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ABSTRACT

This paper formulates the minimum utility calculation for a heat

exchanger network synthesis, problem as a "transportation problem" from

linear programming, thus allowing one to develop an effective interactive

computing aid for this problem. The approach is to linearize

cooling/heating curves and partition the problem only at potential pinch

points. Thus formulated both thermodynamic and user imposed constraints

are readily included, the latter permitting selected stream/stream matches

to be disallowed in total or in part.

By altering the formulation of the objective function, the paper

also shows how to solve a minimum utility cost problem, where each utility

is available at a single temperature level. A simple one dimensional

search procedure may be required to handle each utility which passes

through a temperature change when being used.

Extending the partitioning procedure permits the formulation to

accommodate match dependent approach temperatures, an extension needed

when indirect heat transfer through a third fluid only is allowed for some

matches.
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Introduction

Two independently written manuscripts (Cerda and Westerberg (1979)

and Mason and Linnhoff (1980)) were merged and significantly extended to

produce this paper. Both had discovered the "transportation model" for the

minimum utility calculation for the heat exchanger network synthesis

problem.

In the last 13 years many papers have appeared which deal with the

synthesis of cost effective heat exchanger networks to integrate chemical

processes thermally. In the recent process synthesis review paper of

Nishida et al (1981) 20% of the 190 papers listed are on this topic alone.

As pointed out in that and other earlier papers, a most significant

contribution of this entire work is the insight by Hohmann (1971) and

later by Linnhoff and Flower (1978) which permits one to establish the

thermodynamic limit for minimum required utilities to accomplish all the

specified heating and cooling for such a problem. This thermodynamic limit

involves locating "pinch" points within such networks where a minimum

approach temperature exists. This minimum utility limit is almost always

attained by the better network designs found for such problems and thus is

a very worthwhile target. Unfortunately, industry has typically imple-

mented solutions using substantially more than the minimum required

utilities — often 30% or more in excess (Linhoff and Turner (1980)).

In this paper we show how to formulate the minimum utility cal-

culation as a classical "transportation problem" from linear programming,

a problem for which very efficient solution algorithms exist. The approach

is to linearize heating and cooling curves to any desired degree of

accuracy. We will argue that only corner points and end points can be

potential temperature "pinch11 points. The temperatures of these points



partition the streams into substreams for which one can readily write the

requisite thermodynamic constraints. Extending insights by Grimes (1980)

and Cerda (1981), we show that many .— often half or more — of the points

can be eliminated as pinch point candidates, substantially reducing the

size of the transportation problem which must be solved.

The designer frequently wishes to preclude matches being allowed

between certain streams, and it would be useful for him to discover if

these constraints seriously affect the minimum utility requirements for a

process. The. transportation problem formulation readily accommodates such

constraints. The designer may have several utilities available at

different temperature levels and costs. Simple adjustment of the costs

used in the objective function and some minor added partitioning permit

one to find a solution having a minimum total utility cost. We also show

that each utility which is not available at a constant temperature level

may require an added one dimensional search.

Lastly we show how to generalize the temperature partitioning task

if one wishes to assign a different minimum allowed approach temperature

to each stream/stream match. Limiting the transfer of heat between any two

streams to indirect transfer through a third fluid requires this type of

calculation. The number of partitions can grow enormously. If the

partitioning is not done completely, the calculation will yield an upper

bound (and probably a good one) to the required minimum utilities.

The paper gives an effective algorithm to find a first, and often

optimal, solution to the transportation problem, one which can be im-

plemented by hand if desired. It also describes the classical transpor-

tation algorithm by Dantzig (1963), principally to show where in the solu-

tion "tableau" one discovers the thermodynamic pinch point(s) for all the

problems described above.



The first two authors extend the use of transportation like models

to aid in synthesizing minimum utility/minimum match networks in parts 2

and 3 of this paper.
i

Problem Definition

We are given a set of hot and cold process streams among which we

wish to exchange heat to bring each from its inlet to its target

temperature. In general additional heating and cooling in the form of

utilities are needed to accomplish this task. Since the utilities used are

costly, we wish to calculate the least amount needed which can then serve

as a target to the design of a heat exchanger network to accomplish our

task.

We assume sufficient information is given for each stream to allow

us to calculate a heating or cooling curve for it as it passes through the

exchanger network. We are given inlet and outlet temperatures; we must

guess the likely pressure trajectory. Then we calculate enthalpy along

this trajectory, plotting T (ordinate) versus enthalpy flow (flow rate

times specific enthalpy, abscissa). Also given for the problem is a

minimum AT driving force AT . to be allowed in any heat exchange.

Example Problem

We shall illustrate the ideas throughout this paper with the example

four stream problem whose data are given in Table 1. Figure 1 shows the

cooling and heating curves for each of these streams.



