
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

HEURISTIC OPTIMIZATION OF MICROCONTROLLERS

by

Andrew Nagle

DRC- 18 - 34 - 81

August, 1981

Heuristic Optimization of Microcontrollers

Andrew Nagle

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

We describe a heuristic method for constructing and
optimizing a microprogrammed controller. The input is
a control flow graph. The output is a specification of
a microcontroller including layout of the microword
and the contents of the microprogram memory. The
optimization performed uses a clustering technique to
decide which control signals should appear together in
a single microword. As more signals are clustered
together# more parallelism becomes possible. We ini-
tially assame no parallelism and correspondingly small
signal clusters. This corresponds to a highly
encoded(vertical) microcontroller. Using a scheme of
"attraction weights" we then merge clusters together
until the desired degree of parallelism, or the maximum
width of control word is reached, whichever comes
first. Ihe controller in which all clusters are merged
corresponds to a horizontal microcontroller. We
describe a canonical control structure, the clustering
algorithm, the computer implementation, and some
results.

1. INTRODUCTION

The goal of the research described herei has been to specify a

formal method for automating the design of a microprogram based

controller. Ihe method was to be applicable after completion of

the data path design. It was to be capable of producing a

variety of incrementations at different points in the cost/speed

design space by adapting to the cost and speed constraints sup-

plied by the designer. Since microcode optimization with a given

micro-engine had been shown to be N? complete, and this problem

1- This work is part of the author's graduate study in
association with Carnegie-Mellon University under Bell
Laboratories Graduate Tuition Reimbursement Program.

- 2 -

adds yet another degree of freedom# the method was to be heuris-

tic. And finally, although we were working in the context of

completely automatic synthesis, the method was to have general

applicability for use in interactive design aids.

The method we selected meets these constraints by dealing with

the microprogram control word format* Briefly, we divide the

total number of control signals into groups and then design a

microword format that can produce one or more of these groups at

a time. If we constrain the microword to be as narrow as possi-

ble, the micro*ord will produce only one group at a time. This

allows only one operation at a time, keeping down the cost while

driving up the speed. As we allow the microword to contain more

groups, more and more parallelism can be implemented. A com-

pletely horizontal microword permits the maximum degree of paral-

lelism. Thus we can manage the degree of parallelism (speed) and

the width of the control word (cost) simply by managing the

grouping of control signals into microword formats. Furthermore

we can trade one for the other iteratively until we reach a

satisfactory solution*

2. BACKGROUND

We begin by surveying the work that has been reported in

microprogram optimization in the past.

Optimization of the two dimensions of a microprogram memory, the

number of words in the memory and the number of bits per word.

- 3 -

has been addressed separately in the literature on microcode

optimization* Since the individual algorithms for the reduction

of each dimension have computational complexity problems, no

attention £as been paid to the more complex problem addressed

here: the influence of one dimension on the other. Before begin-

ning our discussion of this problem, we will briefly review the

previous work done in these two fields.

2.1 Control Word Kidth Reduction

Automatic reduction in the bit dimension of microprogram memories

has been handled by direct encoding of "compatible" columns of

the microprogram iremory. (e.g. if there are 7 columns in which

at any one tine zero or exactly one column is a logic ONE# then

these seven columns can be encoded by three.) All of the algo-

rithms that have been presented require the same form of input

data: a complete specification of the memory contents before

reduction.

Seven different authors have reported techniques for bit dimen-

sion reduction in the literature: Schwarz[SCHfc68]# Srassilli and

iiontanari[GRAS70 }, Das et al[DAS73] Montangero[MONT74], Jayasri

and Easu[JAYA76]# Kalatsis and Gaitanis[HALA78]# and Eaer and

Koyama[BA£R79]. They share a connon control store model: each

bit in the control word is postulated to encode a single micro-

operation. The logic ONES in any given word stipulate which

micro-operations are to be evoked in parallel when that word is

executed. Each of the optimization techniques proposes a dif-

ferent algorithm for encoding micro-operations that are never

used in parallel. This problem has recently been shown to be N?

coraplete[ROBE79]• We review the published algorithms briefly

below.

Schwartz introduced the notion of encoding groups of micro-

operations, no two of which ever occur together in the same word.

His algorithm first finds all groups of encodable signals. Then

it postulates that a solution exists with a number of groups

equal to the number of micro-operations evoked in the densest

word. The algorithm searches for a valid grouping while

enumerating all combinations of this number of groups. Failing

to find one# it increments the number of groups and searches

again.

Grasselli and Montanari pointed out that Schwartz's minimum group

solution does not guarantee a minimum word width, however. They

formalized Schwartz's notion by defining a compatibility relation

between micro-operations and then showed that the minimum word

width solution can be obtained by solving a covering table of the

prime implicant type.

