
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SOME COMMON ISSUES IN DATABASES FOR ENGINEERING DESIGN

, , ^ 1 . b y *>••<'- '

' W.J, Rasdorf, P.E., S.J. Fenves, and M. Locke

DRC-12-02-80

June 1980

Design Research Center
Carnegie-Mellon University
Pittsburgh,. PA 15213

This work was partially supported by NSF Grant MCS-7822328.

a
0

—>

R

0
S
t

. 0 o

-n
Table of Contents

1. HJTRODUCTIOH

1.1 Purpose
1•2 Scope

2. A STRUCTURAL DESIGH EXAMPLE

2.1 Design Example Assumptions and Constraints
2.2 The Physical Frame
2.3 Initial Situation
2.4 Consistency and Integrity
2.5 "Downstream" Activities
2.6 "Upstream" Activities
2.7 Iterations
2.8 Partial Analyses and Redesigns
2.9 Summary of Implications

3. A PROCESS DESIGN EXAMPLE

3.1 Initial Situation
3*2 "Downstream" Activities
3*3 "Upstream" Activities, Iterations and Partial Analyses
3«4 Application of Constraints and Consistency Checks

4. THE DATA MODEL

4*1 The Operations System
4.2 Logical Data Representation
4.3 Data Representation

4.3.1
4.3-2
4.3-3
4.3-4
4.3.5
4-3.6
4.3-7

TOPO
COORD
SHAPE
PROP
LOAD
FORCE
DEFL

APPENDIX

3
4
5
7
8
8
9
9
10

14

14
16
17
17

21

21
22
23
23
24
25
25
25
26
26

30

31

11

List of Figures

Figure 2-1: Topological and Geometric Frame Definition 12
Figure 2-2: DESIGN Relationships: Process and Data 13
Figure 3-1: Functional Flowsheet Representation 20
Figure 4-1: Operations System 28
Figure 4-2: Network Structural Scheme 29

HY immts
M3IVEGJE-MEU0W UMWRSIT*

SWGH P E N W l f A I 5 7 l ,

Ill

List of Tables

Table 2-1: Functional Representation of Example Structure n
Table 3-1s Functional Flowsheet Representation 19
Table 4-1: Data Item Implementation 27

1. IHTEODUCTION

1.1 Purpose

The purpose of this report is to illustrate some of the concepts

and research issues addressed in the research project, "Database Methods

for Engineering Design".

Two specific examples will be used, one dealing with structural

engineering design and one with chemical process design. In both

examples, we will first introduce a design situation at a particular

stage of the design process, describe the data representing the design

at that stage, and define the functional integrity relations among the

data. Subsequently, the design situation will be extended both

"downstream" to subsequent design stages and "upstream" to earlier

design stages, and the integrity relations among the data will be

investigated.

The structural engineering design example will be further extended

in order to discover issues which currently present the greatest

problems in effectively implementing a comprehensive engineering design

database. Many such issues surfaced from within the structural design

example study and others became evident when consideration was given to

incorporating the structural design example database into the entire

building database

1.2 Scope

A structural design example is presented in Chapter 2. In the

example a structural design situation is introduced at a particular

stage in the design process. This is followed by a description of the

data representing the design at that stage, a definition of the

functional integrity relations among the data, and a presentation of the

tasks (application programs) which can operate on the data. The example

is extended to discuss issues both prior and subsequent to the

particular stage of design. Some of the major issues arising in the

creation of an engineering database are then summarized. A chemical

process design example is introduced in Chapter 3.

Chapter 4 introduces the CODASYL network model and describes the

logical view of the entire frame operations system [7]. It presents and

discusses the major areas (data items, integrity procedures, data

manipulation language, data users) that comprise the system and the

relationships between them. It explicitly describes the database and

its contents within the context of the global operations system.

The model of the data to be stored in the database is also

presented in Chapter 4« It includes the schema for the logical network

data model and the data item type records for the physical data

representation.

2. A STRUCTURAL DESIGN EXAMPLE

The following structural design example is introduced to provide a

background to the reader in the concept of design in structural

engineering. A subset of all of the possible constituents of a

building—its frame—has been chosen as a stand-alone unit that is of

sufficient size and complexity to represent the structure of a required

database for design. The frame subset brings to light many integrity

issues both within the subset and in its relationship to an entire

building database. The example describes the elements of the physical

structure, elements of the database, the application programs, the

design process, and integrity issues which arise both in the database

(data) and in the design process (application programs).

2.1 Design Example Assumptions and Constraints

The data structure included herein is one for an engineering

"design" database. It has not been developed as a "comprehensive

building" database. A comprehensive model would include considerations

such as cost, construction schedules, maintenance, fire resistance,

etc.. In addition, it would take into account the data needs of design

disciplines. A comprehensive building database would also include

alternative data structures for different possible structural systems.

The database considered is thus a subset of a structural design database

for steel building frames, but whose scope and interaction with other

disciplines is sufficiently complex to allow for a meaningful study.

To further describe the scope of the database developed herein

another important distinction must be made between a design and a

comprehensive database. That difference lies in the level of detail of

data needed by each. A comprehensive database would include dimensional

information for detailing and fabricating steel members. Such specific

dimensional information is not needed for design — it is derived from

the results of the design process, e.g., the designation of the standard

sections selected.

2«2 The Physical Frame

The data structure of this project was developed for steel frames

in two dimensional space. The steel frame may be braced by either rigid

member connections or steel members used as diagonal bracing. No other

bracing system such as multistory cores or shear walls is considered.

The database was developed for the case in which the steel frame

provides all structural support.

Figure 2-1 is included to familiarize the reader with the

terminology used in the description of the frame. The frame is assumed

to consist of three types of members: beams, columns, and bracing.

Horizontal frame members are beams, vertical members are columns, and

diagonal members are bracing. All members are assumed to be connected

together in one of three ways: simple, rigid, or continuous connections.

Simple connections are those which are completely flexible and are free

to rotate in a manner similar to the action of a hinge. A rigid

connection is one which does not permit relative rotation of the

connected members. A continuous connection is one in which the members

on each side of the connection are the same through the connection.

