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Chemi cal engineers have |ong thought of process nodels in terns
of the physical systens they represent* Consequently, the nost common
approach to plant-vide nodel description is sequential nodular. Here,
i ndividual nodule nodels relate to distinct physical processes and
link together according to flowsheet topology. The calculation flow
is thus rigidly fixed by the flowsheet. A though this procedure is
reliable, easy to assenble and wusually robust, it often Iacks th'e
flexibility to performdesign and opti m zati on tasks.

The equation based approach offers cbnpl ete flexibility in spec-
ifying design constrai nts,. sol ving optinization problens, and deriv-
ing a solution procedure. However, since the entire equation set
bears little resenblance to the process flowsheet, much nore work is
required to set up and test the process nodel.

Here we discuss the progress of the simultaneous nodul ar met hod
in capitalizing on the advantages of the above approaches. Sinply
put, simultaneous nodular seeks the flexibility of equation based
systens while working with 'fbl ack- box™ process nodul es.

W review past and current si mul t aneous modul ar strategies for
‘design and optinization problens. Areas of current research as well
as directions for future work are discussed.
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I NTRODUCTI ON

Since its developrment, chemcal engineers have used the com
puter to gain nore insight into chenical processes. The first nodels
were stand-al one conputer prograns of individual pieces of equipnent
or sinple processes. As conputers became nore powerful, it seemed
quite natural to'string these stand-alone prograns together to form
| arger process nodels. Each nodel could then be constructed and
tested individually, and further developed to include faster
algorithns or reflect nore conplex phenonena. Should an error occur
in the nodule, it is relatively easy to locate, confine and correct
without greatly disrupting the entire flowsheet nodel.

Wiy then are other sinulation nodes desired? The main reasons
stem from applications to coupled flowsheets wth nested recycle
loops and the " inposition of design specifications that lead to
deviations from the normal information flow An acyclic network with
-each nodule calculating its output, given the output of the previous
nodule, is perhaps the nost efficient way of simulating a process.
However , with recycle streans and desi gn specifications, t he
sequential nodul ar node can be very inefficient because sone |evel of
iteration is required for its solution. The efficiency of the
convergence procedure depends greatly on the anount of information
available from the flowsheet. It 1is for this reason alone that
sequential nodular sinulation is inefficient.

Consider a sinple single |oop flowsheet where we tear a given
stream (choose a stream on which to iterate). Defining as a measure
of convergence the difference between the guessed and cal cul ated torn

stream (y and w, respectively), we pose the simulation problemas:
Solve h(y) =y - w=0 .

A large famly of nonlinear equation solvers can be used for this

probl em The nost comron ones have the form
M 1 1
Z%-1"-1t07) e
Several nethods applicable to sequential nodular flowsheeting are
listed in Table 1. Note that there are several ways of calculating




Table 1
Sane Met hods for Sol ving Nonli near Equati ons
(Mtard et al. (1975))
General Form
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the matrix J. Successive substitution requires no flowsheet inforna-
.tion for QVVhile Newton's nethod requires the Jacobian of h(y) at
each iterz;tion. Here we cone to a mgjor problem of these sinulators*
In order to apply the sinplest of methods, only a flowsheet pass,
which evaluates My), is needed. However,. even if the process
converges, its rate is only linear. A nore efficient strategy, Ilike
Newton's method, requires a full Jacobian. Here since process nodul es
are essentially input-output black boxes which reveal little informa-
tion about their constituent equations, the easiest, and often only,
way of obtai ni ng derivative information is by perturbation. However,
this approach 1is time-consumng and potenti' ally inaccurate since
modul es usually contain function and derivative discontinuities.

The nore significant problem is therefore the efficient
solution of the flowsheet with limted modular information. Wile
Newton's nethod is relatively independent of flowsheet topology,
other algorithnms such as sinple successive substitution strongly
depend on the calculation procedure and often require special care in
choosing tear sets. '

Thus to summarize -the above . points, the attributes of
sequential nmodular simulators are: '

1) They lead to the fornulation of physically meaningfully solution

strategies and, thus, a process simulation is relatively easy to
construct, debug, analyze and interpret. ‘

2) Any sophisticated convergence algorithm applied to the tear set
needs flowsheet information that wusually requires prohibitive
conputational effort. Thus, the sinplest convergence nethods mnust
be used.

3) Because of the black box nature of the process modul es, the sol u-
tion procedure is rigidly determned by the flowsheet topology.
Al'so, since these nodules are constructed to calculate output
streans and calculated paraneters from input streans and a
prespecified set of input parameters, any constraints the
engi neer wishes to inpose on the sinulation nust be handled as
addi ti onal iteration levels (control loops) that - further
complicate the flowsheet topology. Here, only sinple convergence
met hods can be used, so special care nust be taken in determning
tear sets.




I. Simultaneous Modular Strategies

‘As mentioned by Perkins (1983), equation based flowsheeting sys-
tems are not hindered by the shortcomings of sequential modular
simulators. Because these simulators can derive as much information
as they need from an equation-based model they have great flexibility
in deriving solution procedures and applying efficient convergence
algorithms. The disadvantage to the equation-based approach is mainly
due to implementation and the engineer's need to understand the
simulation process. In theory there is no question that an equation-
based approach is superior to the sequential modular strategy. In
practice, sequential modular simulators will continue to be wused

because
1) they are much easier to construct and understand;

2) they presently require less core storage and thus can be extended
to much larger simulation problems;

3) 1incorporation of new modules or more complex versions for unit
operations can be made easily without changing the overall solu-
tion strategy; .

4) process simulations are currently easier to program and debug in
the sequential modular mode; :

5) they are available, they work and they are most familiar to
engineers. :

In time, statements 1) to &4) will become invalid. Perhaps the

greatest inertia in converting to equation-based modes is due to

statement 5). On the other hand, many researchers have sought to com-

bine the best of both strategies. Although their efforts have taken

remarkably different forms, they deserve to be classified under the

general heading of simultaneous modular- strategies. Broadly speaking,
the simultaneous modular approach can be defined as the art of

flexibly  _solving simulation problems made up of black box process
modules.

Not surprisingly, the development of simultaneous modular strat-
egies parallels that of equation-based approaches. In the first sec-

tion the stages of development will be summarized as follows:




A) Developnent of optinal tear strategies for
sequential nodul ar sinulators

B) Sinultaneous convergence applied to design
constraints and tear streans

© Linear nodule information calculated from the
fl owsheet for faster convergence

D) Nonlinear nodels derived fromthe fl owsheet.

Here, we begin by highlighting graph theoretic techniques that were
originally applied to systens of equations and concl ude by discussing
strategies that use sinplified flowsheet nodels that |end thenselves
to the advantages of equation-based sinul ators.