Cold

Stream, c.

Flow - 2

T interval

100-140
140-180

180-190
190-200
200-250

Apparent

S
1.0
1.1

5.0 1 2 phase
4.0 J region
0.5

F C
P

2.0
2.2

10.0
8.0
1.0

Q - F C AT
P

80
88

100
80
50

Total 398

Cold

Stream, c.

Flow • 3

140-180
180-225

1.3
1.5

3.9
4.5

156
202.5

358.5

Hot

Stream, h.

Flow - 1

300-200

200+-200"

200"-140

0.6 0.6

* (phase change) •

1.2 1.2

-60

-100

-72

232

Hot

Stream, h

Flow - 4

280-100 0.8 3.2 -576

Table 1. Data for 4 Stream Example Problem. A T . is 20° for the problem.
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Figure I
Cooling Curves for Streams h. and h and Heating Corves for Streams c
and c for Example Problem.



Solution

Hohmann (1971) presented a straightforward method to solve the

minimum utility problem. He developed two curves — one the "super cooling

curve" formed by merging the curves for all the hot process streams and

one the "super heating curve" which merges the curves for all the cold

process streams. On a T versus enthalpy flow diagram, these curves can be

moved arbitrarily to the right or left and thus placed so the super

cooling curve is below the super heating curve. The cooling curve is moved

toward the heating curve until there is a minimum vertical distance

occurring between the curves which equals the minimum allowed AT driv-

ing force the designer will permit in any heat exchanger. Figure 2

illustrates for our example problem with AT . = 20 . This point of raini-
min

mum AT is termed a "pinch point" for the problem. By construction the

curves are in exact heat balance where they are vertically above and below

each other. If these super streams existed and were placed in a counter-

current heat exchanger, the temperatures of each side would follow the

opposing trajectories shown. The pinch point precludes further exchange.

The heating of the cold streams yet to be done, if any, represents the

minimum hot utilities needed and the cooling of the hot streams yet to be

done, minimum cold utilities. Both are identified in Figure 2.

Linnhoff and Flower (1978) note that no heat can pass across the

pinch for a minimum utility solution. One can prove this observation

easily by examining Figure 2. Suppose one attempted to use heat from the

merged hot process stream above the pinch to heat the merged cold stream

below the pinch. Such a move would bring the merged cold, stream below the

pinch closer to the hot at the pinch, causing one to have to move the cold

stream to the left to regain AT . as the driving force at the pinch.
in in
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By moving the streams in this manner relative to each other, one must be

increasing the requirement for utilities.

We wish to automate and generalize the Hohmann procedure. Using

their problem table formulation, Linnhoff and Flower (1978) show how to

solve the minimum utility problem if each stream is represented by

segments of constant heat capacity* versus temperature. We take their ideas

as our starting point, describing the task to be accomplished from a

somewhat different viewpoint. This viewpoint will give us significant

problem reduction insights.

We too shall assume that the cooling curve for each stream can be

approximated by straight line segments. This assumption is actually very

realistic and can always be made in a safe manner by linearizing below the

curve for hot streams and above for cold streams. Keeping the linearized

curves at least AT . apart will guarantee" the actual streams are that

min

far apart. Most streams, even those undergoing phase change, require only

a few segments to approximate their heating or cooling curves reasonably.

Co/ineji Point* and Pinch

If the streams are all linearized as described, then the super

curves of Hohmann are also built up of straight line segments as we see in

Figure 2. Our goal will be to locate the pinch point for any given

problem. Clearly we can state the following: 1) if it exists the pinch

point occurs at a "corner" point for either of the two merged super

curves, 2) not all corner points can be pinch points.

Corner points are where the super curves change slope. Clearly only

a corner point where one curve approaches and then breaks away from the

other curve can be a pinch point candidate. We can write the following

relationships to test a corner point to see if it is a candidate pinch

point.



Cold Curve Corner Point j

Candidate only if

Hot Curve Corner Point

Candidate only if Y (FC ) < Y (FC ) (2)
La P i *•* P i

where sets I+ ., I~ . are the cold streams contributing to the merged

heating curve just above and below corner point j, respectively, and sets

I* . and I~ . are similarly defined for the merged hot cooling curve at

corner point I.

The above tests are generalizations of an observation by Grimes

(1980), where he notes that if all streams are represented as single

straight lines, then only stream inlet temperatures need be considered to

solve the minimum utility problem. For this case corner points along a

merged super curve will only occur where streams enter or leave the curve.

Where a stream enters, the above tests will keep that temperature as a

candidate pinch point; where it leaves, the point will be rejected.

Cerda (1980) notes that no temperature need be considered if it is

out of range, i.e. if it is along the merged stream and is more than

AT . above or below any of the temperatures spanned by the other. We can
m m

use this test to reject corner points as candidate pinch points also.

