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Recently, it was ShOWf‘? that chemical processes modeled by steady-

state siﬁula;ors could be optimized without repeatedly converging the
process simulation. Instead, optimization and simulation of the process
can be performed simultaneously (along an infeasible path)., thu§ o
leading to much more efficient performance.

In this two-part study, we describe several improvements to this_
infeasible path approach. This first paper deals with improvements
;o the interface between the optimization algorithm and the
process simulator. Here we are primarily concerned with obtaining the
necessary functicnal and gradient information for the optimization
with minimum simulation effort for the process. Thus, we consider the
architecture of sequential modular simulators, the structure of |
prccess cptimization problems and any sources of error in
obtaining the necessary information for the optimizaticn aigoritnm.
To this end, we derive a chainruling algorithm that allows the
incorporation of analytic derivative information for pérts of the
flowsheet and generally leads to less frequent evaluation of the
process flowsheet.

This algorithm is demonstrated on three process optimization pro-
blems. The results indicate significant improvement in performance.
SCOPE

Simulation of chemical processesrby flowsheeting programs has
Fecome a readily accepted and effective tool for process design and
analysis. 1In virtually all commercial environments qeneral-purpése
simulators are based on the sequential modular approach. Here, all
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equations and relationships defining the process are grouped into
nodul es, each corresponding to some unit - -operation in the flowsheet.
The order in which the nmodul es are cal culated normally paraflels t he
flow of material in the process and is thus rigidly defined by the
topol ogy of the flowsheet.

Wi | e sequential nodul ar process sinulations are relat[vely
easy to construct, analyze and run, the rigidly defined cal cul ation
sequence nmekes them useful only when QOing performance or rating
cal cul ations. Design or optinization studies, on the other hand, are
usual Iy prohibitively expensive because the sinulator IagE; the
flexibility in calculation order to acéonnndate them To allow for
greater flexibility when doing process simulation and optimn zation,
several prototype simulators have been_developed usi ng
equation-solving strategies (see e.g. Perkins (1983)). While these
simul ators easily accommodate design and optimnization cal cul ations,
none has yet been able to handl e problens as |large as those routinely
handl ed by sequential modul ar sinmulators. Also, sevefal hybri d
simulators that incorporate the desirable features of the above
strategi es have been devel oped. Terned sinmultaneous nmodul ar (see
Biegler (1983)), this strategy has nore flexibility than the sequenti al
nodul ar node, has handled fairly |large process problens, and_appears
to have great promise in future flowsheeting prograns.

The inflexibility of sequential nodular sinulators is usually
encountered when information flow reversals appear in the flowsheet.
I n design problems, for exanple, any process specificatipn that cannot
be introduced as a fl owsheet input paraneter nust be deterni ned
iteratively. Process optimzation can be thought of as an extended
design problem in which decision variables nmust be nanipulated to find
the optimality conditions for the problem To performthe

optim zation, sequential nodular sinulators can be very inefficient if




a feasible simulation is required for every function evaluation. To
solve these problems more effectively, several researchers (Biegler
and Hughes (1982), Chen and Stadtherr (1983), Hutchison, et al (1983))
proposed the infeasible path approach. Here the tear variables and
recycle equations of the process simulation are added to the
optimization problem. Thus, recycle convergence, which is usually the
most inefficient part of the process simulation problem, is embedded
within the optimization procedure; satisfaction of the recycle
equations and convergence to the optimum occurs simultaneously.
Although this strategy has been efficient and effective_I;-solving
process optimization problems, some problems in the implementation of
this strategy can impair the efficiency of the method. This paper
addresses the interface between the process simulator and the
optimization algofithm. Here ve need to consider the structure of the
process optimization problem and determine functional and gradient
calculation strategies that require fewer time consuming flowsheeting
calculations while still maintaining the accuracy required for the
optimization algorithm.
Background
To motivate the development of an improved interface, we

griefly review the basis of the infeasible path strategy. qonsider
the block flowsheet given in Fig.l. Here each block represents
A module or "black box" procedure. For simulation and optimization,
the convergence or optimization algorithm is totally unaware of the
process relaticnships within the modules. The qgly information that
generally can be determined is the response of a module to
prespecified inputs.

