
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-86-153

The World's Fastest

Scrabble Program

Andrew W. Appcl
Department of Computer Science

Princeton University
Princeton, New Jersey

Guy J. Jacobson
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pennsylvania

October 19*6

Abstract

An efficient backtracking algorithm makes possible a very fast program to play the
SCRABBLE® Brand Crossword Game. The efficiency is achieved by creating data structures
before the backtracking search begins that serve both to focus the search and to make each step of
the search fast

Copyright © 1986 Andrew W. Appel and Guy J. Jacobson

This research was sponsored in part by a grant from the Amoco Foundation, in part by an NSF Graduate Student Fellowship, in part by
NSF grant MCS-830805, in part by Presidential Young Investigator grant DCR-8352081, and in part by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government

SCRABBLE® is a registered trademark of Selchow and Righter Company.

8 OCTOBER 1986 1

1 . Introduction
Scrabble1 is ill-suited to the adversary search techniques typically used by computer gamc-players. The

elements of chance and limited information play a major role. This, together with the large number of moves

available at each turn, makes subjunctive reasoning of little value. In fact, an efficient generator of legal

moves is in itself non-trivial to program, and would be useful as the tactical backbone of a computer Scrabble-

Player.

The algorithm described here is merely that: a fast move generator. In practice, combining this algorithm

with a large dictionary and the heuristic of selecting the move with the highest score at each turn makes a very

fast program that is rarely beaten by humans. The program makes no use of any strategic concepts, but its

brute-force one-ply search is usually sufficient to overwhelm its opponent.

2. Computer Scrabble-players in the literature
A number of Scrabble-playing computer programs have been written. The best publicized is a commercial

product named MONTY , which is available for various microcomputers and as a hand-held device the size

of a giant calculator. According to Scrabble Players News, it uses both strategic and tactical concepts [2]. The

human Scrabble experts who reviewed M O N T Y w beat it consistently, but said that it was a fairly challenging

opponent

Peter Turcan of the University of Reading in England has written a Scrabble-player [8,9] for some

unspecified micro-computer. It appears that he generates moves by iterating over the words in his lexicon in

reverse order of length. He somehow decides for each word whether and where it can be played on the

current board with the current rack. His program doesn't attempt any adversary search, but it does use an

evaluation function more sophisticated than the score of the prospective move. It takes the score and

conditionally adds terms depending on simple strategic features of the new position and tiles left in the rack.

Peter Weinberger of AT&T Bell Laboratories wrote a Scrabble-playing program that was originally

designed to work on a PDP-11 (which could not hold the entire lexicon in memory), but now operates on a

VAX [10]. His move generator first constructs a set of position descriptors, one for each place on the board

where a legal move might be made. For each position, he compiles information about the letters and

positions that might fit; other information is compiled about the rack and board as a whole. He then looks at

each word in the dictionary, discarding as many as possible by quick global tests. The remaining words are

In this article, we shall simply write "Scrabble" to denote the SCRABBLE® Brand Crossword Game. A short summary of the rules
of Scrabble is included as an appendix.

a registered trademark of Ritam Corporation
2

2 APPI-L& JACOBSON

subjected to quick local tests (for each position) to discard those that don't fit at particular positions. The

words that pass these tests arc examined letter-by-lcttcr at each position to sec if they make legal plays. 'Die

emphasis throughout is on heuristic tests that can quickly and correctly eliminate words from consideration;

this strategy was motivated by the need to sequentially access the lexicon. Weinberger's program has no

concept of strategy, and simply chooses the highest-scoring play available.

Stuart Shapiro el al of SUNY Buffalo have implemented several Scrabble-playing programs in SIMULA

and Pascal on a PDP-10 [6,7]. They represent their lexicon as a tree-structure of letters where each path down

the tree has an associated list of words that can be formed using exactly those letters on the path. The letters

along each path appear in a canonical order corresponding (approximately) to the point value of the tile in

Scrabble, by decreasing value. The reason for the putting the higher-valued letters higher in the tree is to help

find the most valuable words first, in case a full search cannot be completed.

Shapiro's move generator iterates over board positions, taking the tiles in the rack and at the proposed

board position, and searching down from the root for acceptable words that can be formed with those letters.

His programs do not generally examine all possible board positions where words could be played, only those

positions judged worthwhile. Once a move is found yielding at least some pre-determined threshold score,

that move is chosen.