Das et al propose a slightly different method for determining the

minimum solution based on the compatibility relation defined by

Grasselli and Montanari. They prune the original cover taole and

generate all possible solutions to the pruned version. From each

of these solutions they build another smaller cover table and

find solutions for it. Using these to augment the solutions of

- 5 -

the first cover table, they find the final solution set. After

evaluation of all members of this set, they choose the minimum

solution.

Jayasri and Basu propose yet another method for finding the

minimum solution. After an initial analysis based on the same

compatibility relation as the previous two, they compute a

theoretical lower bound for the width of the control word. Eased

on this lower bound and some other statistics measured from the

microprogram, they compute the number of groups and the size of

the groups needed to achieve the lower bound. They then test for

the existence of this optimal solution to the given problem. If

they find it, they quit, naturally; if they don't, they increment

the lower bound, postulate new solution characteristics and test

for the existence of that solution. This continues until a solu-

tion is found that matches the postulated characteristics.

Halatsis and Gaitanis do not use the compatibility relation of

Grasselli and Montanari. Instead they introduce the notion of

"minimum AND/OR dependence sets,11 and they propose to store only

this minimum AND/CR dependence set in the control store. By the

nature of these dependence sets, any micro-operation not stored

as part of this set is a logic AND or logic OR function of the

members of the set. Thus all control signals are either directly

available from the control store, or through a single AND or OR

gate. To find a naniaum AND/OR dependence set, they first write

a boolean equation specifying each bit in the control word in

terms of all the others. Then they find the prime implicants of

- 6 -

each of these equations. They combine these into a new boolean

equation which is then reduced to prime implicants. This pro-

vides the basis for their solution*

Montangero"introduces an extra degree of freedom to the problem:

he permits the micro-operations in each word to be varied, within

limits9 to obtain the iranimal width control word. He assumes a

maximally parallel microprogram. With this constraint, some

micro-operations still can be assigned to one of several micro-

instructions. Montangero recognized that the manner in which

this assignment is made affects the success of Grasselli and

Montanari's coding scheme. He then proposed an exhaustive search

strategy for finding the assignment that results in the minimum

width microword. As he admits in his paper# exhaustive search

would prove to be far too complex in any practical design.

Baer and Koyama propose a branch and bound method for encoding

the microword with Grasselli and Montanari's compatibility

classes. Although, like the rest, their algorithm is exponential

in the worst case, they can stop at any time with a sub-optimal

solution. They argue convincingly that they have a reasonably

efficient method for a complex problem.

Our own method for optiirdzing the control word performs the same

task as .Montangero's. Ihe difference is that we have introduced

a different encoding scheme that can handle larger problems by

using a heuristic based search algorithm.

- 7 -

2.2 Microprogram Length Reduction

The literature on microcode optimization explores thoroughly the

packing of compatible micro-operations into micro-instructions.

Davidson and Shriver £DAVI79] provided an extensive update and

summary of the work reported in this field. Here we will only

describe the problem addressed in the literature along with some

details of the associated microprogram model. The interested

reader is referred to Davidson and shriver for more detail.

Mallett£MALL78] described a unifying model of a microprogram.

Each micro-operation in his model comprises a six-tuple: name,

sources, destinations, required resources, clock phases, and

microword fields used. The name is just that: a way to refer to

each micro-instruction. Sources and destinations are the regis-

ters or memories used in the data transfer. Required resources

include the intermediate operators and links required. Clock

phase requirements designate the minor cycle within the instruc-

tion cycle used by each operation. And the micro-instruction

fields are the bits of the microword required to evoke this

operation.

Davidson and Shriver describe the many algorithms from the

literature for using this model or a similar one to compose

micro-operations into micro-instructions. These algorithms work

within the bounds of straight line segments, sequences of micro-

operations without intervening branches. They assign micro-

operations to micro-instructions, attempting to create the fewest

• - 8 -

possible instructions. This problem has been shown -to be NP-

complete, but effective heuristic techniques have been reported

that, reach near-optimal results. Hence Davidson and Shriver say

this problem is solved.

2*3 Combining the Two Reductions into One Algorithm

Our goal is to combine word and bit dimension reduction into one

algorithm that accounts for the influence of one on the other*

We begin with a specification of the design that permits both

reordering of microprogram steps and regrouping of micro-

operations into word formats.. For the former, we adopt: a

representation from the literature on word optimization! the con-

trol flow graph. For the latter, we build a list of all the

micro-operations that are used at one time or another. He then

iteratively cluster the operations and order the microprogram

steps to meet cost/speed constraints in the manner described in

the remainder of the paper. In the end we have a completely

specified design of a microcontroller.

2.4 Organization of the Paper

We must develop several ideas before we can present the heuristic

that is our primary contribution. In the next section, we

present a technique for encoding a microprogram word that can be

used for botft horizontal and vertical microstores. Following

that we develap a definition of micro-operations and show how

they relate to our control signal clusters. Then we define the

attraction weights on which the clustering heuristic is based.