The simulation problem consists of.solving the recycle equations
h(x,y) = y - w(x,y) = 0. All other process equations are solved

implicitly by the process modules and stream interconnections in order
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to calculate w. To converge, we merely manipulate y .so that w and

y mat ch*

The process optimzation probl em posed by the engineer is uéually expressed

in the following form

Nin 0(x)
X

s.t. g(x) £0
c(x) =0
Here, he has selected a set of decision vari abl es x, an objective
function ff(x), typically of econonmic form and a set ofnﬁTocess —
limtations or product specifications, g, and design constraints, c.
To solve the optinization problem the engineer naturally assunes that
the process simulation problem has been converged before eval uating
the constraint and obj ective functioné. For the infeasible path
algorithmthis is not required. I nstead, we augnment the above problem
by adding tear variables and recycle equations to form
Mntf(x,y)
s.t. g(x,y) £0

0

c(x,y)

h(x,y)

‘Because of the "black box" nature of the fl owsheet, the

y - W(x,y) =0

optim zation problem rmust be defined explicitly by a set of parameters
accessed through the simulator; we choose a vector of retention variabl es,
r, to explicitly calculate the objective and constraint functions.
From Figure 1, it is easy to see that these dependent variables are inplicit
functions of y and x. Thus the problemthat we will deél with for flowsheet
optim zation is given by:
Mn ~(r(x,y), x)
s.t. g(r(x,y), x) £0

c(r(xey)r x) =0




I»(x,y) =y - wWx,y) =0
VX * X .
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To solve this problem any optimzation algorithmthat handl es
nonl i near equality constraints, w thout requiring their convergence
for each function evai uation, can be applied. Anpng the nost efficient
of these are the M NOS (Mirtagh and Saunders (1978)) and SQP
I( Han (1977), Powell (1977)) algorithms. M NOS is designed to handle
" large, "nostly linear" prot;l ems effici ently since it perfornms a full
optim zation in the subspace of the constraint normals. However, since
many of the active constraints are nonlinear tear equations, several
constraint linearizations will be required before converging to the
optimum The SQP algorithm on the other hand, minim zes- a quadratic
approxi mati on of the Lagrangian with each constraint |inearization.

The resulting quadratic progranm ng problem (@) is formed using only
one gradient and function evaluation fromthe nonlinear problem The
Hessi an of the Lagrangian in the QP is derived from quasi-Newton
updat es (see Dennis and More, 1977).

Th'us, the SQP al gorithm solves a nuch sinpler problemthan M NGCS
for each linearization of the constraints. Previous studies (Powell
(1977), SchittJcowski (1981), Stadtherr and Chen (1983)) have shown that
SQP out perforr‘;s nost of the other nonlinear programm ng al gorithns
on small problens, although their studies did not include M NOS.

At each iteration the followi ng quadratic .program is
forﬁul ated and sol ved: _

Mn i ((z')™d + Id"Bd
d 2

St. q(z') + Wg(z) a <o

e(zl) + Y¢ez)7d=o0

nizd) + vnizHTd =0
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The QP solution, d, is then used as a search direction for the next
point. A stepsize, X # is next chosen along this direction for which
sonme nmerit function, HEasuring obj ective function inprovenment and

constrianit infeasibility is mnimzed. Mst studies have chosen the
m nmeq

exact penalty function (P(x) =f (x) + £ rmx[Og-(x)] + £ s Ilh:(*I1)
j =l J J j =l J 3

as the nerit function and have reported encouraging results. Ohers
(Chanberlain et al (1979), Biegler and Hughes (1982), Chen and
Stadt herr (1983)) have used the watchdog al gorithm which uses either a
Lagrangi an or exact penalty function for the Iine search.

