
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IMPROVED INFEASIPLE PATH OPTIMIZATION
FOR SEQUENTIAL MODULAR SIMULATORS

PART I: THE INTERFACE
by

L.T. Diegler * S. Shivaram

December, 19^3

DRC-O6-M1-R3

Improved Infeasible Path
Optimization for Sequential

Modular Simulators
Part 1: The Interface

by

L.T. Biegler and S. Shivaram

hownRecently, it was shown that chemical processes modeled by steady-

state simulators could be optimized without repeatedly converging the

process simulation. Instead, optimization and simulation of the process

can be performed simultaneously (along an infeasible patliL, thus

leading to much more efficient performance.

In this two-part study, we describe several improvements to this

infeasible path approach. This first paper deals with improvements

to the interface between the optimization algorithm and the

process simulator. Here we are primarily concerned with obtaining the

necessary functional and gradient information for the optimization

with minimum simulation effort for the process. Thus, we consider the

architecture of sequential modular simulators, the structure of

process optimization problems and any sources of error in

obtaining the necessary information for the optimization algorithm.

To this end, we derive a chainruling algorithm that allows the

incorporation of analytic derivative information for parts of the

flowsheet and generally leads to less frequent evaluation of the

process flowsheet.

This algorithm is demonstrated on three process optimization pro-

blems. The results indicate significant improvement in performance.

SCOPE

Simulation of chemical processes by flowsheeting programs has

become a readily accepted and effective tool for process design and

analysis. In virtually all commercial environments general-purpose

simulators are based on the sequential modular approach. Here, all

- • • . - - . —- - . CARWEGitMELLCii UNIVERSITY
• PITTSBURGH: PENNSYLVANIA 1521?

equations and relationships defining the process are grouped into

modules, each corresponding to some unit operation in the flowsheet.

The order in which the modules are calculated normally parallels the

flow of material in the process and is thus rigidly defined by the

topology of the flowsheet.

While sequential modular process simulations are relatively

easy to construct, analyze and run, the rigidly defined calculation

sequence makes them useful only when doing performance or rating

calculations. Design or optimization studies, on the other hand, are

usually prohibitively expensive because the simulator lacks the

flexibility in calculation order to accommodate them. To allow for

greater flexibility when doing process simulation and optimization,

several prototype simulators have been developed using

equation-solving strategies (see e.g. Perkins (1983)). While these

simulators easily accommodate design and optimization calculations,

none has yet been able to handle problems as large as those routinely

handled by sequential modular simulators. Also, several hybrid

simulators that incorporate the desirable features of the above

strategies have been developed. Termed simultaneous modular (see

Biegler (1983)), this strategy has more flexibility than the sequential

modular mode, has handled fairly large process problems, and appears

to have great promise in future flowsheeting programs.

The inflexibility of sequential modular simulators is usually

encountered when information flow reversals appear in the flowsheet.

In design problems, for example, any process specification that cannot

be introduced as a flowsheet input parameter must be determined

iteratively. Process optimization can be thought of as an extended

design problem in which decision variables must be manipulated to find

the optimality conditions for the problem. To perform the

optimization, sequential modular simulators can be very inefficient if

a feasible simulation is required for every function evaluation. To

solve these problems more effectively, several researchers (Biegler

and Hughes (1982), Chen and Stadtherr (1983), Hutchison, et al (1983))

proposed the infeasible path approach. Here the tear variables and

recycle equations of the process simulation are added to the

optimization problem. Thus, recycle convergence, which is usually the

most inefficient part of the process simulation problem, is embedded

within the optimization procedure; satisfaction of the recycle

equations and convergence to the optimum occurs simultaneously.

Although this strategy has been efficient and effective in solving

process optimization problems, some problems in the implementation of

this strategy can impair the efficiency of the method. This paper

addresses the interface between the process simulator and the

optimization algorithm. Here we need to consider the structure of the

process optimization problem and determine functional and gradient

calculation strategies that require fewer time consuming flowsheeting

calculations while still maintaining the accuracy required for the

optimization algorithm.

Background

To motivate the development of an improved interface, we

briefly review the basis of the infeasible path strategy. Consider

the block flowsheet given in Fig.l. Here each block represents

a module or "black box" procedure. For simulation and optimization,

the convergence or optimization algorithm is totally unaware of the

process relationships within the modules. The cmly information that

generally can be determined is the response of a module to

prespecified inputs.

