entry for a key that is still in the
directory. If an entry is outdated then some other representative contains an entry for the same key with a
higher version number, A ghost entry is an entry for a key that is no longer in the directory suite. A ghost
entry can be thought of as the ghost of a key that used to "live” in the directory. It should be clear that all

entries in a representative fall into one and unly one of these classes.

Ict us call a representative with all version numbers removed and with the class of each entry {(current,
outdatcd or ghost) appended to the entry the concise representation of the representative. Note that the
concise representation contains ne explicit information about the gaps between entrics. By extension, we call
the collection of concise representations of all representatives in a suite the concise representation of the suite.
The concise representation has two properties that make it useful:

1. Given the concise representation of a system state, an operation to be performed on the suite
(Insert(key), Update(key) or Delete{key)) and the write quorum sclected for the operation, one
can determine the concise representation of the resulting system state,

2. All of the important information concerning a system state is fully determined by its concise
representation; that is, all system states sharing a concise representation coincide in all important
attributes. By important attributes, we mecan the performance measures: delete list length and
composition ratios, and several other attributes for which we assert that equilibrium distributions
exist in the analysis of our model,

The proof of Property 1 is a somewhat tedious casc analysis, which is implicitly performed for other reasons
in Appendix 1. The intuition behind the proof is that version numbers are used solely to find out which class
an entry belongs to, when performing the various operations on the suite.

Property 2 must be proven separately for each important antribute. 1t is true for the composition ratios, as

36

the concise representation of a representative clearly contains the same number of current, outdated and
ghost entries as the representative itself. It is true for average delete list length, as delete lists consist of all of
the ghost entries between two keys in the directory, and system states sharing a concise representation
represent the same directory, and have ghost entrics for the same keys at corresponding representatives. The
reader can easily check that this property holds for ali other systcm attributes on which we assert the existence
of an cquilibrium distribution in the analysis.

We are now ready to describe the method by which we simplify our model. We define a new model where
ali system states sharing each concise representation are lumped together to form the model states. Property 1
above tells us that the induced transition probabilities in this model are well defined. This is required for the
model to be a well defined Markov chain.

The new model is finite by the following argument. The key space is finite, and cach representative contains
entries for some subset thereof. Each entry belongs to one of the three classcs; thus, there are only a finite
number of possible concise representations for representatives. A suite consists of a fixed number of
representatives, so there are only a finite number of possible concise representations for system states. This
places a finite an upper bound on the number of states in our model.

The model is irreducible by the following argument. From any system state, it is possible to reach a system
state where all representatives contain no entries. This can be accomplished as follows: first delete all of the
keys in the directory in any order with any writc quorums. At this point, all of the representatives can only
contain ghost entrics, and if a single key is inscrted into the dircctory and then deleted using the same write
quorum, all of the representatives in the quorum will be completely empty. Repeat this insert/delete process
as many times as necessary to include cach representative in at least one write quorum. All system states
where none of the representatives contain any entrics have the same concise representation hence they are
represented by a single state in the model. But this state also represents the initial system state, from which all
other system states can be reached. Thus, any model state reachable from the initial state can be reached from
every state.

The Markov model achieves stochastic equilibrium, because it is finite and irreducible. There is one other
property that the model must have in order to fulfill our requirements: it must not lump together system
states that are not really equivalent. In other words, all system states represented by each model state must be
functionally identical in the sense that they coincide in all attributes for which we wish to infer the existence
of an equilibrium distribution. However, this is precisely what Property 2 tells us.

37

5.2.2 Method of Analysis

Our model is guaranteed to achiceve stochastic cquilibrium, so it is theoretically possible to determine the
precise probability of being in any state. Tn practice, this would be impossible due o the huge size of the
system. Also, the resulting probability distribution would not be particularly informative as such, and lhc
processing necessary to derive any useful figures from it would be prohibitive due to its size. However, the
existence of this model proves that any attributes common to all system states represented by cach state of the
model have well defined average values. Thus it makes sense to formulate relationships among such averages
and solve for them.

The performance characteristics of primary concern to us are all intimately related to the composition of
each representative in terms of the three classes into which entries are divided. As a consequenice of the
existence of our model we can assert that a dynamic equilibrium exists in cach of these classes in each
representative. Thesc asscrtions can take the form of balance equations cquating the rates of flow into and out
of each category in a single representative. Such equations hold equally well for all of the representatives in
the suite due to the symmetry of the system. In the course of the analysis, we focus our attention on a single
representative, but the results apply to every representative in the suite.

These balance cquations are naturally constructed in terms of three independent variables, and the system
parameters N and W (defined in Scction 5.2.3). In constructing the balance equations, we make some
simplifying assumptions in the form of approximations in the equations, Each approximation will be noted
and justified. The resulting equations constitute a lincar system than can be solved easily. Expressions for the
desired performance measures can be constructed from the independent variables, though we need to make a

simplifying approximation in one derivation.

38

5.2.3 Formulation of Balance Equations

The following variables are uscd in formulating the balance equations. Script capitals represent stochastic

variables, small letters represent unknowns in the balance cquations, and capital letters represent constants

(system paramgcters).

c

o

The number of current entrics in the representative under observation.
The numker of outdated entries in the representative under observation.
The number of ghost entries in the representative under obscrvation.

The total number of entries in the representative under observation,
Note that 8=C+0+@.

The number of keys currently in the directory.

The number of entries in the delere list of a key k currently in the directory, in the
representative under observation. (The delete list of a key consists of all of the ghost
entries between the real predecessor and real successor of the key in a representative.)

ke Di . T . .
c "o)/%. 9 is the average delete list size in the representative under observation.
Note that E“ is only defined in states where 3 £ 0 (i.c. the directory contains one or more
keys).