We defer further discussion of the SQ@ al gorithm and our
i mprovenments over existing nethods for our conpani on paper (Biegler
and Cuthrell (1983)). In this paper we use the watchdog al gorithm used
in Biegler and Hughes (1982) and present a nore efficient method for
obt ai ning gradi ent and function information, from the process
simulator. Specifically, we discuss strategies for chainruling
derivative information, calculating and incorporating analytic
Jacobi ans, anq selecting the "best" flowsheet tear set for

optimization. '

Gradient Calculation Strategies

To obtain the gradient information fo; the- QP, one can easily
t ake advantage of the cal cul ati on, sequence prespecified by the engineer.
The nost straightforward way would be to perturb the entire flowsheet
once the recycle streans are torn. Here a flowsheet pass is
required to evaluate r and w, and is repeated for each per-
turbation of x and y. This strategy, terned direct |oop perturbation
was described in a previous paper (Biegler and Hughes (1982)).

Note from Figure 1 that design variable perturbations usuafly require




only partial flowsheet evaluations since nodul es and dependent
variabl es upstream of design variables are unaffected by perturbation.
For direct |oop perturbation, the number of modul e eval uati ons

required for gradient evaluation is:

VCS ' NT ND
/ .. \
NBE = I ( T (NP +2) i + £ 2113 |
. ' j=1 \ i=1 j=1 7/
. wher e NBE - nunber block eval uations
NCP - nunber of conponents (conponent flow rates, pressure

and enthal py are perturbed because they thernmodynanically
define a stream

NT - nunber of tear streans
tt.) - number of blocks fromtear or design variable i to
H the jth
terminus in the calculation sequence.
ND - nunber of design variables
VCS - nunber of termini of calculation sequence (nunber of

tear streans plus any retention variables downstream

of all tear streans).

As seen fromthe formula, gradient calculation using direct |oop per-
turbation can be prohibitive. This nmethod, however, is very easy to apply
since it nerely invo[ves repeating the simulation calculation sequence for
each perturbation. Consequently, one-can inplement the optim zation
routine nerely by substituting an "optinzation block"” for the recycle
convergence bl ocks.

A harder to inplenent gradient calculation strategy enploys the

concept of chainruling. Witing the gradients for the QP in terms of

i ntermedi ate val ues gives:

X 0X dx dr
- (2)
VR foa Y=", 4, h
i )
VB =T 3k
vh-i - o]
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oY oY can be specified analytically

i i i - and
The partial de;;vatlves 3x n St .
since ¢, g and c are written explicitly in terms of X and r. The derivatives
W W or and or can be constructed by chaining
ox , 3y , 9y . oy

Jacobian matrices for each unit according to the calculation sequénce of the

flowsheet. From Figure 1, it is easily seen that:

W Yy L Wy X

oy ay ayl ayn_l byn (3)
w 3y w

M

ax Ox n

LIV

dy ¥y dy, m

ox ax aYm-]. aYm

Note that the variables y and x initiate chains and the variables r
and w terminate them. Although this method is more difficult to
apply on sequential modular simulator; than direct loop perturbation,
it offers several advantages. First, the number of block evaluations
for gradient calculation is:

| NBE = NCS(NCP+2) +ND (4)

where NCS is the number of internal streams in the
calculation sequence.

Note that design variable perturbations require far less effort since
their derivative information is chained through modular Jacobians.
These'savings can be considerable if decision variables are

encountered at the beginning of the calculation sequence. It should be
mentioned, however, that chainruling requires extensive changes to the
simﬁla;or executive with additional overhead for matrix manipulation,

retrieval and storage. Also, the relative efficiency of chainruling




over direct |loop perturbation is clearly dependent on the structure of
the flowsheet and the optim zation problem For exanple, Fig. 2
presents a sinple flowsheet where direct |oop perturbation is
significantly nore efficient than chainruling.