2 . 1 . Per formance comparison

The value of our algorithm for Scrabble move generation is its speed. Our program is faster than all the

other programs we know of by two orders of magnitude. The large size of the lexicon searched leads us to

suspect that our program would probably beat the programs that have smaller vocabularies.

Playing at its highest level, MONTY uses a lexicon of 44,000 words and takes about two minutes per move.

Turcan's program, with a lexicon of 9000 words, takes about two minutes per move. Weinberger's program

takes about a minute or two to do move generation using a lexicon of about 94,000 words. Shapiro's programs

search from 1500 to 2000 words, finding a move in 3ft or 40 seconds. Our program has a lexicon of 94,240

words, and takes one or two seconds to generate all legal moves, on a VAX 11-780.

3. The algorithm
Instead of scanning through the entire lexicon each turn for playable words, we begin by scanning over the

board for places where a word could connect to letters already on the board. Then we try to build the word

up incrementally, using letters from the rack and the board near the proposed place of attachment. We

maintain data structures that make this search one-dimensional, so we never have to look outside of a single

row or column of the board during move generation.

8 OCTOBKR 1986 3

3 . 1 . Reducing the problem to one dimension

Wc can classify each legal play in Scrabble as cither across or down, depending on whether the tiles played

arc all in the same row or all in the same column 3. Without loss of generality, we can restrict our attention to

generating the across plays only, since the down plays are simply across plays with the board transposed.

3 . 1 . 1 . Cross-checks

When making an across play, the newly-placed tiles must also form down words whenever they are directly

above or below tiles already on the board. However, since at most one tile can be added to any column of the

board, it is easy to prccompute (for each empty square) the set of letters that will form legal down words when

making an across move through that square. Because there are only 26 letters in the alphabet, these

cross-check sets can be represented efficiently as bit-vectors. The cross-checks can be computed before

beginning the move generation phase, since they are independent of any particular across move. Since the

number of empty squares whose cross-checks can change after any move is small, we need to recompute

cross-checks for only a few squares after each move.

3 . 1 . 2 . Anchors

Any across word must include some newly-placed die adjacent to a tile already on the board. 4 Therefore, it

is natural to use a place of adjacency as the spot to begin looking for a legal move. We will call the leftmost

newly-covered square adjacent to a tile already on the board the anchor square of the word.

It is easy to decide which squares are potential anchor squares: they are the empty squares that are adjacent

(vertically or horizontally) to filled squares. We call these candidate anchor squares the anchors of the row.

By first computing the cross-checks and the anchors for a given row, we can look for across words in that

row without considering the contents of any other row. The move generation problem is thus reduced to the

following one-dimensional problem: given a rack of tiles, the contents of a row on the board, and the

cross-checks and anchors for the row, generate all legal plays in that row.

3 . 2 . Representat ion of the lexicon

A variety of algorithmic techniques and heuristics are used to make our search fast. A key element of the

algorithm is the representation of the lexicon.

A single newly-placed tile that forms words in both directions is both across and down.

^Except for the first move, an easy special case.

4 APPHL&JACOBSON

3 . 2 . 1 . The tr ie

Wc represent the lexicon as a tree whose edges are labeled by letters. Each word in die lexicon corresponds

to a path from die root. When two words begin die same way dicy share the initial parts of their paths. The

node at the end of a word's path is called a terminal node; these arc specially marked. (Notice that all leaves

of die tree are terminal nodes, but the reverse need not be true.) This data structure is called a letter-tree or

trie [3,4]; an example is shown in figure 3-1.

Lexicon:

car
cars
c a t
c a t s
do
dog
dogs
done
ear
ea rs
e a t
e a t s

Figure 3-1: A lexicon and the corresponding trie. Terminal nodes are circled.

Our 94,240-word lexicon can be represented as a 117,150-node trie with 179,618 edges. By storing each

node as a variable-sized array of out-edges, we can store the trie in space proportional to the number of edges

(three or four bytes per edge).

3 . 2 . 2 . The dawg

The trie is rather bulky - it occupies over half a megabyte. By representing it as a graph instead of a tree,

we can dramatically reduce its size without changing the move-generation algorithm at all.