Some limiting topological assumptions have been made. In the

future these limitations will be removed. Presently they are:

- Floors may not be displaced vertically. This results in all
horizontal members being in a horizontal line at each floor
level;

- Bays may not be multiple stories in height;

- Bracing members may intersect other members only at beam and
column intersections.

Most of these limitations are caused because the current geometric

representation utilizes only story height and bay- width to define

geometry. Although not implemented in this study a more flexible and

comprehensive geometric representation of joint coordinates would

eliminate these shortcomings.

2,3 Initial Situation

At a particular stage in the design of a steel building, one of the

frames comprising the building may be represented as shown in figure

2-1 . The representation of the frame consists of the following data

types:

Mnemonic Description

COOED Coordinates of joints defined by story height and bay
width,

TOPO Topology, i.e. connectivity of members and joints,

LOAD Loads applied to frame (e.g., gravity, wind),

PROP Section properties of members (e.g., area, moment of
inertia),

DEFL Deflections of joints,

FORCE Force resultants in members,

SHAPE Designation of standard structural components used for
members,

CLEAR Constraints on clearances for members,

LIMIT Constraints on deflections for joints.

The details of the data representation within each data type are

not important issues for this presentation, except for some comparisons

to be made in section 3» The "external" (user-level) representation for

portions of the data is sketched in table 2-1 in as STRESS-like language

[3]-

The general objective of this stage of design can be stated as

follows:

D1: Given: COORD, TOPO, LOAD, CLEAR and LIMIT
Obtain: SHAPE (i.e., name of components chosen)
Such that:DEFL consistent with LIMIT

PROP consistent with FORCE
Dimensions of SHAPE consistent with CLEAR

Since the frame is statically indeterminate, a direct solution of

the design problem D1 is not possible, and the solution must be obtained

by iteration. The following "unit operations" (application programs)

may be employed:

D1.1 - INITIALIZE:
Given: COORD, TOPO and LOAD
Obtain: Initial values of PROP by some

approximate procedure.

D1.2 - ANALYSIS:
Given: COORD, TOPO, LOAD and PROP
Obtain: DEFL, FORCE

D1.3 - SIZING:
Given: FORCE
Obtain: New values of PROP, not necessarily

involving specific component selection

D1.4 - PROPORTIONING:
Given: FORCE, DEFL, LIMIT and CLEAR
Obtain: SHAPE

In typical iterative processes, there may be a few initial cycles

of ANALYSIS-SIZING (treating PROP as continuous variables) until the

system is reasonably stabilized, followed by cycles of

ANALYSIS-PROPORTIONING to select actual components. The precedence

relationship between the data types and the operations is shown

graphically in figure 2-2 with rectangles representing the processes and

ellipses representing data types. The relationship can also be

represented by an incidence matrix. A, defined as

+1
-1
0

if data type j is
input to
output from
not used in

operation i.

The matrix for the individual operations, as well as for the the

design operation as a whole' is shown below.

1The rule for combining row entries in A is [6]: if data type output
from an operation is only used as input to other operation(s) in group
being combined, the resulting entry is 0; if it is also an output from
the group, the entry is -1.

Initialize
Analysis
Sizing
Proportioning

c
0
0
R
D
1
1

T
0
P
0

1
1

mmmmm

L
0
A
D

1
1

' T"

p
R
0
P

-1
1
-1
-1

D
E
F
L

-1

1

F
0
R
C
E

-1
1
1

S
H
A
P
E

-1
-1 "

C
L
E
A
R

1
"T

L
I
H
I
T

1

2.4 Consistency and Integrity

If the entire design operation D1 were executed as a single step,

no consistency issues would arise: the output, SHAPE, is consistent

with input data types and the constraints. However, when the individual

"unit operations" are performed in an iterative manner, each application

of a unit operation, while enforcing consistency between the output data

and the direct inputs, automatically invalidates consistency between the

outputs and other data types. In the specific design example, the

following situations occur:

1. after SIZING, consistency between PROP required and FORCE
will be valid, however, consistency between PROP required and
DEFL and between PROP required and PROP assumed is
invalidated (i.e., the new PROPerties may not produce the
same response);

2. after PROPORTIONING, consistency between SHAPE and all other
data types is invalidated: i.e., the new SHAPE selected may
not produce the same structural response, and may violate
clearances; and

3. consistency between PROP provided by the SHAPES selected and
PROP assumed is invalidated.

A modified relationship between the data and operations is shown in

Figure 2-2. This figure explicitly distinguishes between:

1. assumed PROPERTIES which serve as input to ANALYSIS;

2. required PROPERTIES output by sizing; these may be directly
input to ANALYSIS or passed on to PROPORTIONING; and

3. provided PROPERTIES of the SHAPES selected by PROPORTIONING.

In order to determine whether consistency has actually been

8

violated, it is necessary to compare inputs and outputs and determine

the magnitude of the changes induced; when these are judged sufficiently

"small", the design process has converged.

2.5 "Downstream" Activities

After the design is judged satisfactory at the level stipulated in

Section 2.4, additional activities take place.

In the stage usually referred to as DETAILING, the representation

of the structural elements is extended by additional attributes,

additional code and other consistency checks are applied, and additional

objects (e.g., beam seats, connections) are defined and checked against

their respective constraints.

Further downstream, during FABRICATION and ERECTION, the

representation acquires other attributes (e.g., stage of approval,

fabrication completion date, erection date, etc.).

Much further downstream, say, 20 years after completion, the

representation may be used again when the structure is redesigned or

retrofitted for a new usage.

2.6 "Upstream" Activities

The representation discussed in Section 2.3 arises fairly late in

the overall DESIGN process of a building, and the data types identified

as "inputs" are in fact outputs of preceding design stages. These

preceding stages may be classified into three categories:

1. Spatial layout of the building based on its intended
function. This step represents PRELIMINARY ARCHITECTURAL
DESIGN which may be idealized for the purposes of the present
discussion as the generation of COORD;

2. Selection of the structural scheme (e.g. steel vs. concrete;
for steel, selection of "moment-resisting frame" vs. other
possible framing types). This step represents PRELIMINARY
STRUCTURAL DESIGN idealized as a first approximation of the
generation of TOPO; and

3. Selection of initial structural properties. This step was

included in Section 2.3 as INITIALIZATION, but may in fact be
a major separate process, possibly involving the separate
approximate models for gravity and wind loads, and analyses
with portions of the data assigned initial normative values.
The net effect of this step is the generation of LOADs and
preliminary values of PROPerties to initialize the DESIGN
stage discussed in Section 2.3*

2«7 Iterations

The overall design process may include "global" iterations in

addition to the "local" iteration described earlier. To cite a

"worst-case" example, the dimensions (SHAPE) selected for the structural

members may interfere so severely with headroom and clearance (CLEAR)

requirements that the entire layout of the building must be changed,

invalidating all results, since they are directly or indirectly

dependent on COORD.