The simulation problem consists of solving the recycle equations

h(x,y) = y - w(x,y) = 0. All other process equations are solved

implicitly by the process modules and stream interconnections in order

r

to calculate w. To converge, we merely manipulate y .so that w and

y match*

The process optimization problem posed by the engineer is usually expressed

in the following form:

Nin 0(x)
x

s.t. g(x) £ 0

c(x) = 0

Here, he has selected a set of decision variables x, an objective

function ff(x), typically of economic form, and a set of process

limitations or product specifications, g, and design constraints, c.

To solve the optimization problem, the engineer naturally assumes that

the process simulation problem has been converged before evaluating

the constraint and objective functions. For the infeasible path

algorithm this is not required. Instead, we augment the above problem

by adding tear variables and recycle equations to form:

Min tf(x,y)

s.t. g(x,y) £ 0

c(x,y) = 0

h(x,y) = y - w(x,y) = 0

Because of the "black box" nature of the flowsheet, the

optimization problem must be defined explicitly by a set of parameters

accessed through the simulator; we choose a vector of retention variables,

r, to explicitly calculate the objective and constraint functions.

From Figure 1, it is easy to see that these dependent variables are implicit

functions of y and x. Thus the problem that we will deal with for flowsheet

optimization is given by:

Min ^(r(x,y), x)

s.t. g(r(x,y), x) £ 0

c(r(xfy)f x) = 0

l»(x,y) = y - w(x,y) - 0

V X * X

To solve this problem, any optimization algorithm that handles

nonlinear equality constraints, without requiring their convergence

for each function evaluation, can be applied. Among the most efficient

of these are the MINOS (Murtagh and Saunders (1978)) and SQP

(Han (1977), Powell (1977)) algorithms. MINOS is designed to handle

large, "mostly linear" problems efficiently since it performs a full

optimization in the subspace of the constraint normals. However, since

many of the active constraints are nonlinear tear equations, several

constraint linearizations will be required before converging to the

optimum. The SQP algorithm, on the other hand, minimizes a quadratic

approximation of the Lagrangian with each constraint linearization.

The resulting quadratic programming problem (QP) is formed using only

one gradient and function evaluation from the nonlinear problem. The

Hessian of the Lagrangian in the QP is derived from quasi-Newton

updates (see Dennis and More, 1977).

Thus, the SQP algorithm solves a much simpler problem than MINOS

for each linearization of the constraints. Previous studies (Powell

(1977), SchittJcowski (1981), Stadtherr and Chen (1983)) have shown that

SQP outperforms most of the other nonlinear programming algorithms

on small problems, although their studies did not include MINOS.

At each iteration the following quadratic program is

formulated and solved:

Min l((zi)Td + I d T B d
d 2

S.t. q(zl) + V 17

c(z i) T d = 0

+ V h(z1)T d =

, £ z £ zI u

The QP solution, d, is then used as a search direction for the next

point. A stepsize, X # is next chosen along this direction for which

some merit function, measuring objective function improvement and

constrianit infeasibility is minimized. Most studies have chosen the

m meq

exact penalty function (P(x) = f (x) + £ r max[O,g (x)] + £ s. Ih.(*II)

j=l J J j=l J J

as the merit function and have reported encouraging results. Others

(Chamberlain et al (1979), Biegler and Hughes (1982), Chen and

Stadtherr (1983)) have used the watchdog algorithm which uses either a

Lagrangian or exact penalty function for the line search.

We defer further discussion of the SQP algorithm and our

improvements over existing methods for our companion paper (Biegler

and Cuthrell (1983)). In this paper we use the watchdog algorithm used

in Biegler and Hughes (1982) and present a more efficient method for

obtaining gradient and function information, from the process

simulator. Specifically, we discuss strategies for chainruling

derivative information, calculating and incorporating analytic

Jacobians, and selecting the "best" flowsheet tear set for

optimization.

Gradient Calculation Strategies

To obtain the gradient information for the QP, one can easily

take advantage of the calculation,sequence prespecified by the engineer.

The most straightforward way would be to perturb the entire flowsheet

once the recycle streams are torn. Here a flowsheet pass is

required to evaluate r and w, and is repeated for each per-

turbation of x and y. This strategy, termed direct loop perturbation,

was described in a previous paper (Biegler and Hughes (1982)).