These two rejection tests will frequently eliminate about half of

the corner points, which, as we shall see, will reduce our problem size to

about 25% of its apparent original size, a significant reduction.
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Hot

Cold

T

300

280

200+

200"

140

100

100

140

180

190

200

225
250

3.8

4.4

3.2

0

2.0

6.1

14.5

12.5

5.5

1.0

•"
4.4

3.2

0

2.0

6.1

14.5

12.5

5.5

1.0

0

Disposition

Reject. Too hot. (alia Cerda)

Reject. Too hot.

Keep.

Reject.

Reject.

Reject.

Keep.

Keep.

Keep.

Reject.

Reject.

Reject.

Reject.

Table 2. Corner Points for Super Curves in Figure 2 and their Disposition
as Candidate Pinch Points.

Table 2 lists all corner points for our example problem and whether

they need be accepted or can be rejected as candidate pinch points. Note

only one hot and three cold corner points out of 13 total need be kept.
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The problem can now be partitioned at the candidate pinch point

temperatures. The hot candidate points are first projected onto the cold

super stream and vice versa. As noted by Linnhoff and Flower (1978), this

projection is offset by AT , thus the hot candidate pinch points pro-

ject down AT . onto the cold stream and the cold project up AT .

onto the hot stream. Table 3 lists the hot stream and cold stream in-

tervals created by this partitioning.

erval

1

2

3

4

Hot

j»

120°
160°

200+

Stream

to 120°

to 160°

to 200*

to •

Cold

100°

140°

180°

Streams

to 100°

to 140°

to 180°

to •

Table 3. Temperature Intervals Created by Partitioning at Candidate Finch
Points. A T . a 20°. Temperatures not underlined are caused by
projection ¥ram other stream.

Note we project the cold stream candidate pinch point at 100 onto

the hot stream at 120°, the 140° onto the hot at 160° and so forth.

We now show that this partitioning is done as described to permit us

to write thermodynamic constraints for our problem. We note that heat can

be exchanged among and within the intervals as follows.

1) Hot interval is above (hotter than) the cold interval —- Heat can

always be transferred from a hot stream at a hotter interval to a cold

stream at a lower one. For example, heat in interval 4 for a hot

stream can always transfer to interval 3 or below for the cold stream.
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2) Hot interval is below (colder than) cold interval No heat can

transfer from the hot interval to the cold one because the hot

interval is everywhere too cold, except for perhaps the hottest point

which, after removal of an infinitesimal amount of heat is more than

ATmin c o l d e r than «v^*y temperature for the cold interval. For example

heat in hot interval 3 cannot transfer to cold interval 4.

3) Hot interval is the same as the cold interval — Heat can always be

transferred between the merged streams within the same interval to the

extent it is available as needed, i.e.

q £ Min (heat available, heat needed)

for the interval with equality always possible.

Isolate the interval and move the cold super stream to be below the

hot until it pinches. From the manner in which the intervals are defined,

the hot end or the cold end of the interval must be pinched. At the pinch

end, both curves are vertically aligned — i.e. both start together at the

pinch. Moving away from the pinch, the curves are in heat balance

vertically and everywhere at least AT . apart. Thus one can transfer

heat until one or the other of the two curves is satisfied. QED.

TnxuiAponjtatLon 9n.obJLem Fo/unuUjoutLori

We can now model the minimum utility calculation as follows. Let c.

be cold stream i in interval k and h.a be hot stream j in interval

i. Define a., as the heat needed by c.,, which can be readily calculated

after partitioning. For example the heat needed by cold stream c in

interval 3 (140° to 180°) is a13= 88 units (see Table 1). Similarly define

b as the heat available from stream h.fl. Lfet q., be the heat
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transferred from h.. to c... The q , are to be calculated. Assume

there are L intervals (equals 4 for our example problem - see Table 3).

Let there be C-l cold process streams and H-l hot process streams in

our problem. Then the cold utility will be the C— cold stream and the

hot, the H— hot stream. Assume the heat needed by the cold utility is at

the lowest level in the problem. Also assume it is in sufficient quantity

to satisfy all the hot process stream cooling needs, i.e. we require

H-l L

j-1 X-l

Assume similarly that the hot utility is available at the highest level

and is in sufficient quantity to satisfy by itself all the cold stream

heating requirements.

C-l L

\kSL' X X'l
i-l k-l

Lastly assume the problem is in heat balance overall.

C-l L H-l L

*~* + ) / *n. " *m + ) / b,£ (5)
Cl « « ik HL fcj " JJ»

i-l k-l j-1 X-l

The above simply say, choose both a^. and b-.. to be large numbers. Then

adjust them so the entire problem is heat balanced.

We can now write our transportation model for the minimum utility

problem as follows.



