
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

SIMULTANEOUS MODULAR SIMULATION AND OPTIMIZATION

by

L.T. Biegler

December, 1933

DRC-O6-JW-83

SIMULTANEOUS MODULAR SIMULATION AND OPTIMIZATION

by

L.T. Biegler
Carnegie-Mellon University, Pittsburgh, PA 15213

Chemical engineers have long thought of process models in terms

of the physical systems they represent* Consequently, the most common

approach to plant-vide model description is sequential modular. Here,

individual module models relate to distinct physical processes and

link together according to flowsheet topology. The calculation flow

is thus rigidly fixed by the flowsheet. Although this procedure is

reliable, easy to assemble and usually robust, it often lacks the

flexibility to perform design and optimization tasks.

The equation based approach offers complete flexibility in spec-

ifying design constraints, solving optimization problems, and deriv-

ing a solution procedure. However, since the entire equation set

bears little resemblance to the process flowsheet, much more work is

required to set up and test the process model.

Here we discuss the progress of the simultaneous modular method

in capitalizing on the advantages of the above approaches. Simply

put, simultaneous modular seeks the flexibility of equation based

systems while working with lfblack-boxM process modules.

We review past and current simultaneous modular strategies for

design and optimization problems. Areas of current research as well

as directions for future work are discussed.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

INTRODUCTION

Since its development, chemical engineers have used the com-

puter to gain more insight into chemical processes. The first models

were stand-alone computer programs of individual pieces of equipment

or simple processes. As computers became more powerful, it seemed

quite natural to string these stand-alone programs together to form

larger process models. Each model could then be constructed and

tested individually, and further developed to include faster

algorithms or reflect more complex phenomena. Should an error occur

in the module, it is relatively easy to locate, confine and correct

without greatly disrupting the entire flowsheet model.

Why then are other simulation modes desired? The main reasons

stem from applications to coupled flowsheets with nested recycle

loops and the imposition of design specifications that lead to

deviations from the normal information flow. An acyclic network with

each module calculating its output, given the output of the previous

nodule, is perhaps the most efficient way of simulating a process.

However, with recycle streams and design specifications, the

sequential modular mode can be very inefficient because some level of

iteration is required for its solution. The efficiency of the

convergence procedure depends greatly on the amount of information

available from the flowsheet. It is for this reason alone that

sequential modular simulation is inefficient.

Consider a simple single loop flowsheet where we tear a given

stream (choose a stream on which to iterate). Defining as a measure

of convergence the difference between the guessed and calculated torn

stream (y and w, respectively), we pose the simulation problem as:

Solve h(y) = y - w = 0

A large family of nonlinear equation solvers can be used for this

problem. The most common ones have the form:

zM - i1 - i to1) •
Several methods applicable to sequential modular flowsheeting are

listed in Table 1. Note that there are several ways of calculating

Table 1

Sane Methods for Solving Nonlinear Equations

(Motard et al. (1975))

General Form:

- J

y1 -

Method

Successive Substitution

Wegstein D - diag (d }
J 3

i-i

Dominant Eigenvalue ~=T]

X

Broyden's Method (1965) Full matrix quasi-Newton
update

Nevton's Method f ^ Z _ I J

the matrix J. Successive substitution requires no flowsheet informa-

tion for J while Newton's method requires the Jacobian of h(y) at

each iteration. Here we come to a major problem of these simulators*

In order to apply the simplest of methods, only a flowsheet pass,

which evaluates M y) , is needed. However, even if the process

converges, its rate is only linear. A more efficient strategy, like

Newton's method, requires a full Jacobian. Here since process modules

are essentially input-output black boxes which reveal little informa-

tion about their constituent equations, the easiest, and often only,

way of obtaining derivative information is by perturbation. However,

this approach is time-consuming and potentially inaccurate since

modules usually contain function and derivative discontinuities.

The more significant problem is therefore the efficient

solution of the flowsheet with limited modular information. While

Newton's method is relatively independent of flowsheet topology,

other algorithms such as simple successive substitution strongly

depend on the calculation procedure and often require special care in

choosing tear sets.

Thus to summarize the above points, the attributes of

sequential modular simulators are:

1) They lead to the formulation of physically meaningfully solution
strategies and, thus, a process simulation is relatively easy to
construct, debug, analyze and interpret.

2) Any sophisticated convergence algorithm applied to the tear set
needs flowsheet information that usually requires prohibitive
computational effort. Thus, the simplest convergence methods must
be used.

3) Because of the black box nature of the process modules, the solu-
tion procedure is rigidly determined by the flowsheet topology.
Also, since these modules are constructed to calculate output
streams and calculated parameters from input streams and a
prespecified set of input parameters, any constraints the
engineer wishes to impose on the simulation must be handled as
additional iteration levels (control loops) that further
complicate the flowsheet topology. Here, only simple convergence
methods can be used, so special care must be taken in determining
tear sets.

I. Simultaneous Modular Strategies

As mentioned by Perkins (1983), equation based flowsheeting sys-

tems are not hindered by the shortcomings of sequential modular

simulators. Because these simulators can derive as much information

as they need from an equation-based model they have great flexibility

in deriving solution procedures and applying efficient convergence

algorithms. The disadvantage to the equation-based approach is mainly

due to implementation and the engineer's need to understand the

simulation process. In theory there is no question that an equation-

based approach is superior to the sequential modular strategy. In

practice, sequential modular simulators will continue to be used

because

1) they are much easier to construct and understand;

2) they presently require less core storage and thus can be extended
to much larger simulation problems;

3) incorporation of new modules or more complex versions for unit
operations can be made easily without changing the overall solu-
tion strategy;

4) process simulations are currently easier to program and debug in
the sequential modular mode;

5) they are available, they work and they are most familiar to
engineers.

In time, statements 1) to 4) will become invalid. Perhaps the

greatest inertia in converting to equation-based modes is due to

statement 5). On the other hand, many researchers have sought to com-

bine the best of both strategies. Although their efforts have taken

remarkably different forms, they deserve to be classified under the

general heading of simultaneous modular strategies. Broadly speaking,

the simultaneous modular approach can be defined as the art of

flexibly solving simulation problems made up of black box process

modules.

Not surprisingly, the development of simultaneous modular strat-

egies parallels that of equation-based approaches. In the first sec-

tion the stages of development will be summarized as follows:

A) Development of optimal tear strategies for
sequential modular simulators

B) Simultaneous convergence applied to design
constraints and tear streams

C) Linear module information calculated from the
flowsheet for faster convergence

D) Nonlinear models derived from the flowsheet.

Here, we begin by highlighting graph theoretic techniques that were

originally applied to systems of equations and conclude by discussing

strategies that use simplified flowsheet models that lend themselves

to the advantages of equation-based simulators.

A. Optimal Tear Strategies

In the early sixties, as stand-alone modules were linked to

form process flowsheets, the question of deriving efficient

calculation sequences became important. This was one of the first

applications of graph theory to chemical processes (Mah, 1982). Here,

the flowsheet is treated as a digraph that could be analyzed to

determine an optimal tear set. This problem is similar to equation

ordering in that nodes (modules) must be partitioned and ordered

while any remaining irreducible sets are solved iteratively. For

process modules the algorithmic decomposition procedure is easier

than with equations because the output set (streams calculated by the

module) is already fixed by the flowsheet. However, the concept of an

"optimal11 tear set is still as difficult to define as with equation-

based simulators. Moreover, equations with analytic derivatives can

be partitioned into irreducible sets and solved simultaneously.