- 9 -

Finally, we present the clustering heuristic, along with the

evaluation functions that drive it.

3. AN ENCODING TECHNI OOE FOR MICRO WORDS

In this section we define an encoding scheme for microprogram

words and discuss the nature of the implementing microcontroller.

We begin with a few pertinent definitions.

Define a "correct" microcontroller informally as a microcon-

7

troller that is capable of providing the control signals

necessary to activate the micro-instructions in a control

{ flow graph.

i Let C be the set of all signals that must originate in the con-

I troller and terminate at the control ports of data path modules.

(We will discuss the signals that constitute this set in more

detail later.)

Define a "horizontal" microcontroller as a microcontroller

that contains one bit in the control word for each member of

C.

A horizontal microcontroller is by definition a correct microcon-

troller.

Define "active" control signals as those members of C that

either affect the value of data to be latched or effect the

latching of data.

- 10 -

Each time a micro-instruction from the control store is executed#

only a subset of the data path's control signals are active in

most systems* This is what makes it possible to encode control

words* In;the past/ many different encoding techniques have been

employed by human designers. One has be^n automated* the direct

encoding of bits in the word* We propose to use a different one:

a bit steering field* The function of a bit steering field in a

control word is to determine the functions that other bits in the

control word must perform. That is# a bit steering field

"steers" other control word bits to their proper destinations in

the data paths* The KP21MX microword opcode field provides an

example of this technique*

Suppose that all the control signals of a particular design could

be partitioned into disjoint subsets such that no member of any

one subset was ever active in the same micro—instruction as any

member of any other subset* Then a bit-steering field could

select the active subset# and the control word would need to be

only as wide as the largest subset plus the width of the bit-

steering field. Decoders outside the microstore could "steer"

the control bits to the correct place.

The following partition provides the basis for such a microcon-

troller. Let W be the set of all micro-instruction words, and

let w.f € W be the set of all Cj which are active in word i.

- 11 -

Define a partition P on C such that for each micro-

instruction in W there is a corresponding block of the par-

tition that contains this micro-instruction. And for each

pair of micro-instructions that share control signals there

is a corresponding block of the partition that contains this

pair, stated formally, this is:

V \J; tW,] R « P) w^ft » an

This means that all micro-instructions that overlap are placed in

the same block, of the partition. In the remainder of this paper,

we will use "p" to denote a block of this partition P.

Define a bit steering decoder as a logic element that passes

one bit of data through to one of n different outputs

— . _ —depending on the value of some data selecting inputs. The

remaining n-1 outputs are inactive.

Define a bit steering microcontroller as a microcontroller

with a memory as wide as the largest p plus a bit steering

field, which is log (total number of p's) wide. Each bit in

the control word except those in the bit steering field is

passed into a bit steering decoder. The directing inputs of

the bit steering decoder are fed by the bit steering field

of the control word. It has a number of data outputs equal

to the total number of p*s in the P partition. At each

micro-instruction, the bit steering field selects which p

contains the current word w and the control signals emanate

- 1 2 -

from the bit steering decoders to the control inputs in the

data paths.

Note that the definition of the partition places each micro-

instruction "into a single block of the partition. Therefore only

a single p needs to be active at any given time. Thus a bit

steering microcontroller is a correct microcontroller*

The basic structure of a bit steering microcontroller (BSM) is

shown in figure 1_

Control
5f c\ nals

•

D

c
o

a
e

Figure 1. Structure of a Bit Steering Micro-controller*

This is the basis of the encoding scheme that is used throughout

this paper. In the degenerate cases this scheme looks like a

conventional horizontal or vertical control word. If any control

signal could occur at the same time as any other* the bit steer-

ing field is 0 bits wide and the partition has one block as wide

as a horizontal word. If the activation of signals is mutually

exclusive, the bit steering field is Log (n = total control sig-

nals) wide and the partition has n blocks with one control signal

in each.

- 13 -

3.1 Active and Inactive Signals

We now improve on the BSM by recognizing some properties of con-

trol signals and realizing that sose of the bit steering decoders

are not necessary. To begin, we look more closely at what is

meant by "active11 and ffinactive*w

Active and inactive denote opposite states of a control signalr

not in a logic sense but rather in a dynamic sense. An active

signal may take on any of four values: zero, one, positive edge,

or negative edge. It need not be the same each time it is

active. An inactive signal, on the other hand, may take on one

of only two values: zero or one. The proper value is determined

by the function it performs on the module. In some cir-

cumstances, to be defined later, the value does not matter. The

important distinction is that active signals must be specified

from within the microstore because their value is a function of

the desired operation. On the other hand, inactive signals can

be driven to the proper state by other logic circuits, such as

the unselected output of a bit steering decoder. We made use of

this in the BSM when we said one of n outputs of a bit steering

decoder would be selected (active) and the other n-1 would be

inactive.