The trie can be considered a finite-state recognizer of the lexicon. Nodes in the trie are the states of the

finite-state machine; edges of the trie are the transitions of the machine; and terminal nodes are the accepting

states.

The language of a finite-state recognizer is the set of words that it will accept. For any language, there will

be many different finite-state recognizers. In particular, there will be one with a minimum number of states.

When the language contains only a finite number of words (which our lexicon certainly does), it is easy to find

the minimum-size finite state recognizer quickly. [5]

8 GCTOBFR 1986 5

The minimum state recognizer will be a directed graph rather than a tree. The trie of figure 3-1 may be

reduced to the graph of figure 3-2.

Lexicon:

c a r
c a r s
c a t
c a t s
do
dog
dogs
done
e a r
e a r s
e a t
e a t s

Figure 3-2: A dawg

Thus, a dawg (Directed Acyclic Word-Graph) [1] is basically a trie where all equivalent sub-tries

(corresponding to identical patterns of acceptable word-endings) have been merged. This minimization

produces an amazing savings in space; the number of nodes is reduced from 117,150 to 19,853. The lexicon

represented as a raw word list takes about 780 Kbytes, while our dawg can be represented in 175 Kbytes. The

relatively small size of this data structure allows us to keep it entirely in core, even on a fairly modest

computer.

3.3 . Backtracking

We use a simple two-part strategy to do move generation. For each anchor, we generate all moves anchored

there as follows:

1. Find all possible "left parts" of words anchored at the given anchor. (A left part of a word consists
of those tiles to the left of the anchor square.)

2. For each "left part" found above, find all matching "right parts." (A right part consists of those
tiles including and to the right of the anchor square.)

The left part will contain either tiles from our rack, or tiles already on the board, but not both.

If the square preceding the anchor is vacant, we must place a (possibly empty) left part from the rack; for

each such left part, we then try to extend rightwards from the anchor to form words. If the square preceding

the anchor is occupied, then the contiguous tiles to the left of the anchor constitute the left part, and we can

simply try to extend it rightwards with tiles from the rack.

6 APPISL& JACOBSON

3 . 3 . 1 . Placing left parts

The left part is cither already on the board or all from the rack. In the former case we compute the left part

simply by looking at what's there. The latter case is nontrivial: we must find all possible left parts.

Since we defined an anchor square as the leftmost point of adjacency, the the left part cannot extend to

cover an anchor square. This puts a limit on the maximum size of a left part of a word anchored at a given

square. Furthermore, the anchor squares are exactly those with nontrivial cross-checks. Thus, the squares

covered by the left part all have trivial cross-check sets that allow any letter to be placed there. We can

generate the left parts that can be placed before a given anchor square by doing a pruned traversal of the

dawg, constrained by die tiles remaining in the rack.

Because all of the squares covered by the left part have trivial cross-check sets, we need not consider those

squares when traversing the dawg - we need only to know how the maximum size of the left part This is

equal to the number of non-anchor squares to the left of the current anchor square.

Here is the backtracking procedure that places left parts. It calls the procedure E x t e n d R i g h t with each

left part that it finds.

Lef tP art(PartialWord, node Win dawg, limit) =
ExtendRight(PartialWord, N, AnchorSquare)
if ///m/>0then

for each edge E out of N
if the letter / labeling edge E is in our rack then

remove a tile labeled / from the rack
let Nf be the node reached by following edge E
L e f t P a r t {PartialWord• /, N\ limit-1)
put the tile / back into the rack

To generate all moves from AnchorSquare, assuming that there are k non-anchor squares to the left of it, we

call

Lef t P a r t f " , root of dawg, k)

3 . 3 . 2 . Extending r ightwards

We can attempt to complete the word by adding tiles to the right end one at a time, doing a pruned traversal

of the sub-dawg rooted at N. This traversal is constrained by: the tiles remaining in the rack, the tiles already

occupying the squares to the right of the anchor, and the relevant cross-checks.

In extending rightwards, we may find tiles already on the board. This does not terminate the search, as a

legal move may include previously-placed tiles sandwiched between newly-placed tiles. Instead, we simply

include these dies in the newly-placed words, when possible.