2.8 Partial Analyses and Redesigns

In the preceding discussion, it was implicitly assumed that any

change or cycle of iteration would invoke a complete re-analysis or

redesign of the system, i.e. the frame, in the present example. In

actual practice, a designer may wish to "contain" the change to the

portion of the system directly affected. For example, to investigate

the effect of changing the depth of one beam in the frame, it may not be

necessary or desirable to reanalyze the entire frame; it may be more

appropriate to isolate a small portion for reanalysis (by assigning

temporary, normative values on its boundary) or to use an alternate

model.

At a broader scale, similar situations arise. The mere fact that

one selects a single 2-D frame out of the complete 3-D building for

analysis and proportioning is an example of partial analysis. Once a

"typical" frame is designed and accepted, the other frames may be made

identical or reanalyzed with local changes. The results of such partial

designs may be accepted as the complete design, or may become inputs to

a subsequent full 3-D analysis and redesign.

10

2.9 Summary of Implications

Although the details of the above example may be meaningful only to

a structural engineer, it is hoped that the example will serve to

illustrate many of the implications on the characteristics of a database

for engineering design. These characteristics are briefly summarized

below.

1. Information exists at various levels, corresponding roughly
to the sequence of design stages, the information at each
level representing a particular level of abstract description
of the system.

2. Information grows as design progresses, i.e., as successive
levels of abstraction descriptions are generated. The growth
consists of the addition of new attributes to previously
defined abstract entities; the generation of new entities
"owned" by the higher-level ones; and the generation of new
functional relationships among entities and their attributes.

3. Functional relations exist between information at different
levels, as well as among data types within a given level.

4. The functional relations are either procedurally embedded
into "unit operations" or can be represented as consistency
requirements among data types. The question of whether and
when to apply automatic procedures to insure consistency is
highly problematical. See reference [5].

5. A number of mechanisms can be introduced to encode the status
of the information in the database [2], e.g.; associate with
the data various indicators or flags to distinguish:

- "present" vs. "absent" data

- "stage" or "permanence level" of data

- "actual" or "normative" data (the latter usually an
assumption or approximation, inserted to initiate an
iteration or to provide a boundary value for a
partial analysis).

- "current" vs. "previous" for iterative data

- "valid" vs. "void" with respect to the applicable
constraints

- etc.

11

Table 2-1: Functional Representation of Example Structure
STRUCTURE 'EXAMPLE1 'INITIAL TRIAL'
TYPE PLANE FRAME
JOINT COORDINATES

1 X 0.0 Y 0.0 Z 0-0 SUPPORT
5 X 0.0 Y 120.0 Z 0.0
...

MEMBER INCIDENCES
1 FROM 1 TO 5
2 FROM 5 TO 10
...

MEMBER PROPERTIES $ THESE ARE INITIAL VALUES
1 THROUGH 7 PRISMATIC AX 100. IZ 2000.
...

LOADING 1 'WIND'
JOINT LOADS

2 FORCE X 10.0
5 FORCE X 12.0
...

LOADING 2 'GRAVITY1

MEMBER LOADS UNIFORM FORCE Y
15 ¥ -2.5
30 ¥ -3.0
...

LIST FORCES ALL, DEFLECTIONS X 2,5,...
SOLVE

12

Figure 2-1: Topological and Geometric Frame Definition

BEAM
(horizontal members)

COLUMN
(vertical members)

BRACING
(diagonal members)

MEMBER
(elements between points)

JOINT
(intersections)

+Y

DIRECTION

13

Figure 2-2: DESIGN Relationships: Process - Data

14

3- A PROCESS DESIGN EXAMPLE

3.1 Initial Situation

At a particular stage in the design of a process plant, one of the

subsystems of the plant may be represented by the flowsheet shown in

Figure 3-1 [Westerberg et.al, undated]. The representation of the

flowsheet consists of the following data types (called variable packets

in [ASCEND-2 An Advanced System for Chemical Engineering Design, 1980]):

Mnemonic Description

Si Stream variables (flow rate, temperature, pressure)

PMPi Pump variables (pressure drop, efficiency, etc.)

PlPi Pipe variables (diameter, length, Reynolds No., etc.)

VISCi Viscosity variable

EVi Evaporator variables (no. of tubes, tube radius, etc.)

SPFRi Splitter variable (split fraction)

The "external" (user-level) representation of the flowsheet is

shown in Table 3-1. The VP (Variable Packet) and PT (pointer)

statements associate the stream variables to physical property variable

packets AMMONia and WATER. The FS (flowsheet) statements describe what

types of units (eg. pump, mixer, evaporator) are to be modeled.

Finally, the V (variable) statements define the topology of the

flowsheet, i.e., specify the inlet and outlet streams and internal

variable packets of the preceding FS statement.

The objective of this step is to solve the steady state equations

describing the flowsheet. To do so either a simulation or a design

calculation can be performed.

In a simulation or rating calculation all system inputs and design

parameters for the units are specified. Variables such as pipe length

and diameter are specified. Outlet streams and internal streams of the

flowsheet are calculated.

15

In terms of the flowsheet of Figure 3«1f a simulation calculation

is related to the operation:
D.2.1 - ANALYSIS:

Given: Flowsheet, Equipment described,
input streams S1 and S5

Obtain: Internal and Outlet stream variable values
Such that: Steady state mass and energy balance

equations are satisfied.

In a design calculation, outputs are specified and inputs or unit

parameters are calculated based on these output specifications. It

differs from a simulation calculation in that different variables are

fixed and calculated.