3.2 Select and Evoke Signals

Taking a closer look at an active signal, we find that it can

fall into one of two roles: It can "select11 a path or a function

without causing any state changes, or it can directly "evoke" a

- 14 -

state change in the data paths. This is an important distinction

which can be used to show that bit steering decoders are not

necessary in all cases•

Define an -evoke" signal as a nodule control input that is

capable of directly changing the contents of that module's

internal memory.

Define a Mselect11 signal as a module control input that is

incapable of directly changing the contents of that module's

internal memory.

Using these t*o definitions we can show that any microprogram

output that performs a select function in all word formats

requires no decoder on its output* The memory bit can be wired

directly to the one control port in each p to which it is

assigned. More specifically, we can show that:

* Select signals from one p cannoc affect the outcome of

operations controlled by a different p.

6 Inactive select signals need not be held constant at any

level in order to preserve the state of the data paths.

6 Evojce signals from one p can affect the outcome of opera-

tions controlled by a different p.

6 Inactive evoke signals in all unselected p's must be held

constant at a known inactive level to avoid undesired state

changes.

- 15 -

Hence any bit in the control word of a BSM that performs a

select role in each p to which it is assigned requires no

bit steering decoder for proper operation.

Define a "Modified Bit Steering Microcontroller" (MBSM) as a

BSM that applies this last list item to eliminate decoders* %

Finally, using the results listed, we can show that a MBSM is a

correct microcontroller.

The MBSM is diagramed in figure 2.

M
M

\̂

:vopro<

<v\ov-y

3 reXVv\ 0
9

5 Evoke

Select

Figure 2. A Modified Bit-Steering Micro-controller.

Notice that only a subset of the control signals axe fed through

the bit steering decoders. The remainder are the select signals.

This is the encoding scheme we will use as the focus of our

heuristic. To complete the definition of the raicrocontrol, we

will now describe efficient timing signals for this controller.

3.3 Clock Waveforms and Kext-State Logic

The clock that the MBSM uses is a simple two phase clock. Phase

one evokes a controller state change# enabling new control sig-

nals. Phase two evokes data path operations. The. controller

state change on phase one can either increment the microprogram

counter or directly load it^ The choice depends on control sig-

nals from the control store and status signals from the data

paths• The-data path operations depend on which "evoke" signals

are enabled through the bit steering decoders*

The waveform diagram in figure 3 shows the relationship between

the two clock phases and the activity they evoke*

ĉ n n
_n

Select

Status
Figure 3. Timing waveforms for a MBSM*

Phase one evokes a change in the microprogram counter. This

invalidates the control store outputs, for a while* When they

become valid, the data path select signals are valid and data

begins to settle to the proper values to be latched. Meanwhile,

the enabling evoke signals are making their way through the bit

steering decoders. The phase two clock pulse comes after the

data settles and the evoke enable signals are valid. Note that

the active evoke enable signals are a level (a logic ONE) which

gets ANDed or NANDed with the phase two clock pulse. AND and

NAND gates are used respectively to generate positive and nega-

tive going pulses. Inactive evoke-enable signals are logic ZEROs

so that they block the phase two pulse from going through the AND

or NAND. See figure 4. After the data path evoke signal, the

- 17 -

y

Active Evoke

Figure'4. Enabling gates for Evoke Signals.

new data values are permitted to settle so that status signals

arising from the newly latched data can be allowed to influence

the next state.

Figure 5 shows the same timing diagram for a controller in which

the fetch and execute cycles are overlapped.

_n
n n_

JXI
Select
Evoke.

JXL
JXL JXL

Figure 5* Timing waveforms for overlapped fetch/execute cycles.

This is a common technique used to speed up the execution of

microcontrollers. It fetches the next micro-instruction during

execution of the current one. Thus execution need not be held up

during the memory fetch. Its single disadvantage arises during a

- 18 -

branch operation, since an extra step is required between the

execution of branch and the time it takes effect* To fill this

empty time in some cases a NOOP instruction must be inserted.

This wastes space in the microstore, but normally the increased

speed justifies this cost- The waveforms are given here to show

that the proposed microcontroller covers this case.