8 OCTOBl'R 1986 7

Assume wc have a procedure Legal Move that takes a legal play and records it for consideration. (A

simple Legal Move procedure might simply keep track of the highest-scoring move, and discard the rest.) We

can express die backtracking search as a recursive procedure E x t e n d R i g h t :

ExtendR i qht(PartiaUVord, node N in dawg, square) =
if square is vacant then

if N is a terminal node then Legal Mo^e(PartialWord)
for each edge E out of N

if the letter / labeling edge E is in our rack and
/ is in the cross-check set of square then

remove a tile / from the rack
let N' be the node reached by following edge E
let next-square be the square to the right of square
E x t e n d R i g h t (PartialWord• /, N\ next-square)
put the tile / back into the rack

else
let / be the letter occupying square
if N has an edge labeled by / that leads to some node N* then

let next-square be the square to the right of square
E x t e n d R i g h t (PartialWord• /, N\ next-square)

Now that we can place left parts and extend them rightwards, we have a complete algorithm to generate all

the legal moves. It is easily seen that the algorithm outlined above generates each across move exacdy once.

3.4. Some details

The above description skips over a few details in the move generation algorithm that are not crucial to a

basic understanding. In this section we address some of the particulars.

3 . 4 . 1 . Empty prefixes

When there is a tile already on the board to the left of an anchor square, no prefix is placed. Instead, we can

call E x t e n d R i g h t directly, starting from the node in the dawg corresponding to the partial word to the left

of the anchor square.

3 .4 .2 . Blanks

The problem of move generation in Scrabble is complicated by the presence of blank tiles, which may

represent any letter. To deal with them, we must add a little extra code to our Le f t P a r t and

E x t e n d R i g h t procedures. Whenever we look Uirough our rack for some letter, we also check to see if we

have a blank. If we do have a blank, we may use it, temporarily letting it represent the letter we seek. When

we backtrack and pick it up off the board, the blank regains its polymorphic properties.

The presence of blank tiles in the rack greatly increases the number of moves possible at a given turn. The

time spent in searching increases accordingly. In fact, it is almost always possible to tell when our program

8 AITCL&JACOBSON

holds a blank tile by the noticeable delay before a move is made. When the program gets both blanks

simultaneously, it seems to slip into a coma for a few seconds. Fortunately, die number of blanks in the pool

is small, so most of die time there arc no blanks in the rack to contend with. It is rare indeed to hold both of

them at once.

3 . 4 . 3 . Data structures

In this section, we describe the data structures in more detail. The major data structure is the dawg, which

we store as a very large array of edges. All the edges out of a given node occupy a contiguous sub-array of die

large array; a node is referenced by the index in the large array of the first edge out of that node. Each edge

stores a letter labeling the edge (5 bits), a reference to the node reached by following die edge (16 bits), a bit

indicating if the edge is "terminal", and a bit flagging the last edge in the sub-array that constitutes a node.

Note that the terminal bit-flag (indicating when a complete word is formed) is stored per edge, rather than

per node as is customary. Thus, some edges coming into a node could consider it a terminal node, while

others coming into the same node would not consider it terminal. This makes the dawg more compact, since

more shared list structure is possible.

We need a total of 23 bits to store each edge in the array, so an edge can conveniently fit into a 32-bit

machine word (or if more space efficiency is desired, into three 8-bit bytes)'. The unique node with no

out-edges is given an index of zero by convention.

Because there are only 26 letters in the alphabet, we can conveniently store each cross-check set as a

bit-vector in one 32-bit machine word, and do membership testing quickly. The rack is stored as an array of

27 small integers giving the quantity of each tile type (26 letters and the blank) present This allows fast

membership testing, addition, and removal of tiles.

3.5 . Loose ends

It is useful to put fictitious squares with empty cross-check sets at the end of each row to serve as sentinels,

preventing us from trying to extend words off the board.

Although we have described how move generation can be reduced to one dimension, we might still have to

look outside the current row to compute the scores of the moves generated. To avoid this, we compute for

each empty square the sum of the values of all tiles in contiguous sequence above and below that square

before beginning move generation. This extra information is enough to allow us to compute the scores of

moves one-dimensionally. We conveniently compute these cross-sums while computing the cross-check sets.