Sequential modular simulators, on the other hand, require simpler

solution algorithms where performance is strongly determined by the

tear set. Here, determination of the "optimal" tear set has been

represented conceptually as a set covering problem (Pho and Lapidus,

1973; Rosen, 1980):

N

I r3 ' 3

where the binary variables x. correspond to whether stream j is torn

(1) or not (0). The coefficients a can be assembled into a

(usually) sparse loop matrix* A value of one for a., indicates that

stream j appears in loop i. Otherwise a
i i=°* Finally, p. are user

defined weights on the tear stream. The integer program now finds a

minimal weighted tear set that breaks each loop at least once. In

order to obtain an optimal set, several criteria were proposed for

selecting the weights p..

1) Tear minimum of streams, p,«l (Barkeley and Motard, 1972).

2) Tear minimum of stream variables, p. » variables in stream j.

3) Tear as many loops as possible only once (nonredundant tears)
(Upadhye and Grens, 1975).

4) Select optimum tear set adaptively by obtaining a measure of the
eigenvalues for convergence (Genna and Motard, 1975).

Comprehensive reviews of these strategies are given in Mah (1982) and

Gundersen and Hertzberg (1982). However, none of these strategies

explicitly addresses the problem of design constraints. Here, a

design constraint is a process specification that cannot be entered

explicitly as a flowsheet input parameter. In the conventional

sequential modular mode, an additional iteration level, in the form

of a control loop, is thus imposed to meet this constraint. Needless

to say, the presence of control loops greatly influences tear set

selection and drastically affects algorithmic performance if not

considered.

B. Application to Design Constraints

Me tealfe and Perkins (1978) considered this controlled

simulation (or design) problem by explicitly reversing the flow of

information in the digraph and altering the levels of iteration.

After deleting "undefined" and "overdefined" streams, sequencing can

be performed using existing tearing methods. Equations describing the

design constraints as well as the tear streams are then solved

simultaneously.

Chen (1982) also addressed the controlled simulation problem by

including design constraints after the flowsheet streams were torn.

Control loops are imposed by determining an output set for the design

problem (by assigning the manipulated variables to design

constraints) and then tearing the control loops separately.

Using the approach of Perkins or Chen, the controlled

simulation can be greatly improved. To better illustrate this

approach, consider the design or controlled simulation problem

written as:

(CSP) h(yfz) » y - v(y,z) - 0

c(y,z) - 0

In the sequential modular mode, control loops create two iteration

levels where only one of the above relationships is converged at a

time. For example, if the design constraint is contained within a

recycle loop, the flowsheet simulation strategy is:

Solve Outer h(y,«(y) - y - w(y,z(y)) - 0
Iteration:

Solve Inner c(y,z) « 0
Iteration:

where y is held constant in the inner iteration and z(y) is chosen

in the outer iteration so that the design constraint, c, is satisfied.

Both Chen and Perkins (1979) propose the simultaneous solution

of the controlled simulation problem (CSP). This simple concept had

not been employed before because most common flowsheet convergence

methods fail if design constraints are included. Instead, Perkins

used Broyden's method while Chen used a modification of Powell's

dogleg algorithm coupled with Broyden's method. The latter method

helps the system of equations converge from poor starting points.

Both studies reported significant improvement over conventional

sequential modular strategies.

C. Linear Information Derived from the Flowsheet

Instead of deriving calculation strategies and selecting

"optimal*9 tear sets, a large body of simultaneous modular literature

deals with obtaining more information from the flowsheet so that more

efficient convergence techniques can be applied.

Again, these strategies parallel another approach to equation-

based simulation: simultaneous solution by Newton's method. With a

flowsheet made up of black boxes, however, the approach to this

problem is slightly different. Here, evaluation of the J matrix by

perturbation or some other approximation can be time consuming, but

the flowsheet structure does allow us to reduce the size of the

problem. In this section, one can identify two classes of simulation

strategies:

1) Newton's method applied to the flowsheet tear
set.

2) Newton's method applied to all process streams.

Needless to say, the controlled simulation problem can be

handled in both cases simply by simultaneously converging the design

constraints with the process stream equations.

1) Tear Set Convergence. For the simulation problems:

h(y) - y - w(y) ,

shown in Fig. 1, Newton's method gives us the relation

i+1 i /L dvV 1 , , XN

y - y • v j - s r j (yw(y))
x oy y

with (I-3w/3y)~ as the J matrix. The use of a more sophisticated

strategy now allows us to solve nested recycle problems simulta-

neously; if 3w/3y is available, Newton's method coupled with more

robust methods (e.g. dogleg, continuation, etc.) could be used. The

advantages of this approach have led to the development of numerous

simultaneous modular strategies. They can all be summarized as

attempts to find good approximations to 3w/3y.

{h - y - w(y) } v(y)

Figure 1. Simple Simulation Problem

The first such attempt was the method of split fractions

(Nagiev, 1957; Vela, 1961; Rosen, 1962). Here the input-output

Jacobians of each module are approximated by a diagonal matrix. Each

diagonal element is evaluated merely by dividing the outlet component

flowrate by its corresponding inlet component flowrate. Reactor

modules that do not have diagonally dominant Jacobians and create or

consume chemical species are treated by pseudo-feeds and outputs.

Rosen (1962) mentioned that this procedure worked well on his example

problems but offered no guarantees for efficiency or stability. Other

studies (Klemes, et al., 1976; Lutcha, et al., 1975; Umeda and

Nishio, 1972; Vasek, et al., 1974) have reported mixed results,

depending on the size and complexity of the problem.

Several studies (Komatsu, 1968; Umeda and Nishio, 1972) used

simplified linear Jacobian approximations based on Nishimura's (1967)

approach. Here modules that have diagonally dominant Jacobians such

as separators, splitters and mixers are described by diagonal models.

Reactor Jacobians are approximated with off-diagonal terms correspond-

ing to the components participating in the reaction sequence. Nishio

and Umeda (1972) compared this approach to the conventional se-

quential modular and Rosen's split fraction strategies. In addition

to showing superior performance on several example problems, they

also demonstrate the stability of their method over split fractions.

It appears the major reason for this is due to the inclusion of

off-diagonal terms in reactor Jacobians. Finally, they derive suffi-

cient conditions when their simultaneous modular approach converges

faster than direct substitution.

Reklaitis and coworkers (1979) used a similar approach to solve

linear mass balance problems. To obtain a solution the flowsheet is

first described in terms of three basic linear modules: splitters,

reactors and mixers. To solve the linear system only a subset of the

mixer equations need be written explicitly. All other stream

variables can be eliminated by chain-ruling the Jacobians of the

linear modules. This approach has been demonstrated on large linear

mass balance problems and was extended to design problems with linear

or nonlinear design constraints. The advantage of this approach is

that . linearity is fully exploited and iterative calculations are

eliminated except for the nonlinear constraints. This approach was

later included in a hierarchical strategy that interfaced with black

box process modules (MeLane, et al., 1979). To solve the simulation,

different levels of module aggregation are employed starting from

individual linearized models for internal recycle streams to

completely aggregated models for the entire plant.

In their description of FLOWPACK-II Berger and Perris (1979)

mention a similar concept called "subnetworking.11 Here process

modules are decomposed into smaller modules that can relate flows of

streams, enthalpies and pressures independently. In a manner similar

to equation-based simulation, the decomposed flowsheet now offers

greater flexibility in deriving solution procedures and handling

design constraints. The drawback with "subnetworking,11 however, is

that the decomposed flowsheet now becomes much more complex and deter-

mination of the solution strategy becomes more difficult.

2) " All Stream Convergence. To avoid determination of tear

sets that reduce the size of the system, several researchers have

adopted the "all-stream11 tear strategy. As shown in Fig. 2 on a

simple flowsheet, this strategy deals with the satisfaction of two

sets of equations:

Input-output relationships

and stream connections

where y are output streams for module i

x. are input streams

and module j is immediately downstream of module i

Mahalec, et al. (1979) combined these relationships into a large

linear system that was solved by sparse matrix decomposition. Several

methods were compared for evaluating the input-output Jacobian, A.