The main advantage.of the chainruling strategy is that it allows the
prespecification of full or partial analytic Jacobians. \Wile nmany unit

operationé do not have Jacobians that are easily cal cul ated, sone or

all val ues of Vﬁat[ / can be deternined analytically for sone

units. These are described in the next section
Anal yti c Jacobi ans
In this section we wish to explore the follow ng concept:
G ven that we know the type and structure o{ a particular
nodul e and its input and output streans, how nany
- perturbations can be saved ?
Clearly, if nothing is assunmed about the nodule, all input stream
perturbations (flowates> pressure and specific enthal py) are required

One easily sees that all perturbations are required fpr nodule k even if

. \T
only one row of \AF I Oror\/*TrrL I cannot be derived anal ytically.
- 11

Figure 3 gives Jacobians for six nodule types: mixer, splitter, sinple
conmponent separator, valve, punp and conpressor. (The last two nodul e
Jacobi ans require additional pressure perturbations to be cal cul ated
conpletely). Mre Jacobians can be derived for other units under
certain conditions (e.g. heat exchangers with fixed heat duties and
nmost units using ideal physical properties), but otherwi se we require
nore than input-output information from the nodul es.

Once the Jacobians are calculated, the chainruling strategy
follows the cal cul ation sequence specified by the sinmulator. The
nunber and configuration of tear streams presents no problenlsincé
Jacobi ans are defined as the partial derivative of all output stream

elements with respect to all input streamelenments. Therefore, the




propagation of the different chains is merely a bookkeeping task
given directly by the calculation sequence.

Tear Set Selection

From the structure of the flowsheet and the type of gradient
calculation, one can easily derive optimal tear strategies for the
optimization problem.

The calculation sequence is largely determined by the objective
function, constraints and decision variables as well as by the
process flowsheet. This sequence extends from the variables x and y
that are encountered furthest upstream to the variables r and w that
are furthest downstream. From the flowsheet in Fig. 1 it is easy to
see that the variables ﬁ, and xj}do not participaﬁe in the optimimzation
problem because they do not satisfy the above rule. ﬁ is not not
affected by any decision variables downstream from it and x3 does not
affect any upstream retention variables. Of course, such variables
will only be encountered on acyclic portions of the flowsheet.

For direct 1loop pertufbation, the optimal tear sequence could be found
rigorously by minimizing the number of perturbations defined by equation (1)
subject to the constraint that all loops be torn. To avoid this
set covering problem, one could use the heuristic of minimizing the number
of tear streams and choosing among these solutions the tear set that
minimizes the effort of design variable perturbations.

From equation (4) one sees that the perturbation effort required by
chainruling is independent of the tear sequence. The only effect in the
;jgradient calculation strategy is the number of chains created and propagated.
Also the optimization problem ié reduced if fewer tear variables and equations

are chosen. Thus we can uSe the heuristic (similar to the one above):

-

1) Choose a tear set that minimizes the number of tear
variables.

2) Among the solutions choose the tear stream that has design
variables toward the end of the loop.
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The second step reduces the length of design variable chains even

t hough the expected savings encountered here are generally negligible.

For siﬁple fl owsheets, tear streans can usually be chosen by inspection

For nore complex ones, a nunber of methods can be applied (see Gundersen and

Hert zberg (1983)) for mninal tear set selection
Thé Rol e of Pressure in the Flowsheet

hbsf fl owsheeting nodul es have a sinple pressure dependence with
either a prespecified outlet pressure or pressure drop. O herwi se,
pressure is often a weak function of inlet flowate or enthal py, and
may thus be renoved fromthe tear set under the follow ng conditions:

1) The outlet pressure of unit k is fixed or®
assigned by a decision variable.

2) Qutlet pressure is not affected by inlet flows or
enthal py for all units downstream of unit k.