8 OCTOBFR 1986
9

4. The program

In 1983 we wrote a program that implements our algorithm and referees games between the computer and a

human opponent. The program consists of about 1500 lines of code, and is written in the C programming

language. It was written on a VAX running the UNIX operating system and was subsequently ported to a

Sun workstation and an Apple Macintosh.5

4 . 1 . Program statistics

In a test scries of 10 games in which die program played against an opponent that passed at each move, 224

moves were made at an average computation time of 1.4 seconds per move (including die time for redrawing

the graphic display) on a VAX 11/780. An average of 450 legal moves were found per turn, although the

number varied enormously from turn to turn. In a test match where the program played against itself for 10

games, it had an average final score of 377 per player.

5. Why is it fast?

The efficiency comes primarily from the high-yield backtracking search strategy. By using a backtracking

algorithm with the dawg as our guide, we never consider placing a die that isn't part of some word on the

board (though we might not be able to complete the word). Furthermore, the placement of one tile may lead

to the generation of several moves before that tile is picked up again. The checks for tiles in the rack and for

legal cross-words prune the search. Because of this pruning, most of the words in the dictionary are never

even examined in a typical turn.

There is also an implicit pruning in starting the search from the anchor squares, because this guarantees that

the word will be adjacent to tiles already on the board. If we started searching rightwards from each square

where a word could conceivably start, we would find that most of the time we would fail to connect the partial

word to tiles already on the board.

Through the abstractions of anchor squares and cross-check sets, we reduce a two-dimensional problem into

one-dimension. By precomputing the cross-check sets before beginning move generation, we can do all of the

pruning operations in constant time. There are few special cases in the resulting algorithm, making it easy to

code efficiendy.

Finally, an important advantage of the dawg representation of the lexicon is its compactness. This allows us

to keep the entire lexicon in primary memory during move generation, which avoids cosdy I/O.

col™ia
 ^ ^ " J E K « i t a l Equipment Corporation. UNIX is a trademark of AT&T Bell Laboratories. Sun is a trademark of Sun

corporation. Apple and Macintosh are trademarks of Apple Computer corporation.

10 APPliL&JACOBSON

6. Applications
Although most of the work described here is not generally useful for anything except playing Scrabble, we

have used die dawg data structure in other programs. A dawg should be considered any time a search

dirough a large lexicon is needed. We have written multi-word anagram finders, an acrostic solver's assistant,

and a code breaking tool using our dawg. The same data structure would be usefiil in playing many other

word games, and could be used in a spelling checker.

7. Future work
Our program is merely blindingly fast, not outstandingly good. It will make the same moves as any

program that simply picks the highest-scoring move each turn from die same lexicon (as Weinberger's

program does, albeit more slowly). In practice, this performance is enough for resounding victories over

almost all human players it has faced.

7 . 1 . A two-way dawg

There are several ways in which our algorithm might be speeded up. One idea considered was changing the

representation of the lexicon to allow extension of partial words leftwards as well as rightwards. We would

use a "two-way" dawg, each of whose nodes corresponded to the middle sections of words. A node would

have out-edges for each letter that could be appended to the beginning as well as the end of the partial word

corresponding to that node.

Suppose we were about to start generating moves from some anchor square that had a tile immediately to

its right. The search would start from the node in the two-way dawg corresponding to the sequence of tiles to

the right of the anchor square. We would never build a partial word that could not be extended into some

legal word. Currently, using our rightward-only dawg, we sometimes try to place many prefixes that (because

of tiles already on the board to the right of the anchor square) cannot be completed to form words.

Furthermore, with a two-way dawg we can choose which direction to extend a partial word; choosing the

more-constrained direction would help to prune the search.

Because a two-way dawg has a node for each substring of each word, we imagine that it would be a great

deal larger than the one-way dawg, although we have never tried to build one. It would be interesting to see

just how much space it would occupy, and by how much it would speedup move generation.

8 OCTOBER 1986
11

7 .2 . Looking at fewer left parts

Because there arc no cross checks involved in searching for left parts, there is less pruning in diis part of the

search dian in extending rightward. Our algoridim often places left parts that cannot be extended by even a

single tile. We could move the anchor-square cross-check pruning to the beginning of left-part generation

(where it will prune larger subtrees) by first making a list of all possible left-parts and arranging them by last

letter and length. Then, for all anchor squares, we could start extending rightward from just those left parts

which fit.