4. CODABLE UKITS OF & MICROPROGRAM

In this section we decompose a microprogram and discuss its

parts. We describe a way to arrive at a partitioning of the con-

trol signals that matches the formal partition defined in the

previous section. We show how blocks of this partition can be

merged to form new blocks, and discuss the effect this has on the

microcontroller*

4.1 Micro-operations and signal clusters

Define a micro-operation (MO) as a state change which is

called for by the microprogram, which involves an evoke

operation on a single module# which may require select

operations on any number of modules, and which is completely

specified by a four-tuple: a name, the modules to be used,

the operation which each must perform, and the list of MO's

that precede it*

This definition of a micro-instruction is similar to many others

in the literature on microcode compaction* The most general of

- 19 -

these models is in Mallet£MALL78], which defined a micro-

operation as a six-tuple (name, sources, destinations, resources,

clock phases, microword fields)• In our definition we have tried

to be more*restrictive in some respects, and less restrictive in

others• We require a name in the same way as Mallett* We do not

require the source list because we assume that source conflicts

are accounted for when the control flow graph is built. That is

why we requii* -. xist of micro-operations that precede each

02. . We requ-.̂ v stinations to be listed, since they are the

morales that rr.aoc perform the evoke operation* Here we are

slightly more restrictive: we insist on a single evoke operation

per micro-operation. This gives us the maximum degree of flexi-

bility with ordering and encoding. The resource information we

require is similar to that required in Mallett's model: a list of

the modules used and the operation each performs. We do not

require clock phase information as we assume that all data opera-

tions occur on 0 sir.jle phase, and all control operations occur

on a single separate phase. Finally, we do not require a list, of

the microword lie Ids that are used because we design that when we

derive the word formats. Thus we are more restrictive by limit-

ing the amount of activity that may occur in a single micro-

operation and by considering only two-phase clock systems. And

we are less restrictive by not limiting the word format to one

already specified.

We have said that our heuristic for deriving the word format uses

clustering of control signals. By defining micro-operations we

- 20 -

have now identified the smallest useful group of control signals:

those active during a single micro-operation* The algorithm

defined later begins with these groups of control signals as the

fields of the control word and clusters the groups into sets that

appear together in the same micro-instruction word* But before

introducing the algorithm, we must discuss some properties of

these groups of signals, especially as they relate to the modules

they control, and show that these groups define a ? partition on

the set of control signals C. Having shown that, we will be able

to adopt the modified BSM as our controller*

4* 2 Modules and Snhmodules

Two or more micro-operations can share control signals; in fact,

they could use exactly the same set of control signals, only with

different values. For example, the signals used to shift a gen-

eral purpose shift register left or right are the same: usually a

clock and some function select inputs* The only difference from

one micro-operation to the other is the value of the function

select inputs. Therefore it is appropriate to define the set of

signals independent of the operation they perform*

Define a micro-operation signal set (MS set) as the set of

all control signals active during a given micro-operation.

MS sets can be further decomposed into sets of signals according

to the module or submodule they control. A module can be broken

into submodules if it performs functions that are controlled by

- 21 -

disjoint subsets of its control signals.
•

Define a subirodule as the portion of a module whose micro-

operations are activated by a subset of the module's control

signals, sach that all suhmodules for a given module are

disjoint, and only active signals are associated with each

micro-operation.

Example, The subirodules of a 7474 Dual D-Type positive edge

triggered flip-flop-with preset and clear are shown in figure 6»

5j>ubmodule
1
2
3
a
5
6

sianal
preset A
clock A
clear A
preset B
clock B
clear B

pperation
set A

load A
clear A

set B
load_B
clear B

active state

pos

pos

0
trans
0
0
trans
0

type
evoke
evoke
evoke
evoke
evoke
evoke

Figure 6. Submodules of a 7474 Dual D-type Flip Flop.

Notice that each signal falls into a separate subroodule because

each operation of the module requires only one active signal. We

acknowledge that the values of the inactive signals in each case

must be controlled because they are^all evoke signals. See sec-

tion 3.2.

Example. Ihe submodules of a 74163 synchronous counter with syn-

chronous clear are shown in figure 7- Notice that all signals

are in a single submodule because all signals are active during

each operation. A 74161 counter with asynchronous clear would

have two submodules; the clear signal would be separated out in a

submodule of its own, and it would be an evoke signal*

Submodule
1

signal
enable P
enable T
load
clear
clock

operation
count
count
load
clear

all above

active stat
1
1
0
0

pos trans

type
select
select
select
select
evoke

Figure 7, Submodules of a 74163 synchronous counter with
synchronous clear•

The useful feature of modules and submodules is that they embody

a level of abstraction for dealing with control signals. By

listing the submodules used to complete a given micro-operation,

we implicitly identify the MS set required. If we further

specify the register transfer level operation to be performed by

each listed submodule, and if we keep in a data base the rules

for implementing each register transfer operation with specific

control signal values, then we have a complete hierarchical

description of a micro-operation-

We find it useful to discuss the submodules used in micro-

operations, so we give them a name.

- 23 -

Define a micro-oceration set (MOPSET) as the set of submo-

dules with active signals in a given micro-operation-

4.3 Minimum signal clusters

MOPSETS need not be disjoint* For example, an ALU whose output

feeds more than one destination register will be a member of a

MOPSET with each of these registers. Now suppose we merge these

sets, and all sets that intersect like them. Disjoint sets of

submodules would remain. Each set would comprise one or more

MCPSETs and should therefore be capable of implementing one or

more micro-operations. We give these sets a formal definition.