E[C/36] The expected value is taken over all states that represent directories containing
one or more keys. /% is the fraction of keys in the dircctory that have current entries in
the representative under observation. Thus, ¢ is equal to the probability that a randomly
chosen key in the directory has a current entry in the representative under obscrvation.

E[0/3] The expected valuc is taken over ail states that represent directories containing
onc or more keys. 0/% is the fraction of keys in the dircctory that have outdated entries in
the representative under obscrvation. Thus, o’ is equal to the probability that a randomly
chosen key in the directory has.an outdated entry in the representative under observation.

E[9) The cxpected value is taken over all states that represent directories containing one
or more keys. dis the expected size of a delete list for a key chosen at random from those
in the directory.

The number of representatives in the directory suite being modeled.

The write quorum size for the directory suite being modeled.

39

A formal statement of the rate balance assertion for current entries is:

F[The number of cntries entering the current class in a chosen representative in onc operation]
= F[The number of entries leaving the current class in a chosen representative in one operation].

The expected values arc computed over a space consisting of all the state transitions in our model. Analogous
assertions arc made for vutdated and ghost entries. The expected values can be recast in terms of ¢/, o' and d.
These expansions, though relatively straightforward, are somewhat tedious. as they entail examining the inner

workings of the directory suite operations in great detail. They can be found in Appendix L.

The expansions yicld the following balance equations, for current, outdated and ghost entrics respectively:
(N+ Wi/ + Wo'=2W

N-W ,

—_/C

N+ W

=

d:N_ W

c’+ o).

5.2.4 Solution of Balance Equations

The solution to the balance equations derived in the previous section is;
_2WIN+- W)
T N(N+3W)

I

o WN=W)

T NN+3W)

_AN=-W)

d_N+3W'

The first performance measure for which we desire a formula is the expected value of the average delete list

size:

E[g]
=d.

The sccond performance measure is the expected value of the size ratio:
E{8/3]
= E{(C+ 0+ G)/K)
E[C/%])+ E[0/%]+ E[G/%)
¢/+ o’ +E[G/%6].
The three terms of this expression (E[C/36), E[0/3] and E[{/3%]) arc the composition ratios. While we

cannot cxactly express the third term of this expression in terms of our unknowns we can make a very good

I

approximation based on the fact that almost every ghost in a representative appears in two delete lists, that of
its real predecessor and that of its real successor. The exceptions are the ghosts before the first key in the
dircctory and those after the last, which only appear in a single delete list. But in the vast majority of statcs,

40

very few ghosts fall into this category. Thus the sum of the sizes of all delete lists in a representative is
approximatcly cqual to twice the number of ghosts. A formal statement of this assumption is:
2G=) 9,
k € Dir
Dividing both sides of this equation by 2% and taking expected valucs over all states representing non-empty

dircctories, we get:
ke Dir

E[G/K]=E[D B,)/2%]
1
=3E]

_d
5
Substituting back, our formula for the size ratio becomes:

E[S/%]=c’+o’+-‘2{

_AN+W)
TN+IW

5.2.5 Results

Figure 19 (p. 32) compares the average size ratios observed in the simulations with predictions obtained
from the formula developed in the previous scction. Figure 20 (p. 33) compares actual and predicted average
delete list lengths, The predicted values are nearly identical to the observed values. We compared simulation
and analysis results for many other system attributes and observed this level of agreement uniformly.

Figure 22 shows the predicted average composition ratios in a 20 - (21— W) - W suite, for all possible values
of W. Figure 23 shows predicted delete list lengths for these suites. Varying the quorum sizes in a fixed size
directory suite in this manner controls a fairly complex performance tradeoff: increasing the write guorum
size increases the availability of the read operation while decreasing its cost, and decreases the availability of
the write operation, increasing its cost. In the delete operation, the work done at cach node decreases, but the
number of messages that must be sent increases. At one end of the spectrum (W=20} there is the universal
update strategy; at the other (W=11), there is a strategy where roughly half the representatives are written
and half are read. Note that in the universal update strategy, the size ratio is 1 and there arc no outdated or
ghost entries, as the representatives are just copies of the single site directory. The graphs show that for the
speetrum under investigation, the representatives contain at worst 20% more cntries than a single site
directory and the average delete list size remains shorter than a single entry.

Figures 24 and 25 show respectively the predicted average composition ratios and delete list lengths in
(2i~—1) - i - i suites. Increasing read quorum, write quorum and suite sizes simultancously, as illustrated in

41

o
N

o
o

o
&

e Current Entries
* QOutdated Entries

+ Ghost Entries

o All Entries {Size Ratio)

Expected Composition Ratio

0.6

0.4

0.0 + + L . L L . 1 *
11 12 13 14 15 16 17 18 19 20

Figure 22: Expected Composition Ratios in a 20 - (21— ¥) - W Suite
these graphs represents a fairly straightforward performance tradeoff: As the sizes increase, the availability of
the system increascs, but the number of messages that must be transmitted for all operations increases as well.
Specifically, the number of representatives that can be destroyed while still maintaining availability in a
(2i=1)- i- isuiteis i—1. The flatness of the curves shows that the amount of work at each node in a Delete
operation, and the size and makeup of cach representative do not vary appreciably over the spectrum. Thus
the cost scales up proportionately to the increased availability with no added penalty for very high availability,

Finally, we present some fairly surprising results concerning the limiting behavior of the performance
measures. First let us examine the expected length of a delete list, 4. Recall, the formula for d is:

4N=W)

N+3IW
Let us maximize it subject to the (rcal) constraints that N=1 and ’; < W< N, As we would expect, this
expression grows as the write quorum decreases. Thus the expression achicves its maximum when Wis sctto

% its lowest permissible value. So:

42

0.0 - - : - - - : -
11 12 13 14 15 16 17 18 19 20
w
Figure 23: Expected Delete List Lengths in a 20 - (21— W) - W Suite
N,
4N=3)
Y
N+ 35’
3
=z

In other words, the average size of a delete list will not grow beyond .8, no matter what values we pick for the

parameters,

A similar result holds for the size ratio (E[8/3%]. The expression for this quantity is:

AN+ W)
N+3W’ =
Standard methods show that this expression, subject to the same constraints as before, also achieves its

maximum when Wzg, independent of N. Thus its value is bounded by:

N
AN+~
(N+3)

=
NTz

+
§

5
These two performance measures completely specify the significant time and space requirements of the

system. Thercfore, average performance cannot degrade without bound, regardless of what values we choose

for the parameters.