A Optinmal Tear Strategi es

In the early sixties, as stand-alone nodules were linked to
form process flowsheets, the question of deriving efficient
cal cul ation sequences becane inportant. This was one of the first
applications of graph theory to chemcal processes (Mih, 1982). Here,
the flowsheet is treated as a digraph that could be analyzed to
determne an optimal tear set. This problemis simlar to equation
ordering in that nodes (nodules) nuét be partitioned and ordered
while any remaining irreducible sets are sol ved iterativel y. For
process nodules the algorithmc deconposition procedure is easier
.than with equations because the output set (streans cal cul ated by the
module) is already fixed by the flowsheet. However, the concept of an
"optimal ' tear set is still as difficult to define as with equat i on-
based sinulators. Mreover, equations with analytic derivatives can
be partitioned into irreducible sets and solved simultaneously.
Sequential nodular simulators, . on the other hand, require sinpler
solution algorithnms where performance .is strongly determined by the
tear set. Here, determination of the "optinal" tear set has been
represented conceptually as a set covering problem (Pho and Lapi dus,
1973; Rosen, 1980):
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Min z: pj x j
j=1

s.t. E:a x . 21
iy 3
xj-O,l j=1,N
where the binary variables xj correspond to whether stream j is torn
(1) or not (0). The coefficients aij can be assembled into a
(usually) sparse loop matrix. A value of one for aij indicates that

stream j appears in loop i. Otherwise a Finally, pj are user

defined weights on the tear stream. The integer program now finds a
minimal weighted tear set that breaks each loop at least once. In
order to obtain an optimal set, several criteria were proposed for

selecting the weights pj'
1) Tear minimum of streams, pj=1 (Barkeley and Motard, 1972).
2) Tear minimum of stream variables, pj = variables in stream j.

3) Tear as many loops as possible only once (nonredundant tears)
(Upadhye and Grens, 1975).

4) Select optimum tear set adaptively by obtaining a measure of the
eigenvalues for convergence (Genna and Motard, 1975).
Comprehensive reviews of these strategies are given in Mah (1982) and
Gundersen and Hertzberg (1982). However, none of these strategies
explicitly addresses the problem of design constraints. Here, a
design constraint is a process specification that cannot be entered
explicitly as a flowsheet input parameter. In the conventional
sequential modular mode, an additional iteration level, in the form
of a control loop, is thus imposed to meet this constraint. Needless
to say, the presence of control loops greatly influences tear set

selection and drastically affects algorithmic performance if not

considered.

B. Application to Design Constraints

Metcalfe and Perkins (1978) considered this controlled
simulation (or design) problem by explicitly reversing the flow of




information in th.e digraph and altering the levels of iteration.
After deleting "undefined" and "overdefined" streans, sequencing can
be performed using existing tearing methods. Equations describing the
design constraints as well as the tear streans are then solved
si mul t aneousl y.

Chen (1982) also addressed the controlled sinmulation problem by
including design constraints after the flowsheet streams were torn.
Control loops are inposed by determning an output set for the design
problem (by assigning the nmanipulated var iables to desi gn
constraints) and then tearing the control |oops separately.

Using the approach of Perkins or . Chen, the controlled
simulation can be greatly inproved. To better illustrate this
approach, consider the design or controlled simulation problem

witten as:

(CSP) h(yfz) »y - v(y,z) - 0
c(y,z) - 0
In the sequential nodular node, control loops create two iteration
level s where only one of the above relationships is converged at a
time. For exanple, if the design constraint is contained within a

recycle |l oop, - the flowsheet sinmulation stratedy is:

Sol ve Quter h(y, «(y) -y - Wy, z(y)) - 0
Iteration:

Sol ve | nner c()T, z) «0

|teration:

wher e ;7 is held constant in the inner iteration and z(y) is chosen_
in the outer iteration so that the design constr_ai nt, c, is satisfied.

Both Chen and Perkins (1979) propose the sinmultaneous solution
of the controlled sinulation problem (CSP). This sinple concept had
not been enployed before because nost common flowsheet convergence
methods fail if design constraints are included. Instead, Perkins
used Broyden's nethod while Chen used a nodification of Powell's
dogleg algorithm coupled with Broyden's nethod. The latter nmethod
hel ps the system of equations converge from poor starting points.
Both studies reported significant inprovenent over conventional

sequenti al nodul ar strategies.




C. Li near Information Derived fromthe Flowsheet

Instead of deriving «calculation strategies and selecting
"optimal *° tear sets, a large body of sinultaneous nodular literature
deals with obtaining nmore information fromthe flowsheet so that nore
efficient convergence techniques can be appli ed.

Again, these strategies parallel another approach to equation-
based sinulation: simultaneous solution by Newton's nmethod. Wth a
fl owsheet nmade up of black boxes, however, the approach to this
pr'oblem is slightly different. Here, evaluation of the J matrix by
perturbation or sone other approxi mation can be time consuni ng, but
the flowsheet structure does allow us to reduce the size of the
problem |In this section, one can identify two classes of sinulation
strategi es:

1) Newton's method applied to the flowsheet tear
set.

2) Newton's nmethod applied to all process stre_arrs.‘

Needless to say, -the controlled simulation problem can be
handled in both cases sinply by simultaneously converging the design

constraints with the process stream equations.

1) Tear Set Convergence. For the simul ation probl ens:

- h(y) -y - wy) ,

shown in Fig. 1, Newton's nethod gives us the relation

i+1 i /L dvV', |«
y -y evj-srj o (yw(y))
1 : x oy
wth (1-3w3y)~ as the J matrix. The use of a nore sophisticated

strategy now allows us to solve nested recycle problens sinmulta-
neously; if 3w3y is available, Newon's nethod coupled with nore
robust methods (e.g. dogleg, continuation, etc.) could be used. The
advantages of this approach have led to the devel opnment of nunerous
simul taneous nodular strategies. They can all be summarized as
attenpts to find good approximations to 3w 3y.
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Figure 1.