3) Inlet pressure does not affect outlet flows, enthalpy
or retention variables for all wunits upstream of and
i ncluding unit k. '
The first condition creates a null row for pressure in the
Jacobi an | ~— | of unit K. If the second andlthird condi tions
are satisfied, then through matrix multiplication the pressure tear

equati on becones

Pin® Ap = Pout

which is independent of the other tear variables and can be del eted
wi t hout affecting the solution of the. QP. If in addition the pressure
of unit k is fixed, then the colums corresponding to inlet pressure
and the row corresponding to outlet pressure can be deleted from al
nmodul ar Jacobi ans. Here pressure need not be considered at all during
the chainruling process.

The above analysis camapply to other tear variables such as
trace flowates and enthal py as mell,l but the above conditions occur |ess

often for these vari abl es.

Inlet and outlet pressures are often related to each other by non-
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differentiable equations of the form:

_ 3 =
Pout = ™f {Pin "} j=1, me

One can wite this expression in an equivalent formto expose all the

nondi fferentiabilities.
POUt = PI + min Jo« V Pl +min \ o1 VP2 +

minJO ..., P.-Pn-2"7 oin {0, Wl} ”}

where, for np = 2:

p =p + min(O, f)
out 1
f - P2 - pi

Now each nondifferentiable term mn (0,f) can be snoothed by fitting
a quadratic function around the nondifferentiable point as shown in
Fig. 4a. By enforcing the conditions for each mn-term T

g(f) =mn (0, f)

g(-€ ) -€ dg/ df (-€ ) 1

g( e) 0 dg/df ( e) 0

one obtains the apprgxi mation (Duran and G ossmann (1983)):

g(f) =min (0,f) » o , £ > ¢

where 6 is a prespecified tolerance

Thi s approximation is ever‘ywhere differentiable and at the price of
some inaccuracy introduced by e , one can avoid convergence to nonopti nal
points or premature term nation.

As an exanple of the usefulness of this procedure, consider the

very sinple process flowsheet given in Fig. 4b. Here we wish to




maxi m ze the vapor flowate of the flash unit by adjusting the

pressure of the inlet streanms. Stream 1 and stream 2 ar6 ni xed and

thus determ ne the pressure of the flash drum Now if p >p then p
' 1 2 2

‘has an effect on the flash unit and vice versa. However, when p =p
1 2

forward difference pressure perturbations applied to the flowsheet
will indicate that neither pressure has an effect on the flash
regardl ess of the value of pL. At this point the optinization
algorithnlw'll term nate because the incorrect "gradients" satisfy
optimality conditions.

If we use the approxi mate quadratic form then applying the

optimization algorithmand choosing either pressure as a decision

i

yariable will lead to the |ower pressure bound as the optinmm Her e

if we start at any pressure with p =p , the gradients are

dp dpP ™ 1 2

dp. dP

—2}I£ = —Q?iL « 2 fromthe quadratic approximation. Thus, both inlet

pressures have an effect on the flash drum O her nondifferentiable
equations can be treated in the above manner once they are identified

in the flowsheet. One obvious conplication introduced-by this strategy 
is that it always |leads to nonlinear equations (even if the

differentiable parts are Iinéar) and to the possibility of multiple

| ocal optim.

Use of Sinplified Mdels

| Si nce nost nodul es do not have analytic gradients and cal cul ation,
by perturbation nay be extrenmely tinme-consuning, it remmins an open
question if sinple, nonlinear nodels can be found which give nore
efficient inplementations. Several studies have denonstrated the

ef fectiveness of sinple nodels %or conpl ex unit operations and

fl owsheet sinulation problens (Boston and Britt (1976), Chinobwitz et

al (1982) and Pierucci et al (19835). Ji rapongphan et al (1980), even
devel oped an optinization strategy that involved fitting sinple nodel

paraneters to the nore rigoroué ones and then applying the

»

I




optim zation algorithmonly to the sinplified nodels.

