NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

I

EXCLUSVE TEAR SETS FOR FLOWSHEETS
by
Rodolphe L, Motard and Arthur W, Westerberg
May, 1979

DRC - 06 -7 -79

EXCLUSI VE TEAR SETS FCR FLONBHEETS
by

Rodol phe L. Motard'd)
and

Arthur W V%sterbergcz)

1Departnent of Chem cal Engi neering
Washi ngt on Uni versity
St. Louis, M. 63130

“Department of Chenical Engineering/Desi gn Research Center
Car negi e-Mel l on University
Pittsburgh, Pa. 15213

UNNERSTY LIZRAZES
myr TR RNERSTY
el e VIV VLIWIIA 15213

r

Abst r act

Anewinplicit enumeration algorithmlocates the ni ni numwei ghted
tear sets anong those which belong to the nonredundant fanilies of Upadhye
and Grens [1975]. Theoretical devel oprents éupport the algorithmand give
a new insight relating nonredundancy to the tearing of unit loops in a flow
sheet. If all loops can be torn exactly one tine, the nonredundant famly
is unique and a nenber of it is trivial to find. |If not possible, two or
nore nonredundant famlies exist and the aoove al gorithmdiscerns anong

them picking a tear set which mnimzes the nmaxi numnunber of tines any

unit loop is torn.

-1-

The literature abounds with algorithns to find the "tear' streans
autonatically for process flowsheeting cal culations. Tear streans are those
which are to be guessed and iterated in the course of solving a process
fl owsheet containing recycles, using a so-called sequential nodul ar type
of flowsheeting systemsuch as FLOMRAN (Seader, Seider and Pauls [1974]),
OONCEPT [1973] or PACER [1971]. ne criterion for selecting tear streamns
is to select the fewest such streans. The algorithmof Barkley and Hotard
[1972] is one of many which solves this problem Another is to select the
m ni numwei ghted tear set where each streamis assigned a wei ght, and the
best tear set is defined as the one which gives rise to the m ni mum sum-
of weights associated with the tear streans. Christensen and Rudd [1969]
present one of the many algorithns for this criterion.

The best criterion appears to be that of Upadhye and Grens [1975]
wherein the tear set is required to belong to a nonredundant fanily of tear
sets. Al tear sets inthis famly are shown to have the sane convergence
behavi or using successive substitution, and Upadhye and Grens give quali -
tative arguments, together with nunerical evidence, that these tear sets
are likely to be better than any others. Rosen and Pauls [1977] support
this contention with further nunerical evidence using the well-known Cavett
probl em (Cavett [1963]).

\Vie shall showin this paper that the nonredundant fanily .of tear
sets is directly related to the unique tearing of unit loops wthin the
flowsheet. W shall discover that the inability to find a tear set which
tears all unit |oops exactly one tine gives rise to nore than one nonredun-
dant fam.y in the Uadhye and G ens sense. Such a discovery allows us
to distinguish anong nonredundant famlies and argue qualitatively that

sone of these shoul d have better convergence properties than others.

Finally ve give an algorithmto find the m ni numwei ghted tear
set fromanong those in the nonredundant famlies deenmed best by the above
argunents. If only a menber of a nonredundant fanily is desired and that
famly is unique, a trivially easy algorithmis avail able, provided the

unit loops are avail abl e.

Theory

The structure of a flowsheet can be captured in an obvious man-
ner using graph theoretic concepts. W shall assume we are dealing with
an irreduci ble subset of units within the flowsheet, wherein all the units
in the subset nust be solved together because of recycles. W shall make

the follow ng standard definitions to aid us.

A digraph G(N E) is a directed graph conprising a set of nodes

and directed edges connecting those nodes, where

N:{n.ll 0 is anode in G

E = {ej| % is adirected edge in G running
froma source node ng to a des-
tination node Ny Ng Ny are
menmbers of N}

Clearly the nodes relate to the process units in a process flowsheet and

the directed edges to the connecting process streans.

Apath p(jt) is a string of nodes and edges in Gof the form

Alist) =n 161 n2 ¢ 2 nm em r]m‘l
where n is the source node and n is the destination node for edge e
k k+1 ¢ K
A node loop, u(jt) > is a path wheren =n. |
1 mt-1

A st+apte- rede- Feep- i s a node |oop which does not contain two or
more node loops withinit.

AN eei-tear—set—ENjfc) is a set of edges with the properties

1) If the edges in ET(/) are deleted, Gwill contain
no node | oops.

2) If any single edge in ET(X) is not deleted while
the remaining ones are, Gwll contain node |oops.