The design objective for Figure 3-1 may be:
D.2.2 - DESIGN:

Given: Flow sheet, Inlet stream S1, Outlet stream S8
Obtain: Description of equipment (pumps, mixer, etc.)

input streams
Such that: Outlet stream S8 has requisite properties and

material and energy balance equations are
satisfied.

In the ASCEND-2 program, the different calculations are specified

by designating the appropriate variables as being either "fixed" or

"calculated".

Until the overall design objective is accomplished, repeated

simulations may be performed in an iterative manner. These simulations

involve the same issues of consistency and integrity as discussed in

Section 2.4« Specifically, the change of any equipment or stream

parameters between successive simulations invalidates consistency with

respect to steady-state equilibrium established by the previous

iteration, and it is necessary to compare the results of the two

simulations to determine the magnitude of the changes induced.

In addition to consistency of variable values, consistency in

calculation type must also be maintained. Variables which are "fixed"

in a simulation may be "calculated" in a design calculation. This

16

possibility necessitates checking consistency of "fixed" and

"calculated" flags.

3.2 "Downstream" Activities

After the design is judged satisfactory at the level of

steady-state simulation, additional activities take place.

Still in the stage of process design, a dynamic simulation may be

performed, so that the performance of the system may be evaluated in

greater detail under start-up, shut-down, shock-loading and other

dynamic conditions.

In the stage called PID (Piping and Instrumentation Design), the

representation of the subsystem is extended by additional attributes.

The entity "Pump", for example, acquires attributes such as power

consumption, cost, control system description, etc.. Again, as in the

structural example, information grows by additional attributes (power,

cost) as well as by additional entities which may be complex subsystems

themselves (control system).

Further downstream, the representation acquires still additional

attributes (e.g., space, weight, location, manufacturer's

identification, etc. of the pump), until finally delivery dates,

installation, pilot operation, etc. data are associated with the

entities.

Much further downstream, say 10 years after initial operation, the

representation may be used again when the plant is redesigned or

modified for, say, energy conservation, or even for an entirely new

process.

17

3«3 "Upstream" Activities, Iterations and Partial Analyses

The representation of the subsystem discussed in Section 2.3 arise3

fairly late in the overall design of a chemical process plant. The

design stages preceding the stage discussed may be classified as

follows:

1. overall synthesis of the plant;

2. synthesis of the subsystem; and

3* initialization of the subsystem for simulation purposes.

The ASCEND-2 program permits a number of ways to accomplish the

last step above. For example, one unit, such as the evaporator, may be

isolated and a partial simulation performed by assigning temporary,

normative initial values to the stream variables S4 and S6. Once this

simulation is deemed satisfactory, its results may in turn become the

initial values for the simulation of the entire subsystem.

In a similar fashion, when the entire plant is being simulated for

system integration, the "inputs" S1 and S5 and "outputs" S8 and S11 of

the subsystem will themselves become "internal variables" of the overall

plant model. Conversely, the selection of the subsystem for separate

simulation is, in itself, an example of partial synthesis.

3»4 Application of Constraints and Consistency Checks

It should be clear that the process design example possesses

exactly the same characteristics as the structural example discussed in

Section 2.7, and poses the same implications for a design database.

It appears clear that the mechanisms sketched in Section 2.7 can be

quite directly applied to the example of the process plant. As an

example, the variables needed for the simulation proper could be

augmented by:

18

- additional attributes, e.g. "cost",

- constraints, as, for example, upper and lower limits on
pressures, and,

- status indicators to: designate design state; distinguish
between normative data inserted for initialization vs. those
derived from the simulation; distinguish whether "valid" or
"void" with respect to constraints, etc..

19

Table 3-1: Functional Flowsheet Representation

C*
VP
PT
PT
PT
PT
PT
PT
PT
PT
PT
C*
VP
PT
PT
C*
FS
V
G
E
FS
V
G
E
FS
V
G
E

DF
E
G
FS
V
FS
V
G
E
FS
V
G
E
FS
V
G
E
C*
C*
C*
C*
C*
EN

STREAMS
STRT1
SI
S2
S3
S4
S6
S7
S8
S9
S10

OF TYPE
AMMON
STRT1
STRT1
STRT1
STRT1
STRT1
STRT1
STRT1
STRT1
STRT1

1 ARE AMMONIA

STREAMS OF TYPE 2 ARE WATER
STRT2
S5
Sll

WATER
STRT2
STRT2

START OF ACTUAL FLOWSHEET
MIX1
SI
MIXR
MIX
PUMP1
S2
PUMP
PMP1
PIPE2
S3
PIPE
PYP2

MIXER
S10

PUMP
S3

PIPE
S4
vise
VIS2

S2

PMP1

PIP2 VISC2

C* USE DEFAULT STATEMENT TO FILL IN EQN PACKS OF THIS UNIT
DFLT1
EVP1
EVP
EVAP1
S4
PIPE3
S6
PIPE
PYP3
SPLIT1
S2
SPLITR
SPMBAL
PIPE1
S9
PIPE
PYP1

EVAP

S6
PIPE
S7
vise
VIS3
SPLIT
S8

PIPE
S10
vise
VIS1

DFLT1
S5

PIP3

S9

PIP1

Sll

VISC3

SPFR

VISC1

EV1

NOTE THAT THE ORDER THAT THE UNITS ARE INPUT
IS ARBITRARY IF THE INITIALIZATION ORDER IS
LATER SPECIFIED. IF THE INITIALIZATION ORDER
IS NOT SPECIFIED, THEN THE UNITS ARE INITIALIZED
IN THE ORDER THAT THEY ARE READ IN.

20

Figure 3.1: Functional Flowsheet Representation

co

o
iH
CO

w
M

1
H
M

CO

CO

M

CO

CO

CO

i

CM

W
PL,

CO
CO

y
CM
CO

CO

21

4. THE DATA MODEL

As an illustrative vehicle, a CODASYL network database model was

developed for the structural design example of Chapter 2. The logical

network structure was developed and the record types defining the data

structure were coded in Pascal. This chapter details the data model.

The model is based on the physical structure of the frame discussed in

Chapter 2 and the conceptual structure of the operations system

presented below.