-A.

-A,

-I

-I

-I
-I

"All-Stream" TMr Formulation

0

0

0

0

- x.

- x.

-A,

-Al *

Reduced FoxmulatiJi

1

2
* xl

rl -

Figure 2. Decomposition Strategies

For their simulation problems, they found that by initially choosing

diagonal Jacobian approximations (except for reactors) and applying

Schubert (1970) updates at every iteration, significantly better

performance was observed over the sequential modular approach.

An obvious simplification to the above approach would be the

elimination of the stream connection equations (Sargent (1979)). This

is the method used in the flowsheet condensation steps of the QAP

(Parker and Hughes, 1981) and the Q/LAP (Biegler and Hughes, 1982)

optimization algorithms. As seen in Fig. 2, this simplification

essentially halves the size of the linear system and reduces the

effort required to solve the linear equations.

All of these methods require some information from the simula-

tor at each iteration. Regardless of the convergence method, the

major effort for simulation is still governed by evaluation of black

box process modules. All of the above Newton-based methods, including

those of Chen (1982) and Perkins (1979), can be viewed as approximat-

ing the flowsheet as a linear mass (and energy) balance problem at

each iteration. Since even the fastest "linear" method requires

several iterations of the nonlinear simulation problem, any gains in

computational efficiency can only result if more than gradient infor-

mation is obtained from the flowsheet. Thus, the most recent

developments for simultaneous modular simulation have dealt with

solving nonlinear mass and energy balance approximations at each

iteration.

Working within an optimization framework, Hughes (1975) and

Isaacson (1975) approximated modular behavior by quadratic models of

the form:

- a* Ax1 + b* Ay1 + Ax1 Aj Ay
1

«\
1 B. Ax1 + Ay1 Cj Ay1

where y* - input stream variable j for module i

v - output stream variable j for module i

x1 - module design variable set

r1 - module retention variable j (calculated parameters)

However, model coefficients usually cannot be evaluated analytically

and calculation by finite difference is expensive and potentially
i i

inaccurate. In Isaacson's optimization study, the Ay C.Ay term

did not contribute much flowsheet information; omitting this term led

to significant reductions in model construction. The results of this

study indicate that nonlinear flowsheet approximations are no more

efficient if they are constructed from higher order derivatives.

Instead, the most fruitful developments for nonlinear approximation

have directly employed simplified flowsheet models to promote

convergence.

D. Nonlinear Models Derived from the Flowsheet

The concept of representing the rigorous model in terms of

simplified models at each iteration stems from a similar strategy for

physical property evaluation. In order to avoid complex calculations

at every iteration, simple models were proposed (Barrett and Walsh,

1979; Leesley and Heyen, 1977) with adjustable parameters that could

be matched with rigorous physical properties at selected points.

Barrett and Walsh (1979) also developed measures for evaluating the

magnitude of error for the simplified models in order to determine

when the rigorous physical properties should be' re-evaluated.

Boston and Britt (1978) extended this concept to flash calcula-

tions by totally redefining the solution procedure. Here the

"primitive" variables that are usually chosen for convergence are

solved explicitly using simplified correlations for K values and

vapor and liquid enthalpies. New variables chosen for convergence are

the adjustable parameters in the simplified models. The calculation

strategy is thus:

Outer iteration: _ _
solve S(3fy) - R(Yt7)

Inner iteration

Find y that solves the simplified flash calcula-
tion with 8 constant.

Here 6 - adjustable parameters for simplified models
R - rigorous models evaluated in the outer iteration
y - variables calculated by flash calculation
Y - parameters used in rigorous property evaluations
S - simplified models that are functions of 0

The inner iteration represents a nonlinear approximation of the rigor-

ous flash problem* After rearrangement of the simplified equations,

this simply becomes a one variable convergence problem. Moreover, the

outer iteration performs smoothly because the parameters 6 are not

as sensitive to changes in temperature or liquid-vapor ratios. The

algorithm, termed inside-out, works well even for highly nonideal sys-

tems or wide and narrow-boiling systems.

Boston and coworkers (1980, 1974) have also extended this

concept to multistage flashes and staged operations. Again, less

frequent evaluation of rigorous physical property routines has

resulted in significant reductions in computational effort.

The extension of this approach to flowsheeting is straight-

forward. For simulation one can treat the black box process modules

in the same manner as the physical property calculations. The inner

iteration could then be performed using simplified engineering

models. These concepts were recently proposed by Pierucci, et al.

(1982). Here, one pass of the flowsheet was evaluated to determine

starting values for internal stream vectors and parameters for

simplified models. The simplified (or evolutionary) models for each

unit are then used to converge the flowsheet. The calculation

sequence for the inner iteration is the same as the one specified for

the flowsheet, but now the tear equations can be solved faster

because the evolutionary models have analytic gradients. This scheme

requires no special equation solving technique and serves only to up-

date the value of the tear set. Because of the form of the

evolutionary modules, this strategy can also be extended to handle

controlled simulation problems.

Jirapongphan, et al. (1980) proposed a similar strategy that

was also applied to flowsheet optimization. Here the nonlinear

approximation interacts even less with the flowsheet and follows more

the strategy of the inside-out algorithm. Flowsheet "black box11

modules are used only to calculate the adjustable parameters for the

simplified models (denoted as Reduced Analytical Modules (RAM)),

which are then solved simultaneously as a large sparse system.

Convergence is obtained when the RAM parameters, not the tear

streams, approach a stationary point. More will be mentioned about

this method in the optimization section.

Any problems with nonlinear approximation simultaneous modular

methods are mainly due to the form and accuracy of the simplified

models. Because of their nonlinearity, the models must frequently be

solved iteratively, either by sequencing and solving the tear set or

by simultaneously converging a sparse system of nonlinear equations.

The inner iteration is thus identical to solving (possibly over-)

simplified simulation problems. Here, questions that must be

addressed are:

1) Do simplified models exist that accurately represent complex
model (i.e. realistic process) behavior?

2) Are there advantages to solving the simplified model (probably)
more often than the complex model?

3) What are the necessary and sufficient conditions on the form of
the simplified models that govern convergence of the outer
iteration.

The examples solved by Pierucci et al and Jirapongphan indicate that

these methods are clearly superior to the conventional sequential mod-

ular approaches and can handle problems much larger than those

attempted by equation-based simulators. However, future work with

these strategies must also deal with complex reactors and

distillation models where the choice of limited or inaccurate

simplified models can cause convergence failure in the outer

iteration (Chimowitz, et al., 1983).

Another case that must be addressed is the wide use of dis-

continuous and nondifferentiable models in sequential modular

simulators. These manifest themselves in sizing and cost cor-

relations, in nonideal distillation columns, in reactors, and as em-

bedded optimization problems (Clark and Westerberg, 1982) that

describe multiphase flash calculations. As yet, no simultaneous

modular approach has considered this problem even though it can be a

major cause of convergence failures. More will be said about this in

the next section.

In reviewing simultaneous modular strategies, we see how this

simulation mode has "bridged the gap" between an inflexible, but

robust method (sequential modular) and the equation-based strategy

that offers great flexibility for design and simulation.

The development of this simulation mode has been spurred by the

advances of equation-based modes in solving large sets of linear and

nonlinear equations. However, it has always been tied to "black box"

modules which can model process behavior in as much detail and rigor

as necessary.

For the present, application of this philosophy will lead to

very efficient, frequently-used and successful simulation strategies.