-4-

W shal |l now define a covered node |gop o(n) > “ierey(n) is a

sinple node loop in G To do this we present the follow ng algorithm
Al gorithml
. Select any (tear) edge € which is not a menber of u(*0.
I'l. Flag edge ep and all edges which are in any sinple node |oop wth

it. Some of these flagged edges may be in u(") ¢
I1l. Repeat, selecting another (tear) edge %g which is not a nmenber of

u(n) and is not yet flagged. Continue until the edges in all other
node | oops with any edges in common with \j(n) are flagged.
If no edge in u(*0 remins unflagged, we shall define u(") as
a covered node loop. Cearly then u(*0 can be a covered node loop if and
only if a subset of k of the (tear) edges selected by Algorithml| have the
foll ow ng properties.

1) None of themis in a sinple node [oop with any of the
rest of them

2) Each tear edge is responsible for flagging sone of the
edges in u(*0 by being in sinple node |oops with these
edges.

3) As a set they nust cause all edges in u(*0 to be flagged

Consi der two nodes n- and n, connected by the paths p(l) and p(2).

2
See Figure la. Path p(l) goes fromn”® to n, and p(2) fromn” to i”, Let
u(l) = P(l) P(2) be a covered node |oop. W nust be able to locate a sec:
ond sinple node [oop, u(2), which contains p(l) but not p(2); therefore

we need a second path p(3) fromr12to i~ withu(2) =p(l) p(3) resulting.
In addition we need a sinple node [oop, u(3), containing p(2) and neither

p(l1) nor p(3). We therefore require a second path p(4) fromn™ to n, with

u(3) = p(2) p(4), but we find we have also formed the node loop u(4) = p(3) p(4)-.

) (a)

p(3)

n . (b)

Figure 1. The Minimum Structure Required in a Digraph for a Covered
Loop to Exist.

Sel ecting an edge fromp(3) will cause us to flag all edges in p(l) but
will also cause us to flag all edges inp(4) . Qearly both p(3) and p(4)
nmust be created if u(l) is to be covered. The node loop p(3) p(4) nust
result; it cannot be a sinple node loop therefore (a sinple node |oop con-
tains no other node loops) . Paths p(3) and p(4) nust pass through a com
mon third node, n-

3
p(4) into p(7) and p(8) as illustrated in Figure Ib. The node |oop p(3)

whi ch breaks p(3) into two paths, p(5) and p(6) , and

p(4) then contains two node |oops and is no |onger sinple.

The sinple loops for Figure Ib are (p(l) p(2)), (p(6) p(7)),
(P(5) p(8)), (p(l) p(5) p(6)) and (p(2) p(7) p(8)). To cover loop u(l)
=p(l) p(2) we select one edge each fromp(5) and p(7) (or fromp(6) and
p(8)). Selecting an edge fromp(5) flags all edges inp(l), p(5)¢ p(6),
and p(8) . Then selecting an edge fromp(7) flags all edges in p(2) and

p(7). Thus u(l) = p(l1) p(2) is indeed covered.

Result 1. |If a digraph contains no covered | oops, an edge tear set can

al ways be devel oped which tears each node |oop exactly one tine.

proof : Using Algorithml, no untorn loop can be encountered that has
no unfl agged edges remaining. |f one does, then the loop is covered, which
contradi cts our assunption. A gorithml wll therefore find the desired

tear set. QED

W shall call such a tear set when it exists an excl usive edge

tear set.
V¢ note sone properties of the structure in Figure |Ib which are
required for a covered node loop to exist. A least three nodes must ex-

ist with each having at least two input edges and two output edges.

Result 2: If a digraph QN E) contains fewer than three nodes, each with
both multiple inputs and outputs, it cannot contain a covered node | oop

and an exclusive tear set can always be found.
Pr oof : The proof is a direct consequence of the above observation. QE D

Ve shall call the structure in Figure Ib a cyclic cascade and

note that if and only if one exists in a digraph, then so does a covered
node | oop. Apparently such a structure is not conmonly found in the digraph
corresponding to a process fl owsheet so an excl usi ve edge tear set exists
for the digraphs corresponding to nost flowsheets and is readily found by
Algorithml. Anticipating the connection between exclusive tear sets and

uni que nonredundant famlies, we note that Upadhye and G ens di scovered

but one flowsheet with nore than one nonredundant famly out of several
hundred tested, and this flowsheet was highly heat integrated. (Heat ex-
changes have two inputs and two outputs each.)

W now w sh to prove the follow ng theorem

Theorem1l: If and only if a digraph G N E) has an exclusive tear set, then
the nonredundant fam.y of edge tear sets as defined by Upadhye and G ens
is unique, and each nenber of it is an exclusive tear set with no other

nonredundant famly of tear sets existing.

