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Abstract

The link and interconnection chip (LINC) is a custom chip whose function is to serve as an efficient link
between system functional modules, such asarithmetic units, register files and 1/0 ports.

LINC has 4-bit datapaths conssting of an 8x8 crosbar interconnection, a FIFO or programmable deay
for each of its inputs, and a pipeline regiger file for each of its outputs. Using pre-stored control patterns
LINC can configure its interconnection and delays on-the-fly, while running. Therefore the usual functions
of buses and regiger files can be realized with this single chip.

LINC can be used in a bit-diced fashion to form interconnections with datapaths wider than 4 bits.
Moreover, by tri-gating the proper data output pins, multiple copies of LINC can form crossoar intercon-
nectionslarger than 8x8.

Operating at the target cycle time of 100 ns, LINC makes it_possible to implement a varigty of high-
performance processing eements with much reduced package counts. This reduction of chip counts is
expecially dggnificant for cogt-effective implementations of those multiprocessors such as systolic arrays which
call for large numbers of processing eements. ’

This paper gives the architectural 'specification of UNC, and justifies the specification by some application
examples.
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1. INTRODUCTION

Many high-speed, high-dendty building-block chips arc rapidly becoming commercially available.
Notable examples are 32-bit floating-point chips that can perform an arithmetic operation in less than a
microsecond. |f there is efficient hardware support to link these chips together, then very powerful sysems
can be built at low cost

LINC isa super "glue' chip for sysem congruction. Asdepicted in Figure 1 the chip provides physical
communications and data buffering between functional units of a system. It can also efficiently implement
some complicated data shuffling operations such as the corner turning used in packing bytes into words and
unpacking wordsinto bytes.

Figurel. Systemcomponentslinked" together byL | NC

LINC can dgnificantly reduce chip counts in many sysems, epecially for highly pipelined processors
such as the CMU Warp processor [5,6]. In general, LINC can €fficiently link high-speed, off-the-shef
arithmetic chips together to form powerful multiprocessor systems for a variety of applications, such as 3-D
computer graphicsand robot arm control

The LINC architectureis highly regular. Thismakesthe chip mog suitable for cusom VLS implemen-
tation. Asof October 1984 the logic design of UNC hasbeen successfully smulated on a Daisy design tation
at CMU, and drcuit and layout designs in CMOS technology are being carried out in cooperation with the
General Electric Company in Schenectady, New York.
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2. SYSTEM OVERVIEW

This section gives an overview of LINC from the perspective of its function within a system and its-
interface to the outside world.

The signal 170 pins of LINC, classified into four groups, are listed in the table below.

INPUT SIGNALS OUTPUT SIGNALS
PIN NAME ABBREVIATION PIN NAME ABBREVIATION
DATA 1/0:
A input AI[0-3] A output AO[0-3]
B input BI[0-3] B output BO[0-3]
C input CI[0-3] C output COo[0-3]
D input DI[0-3] D output DO[0-3]
E input EI[0-3] E output EO[0-3]
F input FI[0-3] F output FO[0-3]
G input GI[0-3] G output GO[0-3]
H input HI[0-3] H output HO[0-3]
FIFO CONTROL AND STATUS:
Write A-FIFO WAF A-FIFO (almost) full AFF
Write B-FIFO WBF B-FIFO (almost) full BFF
Read A-FIFO . RAF A-FIFO (almost) empty AFE
Read B-FIFOQ - RBF B-FIFO (almost) empty BFE
CONTROL PATTERN MEMORY ADDRESS:
Control address CA[0-4]
LOADING AND TESTING:
Chip select Cs
Mode control MC[0-3]
Run/~Halt R/~H
Reset RESET
Ctrl pattern in CC[0-7] Ctrl pattern out CC[0-7]

Note that pins CC[0-7] are bidirectional.

In addition to signal pins there are two clock pins (PHI1 and PHI2), two power pins (VDDI1 and VDD?2),
and two ground pins (GNDI1 and GND2). Thus LINC has a total of 98 pins. Using a standard 100 pin grid
array package, LINC has two pins reserved for possible future needs. :

A system overview of LINC, omitting features related to loading and testing, is depicted in Figure 2.
Between each data input port and the crossbar is a FIFO or programmable delay (FPD), and between the
crossbar and each data output port is a pipcline register file (PRF). A PRF is a set of registers that shifts in its
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input in a pipelined manner, but allows random access into the pipdine for its output. The AMD AM 29520
isan example of a PRF.
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Figurel Systemoverviewof UNC

In the following we briefly describe the functions of the signal 1/0 pinsin each of the four groupslisted in
thetable above. Sections 3 and 4 will give detailed descriptions of these functions.