Sinple Simulation Problem




The first such attenpt was the nethod of split fractions
(Nagiev, 1957; Vela, 1961; Rosen, 1962). Here the input-output
Jacobi ans of each nodul e are approxi mated by a diagonal matrix. Each
di agonal el enment is-eval uated nerely by dividing the outlet conponent
flowate by its corresponding inlet conponent flowate. Reactor
nodul es that do not have diagonally dom nant Jacobians and create or
consunme chemical species are treated by pseudo-feeds and outputs.
Rosen (1962) nentioned that this procedure worked well on his exanple
probl ems but offered no guarantees for efficiency or stability. O her
studies (Klemes, et al., 1976; Lutcha, et al., 1975, Umeda and
Ni shio, 1972; Vasek, et al., 1974) have reported mixed results,
dependi ng on the size and conplexity of the problem

Several studies (Komatsu, 1968; Ureda and Nishio, 1972) used
sinplified linear Jacobian approxi mati ons based on Nishinmura's (1967)
approach. Here nodules that have diagonally dom nant Jacobians such
as separators, splitters and mixers are described by diagonal nodels.
React or Jacobi ans are approxi mated with off-di agonal terns correspond-
i ng to the conmponents participating in the reaction seque'nce. Ni shio _
and Uneda (1972) conpared this approach to the conventional se-
quential nodular and Rosen's split fraction strategies. In addi-tion
to showing superior performance on several exanple problens, they
also denonstrate the stability of their nethod over split fractions.
It appears the mmjor reason for this is due to the inclusion of
of f-diagonal terns in reactor Jacobians. Finally, they derive suffi-
cient conditions when their simultaneous nodul ar approach converges
faster than direct substitution.

" Reklaitis and coworkers (1979) wused a simlar approach to solve
linear mass bal ance problens. To obtain a solution the flowsheet is
first described in terns of three basic linear nodules: splitters,
reactors and mixers. To solve the linear systemonly a subset of the
m xer equations need be witten explicitly. Al other stream
variables can be elinmnated by chain-ruling the Jacobians of the
linear nodul es. This approach has been denonstrated on large |inear
mass bal ance problenms and was extended to design problenms with |inear

or nonlinear design constraints. The advantage of this approach is




that . Iihearity is fully exploited and iterative calculations are
elimnated except for the nonlinear constraints. This approach was
later included in a hierarchical strategy that interfaced with black
box process nodul es (MeLane, et al., 1979). To solve the simulation,
different levels of nodule aggregation are enployed starting from
i ndi vi dual linearized nodels for internal recycle streans to
conpl etely aggregated nodels for the entire plant.

In their description of FLOAPACK-II Berger and Perris (1979)
mention a .sinmlar concept «called "subnetworking. Here process
nodul es are deconposed into smaller nodules that can relate flows of
streans, enthalpies and pressures independently. In a manner simnilar
to equation-based simulation, the deconposed flowsheet now offers
greater flexibility in deriving solution procedures and handling
desi gn constraints. The drawback with "subnetworking,* however, is
that the décorrpbsed fl owsheet now becones nuch nore conpl ex and deter-
m nation of the solution strategy becones nore difficult.

2) " Al Stream Convergence. To avoid determination of tear

sets that reduce the size of the system several researchers have .
adopted the "all-streant' tear strategy. As shown in Fig. 2 on a

sinple flowsheet, this strategy deals with the satisfaction of two

sets of equati ons:

| nput - out put rel ati onshi ps

and stream connecti ons

wher e y, are output streans for nodul e i

i
X':. are input streans

and nodul e j is inmediately downstream of nodul e i

Mahal ec, et al. (1979) conbined these relationships into a large
i near system that was solved by sparse matri x deconposition. Several
net hods were conpared for evaluating the input-out putl Jacobi an, A

-
e -




71 ) bf) X3
g N
A, I Ax,
‘Az I A x,
°A3 I Ax3
1 Illay,
-1 4a Y,
I -I Ay,
“ I -I J A y4
"All-Stream" Tear Formulation
- - A
I dAA ax 1 Y, - x,
.A. I h 2 = y
1-x
- 2" %
A 3 I | &oe 4
o T3 = X,

Reduced Formulation

Figure 2. Decomposition Strategies




For their simulation problems, they found that by initially choosing
diagonal Jacobian approximations (except for reactors) and applying
Schubert (1970) updates at every iteration, significantly better
performance was observed over the sequential modular approach.

An obvious simplification to the above approach would be the
elimination of the stream connection equations (Sargent (1979)). This
is the method used in the flowsheet condensation steps of the QAP
(Parker and Hughes, 1981) and the Q/LAP (Biegler and Hughes, 1982)
optimization algorithms. As seen in Fig. 2, this simplification
essentially halves the size of the linear system and reduces the
effort required to solve the linear equatioms.

All of these methods require some information from the simula-
tor at each iteration. Regardless of the convergence method, the

major effort for simulation is still governed by evaluation of black
| box process modules. All of the above Newton-based methods, including
those of Chen (1982) and Perkins (1979), can be viewed as approximat-
ing the flowsheet as a linear mass (and energy) balance problem at
each 1iteration. Since even the fastest '"linear'" method requires
several iterations of the nonlinear simulation problem, any gains in
computational efficiency can only result if more than gradient infor-
mation is obtained from the flowsheet. Thus, the most recent
developments for simultaneous modular simulation have dealt with
solving nonlinear mass and energy balance approximations at each
iteration.

Working within an optimization framework, Hughes (1975) and

Isaacson (1975) approximated modular behavior by quadratic models of

the form:
T, 1 1T
= a Ax + bj Ay + Ax Aj Ay
1 T
+ Ax B &x + Ay Cj Ay
where yj - input stream variable j for module i
v; - output stream variable j for module i
i

x - module design variable set

- module retention variable j (calculated parameters)

[




However, nodel coefficients usually cannot be evaluated analytically
and cal cul ation by finite difference is expensive a_nij pot'enti ally
i naccurate. In Isaacson's optimzation study, the AyI %Ayl term
did not contribute nmuch flowsheet information; omtting this termled
to significant reductions in nodel construction. The results of this
study indicate that nonlinear flowsheet approxinmations are no nore
efficient if they are constructed from higher order derivatives.

Instead, the nost fruitful devel opnents for nonlinear approximation
have directly enployed sinplified flowsheet nodels to pronote

- convergence.

D. Nonl i near Mbdel s Derived fromthe Flowsheet

The concept of representing the rigorous nodel in terns of
simplified nodels at each iteration stens froma simlar strategy for
physical property evaluation. In order to avoid conplex calcul ations
at every iteration, sinple nodels were proposed (Barrett and Wl sh,
1979; Leesley and Heyen, 1977) with adjustable paraneters that could
be matched with rigorous physical properties at selected points.
Barrett and Wl sh (1979) . al so devel oped neasures for evaluating the
magni tude of error for the sinplified nodels in order to determne
when the rigorous physical properties should be' re-eval uated.

Boston and Britt (1978) extended this concept to flash cal cul a-
tions by totally redefining the -solution procedure. Here the
"primtive" variables that are usually chosen for convergence are
solved explicitly wusing sinplified correl ations for K values and
vapor and liquid enthal pies. New variables chosen for convergence are
the adjustable paraneters in the sinplified nodels. The cal cul ation

strategy is thus:

Quter iteration: _ _
sol ve S(3ty) - R(Yt7)
I nner iteration

Fi nd Vthat solves the sinplified flash calcula-
tion with 8 constant.