Note from Figure 1 that design variable perturbations usually require

only partial flowsheet evaluations since modules and dependent

variables upstream of design variables are unaffected by perturbation.

For direct loop perturbation, the number of module evaluations

required for gradient evaluation is:

VCS NT ND

NBE = I (T (NCP + 2) Jtij + £]

where NBE - number block evaluations
NCP - number of components (component flow rates, pressure

and enthalpy are perturbed because they thermodynamically
define a stream)

NT - number of tear streams
tt) - number of blocks from tear or design variable i to

iJ the jth
terminus in the calculation sequence.

ND - number of design variables
VCS - number of termini of calculation sequence (number of

tear streams plus any retention variables downstream

of all tear streams).

As seen from the formula, gradient calculation using direct loop per-

turbation can be prohibitive. This method, however, is very easy to apply

since it merely involves repeating the simulation calculation sequence for

each perturbation. Consequently, one can implement the optimization

routine merely by substituting an "optimization block" for the recycle

convergence blocks.

A harder to implement gradient calculation strategy employs the

concept of chainruling. Writing the gradients for the QP in terms of

intermediate values gives:

x ox dx dr
(2)

V " * * for Y = ̂ , 8 , h

v h - i
y

The partial derivatives ^— and ~- can be specified analyticallyr ox 9r

since jf, g and c are written explicitly in terms of x and r. The derivatives

gu |cu gr a n d |£ c a n ^ constructed by chaining
dx , 9y , ay ay

Jacobian matrices for each unit according to the calculation sequence of the

flowsheet. From Figure 1, it is easily seen that:

aw _ ay ay ay aco

3y a 3y- ^ - i ^ ^

3w 3yt ftco

ax ax "Jn

ar ay, hy~ dr
_ 1. ^ • • • 5~"

^ —• ~ ^ oy
oy oy oy.. m

ar = ay. ay ar
ax ax aym - i aym

Note that the variables y and x initiate chains and the variables r

and w terminate them. Although this method is more difficult to

apply on sequential modular simulators than direct loop perturbation,

it offers several advantages. First, the number of block evaluations

for gradient calculation is:

NBE = NCS(NCP+2) +ND (4)

where NCS is the number of internal streams in the
calculation sequence.

Note that design variable perturbations require far less effort since

their derivative information is chained through modular Jacobians.

These savings can be considerable if decision variables are

encountered at the beginning of the calculation sequence. It should be

mentioned, however, that chainruling requires extensive changes to the

simulator executive with additional overhead for matrix manipulation,

retrieval and storage. Also, the relative efficiency of chainruling

r

over direct loop perturbation is clearly dependent on the structure of

the flowsheet and the optimization problem. For example, Fig. 2

presents a simple flowsheet where direct loop perturbation is

significantly more efficient than chainruling.

The main advantage of the chainruling strategy is that it allows the

prespecification of full or partial analytic Jacobians. While many unit

operations do not have Jacobians that are easily calculated, some or

W-11all values of Vdy~ / c a n be determined analytically for some

units. These are described in the next section.

Analytic Jacobians

In this section we wish to explore the following concept:

Given that we know the type and structure of a particular

module and its input and output streams, how many

perturbations can be saved ?

Clearly, if nothing is assumed about the module, all input stream

perturbations (flowrates> pressure and specific enthalpy) are required.

One easily sees that all perturbations are required fpr module k even if

\T
only one row of I s I or l-r— m I cannot be derived analytically.Wi) or V*t-i/
Figure 3 gives Jacobians for six module types: mixer, splitter, simple

component separator, valve, pump and compressor. (The last two module

Jacobians require additional pressure perturbations to be calculated

completely). More Jacobians can be derived for other units under

certain conditions (e.g. heat exchangers with fixed heat duties and

most units using ideal physical properties), but otherwise we require

more than input-output information from the modules.

Once the Jacobians are calculated, the chainruling strategy

follows the calculation sequence specified by the simulator. The

number and configuration of tear streams presents no problem since

Jacobians are defined as the partial derivative of all output stream

elements with respect to all input stream elements. Therefore, the

r

propagation of the different chains is merely a bookkeeping task

given directly by the calculation sequence.