14

Subject to
H L

C L H L

k-lt2,---fL

(7)

C L

f o r a n d

where

0 for i and j are both process streams and
match is allowed, i.e. k ̂  X#

0 for i and j are both utility streams

(1 - C 9 J - H ) .

1 only i or only j is a utility stream

M otherwise, where M is a very large (think
infinity) number.

(10)

Equation (7) says that the heat required by cold stream i in interval k

must be satisfied by transferring heat from somewhere among the hot

streams. Equation (8) is a similar statement for hot stream j in interval

£ it must give lip its heat somewhere to other streams. (9) says all

heats transferred must be nonnegative, that is no heat can flow from a

cold stream to a hot one. (6) is the objective function to be minimized,

with cost coefficients defined by (10). No cost is associated with an

allowed process stream - process stream match or from the hot utility to
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the cold utility (this latter match would never be implemented in a

network). Utility-process stream matches are given a nominal cost per unit

of heat in the match so they will be used only if the free matches do not

solve the problem. Thermodynamical ly disallowed matches are given a near

infinite cost to preclude their being part of any optimal solution.

The above is a classical transportation problem for which a very

efficient solution algorithm exists (see Dantzig (1963) for example). It

is usually visualized by setting up a "tableau", as illustrated in Figure

3 for our example problem. The columns are for the hot sub streams and the

rows for the cold substreams.

Each entry is a "cell" which can contain 3 numbers. The upper right

is the cost coefficient, C, . The bottom number is the assigned
IK , J fs<l-̂  •• f°r tke match; the upper left we will discuss momentarily. For each

IK, J*

row a,, is given to the far left and for each column b to the very
ik j *

top. We place the hot utility column (labeled H) to the far right and the

cold utility column (labeled C) to the bottom. Cells have been marked "I"

if they are thermodynamically infeasible, i.e. if k > for entry q.. ...
IK, jt

Thz JnJutiaL SoJjJutJjon

The transportation problem algorithm requires an initial feasible

solution. If we are careful, this initial solution is frequently already

optimal. A row and column reordering algorithm has proved very effective

to help get a good initial solution. Simply reorder all process stream

rows such that the number of infeasible cells decreases from top to bottom

and all process stream columns such that they decrease from right to left.

For ties, place the higher temperature cells toward the top and to the

left. Figure 3 is ordered in that manner. If only thermodynamic con-

straints are involved, tie breaking is unnecessary.



200+o 160° 120 -00

aik

230

202.5 c

156

80

10,051.5

V

00

C14

2 4 180°

'13

23
140°

inn0

- oo

60

h14

1°
60

h
1"
1°
1°
h
0

256

h24

1 °
170

I »
86

| 0

I °
I "
I '
0

148

h13

M

I

M

I

0

88

0

60

0

1

2

128

h23

M

I

M

I

0

0

96

0

32

1

2

24

h12

| M

I

| M

I

| M

I

| M

I 1

1°
24

h
2

128

h22

M

I

M

I

M

I

M

I

0

24

1
104

2

6/ \

h21

M
I

M

I

M

I

M

I

M

I

1
64

2

10, 000

H

1

1

116.5
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FIGURE 3

Transportation Problem Tableau for Example Problem.
Tableau shows Initial feasible (and optimal) solution.
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Once reordered, we apply the following slightly modified "Northwest

Algorithm11 to get our initial feasible solution.

1. Start in the upper left (northwest) corner.

2. Hove from left to right in the uppermost row to the first column

having a cost less than M, finding the cell corresponding to row c.,,

column h .
J *

3. Assign qik .^ Min(aik> b ) to the cell.

4. Decrement both a., and b by '(?-ic-i«
#

5. Cross out the row or column which has its heating or cooling re-

quirement a., or b reduced to zero.

6. Repeat from step 2 until all rows and columns are deleted.

In Figure 3, we start with row c., and column h.,. We assign q., = 60 =

Min(23O> 60) to the cell and cross out column h ^. a., is now equal to

170(= 230-60). Starting again at step 2, we identify row c., again and

column h~,. We assign 170 units to this cell, cross out row c., and reduce

b~, to 86. The rest of the tableau is filled out the same way. Note row 2

has to go all the way to the hot utility to complete its need for heat.

If only thermodynamic constraints are involved and if AT . is

the same for all matches, then one can readily demonstrate the above is

repeating the same calculations needed for the problem table of Linnhoff

and Flower (1978). Thus the initial solution is always optimal for such a

problem. We can read off the minimum utility requirements as 116.5 units

of heating and 104 + 64 = 168 units of cooling, which agrees with the

Hohmann calculation we did in Figure 2. The 9883.5 units of heating by the

hot utility and assigned to the cold utility is a "dummy11 number and is

ignored.
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To locate the pinch most easily, we should first discuss how to

solve a transportation problem, which we shall do momentarily.