Pr oof : |F PART: W shall first need to define a nonredundant famly
of edge tear sets which we shall do using the Upadhye and G ens repl acenent
rule. This rule states that an edge tear set is transformed to anot her
inthe sane famly by first identifying a node which has all of its input

edges in the tear set. These edges are deleted and repl aced by all the

out put edges of that node. The famly is nonredundant if, after exhaustive
application of the replacement rule, no edge already in the tear set is

al so introduced by the replacement rule. This double listing of an edge

is redundant, and the algorithmto find a nonredundant fanmly by this ap-
proach states that one should delete all but one listing of the repeated
edge, noving to a new fanly and then continue. The above steps are re-
peated until a famly is found which is shown to be nonredundant.

Let us assune an exclusive tear set exists. Then each sinple
node loop is torn exactly one tine (see Result 1 and definition of an ex-
clusive tear set). The replacenent rule replaces all of a node's input
edges by its output edges. Al sinple node |oops passing through that node
are torn once by these input edges before the replacement by assunption.
Qearly they are all torn exactly once after the repl acenent by the output
edges. Thus if the replacement rule starts with an exclusive edge tear set,
it can only generate exclusive edge tear sets.

V¢ shall next prove that, if an exclusive tear set exists, re-
peated application of the replacenent rule will transformit into all_ others,.
Assume that exclusive edge tear set ET(1l) exists. Cenerate any other by
use of Algorithml and call it ET(2) . W shall show that one can transform
ET(1) into ET(2) by systenatic application of the replacenent rule, and,
since ET(1) and ET(2) are arbitrary exclusive tear sets, we prove the "if
Part™ of our theorem Qder the sinple node |oops, and then, for each such
loop, identify the edge which tears it in ET(1) and the edge which tears

it inET(2) . W apply the following algorithm

-0-

Select a sinple node loop and call it u(l)e
Move the tear for u(l) forward around u(l) via the replacenent rule
until either (a) the tear for the |oop reaches the desired |ocation

for it in ET(2) or (b) anode n(l) is encountered with multiple inputs.

a. If (a) is true, select a node |oop whose tear is not yet in the
position desired in ET(2) and repeat from2. (Call this node

loop u'(1)e

b. If (b) is true, continue with step (3).

D scover a loop u(2) with the properties (1) the |oop passes through
n(l), (2) the loop is not torn by the tear for u(l) and (3), if u(l)
and u(2) have connon portions, these common portions aré connect ed.
(If a node |oop exists which satisfies properties (1) and (2) but not
(3), then another node |oop exists which satisfies property (3), and
it is to be the one selected. Figure 2 presents an exanple. Figure
2a shows our digraph. Figure 2b identifies node loop u(l) and Figure
2c, node loop u(2). Note that u(2) has two di sconnected portions in
common wWith u(l) » For this exanple we replace the parallel path in
u(2) wihich connects the two common portions by the part of \j(l) ex-

i sting between these portions and find a loop 0(2) which satisfies prop--

erty 3.)

Merge portions of u(l) and,(2) which are in common, as illustrated
inFigure 3, into one supernode. dearly the tear for u(2) cannot be

in the comron portions for otherw se u(l) would be doubly torn.

-10-

fat
j:I V(1) @U (2) u(2)
(b)

(c) (d)

Figure 2. Finding a Loop Satisfying Property 3.

=~ =

Figure 3. Merging Coomon Portions of Two Loops into a Supernode.

-11-

5. Starting nowwith u(2), nove the tear forward via the replacerment rule
until either (a) node n(l) (which nay nowbe in a supernode) is encoun-

tered or (b) a node n(2) is encountered which has rmultiple inputs.

a. If (a) is true then

1. Repeat from3 if n(l) has an as yet untorn input edge.
Call the new loop found u’(2).

2. Qherwise all edges to n(l) are nowin the tear set
so we can nove the tear set throughn(l) via the re-
placement rule. If n(l) is in a supernode, unmerge
the supernode and nove the tear set through n(l) via
the replacement rule. Continue with step 2.

b. If (b) is true continue with step 6.

6. Find aloop u(3) with the properties (1) the |oop passes through n(2),
(2) the loop is not torn by the tears for u(l) nor u(2) and (3), if

u(l), u(2) and u(3) have common portions, these portions are connected.

7. Merge portions of u(3), u(2) and/or u(l) which are in comon into one
supernode. (If the supernode includes parts of u(l), then in fact u(3)
is not separated fromu(l) by u(2) . It should be rel abel ed as | oop

uf(2), a"second (not third) Ievel" node loop relative to u(l).)

8. Start nowwith u(3) and nove its tear forward via the replacenent rule
until either (a) node n(2) is encountered or (b) a node n(3) is encoun-
tered which has multiple inputs.

¢ Etc.

It should be clear with the above how to continue. The |oops
u(l)>u(2), * ¢ « « can be discovered only to a finite depth because each
nmust not be torn by the tears of the earlier ones and only a finite nunber

of sinple loops occurs in a finite digraph.