Tear Set Selection

From the structure of the flowsheet and the type of gradient

calculation, one can easily derive optimal tear strategies for the

optimization problem.

The calculation sequence is largely determined by the objective

function, constraints and decision variables as well as by the

process flowsheet. This sequence extends from the variables x and y

that are encountered furthest upstream to the variables r and w that

are furthest downstream. From the flowsheet in Fig. 1 it is easy to

see that the variables r and x do not participate in the optimimzation

problem because they do not satisfy the above rule, r is not not

affected by any decision variables downstream from it and x does not
3

affect any upstream retention variables. Of course, such variables

will only be encountered on acyclic portions of the flowsheet.

For direct loop perturbation, the optimal tear sequence could be found

rigorously by minimizing the number of perturbations defined by equation (1)

subject to the constraint that all loops be torn. To avoid this

set covering problem, one Ncould use the heuristic of minimizing the number

of tear streams and choosing among these solutions the tear set that

minimizes the effort of design variable perturbations.

From equation (4) one sees that the perturbation effort required by

chainruling is independent of the tear sequence. The only effect in the

;gradient calculation strategy is the number of chains created and propagated.

Also the optimization problem is reduced if fewer tear variables and equations

are chosen. Thus we can use the heuristic (similar to the one above): *

1) Choose a tear set that minimizes the number of tear
variables.

2) Among the solutions choose the tear stream that has design
variables toward the end of the loop.

i

The second step reduces the length of design variable chains even

though the expected savings encountered here are generally negligible.

For simple flowsheets, tear streams can usually be chosen by inspection.

For more complex onesr a number of methods can be applied (see Gundersen and

Hertzberg (1983)) for minimal tear set selection.

The Role of Pressure in the Flowsheet

Most flowsheeting modules have a simple pressure dependence with

either a prespecified outlet pressure or pressure drop. Otherwise,

pressure is often a weak function of inlet flowrate or enthalpy, and

may thus be removed from the tear set under the following conditions:

1) The outlet pressure of unit k is fixed or%

assigned by a decision variable.

2) Outlet pressure is not affected by inlet flows or
enthalpy for all units downstream of unit k.

3) Inlet pressure does not affect outlet flows, enthalpy
or retention variables for all units upstream of and
including unit k.

The first condition creates a null row for pressure in the

Jacobian I ~— I of unit k. If the second and third conditions~— I

are satisfied, then through matrix multiplication the pressure tear

equation becomes

p + A p = p ,
in out

which is independent of the other tear variables and can be deleted

without affecting the solution of the. QP. If in addition the pressure

of unit k is fixed, then the columns corresponding to inlet pressure

and the row corresponding to outlet pressure can be deleted from all

modular Jacobians. Here pressure need not be considered at all during

the chainruling process.

The above analysis cam apply to other tear variables such as

trace flowrates and enthalpy as well, but the above conditions occur less

often for these variables.

Inlet and outlet pressures are often related to each other by non-

{
•

differentiable equations of the form:

Pout = f

One can write this expression in an equivalent form to expose all the

nondifferentiabilities.

Pout = Pl + min J°« V Pl + m i n \ °' V P 2

m i n J O . . . + P - P n - 2 + > W l

where, for np = 2:

p = p + min(Or f)
out 1
f - P 2 - P l

Now each nondifferentiable term, min (0,f) can be smoothed by fitting

a quadratic function around the nondifferentiable point as shown in

Fig. 4a. By enforcing the conditions for each min-term:

g(f) = min (0,f)

g(-€) = -€ dg/df (-€) = 1

g(e) = 0 dg/df (e) = 0

one obtains the approximation (Duran and Grossmann (1983)):

g(f) = min (0,f) » v,
4e

where 6 is a prespecified tolerance

This approximation is everywhere differentiable and at the price of

some inaccuracy introduced by e , one can avoid convergence to nonoptimal

points or premature termination.

As an example of the usefulness of this procedure, consider the

very simple process flowsheet given in Fig. 4b. Here we wish to

r

maximize the vapor flowrate of the flash unit by adjusting the

pressure of the inlet streams. Stream 1 and stream 2 ar6 mixed and

thus determine the pressure of the flash drum. Now if p > p then p

1 2 2
has an effect on the flash unit and vice versa. However, when p = p

1 2

forward difference pressure perturbations applied to the flowsheet

will indicate that neither pressure has an effect on the flash

regardless of the value of p . At this point the optimization

algorithm will terminate because the incorrect "gradients" satisfy

optimality conditions.