In the simulations and analysis. we assumed that the directory modification operations (Insert, Update and
Deletc) occur with equal likelihood. In practice, the operation mix will vary from application to application,

43

o
N

14
[+]
L
q

=
Q

Current Entries

» Qutdated Entries

+ Ghaost Entries

o All Entries (Size Ratio)

Expected Composition Ratio
to

.6} —* * ~ °

4l .
/—’#’

2t . — . - - » * *
L

0. s 4 = 5 7)) 10

Figure 24: Expected Composition Ratios in a (2i=1) - i- i Suite
It is straightforward to extend the analysis to cover other opcration mixes. This is accomplished by
substituting the frequency of cach operation for the appropriate terms in the balance cquations, instead of
assuming that all such terms are 1/3 (Appendix I}. We extended the analysis along thesc lines. For brevity’s
sake, we will not present the details of the analysis, but briefly summarize the resuits.

We allow the probability that the operation is an Update, which we call Pu, to vary from zcro to one. If the
Insert probability is unequat to the Delete probability, the number of keys in the directory will dwindle to
zero or increase without bound; thus we assume they are cqual. Under this assumption, P, completely
specifies all the operation frequencies. The extended analysis consisted of recasting the balance equations in
terms of Pu, solving them and studying the solutions,

For a 3-2-2 suite, the average delete list length does not vary significantly over the entire spectrum of Pu
values, achieving a minimum of .43 at P,=0and a maximum of .5 at PU= 1. Similarly, the size ratio achicves
a minimum of 1.07 at PU=0 and a maximum of 1.25 at PU= 1. In fact, the favorable limiting behavior results
presented above can be gencralized. For all legal values of N, B and Pu, the average delete list size will

.0

2 3 4 5 6 7 8 9 10

Figure 25: Expected Delete List Lengths in a (2i—1) - i - Suite

always be <1, and the size ratio will always be <1.5. Thus the performance of the system remains good for any
(randotmn) operation mix.

5.2.6 Discussion of the Analysis

‘The primary purpose of this scction is to discuss the validity of the analysis and applicability of the results.
Since the model itself is cxact, the corrcctness of the assumptions embodicd in the analysis determine its

validity. Therefore, we shall enumerate and examine the four assumptions:

1. In cach balance equation, we assumed that the three operations ([usert, Update and Delete} occur
with equal probability. (p. 51)

2. In the balance equation for current entries, we assumed that the probability that a representative
contains an entry for the real predecessor of a randemiy chosen key in the dircctory was equal to
the probability that it contained a randomly chosen key in the directory. (p. 52)

1. In the bzlance equations for current and ghost entries we ignored the possibility of a ghost entry
becoming outdated or current in the Insert operation. {pp. 33, 55}

4. In the formula for E[G/%] we assumed that each Ghost in a representative appeared in exactly
two delete lists. (p. 39)

The first assumption holds in all states of the model except those representing dircctories containing every
key in the key space or no keys at all. One cannot inscrt a key if there are no more keys to insert, and one
cannot delete a key if there are no keys in the directory. However, these "boundary states™ represent a
negligible fraction of all system states and occur with extremely low probability, assuming the key space is
reasonably large. If the key space is small, it takes a much shorter run of inscrts to fill the directory or deletes
to empty it; thus these boundary states occur with much greater likclihood. In fact, the key space used in the

simulations was large enough that these states were never encountered.

45

The sccond assumption concerns the probability that a representative contains an entry for the real
predecessor of a chosen key. In any given system state, the number of keys in the directory that have an entry
in a given representative can differ by at most one from the number of keys whose real predecessor has an
entry in this representative. This is so because all of the keys in the directory except the last one are the reai
* predecessor of another key in the dircctory. Thus, the probability that a randomly sclected key from the
directory has an entry in this representative differs by at most 1/% from the probability that the real
predecessor of a randomly selected key has an cntry in the representative, But if the key space is large, 36 will
be large in the system states that occur with high probability and this assumption will be almost correct,

The third assumption is that ghost entries cannot cnter the outdated or current class in an Insert operation.
This actually occurs when a key that has been deleted from the directory is reinserted while a ghost for the
original incarnation of the key still exists in some representative. This event is extremely unlikely when the
key space is large compared to the number of entries in a representative. The simulations were not run long
enough for the directory to contain a sizable fraction of the key space, thus they erred in the same direction as
this assumption. This assumption would seem to break down in ghost prone configurations where N is much
greater than W, However, as long as the representatives contain ghosts for a negligible fraction of the key
space, the assumption remains valid.

The fourth assumption is very similar to the sccond. All ghosts in a representative except those before the
first key in the directory and after the last key in the directory do oceur in two delete lists. The othier ghosts
occur in only one delete list. However, in all reasonably likely states, the ghosts are fairly well distributed
among the keys in the directory, thus on average, only a small constant number of ghosts will be on only one
delete list. For representatives containing reasonably many entrics, these fow ghosts will be "swamped” by
the ghosts that appcar on two delete lists, and %/2 will be almost identical to §/%. If the key space is
rcasonably large, the approximation will be good in all reasonably likely states and the assumption will be
valid.