-12-

The loops u(l), u(2), forma "tree® of loops with 0(1)
being the root. Figure 4 illustrates. The structure nust be a tree for,
if it is not, thenit will contain a covered loop and an excl usive tear
set does not exist. Loops " (k) and u(k) may contain conmon edges and nodes,
but, since they are not dealt with at the sanme tine, no nerging need occur
anmong themunl ess they both join loop k-1) at the same node (or supernode) .

V¢ now argue that, since the loops forma tree structure, we can
nove the tear for loop u(l) to its positioninET(2), and then we can re-
turn the tears for all |oops above u(l) in the three to their original po-
sitions unless the tear for u(l) in ET(2) is inthe portion of u(l) and
u(2) whichis in connon. The tear for u(2) in ET(2) must be that for u(l)
inthis case, and it need not be noved.

Assume the tear is not in the common portion. Qearly the tear
for u(l) can be noved forward via the replacement rule through n(l) and
then n"(1) if necessary to get it to the position desired in ET(2). After
novi ng through n(l) the tear for u(2) just follows n(l) . It can be noved
forward anywhere around u(2) without encountering n(l) again, and thus the
tear for u(2) can be put back to its original position wthout noving the
tear for u(l) . proceeding up the tree to level 3 the tear for u(3) can-
not be in the commn section for loops u(l), u(2) and 0(3) for if it were
then o(3) would have becone a loop at level 2 in our tree. Thus this tear
can always be returned to its original position, and it can be done with-
out disturbing u(l) or u(2). Etc.

Wiile we can see that all tears for the loops in the tree struc-
ture can be returned to their original places, except perhaps for u(2) vhere
it is not necessary if it cannot be done, tears for other |oops not in the

tree may have been noved because of the nmoving of the tear for o(l) .

-13-

v'(4)
(4)

Figure 4. The Tree Structure to the Loops Discovered When Moving Tears
for V(i).

-14-

Such tears nust cone because the tear for u(l) passes‘ t hr ough
a "diverging® node n(l) which has an edge leaving it which is not. a part
of any of the |oops appearing ih the tree of loops. Since all pat hslleav-
ing u(l) must returnto u(l) eventually (because G N, E) is irreducible),
“such a pat h must belong to one (or nmore) |oops which are torn by the tear
for u(l) inET(1) but not in ET(2) . Qherw se the edge woul d appear in
the tree. In other words the edge starts one of nore paths \Ahi ch | eave
u(l) at node n(l) toreturn at a one of nore nodes, all of which follow
the desired tear for u(l) inET(2). Figure 5illustrates, the original
tear for u(l) is shown in Figure 5a, the final desired tear in Figure 5b.

Vie note that in passing the tear through node n(l), a tear is
created along the parallel path at its beginning. Qdearly the path nust
have a tear in ET(2) since the path p(l) is covered by the tear for u(l)
and the loop p(l)p(3) nust therefore be torn along p(3). Having the tear
at the beginning of p(3) guarantees us that the tear in p(3) can be noved
anywhere along p(3) and thus to its desired position in ET(2) w thout af-
fecting the tear for loop u(l)«

The approach is therefore to nove the tear for each loop in turn
using the above algorithm Tears are created for parallel paths at their
begi nning so they may then be noved forward to exactly where needed. Tears
in loops created above the loop of interest in the tree structure can always
be returned to their original position so previously noved tears can be
noved back to their target position if they appear later in the upper |ev-
els of atree for a different | oop.

Thus we can take each loop in turn and place the iear for it from
ET(1) to its position in ET(2) without noving previously noved tears, and

this position may be anywhere in the loop. The digraph has a finite nunber

-15-

n(l)

P(3) P(D

(a) (b)

Figure 5. Myving a Tear in u(l) through a DO vergi ng Node..

-16-

of sinple loops so the process is finite. Thus the replacerment rule wll
generate all the exclusive tear sets starting fromany given one.

ONY |F PART: The proof depended on the nonexi stence of a covered
loop for otherwise the loop tree in Figure 4 would cease to be a tree. A
loop at a higher level would find itself connected to a loop at a | ower
level as illustrated in Figure 6.

The tear set indicated by the single strokes cannot be transformed
into the one indicated by the x's by systematically using the repl acenent
rule. CED.

An example will illustrate. Consider the graph in Figure 7a.
Select u(l) (Figure 7b) as the paths {1,2,7} and nove the tear frompath
2 to just before node C, a node with two inputs. W discover u(2) an un-
torn loop passing through node C It has common edges 1 and 7 with u(l)
so Figure 7d is formed by mergi ng these edges, formng a single supernode
(conprising nodes C A B) which joins the two loops u(l) 2 u(2) .

