
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



THE VLSI DESIGN AUTOMATION ASSISTANT:
FIRST STEP

by

T.J. Kowalski i D.E, Thomas

Doeembjr, 1932

DRC-18-57-32



UNIVERSITY LIBRARIES V



The VLSI Design Automation Assistant:
First Steps

T. J. Kowalski
D. E. Thomas

Electrical Engineering Department
Carnegie-Mellon University

ABSTRACT

This paper describes an approach to VLSI design synthesis using both knowledge-based expert
systems and data and control flow analysis. We are concerned with design synthesis as it proceeds
from an algorithmic description of a VLSI system to a list of technology-independent registers,
operators, data paths, and control signals. This paper discusses the development of the Design
Automation Assistant from its first interviews with expert VLSI designers to its current prototype
state. Four designs of a microcomputer are presented along with the changes in the knowledge base
that created those designs.

INTRODUCTION

Recent advances in integrated circuit
fabrication technology have allowed larger and
more complex designs to form a complete
system1 on a single VLSI chip. These chips
use one to five micron features to achieve
complexities with an equivalence of one
hundred thousand to two hundred fifty
thousand transistors. This level of design
complexity has created a combinatorial
explosion of details, which is a major limitation
in realizing cost-effective, low-volume, special-
purpose VLSI systems. To overcome this
limitation, tools and design methods capable of
exploiting the hierarchical and constraint
properties of design must be built.

We have been developing just such synthesis
tools2 for aiding the designer in developing the
algorithmic description of the hardware and
interactively adding the details required to
produce a finished design. This structured
approach can decrease the time it takes to
design a chip, automatically provide multi-level
documentation for the finished design, and
create reliable and testable designs.

This paper focuses on the synthesis, or
allocation, of the architectural-design space. It
proceeds from an algorithmic description of a
VLSI system to a list of technology-
independent registers, operators, data paths
and control signals. Because of the
combinatorial explosion of details and
implicit-dynamic constraints used to choose an
architecture, this problem does not lend itself
to a recipe-like solution. However,

Knowledge-Based Expert Systems3 (KBES)
provide a framework for just such problems
that can be solved only by experts using large
amounts of domain-specific knowledge to focus
on specific design details and constraints. This
paper discusses the development of the Design
Automation Assistant (DAA) from its
conception to a snap-shot of the current
system. The development is discussed in three
parts: gathering "book knowledge", codifying
the knowledge into a prototype knowledge-base
system, and refining the knowledge base. Four
designs of a MOS Technology Incorporated
MCS6502 microcomputer are presented along
with the changes in the knowledge base that
created those designs.

1. CONCEPTION

Development of most KBES's have been
attempted in several stages. First, "book
knowledge" of the problem is codified as a set
of situation-action rules using interviews with
experts to fill in missing knowledge and refine
already existing knowledge. Then a large
volume of example problems are given to the
KBES and the results are closely examined by
experts to validate the results. Often, errors
are found by the examples and new rules are
added to the system to handle the situations.
This iterative process is necessary because
experts are often unaware of exactly how they
go about designing a chip and inexperienced at
articulating the steps they go through. Also,
the knowledge base is not an exact codification
of the expert's knowledge, but what is
understood by the knowledge engineer.



DAA First Steps

After gathering the current "book knowledge*9

about synthesis of the architectural design
space,4*5'6 we interviewed four designers of
varied experience: one was a novice, two were
moderately experienced and one was an expert.
The interviews, which lasted about an hour
each, started with a discussion of the designer's
background including: years of experience,
logic families used, and designs done. Most of
the time was spent discussing the design
process with some time given to a discussion of
the DAA system. We used an interview
method that allowed the interviewees as much
freedom as possible in generating ideas by
placing a strong emphasis on questions like:

"What do you do next?91

and
"Could you elaborate on ... ?"

The designers discussed the global picture,
partitioning, selection, and allocation tasks.
They began with a high-level overview of the
hardware's function, which listed inputs and
outputs to the outside world, functions the
hardware should provide, general constraints,
and design feasibility with consideration of the
target technology. They generally partitioned
the global picture into smaller blocks with
emphasis on minimizing connections between
blocks, selecting blocks that operated as
parallel or serial units, and selecting groups
that have similar function. Partitions were
chosen for allocation in a decreasing order of
difficulty, or amount of constraint. The
designers reasoned that if the most difficult
part could be designed, the rest of the design
was possible.