In summary, all of the assumptions quickly become reasonable as the key space gets large. This is the only
point where the cardinality of the key space enters into our anatysis. It was not used explicitly in any of the
cquations. None of the assumptions break down when N or W get large (assuming the key space is large);
thus, the results concerning limiting behavior are valid. This also implies that the formulae can be used with
confidence for any parameter values.

A note shouid be added concerning the equilibria observed in the simulations, These equilibria definitely
did not represent true cquilibrium state distributions over our entirc model. This is clearly demonstrated by
the fact that the simulations did not gencrate identical average values for the number of keys in the directory
(J6) from run to run. The observed average values for %6 were clearly related to the initial number of keys in
the directory in cach run. This is not at all surprising, when one considers that the number of states in the
model is exponential in the cardinality of the kcy space, and the simulations were run for far fewer steps than

46

the key spacc cardinality itself. We proved that a simulation of sufficient length would display equilibrium
behavior over the entire model, but our runs were not of sufficient length. ‘This leaves unexplained the fact
that the runs cxhibited predictable equilibrium behavior for all of the performance measures of concern to us.

The explanation for this phenomenon lies in the fact that our simplified model is still highly lumpable.
Moderately sized "clumps” of contiguous statcs with rcasonably high probabilitics of occurrence, such as
those traversed in cach run of the simulation, have the same average valucs for the performance variables as
those predicied for the entire model. In fact, our analysis captures these clumps better than it captures the
entire state space, as the clumps tend not to contain the "boundary states™ where the assumptions break
down.

5.3 Discussion of Performance Characterization

The system simulated and analyzed was not entirely realistic. Read and write quorums would not be chosen
randomly in practice, A node would more naturally communicate with easih} accessible nodes. Also, because
of the cost of establishing a communication session, the node would probably continue to communicate with
the same nodes until it had no need for further communication or a failure occurred. Thus, in practice, the
read and write quorums used by any given node would probably change infrequently. The random
distribution of operations and keys was also unrealistic. However, we conjecture that the performance
observed under rcal conditions will be as good as or better than that of the system studied.

One possibie usage pattern for the system is the following: a single read/write quorum that changes
infrequently is used for all operations. This is a special case of the scenario described in the previous
paragraph. We performed additional simulations to investigate the behavior of the system under this usage
pattern. These simulations were identical to the ones previously described except that before each operation,
a decision to change the quorum was made with probability p. Whenever it was determined that the quorum
was to change, a single, randomly chosen member of the quorum was replaccd with a representative chosen at
random from those not already in the quorum. Thus, on any given iteration at most one member of the write
quorum changed. This usage pattern could occur if a directory suite were being used by a single requester.

Simulations were performed on 3-2-2 directories initially containing 100 keys, with p values of 0.1, 0.01,
0.001, and 0.0001. Two hundred thousand operations were performed in cach simulation and data was
coflected during the final onc hundred thousand operations. The results showed that as the value of p
decreases, the average delcte list size decreascs significantly from the value observed under random usage.
The size ratios did not change significantly from the size ratios observed under random usage. These results
indicate that the total number of outdated and ghost entries remains close to the total under random usage,
but they arc now concentrated outside of the write quorum. Thus, the delete lists actually encountered
tended to be shorter than thosc observed under random usage.

47

The results of this simulation are consistent with our conjecture that the performance of the system will be
at least as good under realistic usage patterns as it was under the random usage studicd in the simulations and

analysis.

As previously noted, the algorithm can be used with infinite key spaces. In fact, a natural choice for the key
domain is the set of all alphanumecric strings, which is in principle infinite. The system studied in the
simulations and analysis was not well defined for infinite key spaces, so it is natural to ask how well the results
of the analysis apply to kcy spaces which arc in principal infinite. In practice, the effcct of using theoretically
infinite key spaces is identical to that of using large but finite key spaces. Namely, it keeps the system away
from boundary states where the assumptions made in the analysis break down. Thus, the analysis captures
actual usage patterns over infinite key spaces as well as it captures any other actual usage patterns.

One disadvantage of our analysis technigque is that it can only be used to determine expected values for the
performance measurcs. Thus we can only characterize the average case performance of our algorithm. It
would be nice to have additional information on the probability distributions of the performance measurcs.
The simulations give us some information along these lines, and we can gain some insight by reasoning
directly about the worst case performance of our algorithm.

The simulations and our intuition indicate that under realistic access patterns the size ratio will not vary
much from its average valuc. But it is worth noting that one ceuld construct a rathological sequence of
operations wherein ghosts were ailowed to accumulate in one representative while the directory remained
almost empty, causing the.size ratio to grow without bound. This could be accomplished by selecting one
write quorum for all Insert operations and a second write quorum for all Delete operations that intersected

the first in only one representative. However there is no reason this should occur in practice.,

Similar pathological sequences of operations to those described in the previous paragraph can cause delete
lists to grow without bound in the representatives outside of the write quorum for Deletes. As long as the
pattern continucs, the long delete lists will not actually be encountered. If these representatives are eventually
used in the write quorums for Deletes again, the first fow Deletes at these representatives will encounter long
delete lists. Thus these first few Deletes will run slowly at these representatives, but in the process, they will
purge the representatives of excess ghosts, so future Delete operations will run quickly. Furthermore it
should be noted that even in such a pathological case, a maximum of three rounds of messages are sufficient
to perform the Delete operation; the extra work is all local to the representatives. This sort of situation is very
unlikely to occur in practice, and even if it does occur, it should not cause problems, as even a very long delete
list (say 100 entries) can be scanned and purged quickly if an efficient data structure is used to store the
representative. If it is particularly important for some application that alt Delete operations run fast, care can
be taken to cnsure that all representatives are frequently uscd in the write quorums for Delete operations, and
so kept clean of excess ghosts.