DATA I/0O:

Through the data I /O ports, LINC can input aswell as output eight 4-bit data items smultaneoudy every
cycle. With acycle time of 100 ns, this means a total data I/O bandwidth of 80 Mbytes per second. It is
possible to increase the 1/0 bandwidth further by using multiple copies of LINC in paralld. Figure 3 (a)
illugratesthat UNC can beused in a bit-diced fashion to form inter connections with data paths wider than 4
bits. Figure 3 (b) illusratesthat by tri-stating the proper data output pins, multiple copies of UNC can fbnn
crosshar interconnectionslarger than 8x8.

Suppose that LINC inputs data from its top boundary and outputs data along its right boundary. Then
the 16x16 crosshar interconnection of Rgure 3 (b) can belaid out in aregular and compact manner, asshown
in Figure 4. It is draightforward to generalize this layout scheme to implement larger crossbar intcrcon-
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Figure 3. Multiple copies of LINC to form (a) interconnections with
data paths wider than 4 bits, and () interconnections larger than 8 X8

nections.
FIFO CONTROL AND STATUS:

LINC can be configured to have up to two FIFOs, an A-FIFO and a B-FIFO. The FIFOs’ widths can be
set by programmers in 4-bit increments, but the total width of the two FIFOs of course cannot be more than
32-bits (the total width of the eight input data ports). Input data ports not used by the FIFOs are configured
as programmable delays. Typically, the programmable delays are used to equalize the lengths of various
pipelines for different arithmetic units in the same system.

The FIFOs of LINC can be used to buffer data coming from other systems at varying rates. Figure
5 depicts a simple scenario of a collection of cooperating systems—each system receives data from the system
to the left. (For an instance of such cooperating systems, see the geometry system application of LINC in
Section 6.5.) The controller of each system sends FIFO read requests (RAF, RBF) to the LINC of the same
system, but sends FIFO write requests (WAF, WBF) to the LINC of the system to the right. The LINC of
each system sends its FIFO status signals AFE and BFE (empty or almost cmpty) to the controller of the same
system, but sends status signals AFF and BFF (full or almost full) to the controller of the system to the left. A
status signal may be sent before a FIFO becomes completely full or empty, to give sufficient time for the
signal to reach the controller.
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Figure4. Regular and compact |ayout of the 16x16 crossbar interconnection of Figure3(b)

CONTROLLER

Figureb. Useof FIFO control andstatussignalsin cooper atingmultiplesystems

CONTROL PATTERN ADDRESS:

The crossbar and pipeline regiger file of UNC may use a new control pattern every cycle. Since acontrol
pattern has 64 bits, it isinieasible to input all these bitsto UNC every cyclefor achip of 100 pins. Ingead, a
5-bit address, CAtfM], is sent to the chip every cycle, to fetch one of the 32 control patterns pre-stored in one
of the two banks of the control pattern memory of the chip.

LOADING AND TESTING:

The control pattern memory hastwo banks, with 32 words each, s0 that while one bank is in use the other
bank can be loaded with new patterns via pins CCtO-7]. The control regiser for the FIFOS/programmable
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delays also can be loaded with new contents via pins CC[0-7]. The control pattern memory and the control
regisger should be loaded before LINC garts running. Through the mode control pins, LINC can be con-
figured to test thecontral pattern memory, the FIFO/programmable dday controller, and the datapath.
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3. DATAPATH AND CONTROL

A functional block diagram of LINC isshown in Figure6. In the foIIoWing we discuss the main functional
features
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Figure6. LINC datapath blockdiagram
3.1. Datapath

The datapath operates with a 100 ns minimum cycle time. Every 1/O port is capable of performing one
data trandfer per cycle. This givesa 40 Mbytes/sec input transfer rate with all of the eight 4-bit input ports
active, and a40 M bytes/sec total output trandfer rate for the eight 4-bit output ports. The datapath consists of
eight FPDs (FIFO and/or programmable delay), an 8x8 4-bit wide croshar, and eight pipeline regiger files.
There isaminimum deay of 2 clock-cycles before an input can appear at an output port The control flow
from the control pattern register is matched to the data flow so that the entire trandfer of each data item is
controlled by the pattern in the control pattern regiger when the trander garts even though the trandfer
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actually takes 2 dock cycles. The net effect of this is that the programmer can view the chip as having zero
internal ddlay across the FPDs, the crosshar, and the pipeline regiger files, but having a 2-cyclc delay at the
output ports.