Define an OPSET as a set O of submodules such that every

member of 0 is also a member of at least one MOPSET which is

contained in O.

If the sutmodales are partitioned into the maximum number of

OPSETs, then no proper subset of any OPSET 0 can be removed from

O without breaking up a MOPSEl- Conversely, a set of two or more

OPSETs is still an OPSET.

I
I ' Define OPSE1 signals as the control signals that belong to

i . the submodules in an OPSET.

j

These control signals for the maximum OPSET partition are the

beginning clusters for the heuristic.

- 24 -

Now we can unify our earlier discussion of the modified bit-

steering microcontroller with our current discussion of OPSETs.

Let the sabmodules in a system be partitioned into OPSETs;

then the OPSET signal sets constitute blocks of a P parti-

tion on the set C of control signals.

This is an important result because it permits us to build a

modified ESM based on the OPSET signal sets*

We consider first the case in which each microword activates a

single micro-operation, and the submodules in the system are par-

titioned into the maximum number of OPSETs.

4** Architecture of a vertical MBSM based on minimum siz € clus-

ters

Figure 2 shows the general architecture of a MBSM. Here we give

more details on its size in the simple case in which each micro-

word activates a single micro-operation*

The width of the micro-instruction word contains two components:

the bit steering field and the actual control bits* The control

bit field must be as wide as the number of control signals in the

largest OPSET signal set. The bit steering field must be wide

enough to select which OPSET is active. In the worst case this

must be log n# where n is the number of OPSETs. But this can

often be improved upon by using a bin-packing algorithm to fit

all of the OPSETs into the minimum number of formats of the same

size* where the size is the width of the largest OPSET signal

- 26 -

to form a new OPSET to gain the most cost/speed tradeoff advan-

tage.

To start, we assume that the maximum OPSET partition has been

made. This means we have partitioned the control flow graph into

maximally serial steps. Then we compute attraction weights

between each pair of OPSETs by an algorithm described below. We

remember the highest and the lowest, assess the effect of each on

cost and speed, and let an overseer decide whether to merge the

OPSETs or exclude their merger. This process is repeated comput-

ing new attraction weights (for the remaining OPSETs if a merger

has occurred) each time through the loop until the overseer is

satisfied that no other candidate pairs need to be considered*

To describe the details of this process, first we define attrac-

tion-weights and their computation. Then we discuss the effects

on the control flow graph of merging two OPSETs together or of

excluding such a merger. Finally we discuss the overseer that

directs the decisions to merge or exclude each pair.

5.1 Computation of Attraction Weights

Attraction weights measure the relative advantage that would

result from the merger of each pair of OPSETs. As such, they

attempt to answer the question: if these two OPSETs were merged,

how many micro-instructions in the microprogram would make use of

the merger by activating one micro-operation from each of the old

OPSETs? If the answer is zero, then the merger would be a waste.

The pair with the highest weight, if the measure is a good one.

- 28 -

in [AGER76].

In order to compute the attraction weights, we make the following

assumptions it is equally likely that any given micro-operation

will be executed during any of the slots in its range* Then the

probability that a given micro-operation will fall into any one

slot is the inverse of the number of slots in its range. The

probability that two micro-operations will fall together into the

same slot is the conditional probability that the second will

fall there given that the first is there already. This is the

product of the individual probabilities that they will fan into

this slot. For the purpose of computing attraction weights*

these probabilities are attached to the OPSETs associated with

the micro-operations rather than to the micro-operations them-

selves.

The attraction weights for a given pair of OPSETs is computed as

the sum over all segments of the individual probabilities that

these two OPSETs will be used together in the same slot given the

random assignment assumption. Notice that this accounts for all

uses of the OPSETs from the beginning to the end of the micropro-

gram. It is not restricted to pairing of micro-operations.

There may be several micro-operations associated with each OPSET.

Sections of the microprogram that are weighted more heavily than

another can have their attraction weights multiplied by the

weighting factor. Thus the attraction weights in the weighted

section will have a heavier bearing on the selection of the OPSET

pair to be considered for merging.

- 29 -

5.2 A simple example

Consider the control flow graph in figure 8.

Figure 8« Example control flow graph

It refers to a system that consists of five OPSETs: Ar B, C# D,

and E* Each node in the control graph shows which OPSET it uses.

The critical path through this control graph, six steps long, is

shown next to the control graph. There are two segments: the

first comprises nodes 2 and 3# the second comprises nodes 6# 7

and 8- Computation of attraction weights proceeds as follows.