Her e - adjustable paraneters for sinplified nodels
- rigorous nodels evaluated in the outer iteration

6
R
y - variables calculated by flash cal cul ation
Y
S

paraneters used in rigorous property eval uations
sinmplified nodels that are functions of O

The inner iteration represents a nonlinear approximation of the rigor-
ous flash problent After rearrangenent of the sinplified equations,
this sinply becones a one variable convergence problem Mreover, the
outer iteration perforns snoothly because the paraneters 6 are not
as sensitive to changes in tenperature or |iquid-vapor ratios. The
algorithm termed inside-out, works well even for highly nonideal sys-
tens or 'wide and narrow boiling systens.

.Bost on and coworkers (1980, 1974) have also extended this
concept to multistage flashes and staged operations. Again, |ess
frequent evaluation of rigorous physical ©property routines has
resulted in significant reductions in conputational effort.

The extension of this approach to flowsheeting is straight-
forward. For sinulation one can treat the black box process nodul es
in the same nanner as the physi cal property cal cul ati ons. '.I'he i nner
iteration could then be performed wusing sinplified engineering
nodel s. These concepts were -recently proposed by Pierucci, et al.
(1982). Here, one pass of the flowsheet was ‘evaluated to determ ne
starting values for internal stream vectors and paraneters for
sinplified nodels. The sinplified (or evolutionary) nodels for each
unit are then wused to converge the flowsheet. The calculation
sequence for the inner iteration is the same as the one specified for
the flowsheet, but now the tear equations can be solved faster
becadse the evolutionary nodels have analytic gradients. This schene
requires no special equation solving technique and serves only to up-
date the value of the tear set. Because of the form of the
evolutionary nodules, this strategy can also be extended to handle
controlled simulation problens.

Jirapongphan, et al. (1980) proposed a sinilar strategy that
was also applied to flowheet optinization. Here the nonlinear
approxi mation interacts even less with the flowsheet and foll ows nore

the strategy of the inside-out algorithm Flowsheet "black box™




nmodul es are used only to calculate the adjustable parameters for the
sinmplified mnodels (denoted as Reduced Analytical Mdules (RAM),
which are then solved si@ltaneously as a large sparse system
Convergence is obtained when the RAM paraneters, not the tear
st reans, apbroach a stationary point. Mre will be nentioned about
this method in the optimzation section.

Any problems wth nonlinear approximation sinultaneous nodul ar
nmet hods are mainly dUe to the form and accuracy of the sinplified
nodel s. Because of their nonlinearity, the nodels nust frequently be
solved iteratively, either by sequencing and solving the tear set or
by sinmultaneously converging a sparse system of nonlinear equations.
The inner iteration is thus identical to solving (possibly over-)
sinplified simulation problens. Her e, questions that nust be
addr essed are:

1) Do sinplified nodels exist that accurately represent conplex
nodel (i.e. realistic process) behavior?

2) Are there- advantages to solving the sinplified nodel (probably)
nore often than the conpl ex nodel ? .

3) What are the necessary and sufficient conditions on the form of
Fhe s? mplified nodels that govern convergence of the outer
iteration. ’

The exanples solved by Pierucci et al and Jirapongphan indicate that

these nethods are clearly superior to the conventional sequential nod-

ular approaches and can handle problens rmuch larger than those
attenpted by equation-based sinulators. However, future work wth
these strategies nust also deal with conplex reactors and
distillation nodels where the <choice of linited or inaccurate
sinplified nodels <can cause convergence failure in the outer

iteration (Chinmowitz, et al., 1983).

Anot her case that nust be addressed is the wi de use of dis-
continuous and nondifferentiable nodels in sequential nodul ar
simulators. These manifest thenselves in sizing and cost cor-
relations, in nonideal distillation colums, in reactors, and as em
bedded optimzation problens (Odark and Wsterberg, 1982) that
describe nmultiphase flash calculations. As vyet, no simultaneous

-
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nodul ar approach has considered this problem even though it can be a
mé\j or cause of convergence failures. Mre will be said about this in
the next section.

In revi_ew’ ng sinultaneous nodular strategies, we see how this
simulation node has "bridged the gap" between an inflexible, but
robust nethod (sequential nodular) and the equation-based strategy
that offers great flexibility for design and sinul ationl.

The devel opment of this simulation node has been spurred by the
advances of equation-based nodes in solving large sets of Ilinear and
nonl i near equations. However, it has always been tied to "black box"
nodul es which can nodel process behavior in as nuch detail and rigor
as necessary.

For t he present, application of this philosophy will lead to
very efficient, frequently-used and successful sinulation strategies.
The sinmultaneous nodul ar approach conbines the efforts of detailed
nodel representation enbodied in sequential nodular strategies with
powerful equation-based strategies and nakes them both inmmediately

useful *

1 Sinultaneous Mddul ar Optim zati on

. Process inprovenent is a mjor activity anmong chem cal
engi neers. Faced with obvious economc and |ogistical incentives, the
use of successful and efficient optimzation techniques is clearly
desirable. Unfortunately, the explicit development and use of these
techniques is not wdespread in industry. At the last FOCAPD con-
ference several reasons were cited (Blau, 1980; Wsterberg, 1981) for
this fact. To notivate the discussion of sinultaneous nodul ar
optimzation, it is useful to consider some of thesg reasons.

Put concisely they can be listed as:

1) It is often difficult to accurately define an objective function
and fornmulate a mathematical program for the engi neering problem

2) CQurrent simulation and optimzation tools are too expensive (in
terms of the engineer's and the conputer's tine) and not
especially "user-friendly."

3) There is so much uncertainty in the design and operation of the
process that the information gained from an optimzation study
may not be neani ngful . -

. -




4) The penalty for failure to neet project deadlines clearly
i ncreases the reluctance toward inplenmenting these tools.

The second and fourth reasons can be overcone by devel opneht of nore

efficient, robust and friendly tools. In time, | feel that these rea-

sons will no longer be valid provided that new strategies are inple-

mented well and the user is conscious of the algorithms limtations.

Uncertainty in design is often a problemthat precludes a rigor-
ous optimzation study. Presently, however, this is due to the pro-
hibitive effort required by many brute-force optimzation techniques.
An efficient optimzation tool that can be applied frequently and eas-
ily is very useful for sensitivity analyses. Mreover, one can also
pose optimzation problens that include and exploit process
uncertainty (see Gossnmann and Mrari (1983)).