48

6 Discussion

The comparison of weighted voting with non-distributed techniques such as mirroring is a complex topic
that this paper will not attempt to cover. However, it appears that there is a clcar tradcoff between function
and performance, Weighted voting provides higher survivability, reliability, availability, and easier
maintenance than mirroring, but requires more inter-node communication and incurs the inefficiency and
complexity of an underlying transaction mechanism. The advantages of weighted voting primarily result
from the storage of data at autonomous nodes that can be physically separated. Though the overhead of
transaction and communication mechanisms may be reduced (or accepted because of their utility in .
constructing complex systems), dircctory suite operations will always require at least one non-local operation
to preserve availability.

Qur algorithm may be used in various ways to implement replicated directories that support a high volume
of operations. If Lookup operations predominate, suite configurations with a large number of representatives
and a writc quorum much larger than the read quorum permit a high degree of parallelism; rcaders may
simultaneously cxecute on the nodes that have copies of the data. For supporting a large volume of Insert,
Delete or Update operations, it may be best to represent the directory as a collection of subdirectories, each
using only a2 moderate number of directory representative servers. Then, multiple updates on the various
subdircctorics can occur in parallel. However the availability of the subdirectorics may be lowcer due to the
smaller suite sizes.

Directory suites can be configured to take advantage of locality of reference with respect to keys. In
particular, quorums can be chosen that permit reads to be done locally and non-local writes to be distributed
among all the non-local representatives. For example, consider a 4-2-3 directory suite with key values in the
range of 1 to 100, and locality such that transactions of Type A operate on entrics having keys 1 to 50, and
transactions of Type B operate on cntries having keys 51 to 100. We assume that representatives Al and A2
are local to transactions of Type A and represcntatives Bl and B2 are local to transactions of Type B. As
shown in Figure 26, Type A transactions read from representatives Al and A2 and direct their updates to Al,
A2, and cither B1 or B2. Transactions of Type B behave analogously. In this example, all inquirics can be
done locally and the non-local write that is required for modification operations is evenly distributed afmong
the remote represcatatives.

Throughout the paper, we have assumed that the four directory operations use the same read and write
quorum sizes in a given suite. Herlihy points out that additional quorum choices are opened up if this
restriction is dropped [Herlihy 86). In his work, each operation has its own read and write quorum size,
referred to as the operation’s nitial and final quorum size, respectively. Our algorithm can be cosily extended
to handle such quorum choices. The directory representative operations which are now performed at R or W
nodes in the course of an operation are instead performed at an initial or final quorum for the operation,
respectively. All of our correctness arguments remain valid. However, if such a quorum choice is employed,

49

In read quorums for In read quorums for In read quorums for in read quorums for
keys: 1-50 keys: 1-50 keys: 51-100 keys: 51-100

In write guorums for In write quarums for In write quorums for In write quorums for
keys: 1-75 keys 1-50, 76-100 keys: 1-25, 51-100 keys: 26-100
Representative A1 Representative A2 Representative B1 Representative B2

Figure 26; A 4-2-3 Dircctory Suite Partitioned for Locality

it is essential that timestamps be used rather than version numbers, as initial quorums will not generally

contain the most recent entry associated with a key.

The new quorum choices provided by Herlihy’s method increase the availability of the Update operation at
the expense of the Lookup operation. Thus, such quorum choices could result in increased performance for
Update intensive directories. It would be straightforward o extend our. analysis to cover such quorum
choices. In constructing the balance equations, the terms representing the probabilitics of being in the read or
write quorum for an operation would be replaced by the probability of béing in the appropriate initia! or final
quorum, While we have not performed this analysis, we strongly conjecture that the performance of our
aigorithm would remain good for the new quorum choices. Specifically, we conjecture that the average delete
list length and size ratio would still be bounded by small constants,

As mentioned in the introduction, we have implemented a version of this algorithm on the TABS prototype
distributed transaction facility. In doing so, we have resolved some details not addressed in this paper. For
cxample, our implementation stores data for dircctory representatives as B-trees [Comer 79}, and version
numbers for gaps are stored in fields of their bounding entries. Physical shared/exclusive mode locking,
rather than range locking, was used since the implementation was unlikely to have concurrency control
bottlenecks. As might be expected, the major complexity lay in the implementation of the directory
representatives, primarily because they were stored as B-trees,

In summary, we have prescated a replication algorithm for directories that exhibits faverable performance
and availability propertics. As is the case with Giftord’s weighted voting algorithm, the exact configuration of
suites can be tailored to control availability and performance tradeoffs. This algorithm achieves high
concuirency while maintaining consistency by dynamically partitioning the key space into ranges at each
representative and associating a version number with each range. We proved a property of directory suites
that permits deletions to be done in only one or two exchanges of small, fixed length messages with a read
quorum and one exchange with a write quorum. Thus all operations can be performed in a small constant
number of rounds of messages. We presented a novel analysis of our algorititm which agreed remarkably well
with simulation results. The analysis indicates that the space and time costs associated with our algorithm are
low for any permissible suite configuration.

50

Acknowledgments

James Driscoll suggested improvements to our initial dynamic partitioning algorithm that resulted in the
data siructure described in this paper. John Lehoczky provided invaluable assistance in the definition and
analysis of our analytic model. Discussions with Maurice Herlihy provided uscful insights into quorum
intersection issues. David Gifford, Solom Heddaya, Cynthia Hibbard, and Robert Sansom read and
commented on drafts of this paper.

51

|. Detailed Formulation of Balance Equations

Let us first construct the balance equation for current entries. A formal statement of the rate balance

assertion is:

E[The number of entrics entering the current class in a chosen representative in one operation)
= E[T'he number of entrics leaving the current class in a chosen representative in one operation].