If we use the approximate quadratic form, then applying the

optimization algorithm and choosing either pressure as a decision

variable will lead to the lower pressure bound as the optimum. Here

if we start at any pressure with p = p , the gradients are

dP dP 1̂ 1 2

—2!l£ = —2!iL • 2 from the quadratic approximation. Thus, both inlet

pressures have an effect on the flash drum. Other nondifferentiable

equations can be treated in the above manner once they are identified

in the flowsheet. One obvious complication introduced by this strategy

is that it always leads to nonlinear equations (even if the

differentiable parts are linear) and to the possibility of multiple

local optima.

Use of Simplified Models

Since most modules do not have analytic gradients and calculation

by perturbation may be extremely time-consuming, it remains an open

question if simple, nonlinear models can be found which give more

efficient implementations. Several studies have demonstrated the

effectiveness of simple models for complex unit operations and

flowsheet simulation problems (Boston and Britt (1976), Chimowitz et

al (1982) and Pierucci et al (1983)). Jirapongphan et al (1980), even

developed an optimization strategy that involved fitting simple model

parameters to the more rigorous ones and then applying the

optimization algorithm only to the simplified models.

However, it can easily be shown (see Biegler (1983)) that simple

models can be detrimental to the determination of a process optimum.

While simulation problems have termination criterion based on function

values of the tear equations, optimality criteria are based on the

gradients of the objective and constraint functions. Thus, using

simplified models that have gradients different from the rigorous

models can lead to the satisfaction of the optimality conditions at a

non-optimal point. Therefore, while simple nonlinear models can be

very useful for simulation, considerable analysis regarding accuracy ~-^_

and sensitivity needs to be done before they can be implemented

correctly in an optimization framework.

Example Problems

Three process problems were chosen to test the effectiveness of the

chainruling strategy. These examples have been described in previous

papers in connection with the infeasible path strategy (Biegler and Hughes

(1982),(1983)). All of the process optimization problems were solved using

the SPAD simulator (Hughes et al (1981)).

The first two problems deal with the flash loop shown in Figure 5.

Both problems have seven tear equations, nine decision variables with

upper and lower bounds and six retention variables. The adiabatic flash

pressure and the bottoms split fraction represent the two degrees of

freedom in the process. Because the loop pressure is fixed by a decision

variable, pressure need not be included as a tear equation.

The first problem seeks to maximize the molar flowrate of propane in

the overhead flash vapor. A contour plot of the objective function surface

in the reduced space of pressure and split fraction (see Biegler and Hughes

1982) shows the function to be monotonic and only slightly nonlinear. The

second problem has a nonlinear combination of the flowrates of the overhead

flash as its objective function. This function is highly nonlinear and non-

convex. We refer to these examples as the raonotonic and ridge problem,

respectively. More specific information about these problems is given in

Table 1 and in Biegler and Hughes (1982).

The third problem is an optimization of a propylene chlorination

process. The flowsheet is presented in Figure 6; seven equality

constraints, sixteen decision variables, eight retention variables and

three inequality constraints make up the optimization problem. More

information about the nature of the variables and constraint functions

is given in Table 2. A detailed description of the process model,

including reactor design, kinetics and nonstandard modules^ has been

presented in Biegler and Hughes "(1983). In the process considered here

however, the pressure drop through the reactor has been fixed at 69 kPa

(10 psi). The objective of this process is to maximize net annual

sales. Prices for the products and raw materials are also given in

Table 2. Note that these prices are slightly different from the ones

used in Biegler and Hughes (1983) and that the objective function

converges to a different optimum.

The propylene chlorination process streams were torn so as to

ainimize the number of tear variables and the size of the optimization

problem. Note that since the pressures of both loops are fixed by

decision variables in the recycle compressor and the separating

column, no pressure variable is needed in the tear set. However,

several units are affected by inlet pressure, so pressure must be

included in the Jacobians of the modules. Finally, note that the

finishing column need not be evaluated during the calculation se-

quence of the flowsheet because it contains no retention variables.