4*1 The Operations System

Figure 2-2 illustrates how the data items, design processes, and

checking procedures are conceptually related in the "design" system.

Figure 4-1 illustrates an alternative representation of figure 2-2

showing how they are related in the "operations" system, a system in

which the information needs of the user are anticipated at the time the

system is designed and application programs are written to handle those

needs in an efficient manner [7]. The figure is divided into three

major conceptual areas consisting of the Database, the Data Manipulation

Language, and the Data Users.

The database consists of a collection of interrelated data items.

These data items are stored together so that they are independent of the

data users. They have a controlled degree of redundancy and a common

approach is used in adding new data and in modifying and retrieving

existing data [7]. In addition the database contains some of the

integrity procedures used to check the data.

The purpose of integrity procedures is to insure that incorrect

2
Redundancy can never be totally eliminated. The system is therefore

designed in such a way that it is controlled and minimized.

22

data items are not stored in the database. Some integrity procedures

are in themselves data item constraints that logically fit in the

database. Other integrity procedures, however, such as one that checks

data items against a design code, are more general and may apply to a

class of many buildings. These could be removed from the database and

introduced as a group of procedures represented as a separate

application program. The division between the two kinds of integrity

procedures could be as simple as dividing between general building

procedures and specific building procedures. This issue is one which

requires further study.

INPUT, MODIFY, and OUTPUT are the three primary categories of

operations on the data items of the database. Examples of commands

within these categories are shown in figure 4-1. These and similar

commands comprise the data manipulation language. Externally the ML is

a list of allowable co"""»nds that initiate predefined tasks or

operations on the database and, internally the DML is a collection of

procedures which actually perform the tasks or operations. Thus the DML

is a mechanism of communication between the database and the data users.

The primary database users are individuals and application programs

who wish to enter, modify, and extract data. They do so by utilizing

the data manipulation language discussed in the previous section. The

DML should be designed to support both types of uses.

4*2 Logical Data Representation

Figure 4-2 represents the network data model for the data items

shown in figure 2-2. The additional data items in figure 4-2 not

previously present are discussed in section 4«3« The lines between the

data items represent links or relations between them. The direction of

the link indicates a relationship of one to many from tail to head. For

example, each frame contains many members but each member is in only one

frame. The schematic result is a directed graph.

23

In the network model many to many relationships are not permitted.

To represent a many to many relationship between two data item types a

"dummy" type is introduced between them. For every occurrence of a

relationship between the original data item types there exists a data

item instance in the dummy record linking them together. In figure 4-2

the data item relationships connected by dummy record types are bays to

members and members to joints.

The links of figure 4-2 were chosen to establish accesses between

data item types that were deemed most useful in structural design. To

establish additional relations would incur an additional cost for the

necessary pointers needed to physically establish the links. Additional

relations need not be defined, however, because in most cases the same

result can be obtained by traversing multiple existing links. If a need

arose for such accesses between indirectly linked data item types,

procedures could be written to perform the accesses within the framework

of the existing network model.

4*3 Data Representation

The following sections discuss aspects of the structure of the data

base. Included are all the data items of the frame shown in figures 2-2

and 4-2. The physical representation manifests itself in the form of

Pascal coding. Records and other type declarations as well as important

variables were coded. These are presented in the Appendix. The

discussions which follow point out the meaning of the data items, their

attributes, and the relationships between them. Table 4-1 summarizes

the form of physical implementation of each of the data types.

4.3.1 TOPO

Topology describes the connectivity of the physical components of a

structure, i.e. to which other elements a given element is connected

[i]. For the frame the topology provides the primary structure of the

data base to which all of the other information is attached (COORD,

24

SHAPE, PROP, LOAD, FORCE, DEFL).

The topology can be viewed at three levels. The schematic

connectivity is illustrated in figure 2-1 in which all of the frame

components are shown. The connectivity of the network model or

conceptual schema is shown in figure 4-2. Finally, the connectivity in

the implementation is represented by the coded records in the Appendix.

The topology of frame, story, bay, member, and joint entities and

all of their connecting relations forms the structural base to which all

other data entities can be attached. The implementation establishes

this base by its records and the pointers which link them together.

Thus TOPO is represented by records. Each of the components of the

physical structure (frame, story, bay, member, joint) is a record.

External access to the topology, and consequently to most of the data

structure, is provided by a system pointer to the frame (headframe).

Internal access to items within the data structure is gained from the

frame by following the pointers to succeeding records until the desired

one is reached.

4*3.2 COORD

Geometry describes the physical dimensions and location in space of

each component of a structure [i]. In this database geometry is

represented in terms of COORD.

To eliminate joint coordinate redundancy it was determined that one

need only store the height of each story and the width of each bay

(based on assumptions stated previously). A procedure could then be

developed to provide all necessary geometric information based on these

values. Thus COORD is represented by a bay width field in the bay

record and a story height field in the story record. Geometric

information is accessed in the data structure through the topology.

25

4.3-3 SHAPE

The end result of the design process is the selection of a shape

for each member in the frame. The physical manifestation of this result

in the database is obtained by setting a pointer from each member to a

SHAPE record. There is a single shape record for each member. The

shape record is an intermediary which subsequently points into a table

(containing all possible shapes) to a specific shape. In this manner

each table of shapes is independent of the database. The database is

structured so that the shape records and the entries in the shape tables

are accessed externally of the frame by means of system pointers to them

(headwideflange, headchannel, headangle, headtee, headshape). Member

records, however (part of the topology), must be accessed through the

frame record.

4.3.4 PROP

There is an important distinction between PROP and SHAPE. While

the tables of SHAPE used by the Proportioning application program

contain information about the properties for each fabricated shape

(torsional constant, dimensions, etc.) the PROP records used by Analyze

and Proportioning have fields for only the design performance properties

of each member (area, section modulus, etc.). PROP is a record related

to and accessed from the member records of the frame.

4.3.5 LOAD

It is assumed that all wind and gravity loads applied to the frame

may be introduced in the data structure as loads on members. Each

member may have multiple uniform and concentrated loads. In addition

loads may be associated with members for multiple loading conditions.