Once a partition was selected for allocation, it
was either carried out in parallel, or in serial.
A parallel design made thinking of the control
logic much simpler, while a serial design would
minimize design area. The constraints of the
parallel design were examined for size
violations to determine what parts should be
serialized by adding data paths, registers, and
control logic to the initial parallel design; the
constraints of the serial design were examined
for speed violations to determine what parts
should be reimplemented in parallel. If they
recognized a part of the design that was
similar to a previous design, they used what
they knew had worked in the past. Within
each partition designers allocated clock phases,
operators, registers, data paths, and control

logic. The order was interesting because once
registers and data paths were allocated they
were not changed. The control was changed
because it was the hardest to think about and
it depended on a constant structure for the
data-path elements.

The designers described the iteration process of
a design as a step-by-step refinement to meet
violated constraints. The designers looked for
a technology change to meet a constraint
before making a change to their design. This
could be as simple as finding a new chip in the
TTL data book, or as complicated as a design
rule shrink. Next they would give up
functionality to meet a constraint. One
designer summed it up best by saying,

"An engineer's training teaches him when
constraints can be swept under the rug.99

The relative importance of constraints are
application dependent. Constraints the
designers mentioned were: speed, area, power,
schedule, cost, drive capabilities, and bit width.
Lastly, other design changes consisted of global
improvements that were not recognized until
the design neared completion. This suggests
that the general choice of partitions and the
initial design style selections were close to
optimum.

2. BIRTH

Even though there were many details missing,
we had gathered enough t4book knowledge99 to
put together a prototype version of the DAA
system using the OPS5 KBES writing system.7

The initial knowledge in the system was
codified from the algorithms of the current
CMU/DA allocator4 and the interviews
discussed above. While the prototype system
served as a stimulus for further elicitation
sessions with expert designers, it was far from
perfect. This section discusses the flow of
control in the prototype system.

DAA begins by allocating the base-variable
storage elements to hardware modules and
ports; base-variable storage elements are
constants, architectural and global registers,
and memories with their input, output and
address registers. Then a data-flow
BEGIN/END block is picked and the
synthesis operation assigns data-flow operators
to clock phases using minimum delay
information to develop a parallel design. Next,



DAA First Steps

it assigns temporary registers to all data-flow
operator outputs not bound to base-variable
storage elements. Lastly, it assigns temporary
modules, ports, and links to each data-flow
operator, avoiding multiple assignments of
hardware links and supplying multiplexers
where necessary.

After a data-flow BEGIN/END block has
been synthesized, the hardware modules are a
worst-case allocation of temporary modules
and registers. An analysis operation starts and
removes temporary registers from the data-flow
outputs where the sources of the data-flow
operator are stable. It also combines
temporary modules of the same type and size
within the synthesized block. Finally, any
remaining temporary module or register is
made permanent and the process is repeated
for the next BEGIN/END block.

3. FIRST STEPS

The first prototype DAA system had about 70
rules and could design a MOS Technology
Incorporated MCS6502 microcomputer in about
3 hours of VAX 11/750 CPU time. We asked
many expert designers at INTEL and Bell
Laboratories to critique the design by
explaining what was wrong, why it was wrong,
and how to fix it. After each critique rules
were modified, new rules were added, and the
MCS6502 was re-designed. As of the writing
of this draft, DAA had 130 rules and designed
a much better MCS6502 microcomputer in
about 4 hours of VAX 11/750 CPU time. In
retrospect, much of what we learned was
common-sense knowledge, the same knowledge
human designers learn through apprenticeship.
Though DAA has undergone many
improvements and produced many designs of
the MCS6502 microcomputer, this section
presents four designs that are intended to
represent the knowledge taught through many
interviews.

Each interview started by giving a designer a
drawing of the design with a sheet of clear
plastic over it. As the designer started giving
the critique, pieces of cardboard were placed
over the design, so we could tell what parts of
the design the designer was looking at.
Whenever the designer made a correction to
the design, a new sheet of plastic was put
down. The designers found this elidtation
procedure agreeable with their normal spatial

mode of operation.

TABLE 1.
Designs

Awl
Cop
Minos
Or
Not
Plus

sm
Sir
SrO
Srr
Xor
Ahi
Dree
Treg
Max In
Max Out

MCS6502 - FOUR DESIGNS
1

20
177
64
9
21
540
9
9
8
9
9
0
450
1227
2122
293

2
12
85
9
1
21
121
0
0
0
0
1
45
450
288
2698
614

3
20
25
9
9
21
77
0
0
0
0
9
81
450
315
2791
524

4
20
1
0
9
21
0
0
0
0
0
9
35
450
292
2706
360

The first design used the prototype DAA design
system described in Section 2. Column 1 of
Table 1 summarizes certain characteristics of
this design. Each row shows the bits of the
specified operator or register type found in the
design. The experts* critique included:

• It didn't share modules across blocks.
• One-bit modules within the same block

should not be combined because MUXes are
more expensize than most one-bit modules.