We might note the reduction of the problem size resulting from only

including the temperatures which are potential pinch points when

partitioning. The partitioning of Linnhoff* and Flower (1978) would have

included every corner point in the problem, i.e. hot temperatures 300°,

280°, 200°, 140° and 100° and cold temperatures, 100°, 140°, 180°, 190°,

200°, 225° and 250°. The combined set of hot temperatures (after

projecting the cold onto the hot) gives the following list: 100°, 120°,

o o
140°, 160°, 200" , 200* , 210°, 220°, 245°, 270°, 280° and 300°. A

corresponding list 20 colder exists for the cold streams. For our example

problem we would create a tableau having 13 cold substreams plus the cold

utility and 18 hot subst reams plus the hot utility to give a tableau with

14 x 19 ss 266 cells versus (see Figure 3) a tableau with 48 cells. Here

the reduced problem is only 18% the size of the full one. As we shall see

a calculation is needed for every cell if we need to check for optimality

so the reduction is real in terms of work required for solving.

Non Thzxmodynamlc

With a mathematical formulation for the minimum utility problem, we

can add certain types of constraints trivially. One can readily . add

constraints to preclude the exchange of heat between selected process

streams, either in part or totally. For example a match may be undesirable

because the two streams would be unsafe if mixed accidentally because of a

leak in an exchanger. Other reasons for rejecting a match are that the

streams may be physically too far apart and both vapor, thus requiring

expensive piping to get them together, or the exchange may be a problem

for control or startup.
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The engineer could first solve the minimum utility problem with only

thermodynamic constraints. He could then selectively preclude matches or

part matches and discover the impact, on the minimum utilities required. If

the impact is too high, he can reconsider the validity of the constraint.

To add user imposed constraints, we' repeat the same procedure we

used earlier. The difference is that we can only merge hot or cold streams

over the temperature ranges where they are treated identically. Also the

initialization algorithm is no longer guaranteed to yield an optimal

solution. We illustrate these ideas by example. We shall solve our example

again but this time disallowing heat exchange between c. and tu above the

bubble point (180 ) of c. . To be safe we disallow any exchange above 175 .

We now must treat c. and c~ differently (and thus unmerged) above

175 . The corner points are found for c. and c~ merged up to 175 then

found individually for c^ and c~ above that point. Also we must treat h.

and h- differently here we could limit this different treatment to

above 195 • The resulting candidate pinch points will be found to be: cold

o
100°, 140°, 175° and 180° and hot 200+ , and 195°. Projecting the

temperatures gives the final hot stream partitioning temperatures of
o

-•, 120°, 160°, 195°, 200+ , and •• Cold stream partitioning tempera-

tures are 20 colder. Figure 4 is the solution tableau for our problem,

showing the first feasible solution found by using the modified Northwest

Algorithm. Three cells are disallowed over those not permitted because of

thermodynamics, and they are marked with a "D" and given a cost of "M". If

this solution is optimal, and we shall see in a moment that it is, then

minimum hot utilities are increased from 116.5 to 170 (by 53.5 units).

Cold utilities, by heat balance, must also increase by 53.5 units, which

they do. Thus the restriction causes a 37.6% increase in total utilities

used. One can now ask if it is worth that increase.
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Can Be Exchanged between c- and h- above 175 •
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We need to decide if the solution is optimal. To do so we give the

steps for solving a transportation problem without justification. The

algorithm will be seen to be very simple, and we shall show how to find

the pinch points in the result.

To solve a transportation problem, given a first feasible solution,

proceed as follows.

1. We must first establish for each row a "row cost11, P.j* and for

each column a "column cost", Y,.« We show row and column costs along

the right side and bottom of the tableau. Start with the top row and

assign it a row cost of zero. (We set y.- to zero.)

2. For any row c, for which a row cost is already assigned, find an

active cell (q.u .. > 0) in that row. Assign a column cost Y.. for

the column corresponding to the active cell, such that

(Set Y 1 5 to 0 so 0 + 0 = 0.)

3. Repeat step 2 for assigned columns to set row costs.

4. Repeat steps 2 and 3 as needed until all row and column costs are set.

(Set YH to 1, set PC to -1, set Y 2 3 to 2, etc.) Row and column

costs resulting using this algorithm are shown in Figure 7. Continue

as follows.

5. For every cell (or at least every inactive cell) write

- Pik

into the upper left corner of the cell
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6. If no cell exists where £ > C. , exit. The current tableau

is optimal. Otherwise continue.

For our example, the tableau is found to be optimal. The steps needed if

not optimal are as follows.

7. For any cell with £., > C , find a loop of active cells

which this cell completes by moving alternatively down rows and

across columns. Such a loop will exist.