However, it can easily be shown (see Biegler (1983)) that sinple
nodel s can be detrimental to the determ nation of a process optimm
Wil e simulation problens have termination criterion based on function
val ues of the tear equations, optimality criteria are based on the
gradi ents of the objective ;nd constraint functions. Thus, using
simplified model s that have gradients different fromthe rigorous
nodel s can lead to the satisfaction of the optimality conditions at a

non-opti mal point. Therefore, while sinple nonlinear nbdels can be

very useful for sinulation, considerable analysis regarding accuracy ~- N

and sensitivity needs to be done before they can be inplenented
correctly in an optimzation frameworKk.

Exanpl e Probl ens

Thr ee process probl ens were choseh to test the effectiveness of the
chai nrul i ng strétegy. These exanpl es have been described in previous
papers in connection with the infeasible path strategy (Biegler and Hughes
(1982),(1983)). Al of the process optim zation problens were solved using
t he SPAD simulator (Hughes et al (1981)).

The first two problens deal with the flash |oop shown in Figure 5.

Bot h probl ems have seven tear equations, nine decision variables with

upper and | ower bounds and six retention variables. The adiabatic flash

. pressure and the bottons split fraction represent the two degrees of

freedomin the process. Because the |oop pressure is fjxed by a decision
vari abl e, pressure need not be included as a tear equation.

The first problem seeks to maxinmize the nolar flowate of propane in
the overhead flash vapor. A contour plot of the objective function surface
in the reduced space of pressure and split fraction (see Biegler.and Hughes
1982) shows the function to be npnotonic and onlylslightly nonlinear. The.
second problem has a nonlinear conmbination of the flowates of the ovefhead

flash as its objective function. This function is highly nonlinear and non-




convex. We refer to these examples as the monotonic and ridge problem,
respectively. More specific information about these problems is given in
Tabie 1 and in Biegler and Hughes (1982).

The third problem is an optimization of a propylene chlorination
process. The flowsheet is presented in Figure 6; seven equality
constraints, sixteen decision variables, eight retention variables and
three inequality constraints make up the optimization problem. More
information about the nature of the variables and constraint functions

is given in Table 2. A detailed description of the process model,

including reactor design, kinetics and nonstandard modules has been —_—

presented in Biegler and Hughes (1983). 1In the process considered here
however, the pressure drop through the reactor has been fixed at 69 kPa
(10 psi). The objective of this process is td maximize net annual
sales. Prices for the products and réw materials are also given in
Table 2. Note that these prices are slightly different from the ones
used in Biegler and Hughes (1983) and that the objective function
converges to a different optimum.

The propylene chlorination process streams were éorn so as to
minimize the number of tear variables and the size of the optimization
problem. Note that since the pressures of both loops are fixed by
decision variables in the recycle compressor and the separating
column, no pressure variable is needed in the tear set. Hoﬁever,
several units are affected by inlet pressure, so pressu;e.must be
included in the Jacobians of the modules. Finally, note that the
finishing column need not be evaluated during the calculation se-
quence of the flowsheet because it contains no retentioﬁ variaSies.

The first two problems were run from two different starting points
as in the previods study. Tear set initialization procedures were the
same as described in the previous papers. The variable scale sets in

all three problems were the same as the most successful scale sets in




previous studies; these are listed in Tables 1 and 2. - None of the

obj ective or constraint functions were scaled. An absol ut e Kuhn- Tucker

tol erance of 10 "3was used for all runs. Relative perturbation sizes for
. ' . L= >
gradient calculation were <c.tr to iO "MA/J/E£ .7 Al conputer runs
were perforned en a DEG 20 conputer at the Carnegie-Mllon Conputing

Cent er.