• Registers could increment, decrement and
shift their values.

• Temporary registers to the controller should
be eliminated and one latched register
should be placed in front of the controller.

• The wiring data-flow operators should not
be combined; the wiring data-flow operators
are CONCAT, PAD0, and PADS.

The rules were changed and partitioning
information was added, based on connectivity
of data-paths and similarity of operators
between blocks, to simplify the combining of
modules of the same type between blocks.
Column 2 of Table 1 summarizes the changes
resulting from the critique. The comparisons
(CMP), additions (PLUS), and temporary
registers (TREG) declined although the
multiplexers increased. The bits of AND, OR,
and XOR also decreased. The next set of
critiques included:

• Logical data-flow operators should not be
combined because MUXes are more



DAA First Steps

expensize than most logical modules; logical
data-flow operators are: AND, OR, and
NOT.

• They thought it is less expensive to group
modules of different types together to form
ALU modules.

Rules were added to help the combination of
modules of different sizes and types. As can
be seen in column 3, the ALU number
increased, further decreasing the PLUS and
CMP numbers. The bits of AND, OR, and
XOR returned to their original values. The
critiques now cited:

• The requirement to control the
parallelism/serialism of a design by
specifying the instantiations of a certain
operator type, and the clocks steps for a
complete instruction.

• Also combining all operators together into
an ALU for small designs like the
MCS6502.

Rules were modified to check for violation of
too many modules for each type, thus forcing
the changing of clock phase assignments to
data-flow operators. Also changes were made
to check for the length of the control path
exceeding the maximum allowable length. A
further decrease is noted in the numbers of
operators in column 4. Now the complaints
were:

• Temporary registers should be combined
when not actively holding a value.

• Some registers that serve to multiplex
values into data-flow blocks should be
removed, leaving just the multiplexers into
the blocks.

• Multiplexers that have more than N ports
should be modified into bus structures

These and other critiques are currently being
included in the system.

4. CONCLUSION

We are exploring the allocation problem of
operators, registers, data paths and control
paths from an algorithmic representation of a
VLSI system by using a KBES to test the
knowledge gathered from interviews with
experts to create interesting and usable
designs. Using expert systems has allowed
incremental addition of modular knowledge
and queries about that knowledge during the

design task. The CMU/DA system provides
global constraints and local partitioning
information, which allows DAA to synthesize
designs that are both globally and locally
optimized. This research has added primarily
to knowledge in the digital design synthesis
domain by enumerating the set of rules used
by expert designers. Secondarily, it has added
to knowledge in the expert system domain by
providing another system for researchers to
examine. Understanding the cognitive
processes of expert VLSI designers provides
better synthesis tools, thus, decreasing the cost
of low-volume special-purpose chips and
reducing the design time. This knowledge will
also aid in the teaching of design by making
explicit, knowledge that is now only passed on
through apprenticeship. Our future plans are
to have DAA design a VAX computer and use
experts at Digital Equipment Corporation to
critique the design.

ACKNOWLEDGEMENT

We would like to thank K. Chong, D. Ditzel,
M. Maul, G. Mowery, A. Ross, C. Schneider,
G. Williams, and A. Wilson for donating time
to critique the various designs.

REFERENCES

[1] Mead, Carver and Conway, Lynn,
Introduction to VLSI systems,
Addison-Wesley Publishing Company,
Reading, Massachussetts (1980).

[21 Director, S. W., Parker, A. C,
Siewiorek, D. P., and Thomas, D. E.,
"A design methodology and computer
aids for digital VLSI systems," IEEE
Transactions on Circuits and Systems
cas-28(7)(July, 1981).

[3] Feigenbaum, E. A., Knowledge
Engineering: The Applied Side of
Artificial Intelligence, Computer
Science Department, Stanford
University (1980).

[4] Lou Hafer, Data - Memory Allocation
in the Distributed Logic Design Style,
Masters thesis, Carnegie-Mellon
University (December 21f 1977).

[5] Marwedel, P. and Zimmermann, G.,
MIMOLA Software System User
Manual, 1, Institut Fur Informatik und
Praktische Mathematik, Christian-



DAA First Steps

Albrechts-Universitat Kiel (May,
1979).

[6] Hafer, L. J., Automated data-memory
synthesis: A format Method for the
Specification, Analysis, and Design of
Register-Transfer Level Digital Logic,
PhD thesis, Department of Electrical
Engineering, Carnegie-Mellon
University (June, 1981). Also in
Design Research Center DRC-02-05-81

[71 Forgy, C. L., OPS5 Users Manual.
Department of Computer Science,
Carnegie-Mellon University (July,
1981).