The tear for loop o(2) is noved to just before supernode C A B.
Note it creates a tear at the start of path 5 because diverging node D has
two output edges. Figure 7e shows the result of expanding the supernode
and then applying the replacenent rule across node C creating a tear on
paths 4 and 7. W find node A on u(l) has two inputs so we nust |ocate
aloop u (2) (Figure 7f) which is not torn and whi ch passes through C
Figure 7g shows the tree of |oops with cormon edges 1 and 2 nmerged. Node
E has two inputs, so we find loop u(3) but it has edges 8 and 1 in common
with both u(2) and u(l). Merging these edges yields the tree in Figure
7i. W see that our supernode is nodes EABC conbined and that u(3) really
is a second loop tied to loop u(l) at the supernode; u(3) is relabeled u"(2)

since it is at the second level only of the tree.

-17-

N
A < If\ > B 7
A 5 A
: 4 Il\ 8
2 o 6
6 >f--
8 S
4
v 7 v 5
D : 9 C
< >¢ 3

Figure 6. A Digraph Leading to a Nontree Loop Structure.

-18-

0(1)
A B, C fini shed

() (k) (1)

(m (n)

Figure 7. Mving Tears from T(l) = 2,3,9 to T(2) = 1,5

-19-

VW can now nove the tears on 9 and 4 through node E to path 8.
At this point both paths into node A are torn, and we can nove our tears
through Aonto path 1 (Figure 7JL) , our desired goal for the tear for |oop
u(l). Since the tear on path 1 is in the common part of u(l) with u(2),
u'(2) and u"(2), these loops are torn, and we cannot put the tears al ong
these |oops back to their original positions —nor should we.

Ve finally find loop u'(l) conprising paths 3 and 5 but the tear
is already on path 5 fromwhen we nbved the tear for loop u(2) through node

D. Thus this tear is already in place. Figure 7n shows the final tear

set, ET(2), inposed on our networKk.

-20-

Nev Tear Al gorithm

VW extend the argurment of UWpadhye and Grens by favoring those
tear schenmes which tear unit |oops the fewest nunber of tines. Ve would
prefer to select tear schemes which mnimze the maxi num nunber of tines
any loop is torn. Thus if an exclusive tear set exists, we want our best
tear set to be an exclusive tear set.

Vie examne the digraph in Figure 6. This digraph contains a |oop-*
ing cascade and thus has no exclusive tear set. W& display the sinple node
loops for this digraph by using a Ioop/édge incidence matrix. W list each
loop along the left border of the matrix and each edge across the top. |If
an edge appears in the loop, we put a nonblank character (e.g. "x') in the
row for the loop. For the digraph in Figure 6, the loop incidence matrix
is

\
Loop Edge 1L 2..3..4..5 6 7.8

D 01 A W N
x
x

Ve can first apply Algorithm| and discover a cover ed loop. Ve first remove

edge 1 which covers (flags) edges e™ e es, eh and e5 and tears | oops

P
u(l) and o(5). we then renove edge e; which covers edges e7 and e;; and
tears loops y(2) and u(6). Qearly loops u(3) and,(4) are covered but
not torn. The Wpadhye and Gens replacenent rule would find three differ-

ent nonredundant famlies:

-21-

1) Dbased on one tear of loop u(5) and three of loop u(6)
2) based on two tears each of |oops u(5) and |oop o(6)

3) based on three tears of |oop,(5) and one of loop ,(6).

VW see that famlies 1 and 3 triple tear a |oop whereas famly 2 double
tears two |oops.
The algorithmwe wish to propose wll select the second famly

as best because no node loop is torn nmore than twice for it.

W now devise an algorithmbased on inplicit enuneration (branch
and bound) to locate effectively an edge tear set for an irreducible graph.
Ve shall allow an edge e._1 to have a weight W'_I assigned to it. W define
the multiplicity m X) of an edge tear set EI(jt) as the maxi numnunber of
times any of the node loops are torn. The weight of an edge tear set is
the sumof the weights assigned to the edges in the edge tear set ET(/).
Qur algorithmwll locate an edge tear set such that no other edge tear
set has a lower nultiplicity, and, of all those with the sane multiplicity,
the selected set has the m nimumweight. The algorithm wth explanation,

is as foll ows.

. For the irreducible digraph, locate all node |oops (an al gorithmwhich
extends in an obvious and m nor way the LOOPFINDER al gorithmin Forder
and Hutchison [1969] is reconmended) and display themin a node inci-

dence matrix, 1l

-22-

II. Assign to each loop i a multiplicity Wy = 0, set level count LEV = 0,

I1I.

IV.

A
set Ebest wbest o, set n = number of rows in M, set WISUM = 0.

Assign to each edge e, the following three numbers:

3

A. An untormn loop count kj’ where)\, is the number of loops

J

which are as yet untorn and which include edge ej.

B. An edge efficiency nj’ where nj = Aj/yg. nj equals the
nvmber of loops which would be torn per unit of assigned
weight for the edge ej.