These cxpected values are computed over a space consisting of all of the possible state transitions in our
model. We expand the expectation values on both sides of the cquation by breaking the space up into three
subspaces: the transitions that result from Insert operations, Update operations and Delete operations:

P[Opr is Insert] X E[The number of entries entering the current class in one Insert opr]
+ P[Opr is Update] X E[The number of entries entering the current class in one Update opt]
+ P[Opr is Delete] x F[T'he number of entries entering the current class in one Delete opr]
= P{Opr is Insert] x F[The number of entrics leaving the current class in one Insert opr]
+ P[Opr is Update] x E[The number of entrics lcaving the current class in one Update opr]
+ P[Opr is Delete] X E[Fhe number of entrics leaving the current class in one Delete opr] .

We will assume that all of the probabilities in this cquation are § as Inserts, Deletes and Updates occur with
almost cqual likelihood. The reason that they do not occur with exactly equal likelihood is that Deletes and
Updates cannot occur in states where the directory contains no keys, and Inserts cannot occur in states where
the suite already contains every key in the key space. However, these states represent a negligible fraction of
the state space and they all occur with extremely low probability. Each term has one of these factors, so under
the assumption, they all cancel out. |

To derive the first balance equation in terms of the unknowns, we expand the expected values in the order
they appear in the cquation, The first term is:
E[The number of entries cntering the current class in one Insert operation].
A single entry will enter the current class if and only if the representative under observation is chosen for the
write quorum of the Insert operation. Thus the expected value is merely the probability that the
representative is chosen. Since there are N representatives in the suite, and W are chosen at random for the
write quorum, this is %

The second term is:

E[The number of entries entering the current class in one Update operation] .
Again, an entry can enter the current class only if the representative is chosen for the write quorum. This
time, however, the entry for the key being updated will not necessarily enter the current class, as the
representative could already have contained a current entry for this key. In that case, no entry that was not
already current would become current, Thus, the value of the term is:

P[The representative is chosen for the write quorumy]

% (1 — P[The representative already contains a current entry for the key being updated]).

The probability that the representative is chosen for the write quorum is %V The key to be updated is chosen
at random from those in the dircctory so:

52

P[The representative already contains a current entry for the key being updated]
P{Thc representative contains a current entry for a randonly chosen key in the directory]
cl

Thus, the value of the sccond term is:
W
—(1—¢".
N(¢’

The third term is:
E[The number of entries entering the current class in one Delete operation] .

When a Delete operation occurs, entries for the real predecessor and real successor of the key being deleted
are inserted into each member of the write guorum where they do not already appear. They are inserted with
their latest version number so they become additional current entries in those representatives. This is the only
way entrics can enter the current class in a Delete operation. Thus the number of entrics entering the current
class in the observed representative in onc Delete operation is zero if the representative is not chosen for the
write quorum. If it is chosen for the write quorum, then one entry will become current if the representative
does not contain an entry for the real predecessor of the key being deleted, and another entry will become
current if the representative does not contain an entry for the real SUCCESSOr.

We introduce some notation for events to simplify the discussion that follows:

P = {The representative contains an entry for the real predecessor of the key being deleted}
S = {The representative contains an entry for the real successor of the key being deleted}

On the basis of the previous observations, the value of the term being expanded is:
P[The representative is chosen for the write guorum] x(P[P°]+ P[S°D
= Z((~P[P)+(1~PISD).

While P[P] and P[S] cannot be exactly expressed in terms of our unknowns, they can be very closely
approximated. The key to be deleted is chosen at random from those in the directory, and its real predccessor
is merely the key immediately preceding it in the directory. If the key being deleted is the first key in the
directory, its real predecessor is the dummy key LOW, which is always present in every representative. Thus
the probability that the real predecessor is present in the representative (P{]) is just slightly higher than the
probability that a randomly chosen key in the directory is present in the representative. For a large key space
like the one used in the simulations they will be practically identical. By symmetry, the same argument holds
for the real successor. In fact, it shows that P[P]=P[S]. Therefore, we make the assumption that:

P{P]="P[The represcntative contains an entry for a randomly chosen key in the directory]
= P[The representative contains a current entry for a randomly chosen key in the directory]
-+ P{The representative contains an outdated entry for a randomly chosen key in the dir.]
=c¢'+o’,

The third term becomes:

W '
Zw(l —(c’'+ 0D

Now we come to the terims on the right hand side of the balance equation. The first term on the right hand
side is:

53

F[The number of entries leaving the current class in one Insert operation] .

This term vanishes, as no entries lcave the current class in Insert operations.

The sccond term on the right hand side is:
E[The number of entries leaving the current class in one Update operation] .
If the representative under observation contains a current entry for the key being updated, and the
representative is nof chosen for the write quorum, then the current entry becomes outdated. Thus the value
of this term is:

{1 — P[The representative is chosen for the write quorum])
x P[The representative contains a current entry for a randomly chosen key in the dircctory]

— 1
= (1 ﬁ)CI.

The third term on the right hand side is:
E[The number of entrics lcaving the current class in one Delete operation] .
If the representative under observation contains a current entry for the key being deleted, the entry will leave
the current class regardless of whether or not the representative is chosen for the write quorum. If it is
choscn, the entry will be deleted outright; otherwise, the entry will become a ghost. Thus the value of this
term is:

P[The representative contains a current entry for the key being updated]
= ¢,

Combining all these terms, the balance equation for current entries is:
W W W W,
——t—(1~- 21— (1~(c’ =(1=—)¢' '
N+N(¢+ N(l (c’+o)=(N)c +¢
Simplifying, we get;

(N+ W'+ Wo'=2W.