LOAD is represented as records. There exist linked lists of many

loads and load conditions for each member. Each load is an intermediary

pointing to a single specific (uniform, concentrated, or triangular as

determined by loadtype) load. Each load record is accessed from the

26

member records of the frame through a loadcondition record. That is,

from member there is a pointer to a loadcondition record that in turn

points to each of live, dead, and wind load records. Within the load

records there are pointers to the next live, dead, and wind loads in the

list so that the user has direct access to all loads or to all loads of

a given kind, for every loading condition, for every member.

4.3.6 FORCE

Force resultants are the forces stored in the database. For

members in a two dimensional frame there is an axial force, a moment at

each end, and a shear at each end. These are the stored applied forces.

FORCE is represented as records. There are a minimum of three

force records for every forcecondition record, each of which corresponds

to live, dead, and wind forces. Each force condition corresponds to the

loading condition which induced the given forces. FORCE is accessed

from the member records through a forcecondition record.

4.3.7 DEFL

The data structure stores joint deflections. DEFL is a numerical

value which is stored in a field of the joint records. Vertical (y) and

horizontal (x) deflections and rotations relative to the undeflected

frame are stored.

27

Table 4-1: Data Item Implementation

DATA IMPLEMENTATION

TOPO Pointer fields connecting frame,
story, bay, member, and joint
records accessed by pointer from
system.

COORD Field in bay record.
Field in story record.

SHAPE Record accessed by pointer from
member and system.

PROP Record accessed by pointer from
member.

LOAD Record accessed by pointer from
member (through loadcondition).

FORCE Record accessed by pointer from
member (through forcecondition).

DEFL Fields in joint and member

records.

CLEAR Integrity procedure.

LIMIT Integrity procedure.

DATA BASE
DATA

MANIPULATION
LANGUAGE

DATA
USERS

COORD

TOPO

LOAD

SHAPE

DATA

PROP

FORCE

DEFL

INTEGRITY PROCEDURES

CLEAR

LIMIT

MAP IN
PUT

DELETE
MODIFY
DROP

WRITE

MAP OUT

GET
READ
COPY
HOLD

RELEASE

APPLICATION PROGRAMS

INITIALIZE
ANALYZE

PROPORTIONING
SIZING

USER

INPUT

OUTPUT

O

rt
H-
O
0
CO

cn
rt

00

l

I PROP provided j
CONCENTRATED
UNIFORM
TRIANGULAR

Loadtype

headwideflange
headchannel
headangle
headtee

WF
C
A
T

or
or
or

sectiontype

M-J DUMMY

OQ

I

525
rt>

i
en
rt

n
rt

CO

o

ro

30

REFERENCES

[i] Baer, A., Eastman, C, Henrion, M.
Geometric Modelling: A Survey.
Proceedings CAD79 IPC Buisneas Press 11(5):253-269, September,

1979.
[2] Eastman, C. M., and Fenves, S. J.

Design Representation and Consistency Maintenance Needs*
Research Report 75, Institute of Physical Planning,

Carnegie-Mellon University, May, 1978.
[3] Fenves, S.J., Logcher, R.D., Mauch, S.P. and Reinschmidt, K.F.

STRESS - .A User's Manual.
M.I.T. Press, Cambridge, MA, 1964.

[4] Keyvanfar, Faramarz.
Design of Multi-Story Combined Wall-Frame Buildings.
Master's thesis, Carnegie-Mellon University, Pittsburgh,

Pennsylvania, August, 1980.
[5] Lafue, G. M. E.

Integrating Language and Database for CAD Applications.
Computer Aided Design 11(3):127-130, May, 1979-

[6] Langefors, B.
Theoretical Analysis of Information Systems.
Studentlitteratur, Sweden, 1970.

[7] Martin, James.
Principles gf Data-Base Management.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.

31

APPENDIX

This appendix contains the coded physical representation of the

data item types of the database. It represents the frame entities,

their attributes, and their relationships to each other. In particular

it includes:

- standard and pointer type declarations,

- record type declarations enumerating the fields of the data
items,

- variable declarations of variables important to the data
structure, and

- procedures for finding information in the data base.

TYPE

SECTZONTYPE «
LOADTYPE i
MEMBERTYPE i
CONNECTZONTYPE «
NAME i

{pointer typas)

FRAMEPTR •
STORYPIR •
BAYPTR i
MEMBERPTR i
JOZNTPTR <

LOADCONDITIONPTR «
LOAOPTR *
CONCENTRATEDPTR i
UNZFORMPTR «
TRZANGULARPTR *

FORCECONDZTZONPTR •
FORCEPTR i

SHAPEPTR i
WIDEFLANGEPTR i
CHANNELPTR a
ANGLEPTR «
TEEPTR »

PR0PA3SUMEDPTR «
PROPREQUZREDPTR •
PROPPROVZOEDPTR «

i (WF, C, A, T)?
« CCO, UN, TR)f
• (beam, column, bracing)?
i dimple* rigid, continuous)?
• ARRAY C1..10) OF char?

* •frame*

' -bay?

• -joint»

• 'loadconditlon?
» 'load?
• 'concentrated?
i •uniform?
i 'triangular?

• •forceeondition?
> "forcet

i *shapa|
i 'wldafianga?
i *ehannel?
i -anglai
i "tea?

i •propassumedj
i *propreguired?
' *propprovided?

FRAME • RECORD

frameid I INTEGER?