The simultaneous modular approach combines the efforts of detailed

model representation embodied in sequential modular strategies with

powerful equation-based strategies and makes them both immediately

useful*

II• Simultaneous Modular Optimization

Process improvement is a major activity among chemical

engineers. Faced with obvious economic and logistical incentives, the

use of successful and efficient optimization techniques is clearly

desirable. Unfortunately, the explicit development and use of these

techniques is not widespread in industry. At the last FOCAPD con-

ference several reasons were cited (Blau, 1980; Westerberg, 1981) for

this fact. To motivate the discussion of simultaneous modular

optimization, it is useful to consider some of these reasons.

Put concisely they can be listed as:

1) It is often difficult to accurately define an objective function
and formulate a mathematical program for the engineering problem.

2) Current simulation and optimization tools are too expensive (in
terms of the engineer's and the computer's time) and not
especially "user-friendly."

3) There is so much uncertainty in the design and operation of the
process that the information gained from an optimization study
may not be meaningful.

4) The penalty for failure to meet project deadlines clearly
increases the reluctance toward implementing these tools.

The second and fourth reasons can be overcome by development of more

efficient, robust and friendly tools. In time, I feel that these rea-

sons will no longer be valid provided that new strategies are imple-

mented well and the user is conscious of the algorithm's limitations.

Uncertainty in design is often a problem that precludes a rigor-

ous optimization study. Presently, however, this is due to the pro-

hibitive effort required by many brute-force optimization techniques.

An efficient optimization tool that can be applied frequently and eas-

ily is very useful for sensitivity analyses. Moreover, one can also

pose optimization problems that include and exploit process

uncertainty (see Grossmann and Morari (1983)).

The first reason deals more frequently with process synthesis

but also applies to certain aspects of process optimization as well.

Because defining an "optimal" plant is difficult and formulation of

the mathematical programming problem can include continuous and

discrete.decisions and discontinuous and nondifferentiable functions,

the designer is often left with a problem that cannot be solved. This

realization has led several researchers (Linnhoff, 1981; Morari,

1982; Stephanopoulos, 1981) away from numerical solutions to the

clever application of heuristics. Here, several problems such as

special cases of energy recovery and separation systems can be solved

efficiently merely by representing the problem compactly and applying

sound engineering concepts (e.g. thennodynamic targets).

It should be mentioned, though, that heuristic strategies may

offer no guarantee of optimality and additional process restrictions

can become difficult to deal with. Here, the general framework is

also not as well defined as with mathematical programming. Finally,

one should realize that although heuristics often lead to good

solutions, there is much improvement that can be realized through

manipulation of continuous variables. This is especially true in the

optimization of simulated processes, where minor variations in contin-

uous variables have sometimes realized process improvements that

would justify the use of even the crudest automatic optimization

strategies (Gaines and Gaddy, 1976). Since chemical processes contain

complex interactions, it is difficult, if not impossible, to develop

heuristic strategies that will yield these optimal results.

Thus, while the engineer should not be reduced to the level of

a technician tied to an automatic tool, he must be aware of the power

of optimization strategies. To this end the problem of formulating

meaningful optimization problems is as important as determining

the nno dynamic targets; judicious application of state-of-the-art

optimization strategies is equally as important as the application of

heuristics.

In this spirit we review optimization strategies for process

flowsheeting and discuss the recently developed infeasible path algo-

rithm. We divide these methods into three classes:

A) Two-level Optimization Techniques

B) Feasible Path Strategies

C) Infeasible Path Strategies

Here, nonlinear programming algorithms will only be described

as they pertain to optimization strategies since space precludes com-

prehensive treatment. Excellent reviews of algorithms and software

are available elsewhere (Gill, et al., 1981; Lasdon, 1981; Sargent,

1980).

The optimization problem can be written as:

(PI) Min rf(z)
z

s.t. g(z) £ 0

h(z) - 0

c(z) - 0

where z represents all of the variables in a given process, i is

an objective function, typically of economic form, and the inequali-

ties g(z) £ 0 represent physical or "designed" limits on process

operation. The equality constraints are divided into two sets: h(z) =

0 are equations needed to simulate the process while c(z) = 0 are

conditions imposed by the designer. The variables are usually

partitioned into two sets denoted as x and y. Here the vector x

represents the process decisions; its dimension is the number of

degrees of freedom in the process. The y variables can be calculated

from c and h once the x variables have been chosen.

Perhaps the most appealing ideas for process optimization stem

simply from the modularity of chemical processes. From the classical

study of unit operations and countless hours of observing equipment

performance, it becomes inevitable that individual process units will

be optimized. The question then remains, how- does our knowledge of

these units impact on plant-wide process optimization? During the

sixties and early seventies, this led to the development of several

elegant decomposition techniques.

A. Two-Level Optimization Techniques

The first attempts at flowsheet decomposition used dynamic pro-

gramming (Aris, 1964) for acyclic processes. Jackson (1964) and Brosi-

low and Lasdon (1965) were the first to propose the two-level

strategy for cyclic process flowsheets. Here, the optimization

problem must have separable objective and constraint functions.

Equality constraints are further classified as equations that

represent the module model and connectivity equations that link the

modules.

Because the optimization problem is separable, sub-lagrangians

can be written for each module (or stage). The coupling between these

functions occurs through adjoint variables (Lagrange multipliers on

the connectivity equations). At the first level the sub-lagrangians

are minimized with adjoint variables held constant. The adjoints are

then updated at the second level to help satisfy the interconnection

equations. One serious drawback of this approach is that unless the

optimization problem is convex, the region around the solution may

have a dual gap and the algorithm will not converge. Stephanopoulos

and Westerberg (1975) proposed a remedy to this problem, but

sacrificed the separability properties.

However, even when this strategy succeeds, it performs ineffi-

ciently (Jung, et al., 1972) and requires prohibitive computational

effort* Consequently, this approach has found little use outside of

the academic world and is currently obsolete.

B. Feasible Path Strategies

A more straightforward approach to optimization derives from

parametric studies directly applied to the simulator. Since the proc-

ess can be modeled and simulated for a wide variety of cases with few

changes in input data, it becomes easy to let an optimization algo-

rithm automatically perform the case studies. However, this approach

suffers from the same limitations that apply to sequential modular

simulators. Here the optimization problem becomes:

(P2) WLn rf(x)

s.t. g(x) £ 0

c(x) - 0 .

Note that the process equations (h(x,y) » 0) need to be solved every

time the objective function is evaluated. Since the flowsheet

consists of black-box modules, simulation will usually be performed

by slow convergence techniques. Moreover, the application of

efficient gradient-based optimization techniques is hindered for two

reasons. First, derivatives can only be evaluated by perturbing (and

re-simulating) the entire flowsheet with respect to the decision

variables. This process is not only time consuming but requires rel-

atively tight convergence tolerances in order to minimize

perturbation error. The second reason is due to the nature of the

black boxes. Process module behavior is often described by discrete

and discontinuous relations or by functions that may be

nondifferentiable at certain points. Thus, even if there is no

perturbation error "gradients" still may be inaccurate.

In this case only direct search algorithms offer any

"guarantee" of success (Westerberg, 1981). Numerous studies with

adaptive random (Friedman and Pinder, 1972; Gaines and Gaddy, 1976;

Ballman and Gaddy, 1977), complex and pattern search algorithms tied

to sequential modular simulators have demonstrated that this approach

is inefficient and too expensive to be done frequently. It may be

largely due to this reason that widespread use of process

optimization techniques is not common in industry even though there

is a clear need for them.