The first reason deals.nmore frequently with process synthesis
but also applies to certain aspects of process optimzation as well.
Because defining an "optimal" plant is difficult and formulation of
the mathematical programming problem can include continuous and
di screte. deci sions and di scontinuous and nondifferentiable functions,
the designer is often left with a problemthat cannot be solved. This
realization has led several researchers (Li rmhoff, 1981; MNbrari,
1982; Stephanopoul os, 1981) away from nunerical solutions to the
clever application of heuristics. Here, several problenms such as
special cases of energy recovery and separation systens can be sol ved
efficiently nmerely by representing the problem conpactly and applying
sound engi neering concepts (e.g. thennodynam c targets). '

It should be nentioned, though, that heuristic strategies may
offer no guarantee of optinmality and additional process restrictions
can becone difficult to deal with. Here, the geheral framework is
also not as well defined as with nathenmatical progranmmng. Finally,
one should realize that although heuristics often lead to good
solutions, there is nmuch inprovenent that can be realized through
mani pul ati on of _continuous variables. This is especially true in the
optimzation of sinmulated processes, where mnor variations in contin-
uous variables have sonetinmes realized process inprovenents that

would justify the use of even the crudest autonatic optimzation

. -




strategies (Gaines and Gaddy, 1976). Since chemical processes contain
complex interactiomns, it is difficult, if not impossible, to develop
heuristic strategies that will yield these optimal results.

Thus, while the engineer should not be reduced to the level of
a technician tied to an automatic tool, he must be aware of the power
of optimization strategies. To this end the problem of formulating
meaningful optimization problems is as important as determining
thermodynamic targets; judicious application of state-of-the-art
optimization strategies is equally as important as the application of
heuristics.

In this spirit we review optimization strategies for process
flowsheeting and discuss the recently developed infeasible path algo-
rithm. We divide these methods into three classes:

A) Two-level Optimization Techniques
B) Feasible Path Strategies
C) 1Infeasible Path Strategies

Here, nonlinear programming algorithms will omnly be described
as they pertain to optimization strategies since space precludes com-
prehensive treatment. Excellent reviews of algorithms and software
are available elsewhere (Gill, et al., 1981; Lasdon, 1981; Sargent,
1980).

The optimization problem can be written as:

(P1) Min 8(z)
z
s.t. g(z2)s0
h(z) = 0
c(z) =0

where z represents all of the variables in a given process, ¢ is

an objective function, typically of economic form, and the inequali-
ties g(z) < O represent physical or '"designed" limits on process
operation. The equality constraints are divided into two sets: h(z) =

0 are equations needed to simulate the process while c(z) = O are




conditions inposed by the desi gner. The variables are wusually
partitioned into two sets denoted as x and y. Here the vector x
represents the process decisions; its dinension is the nunber of
degrees of freedomin the process. The y variables can be cal cul ated
fromc and h once the x variabl es have been chosen.

Perhaps the nobst appealing ideas for process optimzation stem
simply from the nodularity of chenical processes. From the classical
study of wunit operations and countless hours of observing equiprent
perfornmance, it beconmes inevitable that individual process units will
be optimzed.  The question then remains, how does our know edge of
these wunits inpact on plant-wide process optinization? During the
'sixties and early seventies, this led to the devel opment of several
el egant deconposition techniques.

A, Two-Level Optim zation Techni ques

The first attenpts at flowsheet deconposition used dynamc pro-
gramming (Aris, 1964) for acyclic process'es. Jackson (1964) and Brosi -
low and Lasdon (1965) were the first to propose the two-Ievel
strategy. for cyclic process flowsheets. Here, the optimzati on-
problem nmust have separable objective and constraint functions.
Equality constraints are further <classified as equations that
represent the nodule nodel and connectivity equations that link the

nodul es.

Because the optimzation problem is separable, sub-Iagrangians
can be witten for each nodule (or stage). The coupling between these
functions occurs through adjoint variables (Lagrange nultipliers on
the connectivity equations). At the first level the sub-Iagrangi ans
are mnimzed with adjoint variables held constant. The adjoints are
then updated at the second level to help'satisfy the interconnection
equations. One serious drawback of this approach is that unless the
optim zation problem is convex, the region around the solution may
have a dual gap and the algorithmw Il not converge. Stephanopoul os
and Westerberg (1975) proposed a renedy to this problem but
sacrificed the separability properties. -




However, even when this strategy succeeds, it perforns ineffi-
ciently (Jung, et al., 1972) and requires prohibitive conputational
effort* Consequently, this approach has found little use outside of

the academ c world and is currently obsol ete.

B. Feasi bl e Path Strateqies

A nore straightforward approach to optimzation derives from
paranetric studies directly applied to the sinulator. Since the proc-
ess can be nodeled and sinulated for a wide variety of cases with few
changes in input data, it becones easy to let an optimzation al go-
rithm autonmatically perform the case studies. However, this approach
suffers from the same linmtations that apply'to sequential nodul ar
sinulators. Here the optimzation probl embecongs:

( P2) WLn rf (X)
s.t. g(x) £0
c(x) -0

Note that the process equations (h(x,y') » 0) need to be solved gvery
tine the objective function is evaluated. Since the flowsheet
consists of black-box nodules, simulation will usually be perforned
by slow convergence techniques. Mreover,” the application of
efficient gradient-based optimzation techniques is hindered for two .
reasons. First, derivatives can only be evaluated by pertUrbi ng (and
re-simulating) the entire flowsheet with respect to the decision
variables. This process is not only tine consuning but requires rel-
atively tight convergence tolerances in order to m'.ni m ze
perturbation error. The second reason is due to the nature of the
bl ack boxes. Process nodul e behavior is often deséribed by discrete
and di sconti nuous rel ations or - by " functions that may be
nondi fferentiable at certain points. Thus, even if there is no
perturbation error "gradients" still may be inaccurate. _
In this case only direct search algorithms offer any
"guérant ee" of success (Westerberg, 1981). Numerous studies with -
adapti ve random (Friedman and Pinder, 1972; Gaines and Gaddy, 1976;
Bal | man and Gaddy, 1977), conplex and pattern search algorithns tied




to sequential nodular sinulators have denonstrated that this approach
is inefficient and too expensive to be done frequently. It nmay be
largely due to this reason that wdespread use of process
optimzation techniques is not comon in industry even though there
is a clear need for them

In order to use nore efficient gradient-based algorithms for
simul ator optim zation, Hughes (1975) and |saacson (1975) constructed
quadratic nodule nodels at each iteration that could be conbined and
reduced to formthe quadratic optim zation problem

(P3) Wn  a'Ax + AxTaax

s.t. b'EX + AXBAXE O
C'AXx + AX'CAX - 0
The solution of this problem then determnes the next base point for
nodel construction. At first glance this strategy appears cunbersone,
but it elimnates the need for perturbation and repeated sinulation
of the entire flowsheet. Parker and Hughes (1981) applied this
strategy to a FLOMRAN simulated ammonia process with 8 degrees of
freedom and found the optimum in the equivalent tine of 65.4
sinul ations. Biegler and Hughes (1981) used only |inear nodul e nodel s
to obtain reduced gradient information and applied an SQP al gorithm
(Han, 1977; Powell, 1977) to (P2). Here the same ammonia synthesis
process was solved in only 12.6 sinmulation tine equival ents. However,
this strategy still requires the sinmulation of the flowsheet at every
iteration.