We now construct the balance equation for outdated entries. By an argument identical to the onc used in

the construction of the first balance equation, a formal statement of the rate balance assertion becomes:

E[The number of entries entering the outdated class in one Insert operation)
+ E{The number of entries cntering the outdated ciass in one Update opceration]
+ E[The number of entrics entering the outdated class in one Delete operation]
= EfThe number of entrics leaving the outdated class in onc Insert operation]
+ E[The number of cntries lcaving the outdated class in one Update operation]
+ E[The number of entries leaving the outdated class in one Delete operation] .

We shall assume that entries cannot enter the outdated class in Insert operations, so the first term of the left
hand side of the equation vanishes. In fact, if a key is inserted when ghosts for a previous incarnation of that
key still remain in representatives outside of the write quorum for the Insert operation, those ghosts will
become outdated. However, this is an extremely unlikely event, hence this term of the equation is negligible

compared to the others. Furthermore, it is not expressible in terms of the unknowns.

54

Entries cannot enter the outdated class in the Delete operation, so the third term of the equation also
vanishes. In the Update operation an entry can become cutdated as follows, If the representative is not
chosen for the write quorum and it contains a current cntry for the key being updated, then the entry

becomes outdated. Thus the value of the sccond terms is:

(1 — P[T'he representative is chosen for the write quorum})
x P[The representative contains a current entry for a randomly chosen key in the directory]

= (1=
—(1 ﬁ)c.

Entries cannot leave the outdated class in Insert operations, so the first term of the right hand side of the .
cquation vanishcs. In an Update operation, an entry can leave the outdated class as follows. If the
representative is chosen for the write quorum and it contains an outdated entry for the key being updated,

then this entry is replaced by a current one. Thus, the second term on the right hand side is:

P[The representative is chosen for the write quorum]
x P[The representative contains an outdated entry for the key being updated]
= P[The representative is chosen for the write quorum]
% P{I'he represcntative contains an outdated entry for a randomly chosen key in the directory]

In a Delete operation, an entry can leave the cutdated class as follows: If the representative contains an
outdated entry for the key being deleted, then the entry disappears if the representative is chosen for the write
quorum, and it becomes a ghost if the representative is not chosen for the write quorum. Thus the third term

on the right hand side is:

P{The representative contains an outdated entry for the key being deleted]
P[The representative contains an outdated entry for a randomly chosen key in the directory]
I

=20

Putting it all together, the balance equation for outdated entries is:

W I_E ’ ’
(1 N)c = No “+ o’
Simplifying, this becomes:
N—-W
I — t .
CTNFWe :

Finally, we construct the balance equation for ghost entrics. A formal statement of the balance assertion

becomes:

E[The number of entrics entering the ghost class in onc Insert operation]
+ F[I'he number of cntries entering the ghost class in one Update opcration]
+ E[the number of entries entering the ghost class in one Delete operation]
= FfThe number of entrics lcaving the ghost class in one Insert operation]
+ E[The number of entrics leaving the ghost class in one Update operation]
+ E[The number of entries leaving the ghost class in one Delete operation] .

Entries can only enter the ghost class in Delete operations; thus, the first and sccond terms of the equation

35

vanish. An entry becomes a ghost in a representative if its key is being deleted and that representative is not
chosen for the write quorum of the delete operation. Thus the second term is:

(1 — P{The representative is chosen for the write quorum])
x P{T'he representative contains an entry for a randomty chosen key in the dircctory]

= (1—%)(0’-!—0').

Entrics rarely leave the ghost class in Insert operations, thus we shall assume the first term on the right hand
side vanishes. (This is cssentially the same assumption we made on page 33 when constructing the balance
equation for outdated entries.) Entrics cannot leave the ghost class in Update operations, thus the second
term on the right hand side actuatly does vanish. If the representative is chosen for the write quorum of the
Delete operation then all of the ghosts constituting the delete list of the key being deleted will be removed

from the representative. Thus the third term of the right hand side is:

P[The representative is chosen for the write guorum]
x EfThe size of the delete list of the the key being deleted]
= P[The representative is chosen for the write quorum] :
x EfThe size of the delete list of the a randomly chosen key in the directory]

=¥
—-Nd.

Putting the terms together. the balance equation for ghosts is:

(1—%)((:’-1— o’):p—;:d,
Simplifying:
d=Y="H o),

4

56

References

[Abbadi and Toueg 86)
Amr El Abbadi, Sam Toueg.
Availability in Partitioned Replicated Databases.
In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems. 1986.

[Abbadi et al. 85] Amr E! Abbadi, Dale Skeen, Flaviu Cristian,
An Efficient. Fault-Folerant Protocol for Replicated Data Management.
In Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems. March, 1985.

fAllchin 83] James E. Allchin.
An Architecture for Reliable Distributed Systens.
PhID thesis, Georgia Institute of Technology, Scptember, 1983,

[Allchin and McKendry 83)
I. E. Alichin, M.S, McKendry.
Synchronization and Recovery of Actions,

In Proceedings of the Second Annual Symposium on Principles of Distributed Computing,
pages 31-44, ACM, August, 1983.

[Alsberg and Day 76]
P. A. Alsberg, J. D. Day.
A Principle for Resilient Sharing of Distributed Resources,

In Praceedings of the Second International Confcrence on Sofiware Engineering, pages
562-570. October, 1976.

[Bartlett 81] Joel Bartlett.
A NonStopTM Kernel.
In Proceedings of the Eighth Symposium on Operating System Principles. ACM, 1931.

[Bernstein and Goodman 84]
P. Bernstein and N. Goodman,
An algorithm for concurrency control and recovery in replicated distributed databases.
ACM Transactions on Database Systems 9(4):596-615, December, 1984,

[Birman et al. 83] K. P. Birman, D. Skeen, A. El Abbadi, W.C. Dietrick, T. Racuchle.
Isis: An Environment for Constructing Fault-Tolerant Distributed Systems.
Technical Report 83-552, Corncll University, 1983.