In order to use more efficient gradient-based algorithms for

simulator optimization, Hughes (1975) and Isaacson (1975) constructed

quadratic module models at each iteration that could be combined and

reduced to form the quadratic optimization problem:

(P3) WLn aTAx + A

s.t. bT£x + AX'BAX £ 0

cTAx + AxTCAx - 0

The solution of this problem then determines the next base point for

model construction. At first glance this strategy appears cumbersome,

but it eliminates the need for perturbation and repeated simulation

of the entire flowsheet. Parker and Hughes (1981) applied this

strategy to a FLOWTRAN simulated ammonia process with 8 degrees of

freedom and found the optimum in the equivalent time of 65.4

simulations. Biegler and Hughes (1981) used only linear module models

to obtain reduced gradient information and applied an SQP algorithm

(Han, 1977; Powell, 1977) to (P2). Here the same ammonia synthesis

process was solved in only 12.6 simulation time equivalents. However,

this strategy still requires the simulation of the flowsheet at every

iteration.

C. The Infeagible Path Strategy

Here we need to consider the structure of sequential modular

simulators and how it can be exploited for optimization. The simula-

tion problem can be written simply in terms of the tear equations:

* 7 -

since w is directly determined from the tear variables, y, by evaluat-

ing the process loop. The optimization problem (PI) is thus reduced

to the form:

(RP) Min rf(

s,t. g(xfy) £ 0

c(xty) » 0

k(xfy) - y - w(xfy) - 0

In previous optimization strategies the last constraint was converged

either in the outer loop by the two-level algorithm or in an inner

loop by the feasible path approach. In the infeasible path strategy

this constraint is converged simultaneously with the optimization

problem. Here the problem is small enough that no decomposition

techniques are required. Also the work required per iteration is not

excessive because the flowsheet converges only as the optimum is

found. To discuss this strategy we present three components that

account for its algorithmic performance and also represent areas for

future research. These are:

1) Choice of Optimization Algorithm

2) Gradient Calculation Strategy

3) Attributes of Process Modules

1) Choice of Optimization Algorithm. This is the most impor-

tant aspect in judging the performance of the infeasible path

approach. The nonlinear programming strategy must be able to handle

nonlinear equality constraints; thus we are limited to the following

methods:

a) Generalized Reduced Gradients (GRG)

b) Successive Quadratic Programming (SQP)

These two methods are currently regarded as the most efficient

and robust nonlinear programming techniques. Other methods that

handle nonlinear equalities, such as penalty functions (Fiacco and

McCormick, 1968) or augmented Lagrangians (Bertsekas, 1976) require

far too much computational effort and too many function evaluations

to perform efficiently with process modules.

Among the generalized reduced gradient methods, the two most

popular algorithms are GRG2 (Lasdon, et al«, 1978) and MINOS (Murtagh

and Saunders, 1978). Both use active set strategies and optimize the

nonlinear function in the subspace of the active constraints. How-

ever, GRG2 requires converged equality constraints at each iteration*

While this approach enforces stable algorithmic performance for

equation-based chemical process optimization strategies (Lasdon 1981;

Sarma and Reklaitis, 1982), it defeats the purpose of the infeasible

path strategy. MINOS, on the other hand, does not need to follow a

feasible path for convergence but works in linear subspaces. Also,

Murtagh (1982) described how MINOS can be adapted to equation-based

chemical process optimization. Performance on large-scale problems

have been very efficient with this approach.

However, the optimization problem formulated for the infeasible

path strategy has a different structure. First, it is small (about

10-50 variables) and has nonlinear equality constraints. Therefore, a

full optimization in a linear subspace is probably too inefficient,

especially in terms of function evaluations. Moreover, the

characteristics of MINOS are best applied to large problems. Thus, we

consider the SQP (Han, 1977; Powell, 1977) strategy.

Instead of optimizing a nonlinear function in the linear

subspace of the active set, SQP constructs a quadratic objective

function and linearizes the constraints. The resulting quadratic

program (QP) can be solved easily and requires only one function and

gradient evaluation. The QP also finds the active constraint set and

determines a search direction for the next iteration. Several studies

have verified (Lasdon, 1981; Powell, 1977; Schittkowski, 1982b) that

the SQP algorithm requires very few function evaluations for

nonlinearly constrained optimization problems, while the CPU time

expended depends largely on the efficiency of the quadratic

programming step.

SQP is thus ideally suited for infeasible path optimization

because function and gradient calculations require flowsheet module

calculations and represent the most time-consuming part of the optimi-

zation. However, the algorithm itself is still evolving; a few of its

properties still require improvement.

As mentioned above, SQP solves a quadratic program at each

iteration* Since the Hessian matrix of the QP is a positive definite

approximation of the Hessian of the Lagrangian, the search direction

is unique. However, taking full steps along this direction does not

guarantee global convergence of the nonlinear problem. To ensure

convergence, various methods have been proposed (Chamberlain, et al.,

1982; Han, 1977; Powell, 1978; Schittkowski, 1982a). These find a

stepsize along the search direction by minimizing a function that

reflects the magnitude of the objective function and infeasibility of

the constraints. As yet, however, each stepsize strategy still has

its drawbacks.

Another problem lies in initializing and maintaining the

accuracy of the approximated Hessian. While the quadratic program and

the updating procedure are themselves scale invariant, the

performance of the algorithm depends greatly on how the variables are

scaled or, equivalently, how the Hessian is initialized. Only

heuristic scaling strategies have been proposed so far (Biegler and

Hughes, 1982; Chen, 1982). Further numerical studies such as recent,

ones by Schittkowski (1982b) and Stadtherr and Chen (1983) should

help to resolve these problems.

2) Gradient Calculation Strategy. At each iteration, the QP

used in the infeasible path strategy takes the form:

(QP) Min

s.t. g(xi,7i) + Vg(xlfyt)
Td * 0

fy1)
Td - 0

At present the gradients ^ (x ^ y ^ , ^g(xi,yi), Vh(xi,yi),

7c(x.fy.) are evaluated by perturbing the flowsheet. Since the optimi-

zation problem can be written explicitly in terms of design

variables, x, and retention variables (selected flowsheet param-

eters), r, gradient information is given by:

7 * m*L+*I*L
x T dx dx dr

v " I F ^ for • m*>*°r c
and

v h

V
Since 3^/3x and 3t|i/3r can be evaluated explicitly, only — , ~9

3w 3w

y- and y— need be evaluated by perturbation. Two perturbation strat-

egies (Biegler and Hughes, 1982; Chen, 1982; Hutchison, et al., 1983;

Shivaram and Biegler, 1983;) have been tested so far. Both can be

used to advantage in modular environments.

With direct loop perturbation, the recycle convergence block is

replaced by an "optimization" block. Nothing else in the simulator

executive need be changed and the same calculation order used for

convergence is executed for perturbation. Here, design variables do

not affect upstream units so only partial loop perturbations are

required. The total number of block evaluations is thus given by:

NTOT VCS

NBE ' IX 'u
where

(NCP+2) - number of stream elements (no. of component
flows plus pressure and enthalpy).

NCS - number of connecting streams in calculation
sequence.

ND - number of design variables

I. .(]• 0) - number o£ blocks from design or tear variable i
J to the j terminus in the calculation sequence.

VCS - number of calculation sequence termini (loca-
tions of w or the last retention vector down-
stream of J all w.) which are downstream of
variable i. J

NT - number of tear streams

NTOT - (NCP+2)NT • ND

This procedure tends to be somewhat wasteful for design

variable perturbations and nested loops but requires no additional

interface or manipulations to calculate the gradient. Also most

information flow reversals embedded in the flowsheet can be handled

quite naturally with this procedure. Finally, gradients of highly

nonlinear modules tend to behave smoothly because direct perturbation

responses of w and r are used. This allows for consistent inter-

mediate variable responses to a given perturbation size for y

(Biegler and Hughes, 1982).

The second strategy uses chainruling to evaluate gradients

after each module has been perturbed by itself. This is, in

principle, the same as the condensation step used by Biegler and

Hughes (1981). Here the number of block evaluations is:

NCS (NCP + 2) + ND

For flowsheets where design variables are at the beginning of the

calculation sequence, this method is clearly more efficient. Also,

since each module is perturbed independently less computational

effort can be expected for intramodule convergence (Chen, 1982).