C. The Infeagi ble Path Strategy

Here we need to consider the structure of sequential nodular
simulators and how it can be exploited for optimzation. The simla-

tion problemcan be witten sinply in terns of the tear equations:

h(y) * 7 - w(¥)

since wis directly determined fromthe tear variables, y, by evaluat-
ing the process |loop. The optimization problem (Pl) is thus reduced
to the form




(RP) Min  4(x,y)

s.t. g(x,y) =0
c(x,y) = 0
h(x,y) =y - w(x,y) =0

In previous optimization strategies the last constraint was converged
either in the outer loop by the two-level algorithm or in an inner
loop by the feasible path approach. In the infeasible path strategy -
this constraint is converged simultaneously with the optimization
problem. Here the problem is small enough that no decomposition
techniques are require@. Also the work required per iteration is not
excessive because the flowsheet converges only as the optimum is
found. To discuss this strategy we present three components that
account for its algorithmic performance and also represent areas for

future research. These are:
1) Choice of Optimization Algorithm
2) Gradient Calculation Strategy

3) Attributes of Process Modules

1) Choice of Optimization Algorithm. This is the most impor-

.tant aspect 1in judging the performance of the infeasible path
approach. The nonlinear programming strategy must be able to handle
nonlinear equality constraints; thus we are limited to the following

methods:
a) Generalized Reduced Gradients (GRG)
b) Successive Quadratic Programming (SQP)

These two methods are currently regarded as the most efficient
and robust nonlinear programming techniques. Other methods that
handle nonlinear equalities, such as penalty functions (Fiacco and
McCormick, 1968) or augmented Lagrangians (Bertsekas, 1976) require
far too much computational effort and too many function evaluationms
to perform efficiently with process modules.

Among the generalized reduced gradient methods, the two most
popular algorithms are GRG2 (Lasdbn, et al., 1978) and MINOS (Murtagh




and Saunders, 1978). Both use active set strategies and optimze the
nonlinear function in the subspace of the active constraints. How
ever, GR&X requires converged equality constraints at each iteration*
Wiile this approach enforces stable algorithmc performance for
equati on-based chem cal process optimnization strategies (Lasdon 1981
Sarnma and Reklaitis, 1982), it defeats the purpose of the infeasible
path strategy. M NOS, on the other hand, does not need to follow a
feasible path for convergence but works in linear subspaces. Also,
Murtagh (1982) described how MNOS can be adapted to equation-based
chem cal process optimzation. Performance on |arge-scale problens
have been very efficient with this approach

However, the optimn zation problenlfornulated for the infeasible
path strategy has a different structure. First, it is smll (about
10-50 variables) and has nonlinear equality constraints. Therefore, a
full optimzation in a linear subspace is probably too inefficient,
especially in terns of function eval uati ons. Mor eover, the
characteristics of MNOS are best applied to large problenms. Thus, we
consider the SQ (Han, 1977; Powell, 1977) strategy.

Instead of optimizing a nonlinear function in the |inear
subspace of the active set, SQ@ constructs a quadratic objective
function and Ilinearizes the constraints. The resulting quadratic
program (QP) can be solved easily and requires only one function and
gradient evaluation. The QP also finds the active constraint set and
determines a search direction for the next iteration. Several studies
have verified (Lasdon, 1981; Powell, 1977; Schittkowski, 1982b) that
the SQ algorithm requires very few function evaluations for
nonlinearly constrained optimzation problens, while the CPU tine
expended depends largely on the efficiency of the quadratic
programmi ng step. _

SQP is thus ideally suited for infeasible path optimzation
because function and gradient calculations require flowsheet nodule
cal cul ations and represent the nost time-consuning part of the optimi-
zation. However, the algorithmitself is still evolving; a fewof its

properties still require inprovenent.




As nmentioned above, SQ solves a quadratic program at each
iteration* Since the Hessian matrix of the QP is a positive definite
approxi mation of the Hessian of the Lagrangi an, the search direction
is unique. However, taking full steps along this direction does not
guarantee global convergence of the nonlinear probl em To .ensure
convergence, various nethods have been proposed (Chanberlain, et al.,
1982; Han, 1977; Powell, 1978; Schittkowski, 1982a). These find a
stepsize along the search direction by mnimzing a function that
reflects the nmagnitude of the objective function and infeasibility of
the constraints. As yet, however, each stepsize strategy still has
its drawbacks.

Another problem lies in initializing and maintaining the
accUr_acy of the approximated Hessian. Wile the quadratic ‘program and
the updating procedure are thenselves scale invariant, t he
per f or mance.of the algorithm depends greatly on how the variables are
scaled or, equivalently, how the Hessian is initialized. Only
heuristic scaling strategies have been proposed so far (Biegler and
"Hughes, 1982; Chen, 1982). Furt her nur_TericaI studies such as recent,
ones by Schittkowski (1982b) and Stadtherr and Chen (1983) sHouId

hel p to resol ve these probl ens.

2) Gadient Calculation Strateqy. At each iteration, the QP

used in the infeasible path strategy takes the form

(@ Mn  9bx.yTd + 3 dTa

s.t. g(xi, 7i) +V9(X|fYt)Td* 0
T =
h(x, ,y,) + Vb(x,,y,)7d = 0

e(x,,¥,) + Ve(x,1y1) 'd - 0

At present the gradients ~(x~y”™, "g(Xxi,V¥i), Vh(xi,vi),

7c(xify.1) are evaluated by perturbing the flowsheet. Since the optinmi-
zation problem can be witten explicitly in ternms of design
variables, X, and retention variables (selected flowsheet parafn

eters), r, gradient information is given by:




y dy or
and
V. h = - 3w/3x
dw
y oy
Since 39/3x and 3¥/3r can be evaluated explicitly, only %;, %;,

%¥ and %; need be evaluated by perturbation. Two perturbation strat-
egies (Biegler and Hughes, 1982; Chen, 1982; Hutchison, et al., 1983;
Shivaram and Biegler, 1983;) have been tested so far. Both can be
used to advantage in modular enviromments.