{pointer variables)

nextframe
ttorys
bays
members
joints
END)

FRAMEPTRf
STORYPTRl
BAYPTRf
MEMBERPTRf
JOINTPTRf

{nextframe i ntxt In framt 1 inletd list
storys t linked list of storyt
bays i linked list of bays
ntnbert I llnktd list of members
joints i linked list of joints)

STORY • RECORD

Itoryid | INTEGER)
storyheight i REAM

{pointer variables)

nextstory t STORYPTRf
ttorybays i BAYPTRf
END)

istoryheight t centerline to centerline grid height
nextttory i next story in linked list of storys
storybays t linked list of bays in this story)

BAY • RECORD

bayid
bayvidth

I INTEGER;
I REAL>

{pointer variables)

nextbay t BAYPTRf
bayitory t STORYPTRi
nextbaythistory i BAYPTRJ
baymemben I MEMBERPTRf
END;

<baywidtn » centerline to eenterllne grid width
nextbay I next bay in linked lilt of bays
baystory t story this bay is in
nextbaythistory t next bay in linked list of bayi for given story
baymembers t linked list of members this bay)

MEMBER • RECORD

mtmberld
m«mb«rdefleetlon
dtfl«etlonloeatlon

ntnbcrlcind
function
tndjointlconneetion
tndjoint2eonneetion

<polnttr variables)

ntxtntmber i
membtrbayl i
»t»b«rbay2 i
ncxtmtmbtrbayl i
nextraembtrbay2 i
•ndjolntl • I
tndjolnt2 i
ncxtmcmbercndjoint1 i
n«xtmtmb«r«ndjoint2 i
n«xtm«nberthifKlnd i
aiiumtdpropertiet i
r«quirtdprop«rtie» i
provldedpropertlet i
applltdloads i
applltdtorees i
•tctionchosen i
END)

1 INTEGER}
1 REALf
1 REALf

1 SECTIONTYPE;
1 MEMBERTYPEf
1 CONNECTIONTYPEl
1 CONNECTIONTYPEl

1 MEMBERPTR}
1 BAYPTR»
1 BAYPTRt
1 MEMBERPTR)
1 MEMBERPTR)
1 JOINTPTRl
1 JOlNTPTRf
1 MEMBERPTRi
1 MEMBERPTRf
1 MEMBERPTRf
1 PROPASSUMEDPTRf
1 PROPREQUXREDPTRf
1 PROPpROVIDEDPTRf
1 LQADCQNDXTIONPTRf
I FORCECONDITIONPTR)
1 SHAPEPTRf

{mewbtrdefltction

dtflectionlocation
mtmbtriclnd
function
endjolnt*conneetlon
nextmtmb«r
membtrbayt
nembtrbay2
ntxtmtmberbayi
ntxtmtnb«rbay2
tndjolntl
tndjolnt2
nextmembertndjoint1
nextmemberlndjolnt2
ntxtmemberthisfcind
assumedproptrtiei
requlrtdproperties
provldedpropertles
applltdloads
appliedforces
sectionchosen

t maximum dtflectlon of member measured from undefleeted
positive in upward and rlghtward directions
distance of member deflection from jointl in feet
WF, C, Af T
beam, column, bracing
simple, rigid, continuous
next member in linked list of all members
one bay this member is in (bayl)
other bay this member is in (bay2)
next member (any one) in bayi
next member (any one) in bay2
beams t leftt columns I lowers bracing i left;
beams t right* columns I upper; bracing : right*
next (any one) member at endjointi
next (any one) member at endjoint2
linked list of members made of given section
assumed member properties
required member properties
provided member properties
the externally applied loads on this member
applied forces on this member due to applied loads
section this member is chosen to be)

JOINT • RECORD

jointid | INTEGER?
jolntdefltctlon t ARRAY C1..2] of REALf

{pointer vari«blts>

nextjoint t JOINTPTRj
jointnembers i MEMBERPTRJ
END}

<jointdeflection t amount of deflection of the joint
xdefieetlon i horizontal joint deflection (positive rightward)
ydefiectlon t vertical joint deflection (positive upward)
nextjolnt I next joint in llnlced list of joints
jolntmembcrs I linked list of member! attached to this joint)

PROPASSUMED • RECORD

area i
momentofInertlax i
sectionmodulusx i
momentofinertiay I
sectionfodulusy i
torslonalconstant i
plastlemodulusx i
plattlcmodulusy i

1 REAL!
1 REAL!
1 REAL!
1 REAL!
1 REAL)
1 PEAL!
I REAM
1 REALf

(this rteord contains th« REQUIRED values for lection properties
for the member obtained from the DESIGN process* i.e. from either
the application programs INITIALIZE or ANALYZE.
This record contains only DESIGN values—no geometry.
Geometric properties come from the SHAPE records for
specific chosen shapes that are PROVIDED for the given member.)

PROPREQUIRED • RECORD

(similar to propertyassumed)

END)

PROPPROVIDED • RECORD

(similar to propertyassumed)

ENDf

LOADCONDITIQN • RECORD

eonditionnumbtr i REAM

{pointer variables)

nextloadcondltion j LOADCONDITIONPTRJ
applledllveloads t LOADPTRi
applieddeadloads i LOADPTRf
applledwlndloads t LOADPTRj

{eonditionnumber i a number Indicating which load condition
nextloadcondition i the next load condition
applied»loadt i the externally applied • loads on this member)

LOAD • RECORD

{pointer variables)

nextloadthlskind t LOADPTRf

{variant)

kind I LOADTYPEl
CASE loadtype OF

CO I (cone I CONCENTRATEDPTR);
UN t (unit I UNXFORMPTR)!
TR I (trla I TRIAN6ULARPTR))

END |

<next*load t next • load in linked list of loads
kind i loadtype on the member
CASE t record containing specific details about this loadtype)

CONCENTRATED « RECORD

magnitude i REAL*
direction s REAL?
distfromjolntl s REAL;
END)

(magnitude
direction

t amount of applied load in kips
i measured from downward relative to frame
CCW i positive) cw t negative)

distfromjointl t distance of load application from jointl in feet)

UNIFORM a RECORD

magnitude
direction

S REAL)
I REAL)

startfromjointl i REAL)
endfromjolntl I REAL)
END)

(magnitude
direction

startfromjointl

i amount of applied load in Kips per foot
t measured from downward relative to frame
CCW i positive) CW i negative)

s starting distance of applied load from jointl in feet
endfromjolntl t ending distance of applied load from jointl in feet)

TRIANGULAR « RECORD

maxmagnltude t REAL)
direction t REAL)
maxfromjointl t REAL)
mlnfromjointl t REAL)
END)

(maxmagnltude
direction

t maximum amount of applied load in kips per foot
t measured from downward relative to frame
CCW t positive) cw i negative)

maxfromjointl t distance of maximum load from jointl in feet
mlnfromjointl t distance of minimum load from jointl in feet)

FORCECONDITION • RECORD

eondltionnumber t REAL)