However, this strategy is more difficult to•implement on sequential

modular simulators and special provisions must be made for

information flow reversal. Chen (1982) applied this approach on a

simultaneous modular simulator and demonstrated its superiority. On

small problems solved with sequential modular simulators, Shivaram

and Biegler (1983) also reported fewer block evaluations, but some

additional CPU time was required for procedural overhead.

Both strategies require calculation loops that include design

and retention variables. Determination of the calculation sequence is

straightforward; tear streams should be chosen that break all loops

with the fewest tear variables. This heuristic keeps the optimization

problem small and allows all loops to be converged simultaneously.

Stream candidates that satisfy this criterion should then be

chosen to minimize the effort of gradient calculation. This is espe-

cially important if direct loop perturbation is used since it influ-

ences the 1,. terms for the number of block evaluations.

From discussion of gradient calculation strategies, one must

also consider efficient and accurate methods for evaluating modular

Jacobians. This leads directly to the next section.

3) Attributes of Process Models. Since gradient information

is presently constructed by perturbation, it is important to consider

how much error results from this procedure. Here, the accuracy of the

gradients is affected by higher order Taylor series terms and by

noise resulting from iterative calculations subject to a finite

tolerance.

Because tear streams are not converged at each iteration, the

gradients are not affected by recycle tolerances. However, many intra-

modular procedures require iterative calculations and thus the size

of the perturbation becomes important. As the perturbation size in-

creases, the error due to higher order Taylor series terms becomes

significant. On the other hand, the response of a small perturbation

may be corrupted by convergence noise.

Biegler and Hughes (1982) experimented with various

perturbation sizes and found little difference provided that

iterative calculations had tight tolerances. Hutchison, et al. (1983)

chose perturbation sizes that balance and thus minimize the error due

to noise and higher order terms. Crowe (1983) eliminated the noise

problem entirely by simply executing a fixed number of iterations for

the function evaluation and perturbation steps.

Though perturbation was used for Jacobian information, the

chain-ruling strategy also allows inclusion of analytic modular

Jacobians if they can be specified. Some units such as mixers and

splitters have analytic Jacobians for mass and enthalpy balances.

Others such as heaters, compressors and pumps may require only a few

perturbations for this information. Of course, the most difficult and

complex units, such as tubular reactors and rigorous separators, have

Jacobians that are almost impossible to construct analytically. For

this reason an approach that uses simplified models can be de-

ceivingly attractive.

For example, in a more radical departure from evaluating the

flowsheet, Jirapongphan, et al. (1980) describe an optimization

strategy that uses rigorous process models at the outer iteration

only to fit parameters for more simplified models. For the inner

iteration the simplified nonlinear models are optimized for the next

outer iteration. While this approach is very efficient because it

reduces the number of modular evaluations, there are some

disadvantages relating especially to optimization that must be

considered.

First, it is not always possible to find suitable nonlinear sim-

plified models for the more rigorous ones. For some complex process

and physical property models, simplified correlations cannot describe

their behavior accurately enough.

The second disadvantage is more insidious. Because the optimum

is usually determined by the gradients that make up the Kuhn-Tucker

conditions, it is probable that the optimum found by Jiraponghpan1s

algorithm is not the optimum of the rigorous process model. Instead,

this algorithm finds the optimum of the simplified models at the

point where properties calculated by the rigorous and simplified

models match. The following example illustrates why this solution may

not be the true optimum.

Consider the optimization problem pictured in Fig. 3. The rigor-

ous optimization problem is given by:

Mln a2 + x2

s.t. or - (x3 + x 2 + 1) - 0

3 2
If we want to approximate the property a (defined by x +x +1)

by a simpler model: a = x+8 (where B is determined by matching

a with the nonlinear model), then the "inside-out11 problem becomes:

or R(x»or)

\ SO)

\
\

Figure 3.

Outer iteration

Of • (X + X + 1) « X + 0

Inner problem

x • arg
Min or2 + x2

s.t. a • (x + B)

a ̂ 0

From Fig. 3, it can easily be seen that the optimum of the original

problem is at point A. Starting from this point, the latter approach

will actually move away toward point B. The broken line is the locus

of optima found by the inner problem for different values of 8.

At point B this locus crosses the equality constraint of the original

problem.

It is interesting to note that, in this case, Jirapongphan's

algorithm moves away from the true optimum (point A) to point B,

which is actually a local maximum of the original problem. This shows

that determination of the optimum by Kuhn-Tucker conditions is direct-

ly related to the accuracy of the gradients. Since many simplified

models have different derivatives than their rigorous counterparts,

different optima will be found.

This situation also applies to the use of simplified models for

Jacobians in the chain-ruling procedure. Chen (1982) reported good re-

sults with simplified models if reasonably accurate approximations

were made. However, he suggests further study before drawing any con-

clusions. Again, if simplified models have different gradients, they

will probably lead to different "optimal11 solutions.

Instead, one should probably develop a framework that includes

information that can be obtained analytically and uses the structure

of the module to obtain missing information by perturbation. Only if

the perturbations are prohibitive should simplified models then be

considered. Even in this case, these models should match rigorous

model gradients as well as their functions. This is the approach we

are taking in refining our optimization strategy.

Lastly, one encounters the most difficult aspect about sequen-

tial modular optimization. Because the process modules often

incorporate some level of decision-making in their calculation

strategy (e.g. changing phases in flash calculations) as well as

certain cost and sizing functions, we often encounter gradients and

functions that are not uniquely defined at certain points.

In this case, the infeasible path strategy will calculate the

wrong "gradients" and possibly jam into a corner and fail. Using

smooth, simplified models may alleviate this problem but, as

mentioned above, the solution will probably be far from the true

optimum.

Here the biggest drawback is that these functions are hidden

within process modules. Thus, we can only address those problems that

are known to occur during the optimization. However, even if the

source of these functions is known, there still are no easy ways of

handling them.

Discontinuous functions can sometimes be considered by introduc-

ing binary (0 or 1) variables into the optimizations. The problem now

becomes a mixed-integer nonlinear program which is difficult to

solve, especially if many binary variables are present. Duran and

Grossmann (1983), however, have developed an efficient strategy for

MINLP's if the problem is separable for the binary variables and

convex for the continuous variables.

Some nondifferentiable functions, if known, can be represented

by the epigraph of differentiable functions (Han, 1981):

max {ei(z)}

In an optimization problem these can be incorporated by noting the

equivalence

6

where 6 is added as a new variable. Now, nondifferentiable objective

functions can be written as:

Min

h(z)

and nondifferentiable inequality constraints can be given by

Min Min

et(z)

h(z)

0

0

Nondtfferentiable equalities can be represented by:

Min

g(z)

ft

Hz)

o
0

6

if we force one or more of the e (z) to be active at thebut onl

solution. The combinatorial problem encountered here can be difficult.

This is related to a more insidious nondifferentiable problem given

by:

Min ^

s.t. g^x^Xj) * 0

Min

*2

s.t.

This problem is typical of process optimization where the inner

minimization may represent an equilibrium calculation (minimize

Gibbs1 free energy). Clark and Westerberg (1982) addressed this

problem by writing the Kuhn-Tucker conditions for the inner problem

and applying active set and relaxation strategies to the inner

problem inequalities.

These types of problems have been studied in equation-solving

environments. They are just as frequent in sequential modular modes

and should be recognized when formulating the optimization problem.

Easy ways of handling them are to restrict the region of investi-

gation so that discontinuities are not encountered (Biegler and

Hughes, 1983) (e.g. compressors must have positive Ap) or by fix-

ing calculated variables that may exhibit discontinuous behavior as

input parameters or design variables. One example is stream pressure

which can be nondifferentiable around the loop and should thus be re-

moved from the tear set, y, in the optimization problem (Biegler and

Hughes, 1982).