[Birrell and Nelson 84]
Andrew D. Birrcll, Bruce J. Nelson.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39-59, February, 1984.

[Comer 79] Douglas Comer.
The Ubiquitous B-Tree,
ACM Computing Surveys 11(2):121-137, June, 1979.

[Daniels and Spector 83]
Dean S, Danicls, Alfred Z. Spector.
An Algorithm for Replicated Directories.
In Proceedings of the Second Annual Symposium on Principles of Distributed Computing,
pages 104-113. ACM, August, 1983,
Also available in Operating Systems Review 20(1), January 1986, pp. 24-43.

51

[Gifford 79] David K. Gifford .
Weighted Voting for Replicated Data,
In Proceedings of the Seventh Symposium on Operating System Principles, pages 150-162.
ACM, December, 1979,

[Gifford 81] David K. Gifford.
Information Storage in a Decentralized Computer System.
PhD thesis, Stanford University, 1981.
Availablc as Xerox Palo Alto Rescarch Center Report CS1.-81-8, March 1982,

[Gray 80] James N. Gray.
A Transaction Model.
Technical Report RJ2895, IBM Research Laboratory, San Jose, California, August, 1980.

[Gray et al. 811 James N. Gray, et al.
The Recovery Manager of the System R [Jatabase Manager.
ACM Computing Surveys 13(2):223-242, June, 1981,

[Herlihy 85] Maurice P. Herlihy.
' Availability vs. atomicity: concurrency control for replicated data.
Technical Report CMU-CS-85-108, Carnegie-Metlon University, February, 1985.

[Hertihy 86] Maurice P. Herlihy.
A Quorum-Conscnsus Replication Method for Abstract [Data Types.
ACM Transactions on Computer Systems 4(1), February, 1986.

[IBM Corporation 75]
ACP System: Concept and Facilities
GH20-1473-1 edition, IBM Corporation, Whitc Plains, New York, 1975.

[Kemeny and Snell 60]
John G. Kemeny, J. Lauric Snell,
Finite Markov Chains,
ID. Van Nostrand & Co., New York, 1960,

[Korth 83) Henry F. Korth.
Locking Primitives in a Database System,
Journal of the ACM 30(1).55-79, January, 1983,

[Lindsay et al. 79]
Bruce G. Lindsay, et al.
Notes on Distributed Databases.
Technical Report RJ2571, IBM Research Laboratory, San Jose, California, July, 1979.
Also appears in Droffen and Poole (editors), Distributed Databases, Cambridge University
Press, 1980,

[Liskov and Schcifler 83]
Barbara H. Liskov, Robert W, Scheifler,
Guardians and Actions: 1.inguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3);381-404, July, 1933,

[Popek et al. 81] @G. Popek, B. Walker, J.Chow, D). Edwards, C. Kline, G. Rudisin, G. Thiel.
LOCUS: A Network Transparcent, High Reliability Distributed System.

In Proceedings of the Eighth Symposium on Operating System Principles, pages 169-177.
ACM, 1981.

58

[Rothnie et al, 77]
1. B. Rothnic, N. Goodman, P.A. Bernstein.
The Redundant Update Methodology of SDD-1: A System for Distributed Databases (The
Fully Redundant Case).
Technical Report CCA-77-02, Computer Corporation of America, 1977,

[Schwarz 84] Peter M. Schwarz,
Transactions on Typed Objects.
PhD thesis, Carnegic-Mcllon University, December, 1984,
Available as Technical Report CMU-CS-84-166, Carnegic-Mellon University.

[Schwarz and Spcctor 84]
Peter M. Schwarz, Alfred Z. Spector.
Synchronizing Sharcd Abstract Types.
ACM Transactions on Computer Systems 2(3):223-250, August, 1984,
Also available as Technical Report CMU-CS-83-163, Carnegie-Mellon University,
November 1983.

[Spector and Schwarz 83]
Alfred Z. Spector, Peter M. Schwarz.
Transactions: A Construct for Reliable Distributed Computmg
Operating Systems Review 17(2):18-35, April, 1983.
Also available as Technical Report CMU-CS-82-143, Carnegie-Mcllon University, January
1983,

[Spector ¢t al. 85a]

Alfred 7. Spector, Dean S, Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, Randy

Pausch,

Distributed Transactions for Reliable Systems.

In Proceedings of the Tenth Symposium on Operating System Principles, pages 127-146.
ACM, December, 1985,

Also available in Concurrency Controf and Reliability in Distributed Systems, Van Nostrand
Reinhold Company, New York, and as Technical Report CMU-CS-85-117, Carnegie-
Mellon University, September 1985.

[Spector et al. 85b]

Alfred Z. Spector, Jacob Butcher, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger,

Charles E. Fineman, Abdelsalam Heddaya, Peter M. Schwarz,

Support for Distributed "I'ransactions in the TABS Prototype.

IEEE Transactions on Software Engineering SE-11(6):520-530, June, 1985.

Also available in Proceedings of the Fourth Symposium on Reliability in Distributed
Software and Database Systems, Silver Springs. Maryland, IEEE, October, 1984 and as
Technical Report CMU-CS-84-132, Carncgic-Mellon University, July, 1984,

[Traiger et al, 82] Irving L. Traiger. Jim Gray, Cesarc A. Galtieri, Bruce G. Lindsay.
Transactions and Consistency in Distributed Database Systems.
ACM Transactions on Database Systems 7(3):323-342, September, 1982,

[Weih] 83] William E. Weihl,
Data Dependent Concurrency Control and Recovery.
In Proceedings of the Second Annual Symposium on Principles of Distributed Computing,
pages 63-75. ACM, August, 1983.

59

[Weihi and Liskov 83]
W, Weihl, B, Liskov.
Specification and Implementation of Resilient, Atomic Data Types.
In Symposium on Programming Language Issues in Software Systems. June, 1983.