(Pretend cell (c2,, h..) is a candidate cell. A loop would traverse the

cells (clockwise) (c24> h15)t (c15, ^15)> (°i5» H^» ^c» H^» (°> h23^'

8. Mark the first cell (i.e. cell (c24, h15)) with a "+", the second

cell with a "-", the third with a "+", alternating "+" with "-"

around the loop. Note one must have an even number of unique cells in

such a loop so, when we reencounter the first cell, it will again be

marked with a lf+".

9. Find q.f .. of minimum value associated with a "-11 cell. Call it q . .
M ik , j t Tnin

(For our example q . = Min(60, 9830, 26.5, 43, 19.5) = 19.5 . )

10. Add q . to all "+" cells and subtract it from all lf-tf cells. Doing

this step assumes each row and column remains in heat balance, that

our initially inactive cell is now active and another cell (the one

originally set at q . ) is now inactive — breaking the loop.

We add 19.5 to all the "+" cells and subtract it from all "-" cells. Cell

(c^,, h«.) becomes inactive.



23

We would now have a new and better solution to our problem (if we

had had to continue past step 7). Repeat from step 1, establishing row and

column costs again, etc.

J<ien*jJ!ying, the. Pinch Point

The row and column costs identify the pinch points for our problem.

If row cost p., is different from p. . for stream i then the minimum
ik i K+1

utility problem pinches at the temperature which partitions the problem

between cold intervals c. and c. . 1« Similarly we can spot the pinch

points by looking at the column costs, Y...

For the problem in Figure 4, the pinch points are between c 1 5/
c
14

(i.e. at cold stream temperature 180 )• The change from 0 to 2 in

o
for hiC./hiy gives the same result — a pinch at hot temperature 200

+ .
o

., for h / h gives the same result — a pinch at hot temperature 200+

The proof follows from observing as we did earlier that no heat

crosses the pinch point. All C. ., are zero for active matches among

process streams so where one is zigzagging back and forth among hot and

cold substreams, the corresponding p., and y become the negative of

one another and do not change value. The pattern is broken at the pinch

point. One cannot carry the value of a row or column cost directly across

the pinch because no heat crosses the pinch. The row and column costs on

the other side of the pinch point must be generated by first passing

through the cell in the lower right belonging to the interchange of heat

between the hot and cold utilities. One then sets these row and column

costs by zigzagging back up to cells just below the pinch. Passing through

this zero cost cell changes the p., and y by the sum of the costs as-

signed to the utility/process stream matches (here 1 + 1 = 2 ) .

The row and column costs have been developed in Figure 6 also; the

pinch is between levels 4 and 3, corresponding to a cold stream tempera-

ture of 180° and hot of 200*, the same as above.
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Minimum Utility Cost Problem

Often several different hot and cold utilities will exist in a

problem. For example steam may be available at several different pressures

and thus at several different condensing temperatures. Aside from cooling

water one may also have brine or one may propose to "raise" steam with

excess heat at prescribed pressures. We can deal directly with this

problem as a transportation problem if all heating and cooling can be

treated as occurring at point temperature sources — i.e. each operate at

a single temperature. Condensing steam is readily handled, therefore.

Unfortunately cooling water is not a point source in terms of temperature

as it is heated when it passes through the process. We shall first assume

point temperature sources for all utilities and show how to set up a

minimum utility cost problem as a transportation problem. We shall then

discuss how the problem must be solved for nonpoint sources.

For (temperature) "point utility sources", add the temperatures for

the utilities to the candidate hot and cold pinch points used to partition

the problem. Change the costs C.. ., for utility-process stream matches
1K,JX>

to reflect the per unit cost of the utility involved. When initializing

using the Northwest Algorithm, always use the least expensive utility

possible when utilities are needed. The "left to right" search along a row

and top to bottom search along a column will work if the least cost

utilities are listed to the left or to the top of the more expensive ones.

Otherwise, solve as before.
We note that the actual C M used for utility costs need only set

ikfjX

a rank ordering among the hot utility stream costs or the cold utility

stream costs. Assume utility streams cost us money. Therefore, for a

minimum cost utility problem, one will never use more than the minimum
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total amount of utilities found in our earlier formulation. The only

question is how to divide the utility heating and cooling requirements

among the utilities available. Clearly we will use the least expensive hot

utility until no more hot utility is needed or until it can no longer be

used thermodynamically i.e. until it pinches with the cold process

streams to which it is supplying heat. Being the least expensive is all we

need to know, not its exact cost. The argument should now be obvious.

Thus we need only assign relative costs to utilities, with these

relative costs usually reflecting the temperature level. Hotter hot

utilities are generally more expensive than colder ones; similarly, colder

cold utilites are generally more expensive than hotter ones. The peculiar

case of "raising19 steam is handled by still assuming that the steam

raising "utility11 costs money but less than cooling with cooling water. If

the cost is made less than zero (i.e. reflects making a profit) the

problem solution may no longer involve minimum total utility usage, and if

it does not, the solution will in fact be unbounded. One will have

unfortunately set the costs so it is profitable to turn a hot utility into

a source of heat to generate steam, an unlikely real world situation or at

least one superfluous to the problem at hand.