CONCLUSIONS AND SIGNIFICANCE

Current strategies for simultaneous modular simulation and opti-

mization have been reviewed and compared.

Simultaneous modular simulation arose because of the need to

solve flowsheets more efficiently and flexibly while using "black

box11 process modules. Its development closely parallels that of

equation-based simulators in the following areas:

1) Flowsheet decomposition algorithms that find "optimal" tear sets
for recycle and control loops and converge them simultaneously.

2) Gradient approximation strategies that allow simultaneous
solution by Newton's method.

3) Use of approximate nonlinear models that represent the flowsheet
in a simplified form and can be solved using equation-based
strategies.

The optimization problem can be regarded as an extended simula-

tion problem where optimization and recycle convergence occur simul-

taneously. This infeasible path strategy has worked well in

equation-based modes (Bern a et al. (1980)) as well as with the

simultaneous modular approach. The main points of this approach can

be summarized as:

1) The SQP algorithm is appropriate for this strategy because it can
handle small sets of nonlinear equalities efficiently. Some work,
however, still needs to be done to improve performance and
robustness.

2) Two types of gradient calculation strategies can be used for the
SQP algorithm:

a) Direct loop perturbation is easy to implement on any sequen-
tial modular simulator but may be inefficient for design vari-
able perturbations.

b) Chain-ruling usually requires fewer perturbations but
extensive modification of the simulator's executive is needed
for implementation.

The choice depends on the structure of the simulator.

3) The flowsheet should be decomposed by choosing the fewest
variables that tear all loops. This keeps the optimization
problem small. If several tear candidates exist, the ones that
minimize the effort of gradient calculation should be chosen.

4) The only current reliable way of evaluating gradients is through
perturbation unless analytic information is known. Here, use of
simplified models may cause convergence to the wrong solution.

5) Nondifferentiable and discontinuous functions embedded in process
modules remain serious obstacles to efficient process
optimization strategies. There are some ways of overcoming them
if the functions can be identified.

As mentioned at the beginning of this paper, the simultaneous

modular strategy bridges the gap between reliable and detailed sequen-

tial modular models and efficient equation-based solution strategies.

As such, it has immediate applicability to real problems while using

state-of-the-art solution strategies. Therefore, this mode will play

a very important role in process engineering in the near future.

Further improvements in this area will enhance its already high level

of flexibility and applicability.

Acknowledgement

Financial support from the National Science Foundation under

Grant #CPE-8204366 is gratefully acknowledged.

LITERATURE CITED

Aris, R., Discrete Dynamic Programming, Blaisdell, New York (1964).

Ballman, S.H. and J.L. Gaddy, "Optimization of Methanol Process by
Flowsheet Simulation,11 IEC Proc. Des. Dev., 16, No. 3, 337
(1977).

Barkeley, R.W. and R.L. Motard, "Decomposition of Nets," Chem. Eng.
J^, 3, 265 (1972).

Barrett, A. and J.J. Walsh, Computers and Chem. Eng., 2» 397 (1979).

Berger, F. and F.A. Perris, "FLOWPACK II - A New Generation of
Process Flowsheeting Systems," Computers and Chem. Eng., 3, 309
(1979).

Be m a , T.J., M.H. Locke and A.W. Westerberg, "A New Approach to Opti-
mization of Chemical Processes," AlChE J., 26, No. 1, 37 (1980).

Bertsekas, D., lfMultiplier Methods: A Survey," Automatica, 12, 133
(1976).

Biegler, L.T. and R.R. Hughes, "Approximation Programming of Chemical
Processes with Q/LAP," Chem. Eng. Prog., 77f No. 4, 76 (1981).

Biegler, L.T. and R.R. Hughes, "Infeasible Path Optimization of
Sequential Modular Simulators," AIChE J., 28, No. 6, 994 (1982).

Biegler, L.T. and R.R. Hughes, "Process Optimization: A Case Study
Comparison," Computers and Chem. Eng., to appear (1983).

Blau, G.E., "Session Summary: Nonlinear Programming," in Foundations
of Computer-Aided Chemical Process Design (Mah and Seider,
ed«), p.219, Engineering Foundation, New York (1980).

Boston, J.F., "Inside-Out Algorithms for Multicomponent Separation
Process Calculations," in Comp. Applications to Chemical Engi-
neering (Squires and Reklaitis, ed.), ACS Monograph (1980).

Boston, J.F. and H.I. Britt, "A Radically Formulation and Solution of
the Single Stage Flash Problem, Computers and Chem. Eng., 2,
109 (1978).

Boston, J.F. and S.L. Sullivan, Can. J. Chem. Eng., 52, 52 (1974).

Brosilow, C and L. Lasdon, AIChE-IChE Symposium Series, #4, 75 (1965).

Broyden, C.G., "A Class of Methods for Solving Nonlinear Simultaneous
Equations," Math. Comp.t JJ3, 577 (1965).

Chamberlain, R.M., M.J.D. Powell, C. LeMarechal and H.C. Pedersen,
"The Watchdog Method for Forcing Convergence in Algorithms for
Constrained Optimization," Math. Prog. Study, 16, 1 (1982).

Chen, H.-S., Ph.D. Thesis, University of Illinois, Urbana (1982).

Chimowitz, E.H., S. Macchietto, T.F. Anderson and L.F. Stutzman,
MLocal Models for Representing Phase Equilibria,11 I&EC Proc.
Des. Dev., to appear (1983).

Clark, P.A. and A.W. Westerberg, "Optimization for Design Problems
Having More than One Objective," Process Systems Engineering
Symposium, Tokyo (1982).

Crowe, C , personal communication (1983).

Duran, M.A. and I.E. Grossmann, "An Efficient Algorithm for a Special
Class of Mixed-Integer Nonlinear Programs," TIMS/ORSA Meeting,
Chicago (1983).

Fiacco, A.V. and G.P. McCormick, "Nonlinear Programming: Sequential
Unconstrained Minimization Techniques," Wiley, New York (1968).

Friedman, P. and K.L. Pinder, "Optimization of a Simulation Model of
Chemical Plants," I&EC Proc. Des. Dev., 11̂ , No. 4, 512 (1972).

Gaines, L.D. and J.L. Gaddy, "Process Optimization by Flowsheet
Simulation," I&EC Proc. Des. Dev., 1£, No. 1, 206 (1976).

Genna, P.L. and R.L. Motard, "Optimal Decomposition of Process Net-
works," AlChE J.t 21,, No. 4, 656 (1975).

Gill, P.E., W. Murray and M.H. Wright, Practical Optimization,
Academic Press, London (1981).

Grossaann, I.E. and M. Morari, "A Dialogue on Resiliency, Flexibility
and Operability," this conference (1983).

Gundersen, T. and T. Hertzberg, "Partitioning and Tearing Chemical
Process Flowsheets," Process Systems Engineering Symposium,
Tokyo (1982).

Han, S-P, "A Globally Convergent Method for Nonlinear Programming,"
J. Optimization Theory and Control, 22, No. 3, 297 (1977).

Han, S-P., Math Programming, 20, 1 (1981).

Hughes, R.R., "Optimization Methods for Block Simulation," presented
at VI Interamerican Congress of Chemical Engineering, Caracas,
Venezuela, July 1975.

Hutchison, H.P., S. Kaijaluoto and W. Morton, "Process Optimization
Using a Serial Cyclic Flowsheet Simulator," 3rd International
Congress on "Computers and Chemical Engineering," Paris (1983).

Isaacson, R.A., Ph.D. Thesis, University of Wisconsin, Madison (1975).