C. An edge multiplicityzgj, where

;‘j = m:x{uk|ej appears in loop ‘k}

wWith these numbers we can assess the value of adding edge e, next

3

to the edge tear set partially completed. If edge ej is added

to the edge tear set,), more loops will be torn with an effi-

3
ciency per unit of edge weight nj' At least one loop in the set

of all loops will be torn with multiplicity ¢j+ 1.

Increment LEV by one. Reorder onto a list, List I of level LEV, the
indices of all edges in increasing order of multiplicity, reordering

edges with equal multiplicity in order of decreasing efficiency.

For each edge e, on the ordered List I, develop a lower bound on mul-

tiplicity. The lower bound assumes all edges before e, on the ordered

i
list are not in the edge tear set and that edge e, is and all fol-

lowing can be in the edge tear set. To establish the multiplic-

A

ity bound use e, and, in order, each of the edges following. If n

loops reamin to be torn, then the fewest edges needed to tear all

V.

-23-

the renai ni ng | oops, using edges O Ie, voul d be such t hat

A, FA

A
i i+1+ s e e +;\p_1+911p n (1)

where 0 < O-L £ 1. Since this nunber assunes |oops cut by each edge
are different fromthose cut by the other edges, we clearly have a

| over bound on the nunber of edges needed fromthe sequence used.

The multiplicity -e,p est abl i shes th_e multiplicity bound b*jf_ for edge

i. If an insufficient nunber of edges exist for (1) to be established

for an edge, no multiplicity bound exists for that edge.

Establish, for each edge e.1 on the ordered List | for |level LEV and
for which anmultiplicity bound exists, a |lower bound on the required
sumof weights to conplete the edge tear set. For edge ey, consi der

all edges foll ow ng e; up to eq where g is the last edge w th nul -

tiplicity u% = b; . Reorder these edges & to eq i n order of
decreasing edge efficiency onto a tenporary list, List Il. Let this
list containthe indices Sk, S,, ¢ » « « S . . Select e. and just
I 2. *1 " %o
enough edges in order fromList Il such that)
0 =A
7"1+7‘s+""+'(% +8g, =1
1 t-1
wher e O0<e, £ 1 .

The | ower bound on the sumof weights for edge ex is then
1

+ W+ 9,W + WSUM

br - W+ W+ W +
1 2 t-1 t

Note, the bounds bf for edges on List | for |level LEV are in increas-
1

ing order but the bounds b\iv may not be.

VI,

VI,

Xl

X,

- 24-

Set NXT(LEV) = 1.

Set k = NXT(LEV) and increment NXT(LEV) by one. Set £ = k-th index

on List | for level LEV.

A If bx>

A pest O if be does not exist, go to Step X I.

N
B. |If BE Wbes't—‘ return to Step VIII.

Add edge ef to the edge tear set as follows. It will be the LEV-th

edge in the set.

A Increment VITSMby WE.
B. For each I oop Xl i n which ef£ appears, increnent Py by one.

C If jj'i j ust becones one

1. decrenent ﬁby one

2. for each edge eui n | oop ‘JLi' decrerent the untorn |l oop coun-
ter by one.

If all |oops jf(i are not yet torn (at |east one Y 4 0), returnto Sep
[11B. Qherw se

. ft W
A Set « ‘=b, and W “=Db- for current tear set.

Desc K Desu K
B. Save current edge tear set as best.
C Goto Step XilIlI.
Al edges not yet considered on List | at |evel LEV need not be con-
sidered further as they cannot lead to a better tear set than the
best found so far.
A, Decrenent LEV by one.
B. If LEV=0, exit algorithm

C Set k » NXT(LEV) - 1, and set £ - k-th index on List | for level LEV

-25-

XI'll. Renove edge ef fromcurrent edge tear set by
A, Decrenent WSUM by W
B. For each loop u(i) in which e£“appears, decr enent Py by one.
C If Py j ust becomnes zero

. A
1. increrment n by one

2. then for each edge e in loop u(i)> increment the untorn | oop
count er \u by one. "

XIV. Return.to Step VII1.

V¢ can illustrate the algorithmw th an exanple, the digraph of Figure 7a.
Vie arbitrarily assign weights to the edges and use the algorithmto find

a best edge tear set.

Step I. The five node loops for the digraph in Figure 7a are illustrated
in the incidence matrix shown in Figure 8. Loop u(l) contains edges e.i,
e’ and e, Vi ght s V\{‘l are assigned across the top to each edge, e.g. edge

o has a weight of 5.

Step Il. Again looking at Figure 8, we see Py = 0 assigned to each | oop

along the left border, ﬁis 5 here.