This might take a lot of storage, as there can be tens of thousands of left parts in the worst case. But we

could now invert the order of iteration nesting to save space: we could make the iteration over left parts the

outer loop, and the iteration over anchor squares the inner loop (with the backtracking over right parts inside

that loop). To do this efificiendy, it would be helpful to first make a list of anchor descriptors, keeping for

each one the maximum left-part length and the anchor cross-check set

It is possible to calculate empirically - using the dawg and a large set of representative Scrabble positions

- the approximate savings this would yield, since we can see what effect it would have to test the cross-check

set of the anchor square before looking for left parts. By diese methods, we estimate that the algorithm would

be made about 30% faster with diis modification.

7.3 . Adversary search

One tantalizing possibility, given a fast move generator, is to attempt some form of adversary search. When

the pool is exhausted and all dies are either in the racks or on the board, Scrabble becomes a game of perfect

information. In theory, we could simply use our move generator to search out the endre game tree; in

practice, the branching factor makes this prohibitively expensive. However, we could conceivably get around

this high expense by using the same sorts of techniques commonly used by adversary search algorithms.

These include alpha-beta pruning, hashing of board positions, and using approximate evaluation functions to

discard obviously bad moves.

Even in the middle of the game, where real adversary search is impossible, some form of "sampled" search

might give the program some concept of strategy. For example, we could do a two-ply search, giving the

opponent several different randomly selected racks. This would help us determine when a proposed play for

us leaves the board too "open" for the opponent

12 APPFL&JACOBSON

7.4. Evaluation function heuristics

Another way to improve the play of the program is to use a more sophisticated evaluation function. Some

of die programs described in Section 2 use heuristics to improve tlicir move evaluation, rather than just use

die point count as an evaluation function. These heuristics include:

• Preserving dies and tile combinations in the rack that arc likely to lead to higher scores in the next
move(s).

• Avoiding leaving the board open for the opponent to make high-scoring moves.

A variety of heuristics have been tried by other audiors. It would be relatively easy, given our fast move

generator, to experiment with these and other heuristics to significantly improve the performance of the

program.

8 OCTOBER 1986
13

To illustrate the effectiveness of a brute-force single-ply search in Scrabble, we include a sample game where the
Macintosh version of our program faced Guy Jacobson. Guy took several minutes for each move; the Mac took
several seconds. Guy played first.

Guy Mac

1
2

ALACK
OUTGREW

32
+ 66 = 98

AJEE
HYALINE

25
+ 51 = 76

Figure 1-1: Guy enjoys an early lead

So far, Guy is outscoring the program. His lead will not last. The G in OUTGREW is a blank; note that the tile
bears no number.

I. Appendix: An Illustrative Game

14 APPEL & JACOBSON

Guy Mac
98 76

3 JUNIOR + 26 = 124 FENCES + 50 = 126
4 BATH + 18 = 142 RITZ + 46 = 172
5 ZEDS + 42 = 184 SLOGGING + 82 = 254

6 File HWi Commands

J:, L A

j H ;ELjf§. !§• i ; B L | |

L i:jHa;^ra:ouiaiiiia
m . ; . ; ; m . j ' B : : r ; i a B B
i T B T JTIBBHBBB'.B

Figure 1-2: The tables have turned
The program paused noticeably before playing SLOGGING across two double word scores because it had a

blank. Note the agressive, open style of the program here. It cheekily plays a Z in line with a triple word score.
Obviously, it has no concept of defensive strategy.

8 OCTOBER 1986
15

Guy

6 YIELD + 2 1
7 RUNTIER + 66
8 ME + 1 9
9 EON + 19

10 TWO + 26
11 ROILY + 1 6
12 BI + 16
13 SI + 5

Mac
184 254

— 205 VAGUE + 34 It 288 1! 271 SONDE + 27 = 315
290 PAVAN + 22 337

= 309 QUITTOR + 32 369
335 XI + 50 = 419
351 PAH + 31 — 450

= 367 HOD + 14 — 464
= 372 (stuck with FM)
= 379 - 7 —— 457

* File i:<IM Commands

i n S I I n an
HHI1IHHE1

tm%£ Hl'jfli imx& iLriU fcsw&# I

%»̂£>l &w<̂ tlV'|:V| Ŝ&if KJSEJ Ŝ'ẐS l̂ jj-rl k9

{0IlrlMiP:;JH0EIi3: :ffl!