FIFOsand/or programmable deays

The eight FPDs can be configured into O, 1, or 2 FIFOs and/or 0 to 8 4-bit wide
programmable delays. The FIFOs widths can be set by the programmer in 4-bit incre-
ments, but the total width of the FIFOs cannot be more than 32-bits. Each FPD can be
sdlected to be part of one FIFO or asa programmable ddlay. For example, LINC can be
configured to have two 8-bit wide FIFOs and four 4-bit wide programmable delays. The
programmable delay time can be ffom 0 to 31 cycles. The two FIFOs, each 31 deep, are
controlled by the off-chip sgnals WAF, WBF, RAF, and RBF. Natice that the outputs of
the FPDs, even when configured as FIFOs, go to the on-chip crossoar rather than off-chip
directly. Because there are logic ddays indde LINC in sending out FIFO datus sgnals
(AFF/AFE and BFF/BFE), these dgnals refer to an "amog full" or "almos empty”
datus, "Almod full" means that the FIFO has at most two empty dots left, and " almost
empty" means that the FIFO holds at mogt two valid items* The configuration of the
FPDs isdetermined by a 64-bit wide control register, called the d-code regiser (delay code
regiser), which is loaded before sysem execution begins and normally does not change
very often thereafter.

Crosshar An 8x8 4-bit wide crosshar connectsthe FPDsto die pipeline regiger files. The crosshar is
uni-directionaL  The inputs come from the FPDs and the outputs go to the pipédine
regiser files. The control for the crossbar comes from a 24-bit fidld in the control pattern «
~register. Each output port of the crosshar, controlled by 3 bits, can accept any of the eight
" input values.

Pipeineregiger files
At the output of the crossbar are eight 4-bit wide pipeline register files (PRFs). Each PRF
has 14 gages, and uses one bit in the control pattern regiser to decide whether to shift in
the current crossbar output The output of each PRF, which also serves as one of the
output ports, is specified by a 4-bit field in the control pattern regiger to be ether one of
the 14 stages, the crossbar output, or high-impedance.

32. Contral

The functional description of the control circuit in this subsection refers only to the control of the opera-
tional sates. For description of the loading/testing control, seethe next section.

Contral pattern memory and control pattern register

l'A caution to the programmer when the controller of a sysem receives the almog empty satus signal of a FIFO, the FIFO could ill
beholding up totwovalid dataitems. At thetermination of acomputation, one must make surethat novalid data are ill left in aFIFO.
One method to achieve thisis to write two dummy data itemsto the FIFO while the rex of UNC ishalted. Theideaisthat these two
dummy datawill " push out" any valid datathat might till beleft in the FIFO. Application independent code can be written to deal with
this" termination problem**
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The control pattern memory and the control pattern register determine the operation of the
crossbar and the pipclinc register files. The control pattern memory, a 64X64 static RAM,
is configured as two 32-word banks. One bank can be loaded with new control patterns
while the other is controlling the data flow. A 5-bit off-chip address, CA[0-4], sclects the
control pattern from the bank currcntly controlling the chip. The control pattern register
holds the pattern addressed in the last cycle and controls the circuit behavior at the current
cycle. (Actually, this is not quite true. Because of the requircment to match the control
flow with the data flow, part of the control pattern that controls PRF will still be active on
the next cycle.)

Each FPD is controlled by an 8-bit ficld in the d-code register. Two bits are used to decide
whether the FPD is a programmable delay, or part of the A-FIFO or B-FIFO. The other
five bits are a count field. For a programmable delay, the count specifies the fixed length
of the delay, and is set when loading the d-code register. For a FIFO, the count contains
the current length of the FIFO. When loading the d-code register, it is necessary to set the
count field of the register to zero, effectively creating an empty FIFO. A new d-code can
be loaded into a shift register, whose contents can then be transferred to the d-code register
in one cycle. The shift register is byte-wide and can be loaded through the CC bus in 8
cycles. The loading of the shift register can be performed when the chip is running or is
halted.

The run/~halt pin controls the running state of the chip. When the run pin becomes
inactive, all the circuits, except the FIFO circuits and loading/testing circuits, become
inactive. After the reset pin is active for more than one cycle, the eight data output ports
become high impedance. This is useful in avoiding spurious outputs when loading the
control codes into a LINC chip for the first time.
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4. LOADING AND TESTING

Warning: Firg time readers should skip this section. In this section, c-code means control pattern, d-code
meansdelay code, c-addr meanscontrol patter n addressand s-datameansscan data.