Step Il1l. Figure 8 also has \j' T]-‘ and ’3 val ues assigned for each edge.
)él.*-' 3 because edge e, appears inthree as yet untorn | oops. 7|1= 3/5=0.6
and -'«1= nax(p, 1 Py pb_) » 0. Since all loops are as yet untorn, all |oops
torninthe first step will be torn once, i.e. with anmultiplicity of

-"«.+ 1=1-
J

Figure 8.

Fi gure 9.

-26-

L
NEdges
6‘2 6‘3 94 6‘5 6‘6 6‘7 6‘8 6‘9
H X 2 13 |1 |5 |s |12 |1 |eigns w
j
Ojul) x X X
0] u@ X X X
01 u(3) X X
o]l u(4) x X X X
0f u(b) x x | x
LEV=0 _)](3 3 2 1 1 1 1 2 1
75. 0.6 1.5 0.67 1 0.2 0.33 1 2 1
e o 0 0O O o0 0 O 0

j

Loop/Edge Incidence Matrix for Digraph in Figure 7a.

Edge 8 2 4 7 9 3 1 6 5
A p2 |3t ot {2 1411
LA IR I 1 |1 |3] 5 3|5
. B
by O jop o0 Jo o 1O - -
W
by {3 |4 6 t6-2/3fH {8 |13 - -

Miltiplicity and Wi ght Bounds for Reorder Edges for Figure 8.,

-27-

Step IV. Increnent LEV to one. List | will be the indices (8,2,4,7,9,3,1,

6,5)- Edge e8 has the highest efficiency (7)" 2) and edge es the | owest
i - |
.Step V. Figure 9 shows the nultiplicity bounds for each edge with edges
reordered as done in Step IV. For edge 8 we need to tear at |east eg and
e, to tear - 5 loops so bg‘ - max(«g, «) =0. For edge e, we need to tear
it and at least edges e, and e, to tear 5 loops so (8, =an Ay a0
bL: rrax(e,q,-c], 9 -,9_: 0, and so forth. Edge e™ has no bound since e”
and all edges follow ng (eb) can tear only 2 loops. Simlarly es has no
bounde _

Step VI. In anmnner simlar to establishing the multiplicity bound for

an edge, we establish a weight bound. Since all multiplicity bounds are
equal to zero, list Il is the same as list I. For the first edge, e, we
need edge €p, and e(zat least to tear 5 loops so g" :g\()+ %{ﬁ WFSUMgl +2
+0 =3 b= W+ W+ W+ WISUIM=2+1+ 1+ 0=4. For edge e, we need
e7x egx eg and only IA3 of e tOget 5100p tears soba = Wy+Wg+Wg +wj A3

+ WISWM = 6-2/3.

Step VIT. Set NXT(l) = 1.

Step MI'1.Set k =1, NXT(l) =2 and £ = 8, the first index on List |I for

| evel 1.

Step I X bg =0< E’nest: 09 and lyg = 3 < Woegt = » SO continue 'Fo step X

-28-

Step X. VW& shall add edge e, as the first edge in the tear set. WSUW
wi Il be increnented fromzero to zero + W= 3. y,,q_and pg are i ncrenent ed

to unity because e, appears in loops u(”) &~ u(5) e d will be decrenented
[0}

to5 - 2°3 since all loops which are torn are torn for the first tine
here. The untorn [oop counter for et is decrenented by 2 since two | oops

inwhich it occurs have just been torn, e2 by 1, ei by zero and so forth.

Step XI. For our exanple y » ju ~ M3 ~ °vetsonreturniosiep IITB,

Steps Il1IBand C 1V, Vand VI lead to the results in Figures 10 and 11.

LEVis reset to 2 in Step IV

Step VIT. NXT(2) =1

Step VIT1.k =1, NXT(2) =2. Kk

I
N

Step I X Continue to Sep X

Step X Add edge to the edge tear set.

€4
Step I Xwll returnus to IlIB where Steps Il1IBand C 1V, Vand V |lead

to the results in Figures 12 and 13.

Step VIT. NXT(3) =1

Step VIT1.k =1, NXT(3) - 2, k - 3.

Step I X Continue to Step X

Step X Add edge €q to the edge tear set. V¢ now find all loops torn

(no "= 0) . So we set-ebestz bg =0 and Wyest = b’é - 5.

-29-

€| ep e3 €4 eg eg ey eg
Wy 5 2 3 1 5 3 1

0 uy [X X X

0 u, X X X

0 us X X

1 ug | X X X X
1 us | X X

A 1 2 2 0 1 1 1 0

1)-Jl 0.2 1 067 0 0.2 033 1 0
Ty 1 1 0 1 0 0 O 1

Figure 10. Loop/ Edge Incidence Matrix After Tearing Edge 8.

Edge 7 |3 |6 |5 |2 |1 |4 |8 9
Aoz |t ofr o2z |t ojo fo 0
Wi |13 |3 s 2 |5 |t |t 1
. j 6 (o |o |o |1 |1 |1 |1 1
5; o |o |1 |1 |1 |1 |1 |1 1

Figure 11. Multiplicity and Weight Bounds for Reordered Edges for Figure 10.