Figure 5 shows the tableau for our example problem if we have two

sources of heating one at 205 and one at 300 degrees. Only

thermodynamic constraints are considered. Mote, two pinch points exist,

one at (2O5°/185°) and one at (2OO+/18O°). Grimes (1980) observed that

there must be one pinch point for each utility past the first in a minimum

utility cost problem.

Also note that we use 63 units of the more expensive utility, H-,

and 53.5.of the less expensive colder utility, H1. Costs assumed for H

and H~ were only to rank order them; i.e. H1 has a cost of 1 and H. of 2.
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Hĵ  1B available at 205° and Is less costly than H,



27

A/on Point Temp&i&tusie. ConsvOiairub*

A utility stream which provides its heat or cooling in total or in

part as sensible heat or is mu It i component and passes through a phase

change can significantly complicate the minimum utility cost solution

procedure. Let us speak specifically about cooling water as our example

utility of this type. Normally onB uses cooling water by heating it ttam

some available inlet temperature (say 37°C) to an allowable exit

temperature (say 50 C). The problem arises if cooling can be done at 37°C

but 50 C is too hot. Then one must use more cooling water until its exit

temperature is low enough to do the cooling needed. In the limit of a

point-temperature source, one would use an infinite amount. If the cooling

water cost is proportional to the amount used, then cost is affected by

its exit temperature.

Two flows are significant for such a* utility: 1) the minimum flow

which results if the entire temperature range (from 37 C to 50 C) can be

used and 2) the maximum, flow such that the cost per unit of cooling makes

it more expensive than a colder utility, say brine.

For such a utility, we can establish the flow per unit of heat as:

F/Q « V J Cp d9
Tin

and for each we can plot cost versus T as shown in Figure 6 where C^ is

the cost per unit flow. If T for cooling water falls below T1, then one

should switch to brine as a coolant.
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To solve a minimum utility cost problem with a non point-temperature

utility, first solve the minimum utility cost problem as if its tem-

perature everywhere were its inlet temperature i.e. treat as a

point-temperature source utility. Use as its cost/unit of heat, the cost

resulting from allowing it to heat or cool through its maximum temperature

range -— i.e. its least cost/unit of heat.

Next set the flow to that at which it ceases to be less costly than

another utility — the flow corresponding to exit temperature Tf in Figure

6 for cooling water. Treat the utility as a required process stream with

this flow, entering at its inlet and leaving at Tf; resolve the minimum

utility problem to see the impact when using such a process stream. If the

use of other utilities does not increase, then this utility should be used

as a heating or cooling source in a minimum utility cost solution. If the

usage increases for the other utilities, then it should be rejected as a

utility; in our example, brine should become the cooling utility instead.

The reason is obvious; its flow would have to increase beyond its maximum

economic flow to be part of a minimum utility usage solution. It is thus

too costly per unit of heating or cooling supplied.

Repeat the above for every non point-temperature source utility to

select the active utilities. Then, one at a time, we have to set their

flowrates as follows. The flows are bounded between F . (entire tempera-

m m *

ture range is used) and F , another utility becomes less expensive.

Figure 7 shows how the minimum utility usage should change versus flowrate

for such a utility. Change the flow to its minimum, again treat as a

required process stream and solve the minimum utility usage problem. If

the usage does not increase, the minimum flow is the solution. Otherwise

we have to search for the flow, F (see Figure 7). Increasing the flow
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Minimum
Utility
Usage

t

Flow

Figure 7

Effect of Varying Flowrate for Bon Point Temperature Utility

on Minimum Utility Usage.
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will decrease total other utility usage for the problem up to flow F ; it

will then have no effect. We seek therefore the flow F as our minimum

utility cost solution.

The search should be done at low flows, e.g. at F . and F . +
m m mxn

AF. Assuming a linear behavior these two solutions can be used to project

to F , our next guess. The search can use a one dimensional secant method

together with an interval reducing method; it will be rather quick.

Fortunately each utility of this type can be dealt with separately, a

significant problem decomposition.

Match Dependent AT .

We now consider the last topic to be covered in this paper: how to

solve the minimum utility usage or cost problem when AT is not the

same for every match allowed. We shall discover first why this problem is

an important one and then how to solve it.

Suppose we have two streams we will not allow in the same exchanger

because a leak would lead to too dangerous a situation or because the

streams are both vapor and far apart, leading to very costly piping

requirements. We may want to know the impact of using a third fluid as

illustrated in Figure 8 as a heating/cooling loop between them on utility

usage.