With direct loop perturbation, the recycle convergence block is

replaced by an '"optimization" block. Nothing else in the simulator
executive need be changed and the same calculation order used for
convergence is executed for perturbation. Here, design variables do.
not affect upstream units so only partial loop perturbations are

required. The total number of block evaluations is thus given by:

NTOT VCs
ME = ) )4
i=] j=1
where
(NCP+2) - number of stream -elements (no. of component
flows plus pressure and enthalpy).
NCS - number of connecting streams in calculation
sequence, ’
ND - number of design variables
Lij(z 0) - number oﬁ!blocks from design or tear variable i
: to the j terminus in the calculation sequence.
VCS -~ number of calculation sequence termini (loca-
tions of wj or the last retention vector down-
stream of - all wj) which are downstream of
variable i.
NT - number of tear streams

NTOT - (NCP}-Z)N‘I’ + ND




This procedure tends to be sonmewhat wasteful for design
variable perturbations &nd nested | oops but requires no additional
interface or manipulations to calculate the gradient. A so nost
information flow reversals enbedded in the flowsheet can be handl ed
quite naturally with this procedure. Finally, gradients of highly
nonl i near nodules tend to behave snoothly because direct perturbation
responses of w and r are used. This allows for consistent inter-
nmediate variable responses to a given perturbation size for vy
(Biegler and Hughes, 1982).

The second strategy uses chainruling to -eval uate gradients
after each nodule has been perturbed by -itself. This is, in
principle, the same as the condensation step used by Biegler and
Hughes (1981). Here the nunber of block eval uations is:

NCS (NCP + 2) + ND

For flowsheets where design variables are at the beginning of the
cal cul ation sequence, this nethod is clearly nore efficient. Al so,
since each nodule is perturbed independently 1less conputational )
effort can be expected for intramodule convergence (Chen, 1982).
However, this strategy is nore difficult toeinplement on sequential
modul ar .si mulators and speci al provisions nust be nade for
information flow reversal. Chen (1982) applied this approach on a'
si mul taneous nodular simulator and denonstrated its éuperi ority. n
small problems” solved with sequential nodular sinulators, Shivaram
and Biegler (1983) also reported fewer block evaluations, but some
additional CPU tine was required for procedural overhead.

Both strategies require calculation loops that include design
and retention variables. Deternmination of the cal culation sequence is
straightforward; tear streans should be chosen that break all | oops
with the fewest tear variables. This heuristic keeps the optim zation
problemsmall and allows all |oops to be converged simultaneously.

Stream candidates that satisfy this criterion should then be
chosen to ninimze the effort of gradient calculation. This is espe-
cially inportant if direct loop perturbation is used since it influ-
ences. the 1iJ terns for the nunmber of block eval uations.




From discussion of gradient calculation strategies, one nust
al so consider efficient and accurate nethods for evaluating nodul ar

Jacobians. This leads directly to the next section.

3) Attributes of Process Models. Since gradient information

is presently constructed by perturbation, it is inportant to consider
how nuch error results from this procedure. Here, the accuracy of the
gradients is affected by higher order Taylor series terns and by
noise resulting from iterative calculations subject to a finite
t ol erance.

Because tear streans are not converged at each iteration, the
gradients are not affected by recycle tol erances. However, nany int r.a-
modul ar procedures require iterative calculations and thus the size
of the perturbation becomes inportant. As the perturbation size in-
creases, the error due to higher order Taylor series terns becones
significant. On the other hand, the response of a small perturbation
may be corrupted by-convergence noise.

Biegler . and Hughes (1982) experinmented. with various_
perturbation sizes and found little difference provided that
iterative calculations had'tight tol erances. Hutchison, et al. (1983)
chose perturbation sizes that balance and thus nminimze the error due
to noise and higher order terms. Cowe (1983) elinmnated the noise
problem entirely by sinply executing a fixed nunber of iterations for
the function evaluation and perturbation steps.

Though perturbation was used for Jacobian information, the
chain-ruling strategy also allows inclusion of analytic nodular
Jacobians if they can be specified. Sonme units such as mxers and
splitters have analytic Jacobians for mass and ent hal py bal ances.
O hers such as heaters, conpressors and punps nay require only a few
perturbations for this information. O course, the nost difficult and
conplex units, such as tubular reactors and rigorous separators, have
Jacobians that are alnost inpossible to construct analytically. For
this reason an approach that uses sinplified nodels can be de-
ceivingly attractive.




For exanple, in a nore radical departure from evaluating the
fl owsheet, Jirapongphan, et al. (1980) describe an optimzation
strategy that uses rigorous process nodels at the outer iteration
only to fit paraneters for nore sinplified nodels. For the inner
iteration the si nplified nonlinear nodels are optimzed for the next
outer iteration. Wile this approach is very efficient because it
r educes the nunber of modul ar eval uati ons, there are sone
di sadvantages relating*' especially to optimzation that nmust be.
consi der ed.

First, it is not always possible to find suitable nonlinear sim
plified nodels for the nore rigorous ones. For sone conplex process
and physical property nodels, sinplified correlations cannot describe -
thei r behavi or accurately enough..

The second disadvantage is nore insidious. Because the optimum
is usually determined by the gradients that nmake up the Kuhn- Tucker
conditions, it is probable that the optinmm found by Jiraponghpan's
algorithmis pot the optinum of the rigorous process nodel. Instead,
this algorithm finds the optinum of the sinplified nodels at the .
point where properties calculated by the rigorous and sinplified
nodel s match. The follow ng exanpl e. illustrates why this solution may
not be the true optimum '

Consi der the optimzation problempictured in Fig. 3. The rigor-

ous optim zation problemis given by:

M n az + x

s.t. o - (x*+x%2+1) -0
ax0
- , . 3, 2
If we want to approximate the property a (defined by x +x +1)

by a sinpler nodel: a = x+8 (where B is determned by nmatching
a with the nonlinear nodel), then the "inside-out! probl embecones:




a Rgx,a)

s(8)




Oute iteration

@ e (X +X+1) «X+0

I nner probl em

_ Mn or?+x?
Xe arg _
s.t. a* (x+B) =0

ao

From Fig. 3, it can easily be seen that the optirrum of the original
pr obl em i.s at point A Starting fromthis point, the latter approach
will actually nove away toward point B. The broken line is the |ocus
of optima found by the inner problem for different values of 8.
At poi‘nt B this locus crosses the equality constraint of the original
probl em ' _
It is interesting to note that, in this case, Jirapongphan's
algorithm noves away from the true optinmm (poi.nt A) to point B,
which is actually a local maximumof the original problem This shows
that determination of the opti numby Kuhn-Tucker conditions is direct-
ly related to the accuracy of the gradients. Since nmany sinplified
nodel s have different derivatives than their "rigorous counterparts,

different optima will be found.