The first two problems were run from two different starting points

as in the previous study. Tear set initialization procedures were the

same as described in the previous papers. The variable scale sets in

all three problems were the same as the most successful scale sets in

previous studies; these are listed in Tables 1 and 2. None of the

objective or constraint functions were scaled. An absolute Kuhn-Tucker

tolerance of 10 " w a s used for all runs. Relative perturbation sizes for

gradient calculation were < c..tr to iO ^^A /£ .. All computer runs

were performed en a DEC-2O computer at the Carnegie-Mellon Computing

Center.

Results o£ Optimization Study -

A comparison of the performance of the chainruling and direct loop per-

turbation method is given in Table 3. The results indicate that, in all
U C PC fl

cases but oner chainruling required far fewer module evaluations
vthan direct

loop perturbation. Simply by studying the two flowsheets, one finds that

for the tear sets chosen, the following relations give the number of modular

evaluations:
• •

1) Flash Loop
Direct Loop Perturbation: MBE = 4 + 381 + UJ
Chainruling: N3E = 4 + 151 +

2) Propylene Chlorination
Direct Loop Perturbation: NBE » 11 + 1381 + 11^
Chainruling: NBE = 11 + 681 + 1W

where i = # iterations

I = # additional line search

For the same i and I in both algorithms, it is easy to see that

chainruling will have fewer module evaluations.

Table 3 also illustrates an important point about the accuracy of gra-

dient calculation. In the first problem, both algorithms taXe identical

full steps to the optimum. This occurs from either-starting point with a

relative perturbation size of lo"3A^V^ f° *
In the second problem a more interesting effect is observed. Note

that if the perturbation size (71) is set to 10~2 for direct loop

.3
perturbation and 10 for chainruling, the number of iterations for both

5.
algorithms is the aawc from either starting point (their paths however

are not identical). With direct loop perturbation, the entire loop is

evaluated with each perturbation of a tear variable. As the cal-

culation procedure executes, each module receives the perturbed outlet

streaa of the previous module. Thus the magnitude of the relative

perturbation size for each module is dependent on the previous modules

and is usually smaller than that specified for the tear variable. With

chainruling the perturbation size is fixed independently for each

•odule. This explains the similar performance for different

perturbation sizes.

The remaining results for the second problem also illustrate the importance

of choosing appropriate perturbation sizes. Here direct loop perturbation

fails from the second starting point with H.« 10" . While the chainruling_

algorithm always converges to the optimum, it requres, form the second start-

ing point>twice as many iterations with 11 » 10 than with \ = 10

We can observe qualitatively the effect of perturbation sizes on gradient

error. From a Taylor series expansion on a single function f(x) we have:

- f(x)

MX

Furthermore, since the modular calculations are often subject to

convergence tolerances, considerable noise can be present. The effect

of noise can be given approximately by:

f(x) = f(X) + € "

where f(x) is the noise-free value and the noise, e , is not a function

of T] •. Thus the gradient is approximated by

f((1 +T|)x]> - f (x) + (ct - c2) d f !

TTx dx X TJx

To reduce the error introduced by calculation noise, Crowe (1973) executes

a fixed number of iterations during the perturbation step without enforcing

a convergence tolerance. This procedure, however, would be hard to implement

on existng software. Hutchison et al. (1983) choose a perturbation size

that minimizes the error in the above equation. This can only be done,

however, at the expense of additional perturbations. In SPADf we simply

impose a tight convergence tolerance on modular calculations, thus making

(C J - S J) small. This usually helps to minimize the perturbation error.

CONCLUSIONS AND SIGNIFICANCE

This paper is the first half of a study that presents improvements

in the infeasible path strategy. Here we address problems encountered

when obtaining gradient and function information from the process

simulator for the optimization algorithm and some possible remedies.

In this context we present the chainruling algorithm and discuss its

advantages over direct loop perturbation.

Chainruling allows analytic Jacobian information, to be specified

when available, as well as incorporation of more flexible and accurate

gradient calculation procedures. The most significant advantage of

chainruling is that it usually leads to large reductions in the number

of module evaluations in the perturbation step. A tear set strategy

was outlined for both the chainruling and direct loop perturbation

algorithms that minimizes the number of modular evaluations. Also, the

role of pressure in the tear streams and perturbation procedure was

analyzed aloug with a strategy for handling nondifferentiabilities in

loop pressure and other functions.