We see that, if such a fluid could be found, it will exchange heat

in two exchangers, thus doubling the required AT . needed between our

two original process streams. We could thus model the minimum utility

usage, where some streams can only exchange heat indirectly, by simply

doubling the required AT . for them. Note there is a significant impact

on exchanger area required over a direct exchange at the larger

AT, essentially increasing it by a factor of 4 since the driving force is

halved and two exchangers are needed.
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Indirect Transfer of Heat between a Hot and a Cold Stream.
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To solve we shall discover we only need to change the step where we

project hot stream candidate pinch points onto cold streams and vice

versa. The consequence is not negligible as we will create an enormous

increase in the number of partitions for our problem.

To explain is best done by example. Suppose we resolve our problem

where ct and h~ were allowed to exchange heat only below 175 . We how

state that they can indirectly exchange heat above the cold stream

temperature of 175°. We shall model this possibility by requiring a 40

minimum driving force above 175 for c. between streams c. and iu. The

candidate pinch points for the streams are almost the same as before: c. —

o
100°, 175°, 180°; c2 140°; i^ 200+ ; and in addition h2 280°

since ho is now less than 40 (= 2AT . ) hotter on entry than c. is on
L m m l

exit (250°)•

Figure 9 shows the required temperature projections for this probl-
1 lf o

em. We break c« into c. and c. at 175 for convenience. It is best to

explain the projections one at a time. We start with the inlet temperature

for ci at 100°. Below 175° for c. the AT . between it and ho is only
1 1 m m 2

20° so we project the 100° onto h2 at 120°.

Next consider 140 on ĉ « This temperature projects onto both h1 and

h- at 20 higher or at 160 • The 160 on both h. and h_ project back onto

c1 at 140 . So much for the easy ones.

Now consider 175 on c. . It projects onto h at 195 and onto h-

at 215° (i.e. 40° higher, not 20°). The 195° on h projects onto c2 at

175 . The 215 on lu projects back onto c2 at 195 which projects onto h

at 215 which projects onto c. at 195 . Unfortunately we are Moff to the

races11 now because 195° on c. projects onto h- at 235° which projects

onto c2 at 215°, back to \i at 235° and onto c at 215°. The 215° on c

continues: 255 on h-, 235 on c2, 255 on h , and, panting, it stops
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since c~ has no portion at 235° for h to project onto. The 280 inlet

temperature for h- projects as follows: 240 onto c. , 260 onto h.. The

+° o ff o ft

200 temperature on h. projects as: 180 on c. and c-, 180 on c. to

220° on h- to 200° on c^, 220° on h. to 200° on c-, etc.

Figure 10 shows the resulting intervals for this problem as well as

an initial feasible solution. The temperature levels are identified by

their ranges rather than by a second subscript as labeling them by a

second subscript is no longer obviously done. Utility usage is back to the

minimum found for .the unconstrained problem (Pigure 3) so this initial

feasible solution must also be optimal. The use of indirect heat transfer

has therefore returned our utility requirements back to their original

minimum value.

The row and column costs (p., and Y..) are also shown so we can
IK j* •t

locate the pinch point for this problem. The p., change values when c.
o

and co cross 180° and y.m when h. and ho cross 200 ; thus this point is

the pinch point for the problem.

If one chooses to stop the projecting of temperatures back and

forth, say only up to a single repeat reflection on a stream, then, if one

is careful about identifying infeasible cells in Figure 10 as those for

which at least a 20° driving force is not available, the solution found

will be an upper bound on the minimum utility usage. This bounding follows

because more partitioning leads only to more chances for heat exchange

between streams.

Discussion

^—- Three earlier works formulated the heat exchanger network synthesis

problem as a problem involving a linear programming model () These

earlier formulations led to an "Assignment11 or "Set Covering" problem
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rather than a "Transportation" problem. The Assignment problem is well

known and also has a very efficient solution algorithm available to solve

it.

The approach was to partition each stream into small equal portions

involving "Q" units of heat each, rather like slicing a carrot into small

equal sized bits. Constraints preclude matches not possible thermo-

dynamically. The solution has every hot bit of Q heat units matched to

exactly one cold bit of Q units for another stream. The notion of a pinch

point was not mentioned in this approach. Also the assignment problems

created are very large relative to those created here, and it is unable to

determine the precise minimum utility for two reasons: 1) the inaccuracies

caused by the "slicing11 and 2) the pinch point will likely appear in the

middle of a slice. Thus, while we can advocate solving moderately large

problems by hand, they cannot.

The partitioning generated here is caused by the corners in the

cooling curves admittedly some are there due to approximating the

curves, but this partitioning seems the more natural one.

The handling of utilities which are not available at a single fixed

temperature for the minimum cost problem and the handling of match

dependent AT . *s are new with this work.