This situation also applies to the use of sinplified nodels for
Jacobi ans in the chain-ruling procedure. Chen (1982) reported good re-
sults with sinplified nodels if reasonably accurate approximations
were made. However, he suggests further study before drawi ng any con-
clusions. Again, if sinplified nodels have different gradients, they
wi | | probably lead to different "optimal ' sol utions.

Instead, one should probably develop a franework that includes
information that can be obtained analytically and uses the structure
of the nodule to obtain missing information by perturbation. Only if
the perturbations are prohibitive should sinplified nodels then be
considered. Even in this case, these nodels should match rigorous
nodel gradients as well as their functions. This is the approach we

are taking in refining our optimzation strategy.

-




Lastly, one encounters the nost difficult aspect about sequen-
tial nmodul ar  optim zati on. Because the process nodules often
incorporate sonme level of decision-making in their calculation
strategy (e.g. changing phases in flash calculations) as well as
certain cost and sizing functions, we often encounter gradients and

functions that are not uniquely defined at certain points.

In this case, the i nf easi bl e path strategy will calculate the
wong "gradients" and possibly jam into a corner and fail. Using
snoot h, sinplified nodels may alleviate this problem but, as
nmenti oned above, the solution will probably be far from the true
opti mum

Here the biggest drawback is that these functions are hidden
wi thin process nodul es. Thus, we can only address those problens that
are known to occur during the optimzation. However, even if the
source of these functions is known, there still are no easy ways of
handl i ng them

Di sconti nuous- functions can sonetines be considered by introduc-
ing binary (0 or 1) variables into the optim zations. The probl em'now
becomes a mxed-integer nonlinear program which is difficult to
solve, especially if many binary variables are present. Duran and
G ossmann (1983), however, have devel oped an efficient strategy for
MNLP's if the problem is separable for the binary variables and
convex for the continuous variables. _

Sone nondifferentiable functions, if known, can be represented
by the epigraph of differentiable functions (Han, 1981):

mx  {e(z)}
1

In an optinization problem these can be incorporated by noting the
equi val ence

6
max o) ><==><e,n =8




where &8 is added as a new variable. Now, nondifferentiable object:ivé

functions can be written as:

Min 8
ei(z) £33
g(z) £ 0
h(z) =0

and nondifferentiable inequality constraints can be given by:

Min  4(z) \ Min  4(z)
e (2) 58 <L— > e, (2) S0
850 h(z) = 0
h(z) =0

Nondifferentiable equalities can be represented by:

)ﬂ.;x $(z)
g(z) £ 0
oy =0
ei(z) t 3.

but only if we force one or more of the ei(z) to be active at the
solution. The combinatorial problem encountered here can be difficult.
This is related to a more insidious nondifferentiable problem given
by: '
Min 61(81sxz)
*10%2 :
s.t. gl(xl,xz) s 0
hl(xl,xz) =0

Min 62(::1'.:2)
x
2 .
s.t. gz(xl,xz) <0
hz(xl,xz) =0 i




This problem is typical of process optimzation where the inner
mnimzation nmay represent an equilibrium calculation (mnimze
G bbs! free energy). Cdark and Wsterberg (1982) addressed this
problem by witing the Kuhn-Tucker conditions for the inner problem
and applying active set and relaxation strategies to the inner
probl em i nequalities.

These types of problens have been studied in equation-solving
environnents. They are just as frequent in sequential nodul ar nodes
and should be recognized when fornmulating the optimzation problem
Easy ways of handling them are to restrict the region of investi-
gation so that discontinuities are not encountered (Biegler and
Hughes, 1983) (e.g. conpressors mnust have positive Ap) or by fix-
ing calculated variables that may exhibit discontinuous behavior as
input paraneters or design variables. One exanple is stream pressure
whi ch can be nondifferentiable around the [oop and should thus be re-
noved from the tear set, y, in the optimnmzation probl e‘.m (Biegler and
Hughes, 1982).

CONCLUSI ONS AND Sl GNI FI CANCE

Current strategies for sinultaneous nodul ar sinulation and opti -
ni zati on have been reviewed and conpared.

Si mul taneous nodul ar sinulation arose because of the need to
solve flowsheets nore efficiently and flexibly while wusing "black
box* process nodules. Its developnent closely parallels that of
equati on-based sinmulators in the foll ow ng areas:

1) Flowsheet deconposition algorithns that find "optimal" tear sets
for recycle and control |oops and converge them simultaneously.

2) Gadient approximation strategies that all ow sinmul taneous
solution by Newton's nethod.

3) Use of approximate nonlinear nodels that represent the flowsheet
in a sinplified form and can be solved using equation-based
strat egi es.

The optim zation problem can be regarded as an extended simul a-
tion problem where optimzation and recycle convergence occur simnul-

t aneousl y. This infeasible path strategy has worked well in




equati on-based nodes (Berna et al. (1980)) as well as wth the

si mul t aneous nodul ar approach. The main points of this approach can

be summarized as:

-1) The SQP algorithmis appropriate for this strategy because it can
handl e snmall sets of nonlinear equalities efficiently. Some work,

however, still needs to be done to inprove performance and
robust ness.

2) Two types of gradient calculation strategies can be used for the
S algorithm :

a) Direct loop perturbation is easy to inplenent on any sequen-
tial nmodul ar sinulator but nmay be inefficient for design vari-
abl e perturbations. -

b) Chain-ruling usually requires fewer perturbations  but
extensive nodification of the simulator's executive is needed
for inplenentation. :

The choi ce depends on the structure of the si mul at or.

3) The flowsheet should be deconposed by choosing the fewest
variables that tear all loops. This keeps the optimzation
problem small. |If several tear candidates exist, the ones that
mnimze the effort of gradient calculation should be chosen.. i

4) The only current reliable way of evaluating gradients is through
perturbation unless analytic information .is known. Here, use of
sinmplified nodels may cause convergence to the wong sol ution.

5) Nondifferentiable and discontinuous functions enbedded in process'
nmodul es remain seri ous obst acl es to efficient process
optim zation strategies. There are sone ways of overcomng them
if the functions can be identified.

As nentioned at the beginning of this paper, the simltaneous
nodul ar strategy bridges the gap between reliable and detail ed sequen-
tial nodular nodels and efficient equation-based solution strategies.
As such, it has imrediate applicability to real problens while using
state-of-the-art solution strategies. Therefore, this node will play
a very inportant role in process engineering in the near future.
Further inprovenents in this area will enhance its already high |evel
of flexibility and applicability.
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