Finally, we tested the above improvements on three process

optimization problems. The results indicate that the chainruling

algorithm can save up to 60% of the module evaluations required by

direct loop perturbation. From this limited study it appears that

chainruling is affected less by gradient error and thus less

susceptible to failure. Although chainruling requires some overhead in

processing and constructing Jacobian matrices, its advantages are

readily apparent for large, complex process simulations where most of

the computational effort is consumed by modular calculations.

References

Biegler, L.T., "Simultaneous Modular Simulation and Optimization", 2nd
International Conference on Foundatons of Computer Aided Process
Design, Snowmass, CO, (1983)

Biegler, L.T. and J.E. Cuthrell, "Improved Infeasible Path Optimization
for Sequential Modular Simulators, Part 2 : The Optimization Algorithm",
submitted to AIChE J., (1983)

Biegler, L.T. and R.R. Hughes, "Infeasible Path Optimization of Sequential
Modular Simulators", AIChE J., 28, 6, p.994 (1982)

Biegler, L.T. and R. R. Hughes, "Process Optimization z A Case Study Com-
parison", Comp. and Chem. Engr., to appear (1983)

Boston, J.F and H.I. Britt, "A Radical Formulaton and Solution of the Single
Stage Flash Problem", Comp. and Chem. Engr., 2, p.109 (1978)

Chamberlain, R.M., C. Lemarechal, H.C. Pedersen, and M.J.D. Powell, "The
Watchdog Technique for Forcing Convergence in Algorithms for Constrained
Optimization", DAMTP 80/NA1, University of Cambridge, (1979)

Chen, H-S and M.A. Stadtherr, "Strategies for Simultaneous Modular Flow-
sheeting and Optimization", 2nd International Conference on Foundations
of Computer Aided Process Design, Snowmass, CO, (1983)

Chimowitz, E.H., S. Macchietto, T.F. Anderson and L.F. Stretzman, "Local

C Models for Representing Phase Equilibria", I & EC Proc. Der. Dev., to
appear (1983)

Crowe, C. M., "Convergence Promotion of the Steady-State Simulation of
Chemical Processes Using the Dominant Eigenvalue Method", 2nd
International Congress on Computers and Chemical Engineering, Paris
C-15, (1978)

Dennis, J.E. and J.J. Moore, "Quasi-Newton Methods, Motivation and Theory",
SIAM Review, 19, 1, pp.46-89 (1977)

Duran, M. and I.E. Grossmann, personal communication, (1983)

Gunderson, T. and T. Hertzberg, "Partitioning and Tearing Chemical Process
Flowsheets", Process Systems Engineering Symposium, Tokyo, (1982)

Han, S-P, " A Globally Convergent Method for Nonlinear Programming",
J. Optimization Theory and Applications, 22, 3, p.297 (1977)

Hughes, R.R., R.K. Malik and L.T. Biegler, "SPAD-Simiiator for Process
Analysis and Design", EES Report #52, University of Wisconsin, (1981)

Hutchison, H. P., S. Kaijaluoto, and W. Morton, "Process Optimization Using
a Serial Cyclic Flowsheet Simulator", 3rd International Congress on
"Computers and Chemical Engineering", Paris, (1983)

Jirapongphan, S., J.F. Boston, H.I. Britt, and L.B.Evans, "A Nonlinear
Simultaneous Modular Algorithm for Process Flowsheet Optimization",
presented at 80th AIChE Meeting, Chicago, (1980)

Kurtagh, B.A. and M. A. Saunders, Math. Prog., 14, p.41 (1978)

?Perkins, J.D., "Equation Oriented Flowsheeting", 2nd IBternational Conference
on Foundations of Computer Aided Process Design, Snovraass, CO,
(1983)

Pierucci, S«. J., E.M. Ranzi and G.E. Biardi, "Solution of Recycle Problems
in a Sequential Modular Approach", AIChE J. 28, 5, p.820 (1982)

Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization
Calculations", presented at the 1977 Dundee Conference on Numerical
Analysis (1977)

Schittfcowski, K. "The Nonlinear Programming Algorithm of Wilson, Han
and Powell with an Augmented Lagrangian Type Line Search
Function, Part 2: An Efficient Implementation with Linear Least
Squares Subproblems", Numer. Hath., 38, p.115 (1981)