-31-

ef e2 e3 ®y © 65 €7 eg eg

My X 5 2 3 1 5 3 1 1 1
1 uj X X X
0 U, X X X
0
Ug X X
I Uy X X X X
| v X X X

Figure 12. Loop/ Edge Incidence Matrix After Tearing Edge 8 and then Edge 7.

Edge €3 € €5 €,
2 1 1 1
2y
3 5 2
wj 3
_‘_1 0 0 0 1
.‘-
b 0 0 1 -
A
W
b 5 10 9 -
h

Figure 13. Miltiplicity and Vi ght Bounds_for ‘F_%eorder ed Edges for Figure 12..

-32-

Step XII. No further edges at level 3 need be considered. Decrenment LEV

to 2 and set k = NXT(2) -1-1. Set £=17.

Step X Il.Renove edge e, fromthe tear set. Decrement ’\—1 by one, set A 3,

and i ncrenent \1, \2 and X_’ by one. Note, we have sinply recovered Figure

10 by these steps.

Step XIV. o to Step VIII.

Step VIT1.Set k - NXT(2) =2, NXT(2) - 3 and £ - 3.

Step | X See Figure 11. W are now | ooking at replacing e, by €y as the
- - " ZAN . -
second tear, b@ 0 € ed 0. b 7 .>_Wbest 5 sow goto Step VIII.

(I't would require a tear weight of at least 7 so skip.)
Step VIT1. k - NXT(2) - 3, NXT(2) - 4 and £ - 6.

Step I X b(j - 1> «beL-S' O (see Figure 11). Putting edge 6 or any foll ow
ing inas a tear would raise the miltiplicity of the solution to 2 (a |oop
woul d becone doubly torn) so we can forget looking at level 2 options.

to Step X1 .

Step XI. Set LEV to I (we should nowreturn to Figures 8 and 9) , k - NXT(l) - 1
-1, £- 8

Step XIIl. Delete edge e4 fromthe tear set.

Step VIT1. Set k - NXT(1) - 2, NXT(LEV) - 3 and £ = 2.

-33-

Continuing (see Figure 9) we find replacing e, by e, will give
a wei ght bound of 4 which is less than 5, the best so fgr. vi devel op the
| oop incidence matrix and bounds in Figures 14 and 15 and find bgyai | evel
"2 is already up to a mninumtear weight of 8 so we stop |ooking with e2
as the first level tear. The next first level tear optionis e, (Figure
9), but it has a weight bound of 6 so we can stop altogether. The best
tear set is e, €, and o with amiltiplicity of 1 (an exclusive tear_set)
and a tear weight of 5. Note we examned only alternatives e__J and e (no
effort required) at level 2, returned to level 1 and followed one nore fal se
trail based one_, e, . Very fewoptions had to be explored to find the

29
best .

I

Figure 14.

Fi gure 15.

O - O P

-34-

e 2 3 -4 5 6 7 8 9
v X X X
U, X X x
Usg X x
v, X X x X
Vg X X x
X 1 1 1
T 0.2 0 0.33 O 0.2 0

1 0

Loop/ Edge I nci dence Matrix After Tearing Edge 2.

€9 s
X
w1 5
S; 0 1
b;" 8 -

Partially Devel oped Multiplicity and Wi ght Bounds for Reordered
Edges for Figure 14.

-35-

Ref er ences

Barkley, RW and R L. Mtard, Deconposition of Nets, Chem Eng. J.,
3, 265 (1972).

Cavett, R H, Application of Nunerical Methods to the Convergence of
S mul at ed Processes | nvol ving Recycle Loops, Am Pet. Inst. Repr. No.
04- 63 (1963).

Christensen, J.H and D.F. Rudd, Structuri ng Design Conput ations, Al ChE J.,
15, 94-100 (1969).

OCONCEPT Mark 111 User Manual , CAD Centre, Canbridge, England (1973).

Forder, GJ. and H P. Hutchison, The Analysis of Chemcal Pl ant Fl ow
sheets, Chem Eng. Sci., 24, 771-85 (1969).

PACER 245 User Manual, Dgital Systens Corp., Hanover, New Hanpshire (1971).

Rosen, EM and A. C. Pauls, Conputer A ded Chem cal Process Design,
Conput. Chem Eng., 1\ 11 (1977).

Seader, J.D., WD. Seider and A. C. Pauls, FLOMRAN Simulation, An Intro-
duction, CACHE Committee, Urich's Books, Ann Arbor, M chigan (1974).

Wadhye, R S. and E A Gens, Selection of Deconpositions for Process
Simulation, AIChE J., 21; 136 (1975).