Results of (ptinmization Study

A conparison of the performance of the chainruling and direct |oop per-

turbation nethod is given in Table 3. The results indicate that, ‘inall

~Enl) CPCf| e
cases -but one, chainruling required far fewer nodul e eval uati ons'than direct

. loop perturbation. Snply by studying the two flowsheets, one finds that

for the tear sets chosen, the follow ng relations give the nunber of modul ar

eval uati ons: )
1) FHash Loop
Direct Loop Perturbation:. ME =4 + 381 + WJ
Chainruling: N3E =4 + 151 + &¢

2) Propylene Chlorination
Drect Loop Perturbation: NBE» 11 + 1381 + 11~/
Chainruling: NBE = 11 + 681 + 1W

_Where i = # iterations
| = # additional line search
For the sane i and | in both algorithns, it is easy to see that
chainruling will have fewer nodul e eval uati ons.
Table 3 also illustrates an inportant point about the accuracy of gra-- -
dient calculation. In the first problem both algorithns taXe identi cal

full steps to the optinum This occurs fromgither-starting point with a_

relative perturbation size of |o"3ArVA fo *
In the second problema nore interesting effect is observed. Note

that if the perturbation size ( 71) is set to 10~? for direct |oop
3 _

perturbation and 10 _for,chainruling, the nunmber of iterations for both
5. #eal las :

algorithnms is the=aaw fromeither starting point (their paths however

are not identical). Wth direct loop perturbation, the entire loop is




evaluated with each perturbation of a tear variable. As the cal-
culation procedure executes, each module receives the perturbed outlet
stream of the previous module. Thus the magnitude of the relative
perturbation size for each module is dependent on the previous modules
and is usually smaller than that specified for the tear variable. With
chainruling the perturbation size is fixed independently for each

module. This explains the similar performance for different
perturbation sizes.

The remaining results for the second problem also iliustrate the importance

of choosing appropriate perturbation>sizes. Here direct loop perturbation

-3

fails from the ségéaé starting point with N = 10 ~ . While the chainruling _-

14

algorithm always converges to the optimum, it reqd%es, form the second start-
N Sy—aad . . -2 -3

ing point,¥Ytwice as many iterations withTl= 10 than with T} = 10 .

We can observe qualitatively the effect of perturbation sizes on gradient

error. From a Taylor series expansion on a single function f(x) we have:

KXY

£QC1+Mx) - £0) _ df
-nx dx

+ 0 (Mx)

Furthermore, since the modular calculations are often subject to
convergence tolerances, considerable ndise can be present. The effect
of noise can be given approximately by:

| £(x) = T(x) +¢ ~ '
where f(x) is the noise-free value and the noise, € , is not a function

of | . Thus the gradient‘is approximated by

E(C1+M)x) - F (x) + (e - €9) df 1
= = = +0(Mx) +0 (=

dx Mx

To reduce the error introduced by calculation noise, Crowe (1978) executes
a fixed number of iterations during the perturbation step without enforcing
a convergence tolerance. This procedure, however, would be hard to implement

on existng softiare;-hngtchison et al. (1983) choose a perturbation size
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that minimzes the error in the above equation. This can only be done,
however, at the expense of additional perturbations. In SPAD we sinply
i npose a tight convergence tol erance on nodul ar cal cul ations, thus nmaki ng

(CcJ-sJ) small. This usually helps to mnimze the perturbation error.

CONCLUSI ONS AND S| GNI FI CANCE

This paper is the first half of a study that presents inprovenents
in the infeasible 6ath strategy. Here we address probl ens encountered
when obt ai ni ng gradient and function information fromthe process
simulator for the optimzation algorithm and so&e possi bl e renedi es.

In this context we present the chainruling algorithmand discuss its
advant ages over direct |oop perturbation.

Chéinruling al | ows analytic'Jacobian information, to be specified
when avail able, as well as incorporation of nore flexible and accurate
gradi ent cal cul ation procedures. The nost significant advantage of
chainruling is that it usually leads to large reductions in the number
of nodule evaluations in the perturbation step. A tear set strategy
was outlinéd for both the chainruling and direct Iqop perturbation
algorithnms that mnimzes the nunber.of nodul ar eval uati ons. Al so, the
role of préssure in thé tear streans and perturbation procedure was
analyzed aloug with a strateéy for handling nondifferentiabilities in

| oop pressure and other functions. )
Finally, we tested the above inprovenents on three process