BBpMB^glJllEiHEi • i^jayij^jHaiaaHaga
Figure 1-3: After Guy's last move

The program finishes Guy off handily by a score of 457 to 379. It has a much larger vocabulary, and seems to
find ways to score even with inferior tiles. Note that the program is stuck with tiles in its rack at the end of the game
because it doesn't plan ahead. B

16 APPF.L & JACOBSON

II. Appendix: The Rules of Scrabble
The object of Scrabble is to form words by placing letter-bearing tiles on die squares of a board. The board

is a 15x15 array of squares, some of which are specially marked; die marks affect the scoring of moves but not

dieir legality.

11.1. Legal moves
Each player has a rack of seven dies drawn at random from the pool, of which he may place some or all on

die board in one turn, subject to these restrictions:

1. All the newly-placed dies must be in the same row or column.

2. At least one newly-placed tile must be adjacent (horizontally or vertically) to a tile already on the
board. In the first turn, when no tiles are on the board, a tile must be placed on the center square.

3. There must be no empty square between two of the newly-placed tiles.

4. All horizontal (left-to-right) or vertical (top-to-bottom) sequences of two or more tiles that include
a newly-placed tile and are bounded on both ends by empty squares or the edge of the board,
must form standard English words.

After placing tiles on the board, the player randomly draws enough tiles from the pool of unused tiles to again

fill his rack with seven tiles (until the pool is exhausted). The contents of the rack are not known by the

player's opponents. The pool initially contains one hundred tiles marked with the twenty-six letters of the

alphabet in rough proportion to their frequency in English. Two of the tiles are blanks; they are marked with

no letter, but when a player places a blank on the board he must designate a letter for that blank to represent

for the duration of the game.

A player may elect to pass and optionally return some or all of his tiles to the pool, drawing fresh tiles to

replace them, instead of placing a word on the board.

The players take turns moving until some player's rack is empty and the pool is exhausted.

11.2. Scoring
Each letter has a point value, ranging from 1 to 10. Tiles bearing letters more commonly found in English

words have lower point-values; rarer letters have high point values, to compensate for the relative difficulty of

forming a word containing those letters. Blank tiles have zero point value.

The score for one turn is derived by summing the point values of all words on the board containing

newly-placed tiles; the point value of a word is the sum of the point values of its component letters. Some

squares are marked with legends like "double letter score" or "triple word score." If a newly-placed tile is on

8 OCTOBER 1986 17

a double or triple letter score square, its point value is doubled or tripled in computing die point value of each

word containing it (but only on die turn in which die tile is placed). Similarly, a double or triple word score

marking doubles or triples die point value of any word containing the newlyplaced tile sitting on it.

A bonus of 50 points is awarded for placing all seven tiles in one's rack on the board in the same turn.

When the game ends, the player whose rack is empty scores a bonus consisting of the sum of the point

values on tiles remaining in the racks of all the other players. Each other player has his score reduced by the

point values of the dies he has left

18 APPLL&JACOBSON

References

1. Blumer, A.; Blumer, J.; Ehrcnfeucht, A.; Haussler, D.; McConncll, R. "Linear Size Finite Automata for
the Set of all Subwords of a Word; an Outline of Results". Bui. Eur. Assoc. Theor. Comp. ScL , 21 (1983),
12-20.

2. Cosma, June; Jackson, Dee et al. "Introducing MONTY Plays Scrabble". Scrabble Players News, (June
1983), 7-10. (more or less an advertisement).

3. de la Briandais, R. File Searching Using Variable-Length Keys. Proceedings, Western Joint Computer
Conference, 1959, pp. 295-298.

4. Fredkin, Edward. "Trie Memory". CACM 3,9 (September 1960), 490-500.

5. Nerode, A. "Linear automaton transformations". Proc. AMS 9 (1958), 541-544.

6. Shapiro, Stuart C. A Scrabble Crossword Game Playing Program. Proceedings, Sixth IJCAI, 1979, pp.
797-799.

7. Stuart, Shapiro C. "Scrabble Crossword Game Playing Programs". SIGArt Newsletter, 80 (April 1982),
109-110.

8. Turcan, Peter. "Computer Scrabble". SIGArt Newsletter, 76 (April 1981), 16-17.

9. Turcan, Peter. "A Competitive Scrabble Program". SIGArt Newsletter, 80 (April 1982), 104-109.

10. Weinberger, Peter, private communication.

