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A NOTE ON FLOW NETWORKS AND STRUCTURES

Steven J. Fenves

1. Introduction

The purpose of this note is to explore certain common features of flow and structural

networks, in terms of the effect of the (usually implicit) global equilibrium equations on the

range of problems amenable to analysis.

The objective is to extend the standard analysis problem and explore the possibility of

"tuning" flow and structural networks by preassigning values of certain inflow and reaction

components.

2. Flow Problem

2.1. Standard case

Consider a flow network consisting on n nodes and b branches, governed by:

• continuity (compatibility)

d = A D (1)
where d = b-vector of branch head losses (potential differences)

D = n-vector of node heads (potentials)
A = b x n branch-node augmented incidence matrix

• flow conservation (equilibrium)

Q = A*q (2)
where Q = n-vector of nodal flows

q = b-vector of branch flows

• branch constitutive equations

q = kd (3)
where k= bxb diagonal matrix of linear1 branch admittances (flow-headloss

relation).

Since the columns of A are linearly dependent

A linear constitutive relation is used for simplicity, so that the symbolic solution can be conveniently
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Z a. = 0 for ail i (4)

the n D in (1) cannot be uniquely determined Conversely, the n conservation equations in

(2) are not independent and the Q cannot be uniquely assigned.

The standard procedure is to designate one node, say, node 0, as the datum, drop the

corresponding column of A yielding the incidence matrix A, and redefine D as an (n-1)

vector of heads (potentials) relative to the head D Then the (n-1) vector Q can be

uniquely assigned and

is determined from the overall global conservation relation

£o Q j = °- (5b>

With this change, the network can be readily solved Substituting (1) into (3) and the

result into (2) yields:

Q = AtkAD (6)
=* KD

where K = (n-1)x(n-1) global admittance matrix
f ^ K D

Since linear dependence has been removed, K is non-singular and (6) can be solved for

the unknowns D:

D = K~1Q (7)

The remaining unknowns can be obtained by back-substitution into (1) and (3):

d = AD = AK"1Q (8)
q = Kd = kAK"1Q

2.2. Condensation

It is instructive to recast the above in the notation used for structural condensation. We

define

D =
/ D \

(9)
Q =



where A = column of A corresponding to the datum node. Substituting as in (6) yields

&
A 0

K01K00

[k ] CA;A0] (10)

The first equation in (10) yields

Q = K D * K1Q DQ

D = K~1 [Q - K „ D J

(11)

10 0'
and the second

(12).

To establish equivalence with the previous solution, we have to prove that

a) -K K"1 = a row of all 1's; to reproduce (5)

b) -K" 1 K = a column of all 1's; physically, the potential at D is additive to
all potentials D.

c) CKnn " K n i K " i K m ] = 0; Physically, the flow Q does not depend

00 01 10 on the (arbitrary) potential DQ.

The proof of a) is as follows

Since the columns of K = A^A are linearly dependent.

K
n - 1

0l
, K for all j
1 IJ '

or

. KQ1 = -[e]K

where [e] = row vector of all ones.

Therefore,

" K o i K ~ 1 = t e ] K K " 1

= [e] I

= [e]

(12a)

(12b)



The proof of b) follows immediately from symmetry.

The proof of c) follows directly, since

K OO = - | I 1 K , O ,
 = " [ e ] K i

CKoo - K o i

10

' So1 - -
= 0.

- ( " C e ] K
10

Q.ED.

A sample network and its matrices K, K, K~\ K n K , -K KT1 and [K -K K"1

10 00 01 00 01
K ] are shown in Figure 1.

2.3. Additional Condensation

The analogy with structural condensation can be carried a step further. We partition the

nodes into two sets:

a) a set of nodes f (for free) with known applied flows Q and unknown potentials D ;

and

b) a set of nodes s (for support) with known D and unknown Q 2

s s

Partitioning (6) accordingly:

A'
s

[k]

fs

(13)

K 4 K
sf s

The solution fo r the unknowns fol lows:

{ Q s } =

(14a)

(14b)

An interesting degenerate case is when all the nodes are in s. i.e.. when we have to

The datum node can be included in set s and we can go back to the augmented form of' (1) and (2).



calculate the flows when all the nodal heads (relative to the head at the datum) are

specified From the second equation in (13) we get directly

Q = K D , • (15)
s ss s

without any simultaneous equations.3

3. Structural Problem

3.1. Standard case

With the appropi

submatrices, the linear structural analysis problem is identical to the flow problem.

With the appropriate redefinition of Q. D, q and d as subvectors and of k. and a., as

The conventional approach in structures is that given in Section 2.3: ail reaction (support)

nodes are included in set s; the displacements of the free nodes are given by (14a) and

the reactions at the supports by (14b).