optimzation problenms. The results indicate that the chainruling

al gorithmcan save up to 60%of the nodul e evaluations required by

direct loop perturbation. Fromthis limted study it appears that

chainruling is affected less by gradient error and thus I|ess

susceptible to failure. A though chainruling requires sone overhead in

processing and constructing Jacobian natrices, its advantages are

readily apparent for |arge, conplex process simulations where nost of

the conputational effort is consuned by mnodul ar cal cul ati ons.
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Figure 2/Simple flash process flowsheet.
FEED (kg-moi/m)
10
1-Butene 15
N-Butane 20
Trane-2-Butene 2
Cis-2-Butene R 20
w0
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TABLEL FLASHPROBLEM SPECIFICATIONS

Objective Function Qm_s_rﬂ'ms,and_Baunds
MonoUmie 0.2=< Xxi = 08
Max tfi) 69<x£345
x,f 05 9,X 1004 = 1.6)
LT3
g —H+h-VEsl gyl =0¢=LT)

fadependent Variables
Si—Split fraction—Stream ©/Stream ®
xt—Adiabatic flash pressure, kPa
f,(i * 1,6)—Component flows—Stream (2) (kg-mol/h)
i ¢ enthalpy—Stream ©(w/kg-mol)

M"‘% e

ft (I « 1,6>—Component flows—Stream © (kg-mol/h)
m>t (« * 1,6)—Component flows—Stream ® (kg-mol/h)
IDT —Specific enthalpy—Stream ® (w/kg-mol) "~
I nitialization (Standard Procedure)
x—T abulated starting point values
f—Direct subgtitution (from 1D), after asingle passthrough thesmu-
lation with x =x andy = 0.
Scaling—Runswer emade with oneof thefollowing setsof scaling factors
for theindependent variables:
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[ a

/b6

< a_

2b

7=/o 7—/03 .7=/o”2 ] _.7-=Y-3
7,72 7.877 6.28¢ §$.578
(<) (<) (<) (s)
194 <194) 79> <757
7.914 7.693 £. 076 ¢.034"
(s) (5) (s) (<)
<194> < 154> {79 <797
/5,283 32.872 % | /3.304 /2,708
(1¢) (22) Cit) Citl)
{388 > {&sc) 15> /89>
/0,243 | 17.7¢( /5,307 F.250
(7) (12) (i3) (7)
274> { déey {203 {113
280.95 4 225.533 | 207.35¢ 1 139,43
(39) (32) (27) (20)
L5723) {4614 > <1890 {71959
At [o.5, 4ol = 4,
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saslci: 100 | b nol/hr

Speci fications

| ropyl ene feed $n !&7

' . : - Lover Upper Potorbaton .

. . - Baund Bound Start ’ ' a
)blective - Net value added, $/hr 1010. 13 /443,08 1483 04
Vari abl es _ . o o

1. CzHs/ C*, ratio to reactor n 2 10 10%* 4.2 /.93 4
2. reactor tenperature (°F) Tx 800 1100 1000 ft>u f oo
3.. reactor volume (ft3) v, 1 15 10 Ir AT
4, sepn. colum pressure ' ' .
(psi‘a) P, 20 50 28 o 2.0
5. split, frac to quench fq 0.25 0.75 0.6 0. 7-1 8.72%
6. split frac. to vent f\; 0.01 0.10 0.05 0.01 * o]
{. conpr. out. pres. ) ' ' -
(p§| a) o P 20 100 100** i ZH. . Scusr )
8. fr. recovery C& in
sep. tops - £ 0.95 0.99 0. 99** 0.59 e0-.11
9. fr. recovery ACin . . : ' T '
sep. botts. £, 09 _ 099 0099+ 059 0.97
Constraints | i
1. (Pc—!’m)comp(psi) 10 none 74 SO. T _' | Y8
2. product purity (mol X) 99. 07 none 99.0- - e« 77.C Z%9.0
3. reactor preheat (*P T, 90 Cnone " §67.8 € 8P 6 <<, |
“ . r ‘ r