In the first segment, we note that nodes 2 and 3 each have a

range of one. The probability that node 2 will fall in slot 2 is

- 30 -

one; similarly for node 3. Thus the probability that nodes 2 and

3, and therefore CPSET~s B and C, will fall into the same slot in

a minimal, length microprogram is one. This Is the attraction

weight between OPSETs B and C for this segment* in the next seg-

ment, we see that node 7 has a range of 2- It therefore has anv

equal probability, 0*5, of falling into slot 5 or 6. Nodes 6 and

8 each have a range of one and a probability of one that, they

will fall into slots 5 and 6 respectively. Therefore the A - C

attraction weight is 0*5, and the A - D attraction weight is 0.5.

The "strongest* attraction weight in this example is between B

and C. We infer from this that merging these two into one will

have a desirable effect, and we can see that this is true. If

they are merged, nodes 2 and 3 can be executed together. If they

are not merged, two steps are needed.

The user could have chosen to give the second segment a weighting

factor to increase its importance relative to the other segment.

A weighting factor of 5.0 would increase the A - C and A • D

attraction weights to 2.5 each. Note, too, that if node 2 used

OPSET A instead of B, then the A - C attraction weight would be

the sum of the weight from each segment.

The object of computing attraction weights is to select am OPSET

pair to be merged. In the example, we would have chosen to merge

B with C first. We now consider the effect of merging or

separating two OPSETs in general.

j
t

i

- 31 -

5.3 The effect of merging OPSETs

When two OPSETs are merged into one it is necessary to reconsider

the placement of micro-operations within segments• Whenever two

MOPSETs belonging to the same OPSEX can potentially fall into the

same slot they should be so fixed. If together they can fall

into a range of slots then their range should be modified to be

equal. If one can also fall into a slot outside the other's

range, then this potential should be eliminated by reducing the

range of the first one. Naturally when the range of one micro-

operation on one leg of a parallel fork is changed this affects

the ranges of the preceding and succeeding nodes as well. Thus

the ranges of all nodes in all segments must be checked for con—

sistency after merging two OPSETs.

Merging two OPSETs and modifying the micro-operation ranges

invalidates the attraction weights just computed. Micro-

operations that could fall into the same slot before range modif-

ication might be completely separated afterwards. Their OPSETs

will therefore no longer be attracted to one another. On the

other hand by reducing the ranges of nodes we are increasing the

likelihood that they will fall in any of the slots that remain

within their range. Thus some attraction weights will need to be

increased. Furthermore all attraction weights between the

remaining OPSETs and the new OPSET will need to be computed. For

all these reasons it is essential to recompute the attraction

weights after each two OPSETs are merged. A new candidate pair

can then be selected.

- 32 -

In more general terms, the merger of two OPSETs restricts some of

the parallelism potential in the control graph. It also «»p

increase the minimum width of the control word in the MBSM-

Recall that the minimum width of the control word is the sum of

the largest O?S£T signal set plus log (number of formats)• If

the new OPSET is larger than all existing ones, then it forms the

basis of the control word width.

5* 4 The effect of excluding the mercrer of two OPSETs

The overseer which we will discuss in an upcoming section may

decide to exclude two OPSETs from being merged. It would nor-

mally make this decision because the resultant new OPSET would

contain too many submodules, or too many signals or both. Merg-

ing them would increase the microstore width and the control

-store-coat. But deciding not to merge them also restricts the

ranges of micro-operations.

It is possible for a merger exclusion of this nature to necessi-

tate an additional slot in the critical path of some segments.

If two parallel micro-operations each have a range of one slot,

and if they each use one of the excluded CPSETs, then an extra

step will be necessary. The slot that is within their range can

be used to execute only one of them. The other one will require

a new slot before or after the existing one# further serializing

the microprogram.

In more general terms, excluding two OPSETs from merger keeps the

width of the control word down, but can create additional steps

- 33 -

in the microprogram. An overseer might decide to do this if

merging two OPSETs causes an unacceptable length for the control

word. It might also simply want to select for exclusion the

OPSET pair-that would cause the least additional number of words.

The pair thus selected ought to have the least interaction of all

the existing OPSET pairs. Thus it should have the lowest attrac-

tion weight.

5.5 Summary of the attraction weight heuristic

If we are building a modified bit steering microcontroller then

we can manipulate the trade-off between word width and micropro-

gram parallelism by manipulating the OPSET partition. In the

attraction weight heuristic we begin with the maximal OPSET par-

tition, assuming that each OPSET can activate one micro-operation

at a time. We then compute attraction weights as defined above.

Based on these an overseer can select a candidate OPSET pair to

be merged together or excluded froni merger. The effects of this

decision can then be accounted for, new attraction weights can be

computed and the loop can be repeated. An overseer can stop the

loop at any time.