<pointer variables)

nextforceconditlon t FORCECONDITIONPTRI
livtloadforce t FORCEpTRy
deadloadforce t FORCEpTRy
windloadforct i FORCEpTRy

(eonditlonnumber t a numbtr Indicating which loading condition
nextforeecondition t tht ntxt foree condition
»loadforee t the Induced *ioadforees in the member)

FORCE • RECORD

axlalforee
momentjolntl
shearjolntl
momentjoint2
•hearjoint2
ENDy

REAL;
REALy
REALy
REALy
REALy

{axlalforee
momentjoint 1

shearjolntl

momentjolnt2

•hearjoint2

Note

i compression is negative* tension is positive, in kips
i amount of applied moment at endjolntl in foot-klps
positive in counterclockwise direction

i amount of applied shear in kips
positive in upward and rightward directions

i amount of applied moment at endjolnt2 in foot-kips
positive in counterclockwise direction

I amount of applied Shear in kips
positive in upward and rightward direstlons

i this record contains the values of the APPLIED
forces on the member as determined by the
ANALYZE application program)

SHAPE a RECORD

<pelnt«r variables)

firstmemberthiskind | MEMBERPTRj

{variant)
kind
CASE

I SECTlONTYPEl
sectlontype OF

WF | (wldt I HIDEPLANGEPTR)!
I CHANNELPTR);
I ANGLEPTR)!

C
A
T

END |

(Chan
(anal
Cteee I TEEPTR)!

<£irstm«mberthis)clnd t linked list of members comprising this section
kind I sectiontype this member is chosen to be
CASE t record containing specific details about seetlontype)

WIDEFLANGE • RECORD

designation i NAMEf

{detailing information)

width
depth
thickness

REAL»
REAL I
REAL)

{designing information)

area
momentofinertlax
seetlonmodulusx
momentofinertlay
seetionfodulusy
torsionaleonstant
plasticmodulusx

plastlemodulusy

{pointer variables)

nextwideflange
nextlargerS
nextlargerA
nextlargerw
nextsmallers
nextsmallerA
nextsmallerw

REALf
REAL!
REALf
REAL}
REALf
REALf
REALf
REALf

WXDEFLANGEPTRf
WIDEFLANGEPTRf
WIDEFLANGEPTRf
WIDEPLANGEPRTf
WIDEFLANGEPTRf
WIDEPLANGEPTRf
WIDEFLANGEPTRf

<nextwldeflange
nextlargerS
nextlargerA
nextlargerw
nextsmailerS
nextsmallerA
nextsmallerw

next in linked list of wideflanges
wideflange with next higher seetlon modulus
wideflange with next higher area
wldeflange with next higher weight
wideflange with next lower seetion modulus
wldeflange with next lower area
wldeflange with next lower weight)

CHANNEL • RECORD

(similar to wldeflangt)

END}

ANGLE • RECORD

{•lmllar to wldtflangt)

END)

TEE * RECORD

(similar to wldtflange)

END)

VAR

headframe
headthape
headwldeflange
headchannel
headangie
headtee

WIDEFLANGEPTR>
SHAPEPTRy
HIDEFLANGEPTR?
CHANNELPTR)
ANGLEPTRf
TEEPTRf

<head# i pointer to first rteord In linked litt of • records)

(Note i these variables are essential to allow DML procedures
aceess to the data Item records available for system
access)

00100 <XXX>
00200 {
00300 < Function riNDFRAME takes the Identification of a
00400 { frame, finds tht frama in tha linked list of frames,
00500 < and return! a pointer to the frame•
00600 <
00700 <XXX>
00800
00900 FUNCTION flndframeCframeld i INTEGER) I FRAMEPTRf
0100O
01100 VAR
01200 frame i FRAMEPTRI
01300
01400 BEGIN
01500 frame is headframef
01600 WHILE frame*.franeld <> frameld DO
01700 frame i« frame*,nextframe»
01800 IF frame • NIL
01900 THEN writelnCTTY, 'That frame doei not exist')
02000 ELSE findframe i« frame
02100 END|

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
31200
01300
04400
0*1500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500

<xxx>
< >
< Function riNDBLANK takes the identification of a >
< "blank", finds the blank in the linked list of blanks,)
< and returns a pointer to that blank. That ls# it >
< returns a pointer to an objeet of type blank where >
{ blank can represent any of story, member* joint* ttc. >

>
. .

<xxx)
FUNCTION flndblankCframeld, blankld t INTEGER) i BLANKPTRf
VAR

BEGIN

END)

blank t BLANKPTR*
frame i FRAMEPTRf

frame !• flndframeCframeld)*
blank t« trame",blanksi
WHILE blank",blankld <> blankld DO

blank s« blank*,nextblanki
ir blank • NIL

THEN vrltelnCTTY* 'That blank does not exist*>t
ELSE flndblank i» blank

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
0U00
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900
03000
03100
03200
03300
03400
03500
03600
03700
03800
03900
04000
04100
04200
04300
04400
04500
04600
04700
04800
04900
05000

(xx:

< Proctdurt TOPOLOGYALGORITHMi takes a
< identification and finds and prints out tha iden-
< tlfleatlon of all tha storys* bays, members* and
< joints in tha frame,

(xxx)

PROCEDURE topologyaigorithmlCframaid i INTEGER);

VAR
frama i
story i
bay i
member 1
joint i

1 FRAHEPTRf
1 3T0RYPTRJ
1 BAYPTR)
1 MEMBERPTR}
1 JOINTPTRf

BEGIN
frama i« findfraneCframeld)!

story i« frana'.storysi
WHILE story <> NIL 00

BEGIN
writalnCTTY, story*,storyid)»
story t« story'.naxtstory
END}

bay *• fra«a*abaysf
NHILE bay <> NIL DO

BEGIN
vrltalnCTTYf bay*.bayld)f
bay »« bay'.naxtbay
ENDf

member i" frame*.members I
WHILE member <> NIL DO

BEGIN
vrltalnCTTYf member".aemberld)
member i« member*.nextmember
END}

joint t« frame",jointsf
WHILE joint <> NIL DO

BEGIN
writeln(TTY# joinf.jointid)i
joint i« joint*.naxtjoint
END?

END}