Jackson, R., "Some Algebraic Properties of Optimization Problems in
Complex Chemical Plants,11 Chem. Engr. Science, 1J9, 19 (1964).

Jirapongphan, S., J.F. Boston, H.I. Britt and L.B. Evans, MA Non-
linear Simultaneous Modular Algorithm for Process Flowsheet
Optimization," presented at 80th AlChE Meeting, Chicago (1980).

Jung, B.S., W. Mirosch and W.H. Ray, HA Study of Large Scale Optimiza-
tion Techniques," 71st National AlChE Meeting, Dallas, XX
(1972).

Klernes, J., J. Lutcha and V. Vavek, "Recent Extension and Development
of Design Integrated Systems - DIS," Computers and Chem. Eng.,
3, 357 (1976).

Komatsu, S., "Application of Linearization to Design of a Hydro-
dealkylation Plant," I&EC Oper. Res. Symp., 60, No. 2, 36
(1968).

Lasdon, L*S«, "A Survey of Nonlinear Programming Algorithms and Soft-
ware," in Foundations of Computer Aided Process Design (Mah and
Seider, ed«), p.185 (1981).

Lasdon, L.S., A.D. War en, P. Jain and M.W. Ratner, ACM Trans, on Math
Software, 4, 34 (1978).

Leesley, M.F. and G. Heyen, Computers and Chem. Eng., 1̂, 109 (1977).

Linnhoff, B., "Entropy in Practical Process Design," in Foundations
of Computer Aided Process Design (Mah and Seider, ed.), Vol. 2,
p.537 (1981).

Lutcha, J., J. Klemes, J. Klemsa, V. Vasek, M. Dohnal, and C.
Verroouzek, Computer Aided Design, 2> No* 4» 2 2 9 (1975).

Mah, R.S.H., "Application of Graph Theory to Process Design and Analy-
sis," Process Systems Engineering Symposium, Tokyo (1982).

Mahalec, V., H. Kluzik and L.B. Evans, "Simultaneous Modular
Algorithm for Steady State Flowsheet Simulation and Design,"
CACE '79, EFCE, Montreux (1979).

McLane, M., M.H. Sood and G.V. Reklaitis, "A Hierarchical Strategy
for Large Scale Process Calculations," Computers and Chem.
Eng., 2' 3 8 3 (1979).

Metcalfe, S.R. and J.D. Perkins, "Information Flow in Modular
Flowsheeting Systems," Trans. J. Chem. E., 56, 210 (1978).

Morari, M., "Flexibility and Resiliency of Process Systems," Process
Systems Engineering Symposium, Tokyo (1982).

Motard, R.L., M. Shacham and E.M. Rosen, "Steady State Process Simula-
tion," AlChE J., 21,, No. 3, 417 (1975).

Murtagh, B.A., "On the Simultaneous Solution and Optimization of
Large-Scale Engineering Systems," Computers and Chem. Eng., 6,
No. 1, 1 (1982).

Murtagh, B.A. and M.A. Saunders, Math Prog., 14, 41 (1978).

Nagiev, M.F., Chem. Eng. Prog., 53,, 297 (1957).

Nishimura, H«, Y. Hiraizumi and S. Yagi, Kagaku Kogaku, 31, No. 2,
183 (1967).

Parker, A.L. and R.R. Hughes, "Approximation Programming of Chemical
Processes - 1," Computers and Chem. Eng., £» No- 3> *23 (1981).

Perkins, J.D., "Efficient Solution of Design Problems Using a Sequen-
tial Modular Flowsheeting Programme," Computers and Chem. Eng.,
3, 375 (1979).

Perkins, J.D., "Equation Oriented Flowsheeting," this conference
(1983).

Pho, T.K. and L. Lapidus, "Topics in Computer Aided Design. Part I -
An Optimal Tearing Algorithm for Recycle Streams," AIChE J.,
1£, No. 6, 1170 (1973).

Pierucci, S.J., E.M. Ranzi and G.E. Biardi, "Solution of Recycle Prob-
lems in a Sequential Modular Approach," AIChE J., 28, No. 5,
820 (1982).

Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimi-
zation Calculations," presented at the 1977 Dundee Conference
on Numerical Analysis (1977).

Powell, M.J.D., "Algorithms for Nonlinear Constraints that Use
Lagrangian Functions," Math Prog., 14, No. 224 (1978).

Rosen, E.M., "A Machine Computation Method for Performing Material
Balances," Chem. Eng. Progress, 58, 69 (1962).

Rosen, E.M., "Steady State Chemical Process Simulation: A State-of-
the-Art Review," in Computer Applications to Chemical
Engineering (Squires and Reklaitis, ed«), p.3, ACS Monograph
124 (1980).

Sargent, R.W.H., "Rapporteur's Review: Flowsheeting," Computers and
Chem. Eng., 3, 17 (1979).

Sargent, R.W.H., "A Review of Optimization Methods for Nonlinear Prob-
lems,11 in Comp. Applications to Chem. Eng. (Squires and
Reklaitis, ed.), ACS Monograph (1980).

Sarma, P. and G.V. Reklaitis, "Optimization of a Complex Chemical
Process Using an Equation Oriented Model," Math Prog. Study,
20, 113 (1982).

Schittkovski, K., "The Nonlinear Programming Method of Wilson, Han
and Powell with an Augmented Lagrangian Type Line Search, Part
1: Convergence Analysis,11 Nuroer. Math., 38, 83 (1982b).

Schittkowski, K., "The Nonlinear Programming Method of Wilson, Han
and Powell with an Augmented Lagrangian Type Line Search, Part
2: An Efficient Implementation with Linear Least Squares
Subproblems,11 Numer. Math. t 38, 115 (1982a).

Schubert, L.K., "Modification of A Quasi-Newton Method for Nonlinear
Equations with a Sparse Jacobian," Math Comp., 24, 27 (1970).

Shivaram, S. and L.T. Biegler, "Improved Infeasible Path Methods for
Sequential Modular Optimization," 3rd International Congress on
"Computers and Chemical Engineering," Paris (1983).

Sood, M.K. and G.V. Reklaitis, "Solution of Material Balances: The
Constrained Case," AIChE J., 25, 220 (1979).

Sood, M.K., G.V. Reklaitis and J.M. Woods, "Solution of Material Bal-
ances for Flowsheets Modelled with Elementary Modules: The Un-
constrained Case," AIChE J., 25, 209 (1979).

Stadtherr, M.A. and H.S. Chen, "Numerical Techniques for Process Op-
timization by Successive Quadratic Programming," 3rd Interna-
tional Congress on "Computers and Chemical Engineering," Paris
(1983).

Stephanopoulos, G., "Synthesis of Process Flowsheets: An Adventure in
Heuristic Design or a Utopia of Mathematic Programming?" in
Foundations of Computer Aided Process Design (Mah and Seider,
ed.), Vol. 2, p.439 (1981).

Stephanopoulos, G. and A.W. Westerberg, "Use of Hestenes' Method to
Resolve Dual Gaps in Engineering System Optimization," JOTA,
15, No. 3, 285 (1975).

Umeda, T. and M. Nishio, "Comparison Between Sequential and Simultan-
eous Approaches in Process Simulation," IEC Proc. Des. Dev.,
U, No. 2, 153 (1972).

Upadhye, R.S. and A.E. Grens, "Solution of Decompositions for
Chemical Process Simulation," AIChE J., 21, No. 1, 136 (1975).

Vasek, V., J. Klemes, C. Vermouyek and M. Dohnal, Collect. Czech.,
Chem. Commun., 39, 2772 (1974).

Vela, M.A., Hydrocarbon Processing, 40, No. 5, 247 (1961).

Westerberg, A.W., "Optimization in Computer Aided Design," in Founda
tions of Computer Aided Process Design (Mah and Seider, ed.),
p.149 (1981).