5.6 Structure of an overseer module

The overseer module requires cost and speed evaluations to decide

which direction to push the design in. It has the tools at its

disposal to increase the word width to keep the number of micro-

words to a minimum, or to increase the number of microwords to

keep the control word width to a minimum. These tools are the

- 34 -

attraction weights* But four other evaluations are also needed:

* The cost of the system as it is currently represented

» The incremental cost of merging or excluding

* The speed of the system as it is currently represented

* The incremental speed change resulting from a merger or

exclusion

In addition, the overseer needs to know the user's goals and con-

straints* These may be expressed as limits on the control word

width or limits on the total number of words to be used for a

given segment of the program, for example*

Each time a pair of OPSETs is selected as candidates to be

-merged, the overseer module looks at all of the evaluations above

and makes a decision to merge or to exclude this pair* To do

this it uses the concept of a preferred direction and haxd con-

straints. It will always choose to push the design in the (user

specified) preferred direction unless doing so would violate some

(also user specified) hard constraint*

In the next section we discuss briefly the computer implementa-

tion of the algorithm described above and suggest how the

research will proceed*

- 35 -

6. IMPLEMENTATION AND PI

We constructed a computer implementation of our algorithm to test

its performance on some examples. The program was written over a

period of about one year by one full-time graduate student and

another part-time graduate student* It is implemented in BLISS

on a PDP-10. The code that implements the part described in this

paper consists of about 2400 lines of code and comments. It runs

on the data base of the RT-CAD project at Carnegie-Mellon Univer-

sity. We have run a very simple example through the program (a

design of the Marki Computer) with favorable results. The

heuristic optimizer was able to build microprograms with dimen-

sions ranging from 11 bits by 41 words to 28 bits by 32 words.

Our future plans call for more examples and more documentation.

We plan to process at least one example that will allow com-*

parison with an existing microprogrcunmed architecture. Other

examples will be chosen to determine the limits of the technique,

and to collect some run-time statistics. Having done this we

plan to write a formal specification of the technique, with a

more complete treatment of the overall structure of the control,

in the form of a PhD Thesis.

7. CONCLUSION

We have described a method for computerizing the optimization of

a microprogram memory in two dimensions. We have shown the

correspondence of the technique to a simple microcontrol struc—

- 36 -

ture with a simple two-phase clock. And we have introduced a

heuristic that drives the two dimensional optimization* This

technique could have an important impact if reduction to hardware

from behavioral descriptions ever becomes a common design method*

The examples we plan to do next should certify the feasibility of

the technique for large scale designs*

ACKNOWLEDGEMENT

The author wishes to thank Dr. Alice Parker, Assistant Professor

of Electrical Engineering# Carnegie-Mellon University, for her

help in developing the ideas in this paper*

REFERENCES

£AGER76] T. Agerwala, •• Micro program Optimization: A Survey," IEEE
Trans. Corcp. , vol. C-25, No. 10, Oct.* 1976* pp.962-973*

[BAER79] J. Baer and B. Koyama, n0n the Minimization of the Width
of the Control Memory of Microprogrammed Processors,19 IEEE
Trans; Coup., Vol C-28, No. 4, April 1979, pp. 310-316.

£DAS73] S. R. Das, D. K. Banerji, acd A. Chattopadhyay, "On con-
trol memory minimization in microprogrammed digital comput-
ers,11 IEEE Trans. Comp. vol. C-22, No. 9, Sept. 1973,
pp.845-848.

[GRAS70] A. Grasselli and U. Montanari, nOn the minimization of
read-only memories in microprogrammed digital computers,9*
IEEE Trans. Corop., Nov 1970, pp 1111-1114.

[HALA78] C. Halatsis and N. Gaitanis, "On the Minimization of the
Control Store in Microprogrammed Computers,11 IEEE Trans.
Comp. Vol. C-27, No. 12, Dec 1978, pp- 1189-1192.

[JAYA76] T. Jayasri and D. Basu, "An Approach to Organizing
Microinstructions which Minimizes the width of Control Store
Words,« IEEE Trans. Comp. Vol C-25, No. 5, May 1976, pp.
514-521.

[MALL78] P. Mallett, ••Methods of Compacting Microprograms," PhD
Dissertation, Univ of Southwestern Louisiana, Dec 1978

[MONT74] c. Montangero, "An Approach to the Optimal Specification
of Read-only Memories in Microprogrammed Digital Computers,11

IEEE Trans. Comp., Vol C-23, No. 4r Apr 1974, pp_ 375-389-

[ROBE79] E. Robertson, ••Microcode Bit Optimization is NP Com-
plete,w IEEE Trans. Corop., Vol. C-28, No. 4, Apr 1979, pp.
316-319.

[SCHW68] S. J. Schwartz, "An Algorithm for Minimizing Read Only
Memories for Machine Control,m Proc. 10th Annu. IEEE Symp.
Switching and Automata Theory, pp. 28-33, 1968.

[DAVI79] S. Davidson and B. Shriver, "Firmware Engineering: An
Extensive Update," Technical Report, Computer Science
Department, Univ of Southwestern Louisiana, Dec 1979.