3.2. Dependent and Independent Reactions

It is instructive to recast the structural problem in the notation of Section 2.2. As

pointed out above, conventionally the set s includes all reactions, including the "hyperstatic"

ones, i.a, reactions beyond those required for rigid-body equilibrium. Unlike the flow

network, in which there is one global equilibrium constraint (5b), the structural network is

constrained by more than one rigid body equilibrium requirement

The overall rigid-body equilibrium equation for the structure is:

0 = [H] {Q}

= [ H H l — H —

where H = nf x nf force translation submatrix from node j to the
j point where the global equilibrium equation is evaluated

nf = number of rigid-body degrees of freedom (=3 for plane
structures; =6 for space structures).

The columns of [H] can always be permuted so as to partition (16) into

(16)

For n=2 and actual non-linear headloss-flow relations, this is the two-reservoir problem.



o = CH' !H'

where HQ is square and non-singular. This permits us to solve for the dependent

reactions QQ as a function of the independent loads (which may include reaction

components):

Q = ~ [ H n ] ~ 1 H Q (18)
0 O i l *

An example is worked out in Figure 2.4

Restrictinig set s to contain only the support nodes corresponding to the dependent

reactions QQ, and comparing (18) to (14), we get the interesting results:

a) KgfK f f"
1 = -CH ] - 1 H^ to reproduce (18);

(19a)

D; ""IN. IN, —
ft TS I U

(19b)

physically, the free displacements D depend kinematically on the rigid-
body support displacements D .5

(19c)

physically, the statically dependent reactions Q are independent of the
rigid-body support displacements D . s

These three relations correspond exactly to scalar relations in Section 2.2.

The proof follows essentially the sane reasoning as in Section 2. Without loss of

generality, assume that the rigid-body reactions are applied at node 0 and that the global

equilibrium equations are evaluated at that point Then substitute into (16) the definitions

from (13):

0 = H0Qs + H, Qf

( 2 0 )

4
Note that this is not a "pure" truss network, in that only a few of the 2n possible load components Q are

shown.

Known as the Mohr correction to the Williot diagram in graphic statics.
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- CHOKsf + H1Kff ] °f

This must be true for any D and D . Therefore, from the first matrix, we can prove a):

HOKsf + H1K f f =

The proof of b) follows from symmetry. From the second matrix in (20), we obtain the

proof of c) using the result of (21):

H K + H K = 0
0 ss 1 fs

K + H " ^ K = 0 (22)
ss 0 1 fs

K -K X "1K = 0 aED.
ss sf ff fs

We have shown that reactions can be treated as assignable (known) quantities subject

only to the global equilibrium constraints (16). This generalization of the standard problem

raises the possibility of using analysis to adjust reactions to achieve some design objective

(e.g., limit a reaction at a given support or equalize reactions among supports).

The general problem is thus as follows:

Solve

K u = Q (23a)

subject to

H* Q = 0 (23b)
where H* includes both the rigid-body equilibrium constraints of (1b) and the
additional imposed constraints on the reactions.

To solve, we factor the constraint equation (23b) so that

HI •[H* H'] 4 5 Y = 0 (24)

then Q S = [ - H * " \ H * ] Qf = H* Qf. (25)

An example of the use of (25) is shown in Figure 3. Since the four reactions Q



through Q4 in Figure 2 are constrained by only three global equilibrium equations, an

additional constraint Q, = Q is introduced and the reactions solved for. Note that this is

an equilibrium solution only. An elastic analysis must be performed to calculate the relative

support displacements D and D relative to D necessary to provide this distribution of

reactions.

The elastic solution can be obtained by substituting the now known values of Q on the

left-hand side of (13); with D now treated as an unknown:
s

f

H*Q

ff fs

K , K
sf ss

f

from the second equation, we get D

D = K
s ss

[H* Q - K D 1.
s sf f

(26)

(27)

Substituting into the first equation

Qf = K. D + K K
f ff f • fs ss

[H* Q - K 4 D_]
s sf f

after rearrangement we get

D, [K - K K ~1 K I " 1 [I - K K -1 H*]Qff ff fs ss sf fs ss f .

Further use of (25) - (28) remains to be explored

(28)

It should be noted that the approach presented does not appear to be useful for the

flow network, because of the scalar nature of the overall flow equilibrium equation For

example, if in a water distribution network it is desired to provide equal inflow at two

nodes, say nodes 0 and i, the magnitude of Q. = - 1/2 Z1 Q. is easily calculated, and Q.

is applied as a negative outflow. The D obtained from the solution (7) represents the head

at i (relative to D ) necessary to achieve the constraint of Q = Q .
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