Stadtherr, M.A. and H.S. Chen, "Numerical Techniques for Process Optimization
by Successive Quadratic Programming", 3rd International Congress on
"Computers and Chemical Engineering", Paris, (1983)-~ ;•— ,••

o

r

J

HoUu.ll I to

I

p " iiA*c*-f-t*4*e-

- O

* - * >

HUi r

' • <*

j

o

I J %

-H
0

o

r

-t p,

^7

£-%£ - i

-f -

*<~ML/ULJXJL / O

FEB>(kQ-moVh)

Cts-2-BuUo*

10
IS
20
20
20
10

3

Propylene
Feed

44*

NaOH or
H2S04

a

I2OO)
60° -52'

(TP>90°F)-

Chlorlne COOLER

Feed REACTOR}
800° 661°

80* 20*

50(

Direct Chlorfnotfon of
Propylene

-Decision Variables

\) - Constraints

Conditions
RFV

Optimum

CZ3 - p s i a l Co

o
o

z

2
LJ

'Hid..

36

/
/

/

Vent

-72C

u
GO
QD

Q:
o

Water
80*

\ .

(Chlorides >9'9mol%)

13

O
O

<3
2

.1

aq. HCI(32%w)

230

Altyl Chloride

116'

Dichlorides

Figure /: Process Flowsheet

TABLE L FLASH PROBLEM SPECIFICATIONS

Objective Function Constraints and Bounds
MonoUmie: 0.2 < xi < 0.8

Max tfi) 69<x s£345
x,f 05 9,^100

fadependent Variables
Si—Split fraction—Stream ©/Stream ®
xt—Adiabatic flash pressure, kPa
f,(i * 1,6)—Component flows—Stream (2) (kg-mol/h)

S i f i c enthalpy—Stream ©(w/kg-mol)

/ "

gpewoenc * anamca
ft (I «= 1,6>—Component flows—Stream © (kg-mol/h)
m>t (« * 1,6)—Component flows—Stream ® (kg-mol/h)
IDT —Specific enthalpy—Stream ® (w/kg-mol) "~"

Initialization (Standard Procedure)
x—Tabulated starting point values
f—Direct substitution (from ID), after a single pass through the simu-

lation with x = x and y = 0.
Scaling—Runs were made with one of the following sets of scaling factors

for the independent variables:
^ ' *i *t 91 91 9s 94 9s U n

jZ , 2 6 3 3 3 3 .

J -'"£/">'*

/• / ' 7 . 4 . 3 3 , -£, ± 0 . 2 ""

\

SUL

QV.Il n + r- +

O> - . A ^
A-if

r,

^iJL^^ijtt^ (

. v r _ t . A , (

r7 *"" 0-L^Z*CLX' ^c^er*^

'O

C~<GnAA-4lSKmA-JLJC*(£\m JfLAjL

if * .

S
I

3
I
2

3

Ccr

/c

(/ c)
3 .§ (P

(7)

1

- 3

l.S'T]

(tz)

^CJLJ

- /o

/3. i ^ 4
in)

t

~Ji

if)

j^. / j£

r

U ~

f ^6t^C ^t

7. j) C S
/

i
Table %\ Propylene Chlorination - Summary of Optimization Results

saslci: 100 lb mol/hr
iropylene feed

•

)b1ective - Net value added.

Variables

1.

2.

3.

4.

5.

6.

7.

$/hr

C3H6/C^2 ratio to reactor n

reactor temperature (°

reactor volume (ft)

sepn. column pressure
(psia)

split, frac to quench

split frac. to vent

compr. out. pres.
(psia)

fr. recovery C&2 in
sep. tops

F) T

Vx

fq

V

Specifications

Lover
Bound

2

800

1

20

0.25

0.01

20

0.95

Upper
Bound

10

1100

15

50

0.75

0.10

100

0.99

Start

1010.13

10**

1000

10

28

0.6

0.05

100**

0.99**

ft>u

/r

0.7-1
0.0 1

iZH.

f oo
. _ AT

2. o

._. *.oi

ss4sr
•o-.11

9. fr. recovery AC in
sep. botts.

Constraints

2. product purity (mol X)

3. reactor preheat (*F)

HK 0.95

10

99.0^

90

0.99 0.99**

none

none

none

74

99.0-
so.r
• 7 7.C
8PJ

0.97

<?<?./