The mode contral table shown below defines the various loading and testing modes. Only when the chip
sdect pin is active do the CC pinsand internal loading and testing logic become active. In the following we
discussthe variousloading and testing processes. _

MDE | GCODE DOIDE SDATA GCADR Bank coment

| Count er HF
0000 | shi ft - - - ¢ c-code in
0001 | shi ft - - - - c-code out
0010 | oad - - - - to c-code REG
0011 unl oad - - - - from c-code REG
0100 store - - post inc - to c-code MEM
0101 read - - post inc - from c-code MEM
0110 - - - - toggle swap menory banks
0111 - - - r eset - addr cntr
1000 - shift - - - delay code in
1001 - shi ft - - - del ay code out
1010 - | oad - - - to d-code REG
1011 - unl oad - - - from d-code REG
1100 - - shift - - data scan in
1101 - - shift - - data scan- out
1110 - | oad - - toggle load and swap

4.1. Control Pattern Loading

Conceptually, the'control pattern memory can be consdered as two swappable memory banks, one
working bank and one loading bank. New control patterns arc always loaded into the loading bank. The
loading process can be performed either whilethe chip isrunning or when the chip ishalted.

Typically, a control pattern loading process garts by reseting the loading address counter to zero (mode
0111). The pattern words are then written sequentially into the loading bank. It is not necessary to fill the
entire bank, thus saving time in loading a new set of control patterns. Usersare allowed to skip some words
by using the rcad-and-increment mode (0101). Each 64-bit pattern word is written by shifting in the new
pattern in eight cycles through the 8-bit CC bus, usng mode 0000, and then "executing' a sore-and-
increment mode (0100). The swap mode (0110) is used to swap the loading bank and the working bank.

4.2. FIFO/Delay Control Loading

The d-code loading shift regiger can be loaded with a new d-code through the CC busin 8 cycles usng
mode 1000. Mode 1010 isthen used to load the value in the shift regigter into the d-code regiger in onecycle.
It ispossble to smultaneoudy load the d-code regiser and swap the control memory banks with mode 1110
(load and swap).

The internal pipdining of the chip implies thal the swap mode (0110) takes one more cycle than the

10
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d-codc loading mode (1010) to become cffective after the modes arc cxecuted. Therefore the swap mode
should be issucd a cycle carlier than the d-codc loading mode if the programmer wants them to be cffective
on the same data. :

4.3. Control Pattern Memory Logic Testing

The testing of the control store normally starts with the control store loading shift register. A test code
pattern is shifted into the shift register with mode 0000. Then the test code pattern is shifted out of the shift
register with mode 0001 to verify the functionality of the shift register. The c-code memory (the current
loading bank only) can be tested by first loading in test patterns and then resetting the counter to 0 (mode
0111) and using read mode (0101) and shiftout mode (0001) to read the patterns. To test the other bank,
modc 0110, swap-memory-banks, can be uscd to swap the banks. To test the functionality of pattern address-
ing logic, a control address can be sct with the CA pins and the contents of the corresponding memory
location are read into the control pattern register, which can then be unloaded in the next cycle into the shift
register (mode 0011) and shifted out (mode 0001) for verification. The functionality of the control pattern
register itself can be tested by first loading from the shift register using mode 0010 and then unloading with
mode 0011.

4.4. FIFO/Delay Control Testing

The delay code loading logic uses a different shift register from the one used by the c-code loading logic.
The delay code shift register can be tested by writing with mode 1000 and then reading out with mode 1001.
The current d-code register can be read by using mode 1011 to unload the d-code into the shift register and
then reading the shift register with mode 1001.

4.5. Datapath Testing

In addition to the input and output data ports for indirect observation, the internal datapath can be
examined with the scan path built around the crossbar. The 32-bit input into the crossbar and the 32-bit -
output from the crossbar are placed in a scan-in-scan-out path. The scan path can be set by shifting data in
using mode 1100. Mode 1101 can be used to read out the current content of the scan path. Notice the scan
out process is a destructive read and should NOT be performed while the chip is running. Also, the scan in
process should not be performed while the chip is running. The scan path is only one bit wide, and only pin
CCJ0] is used for scan data /0. Thus, loading or unloading the scan path will take 64 cycles to complete.

It is important to point out that when data are scanned out via pin CC[0], the scan path shifter behaves as a

rotator. That is, after 64 cycles all the data will return to their original positions, although a copy of the data
has been read out. At this point, the chip has returned to its original state, and is ready to resume operation.

11
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5. TIMING SPECIFICATIONS

The firgd implementation of LINC uses an external two-phase clock to provide clocking flexibility after
fabrication. For future implementationsit would be possible to use an external sngle-phase clock and put a
two-phase clock generator on thechip. -

Figure 7 shows the reationship between the two-phase clock and the input/output sgnals. Since LINC
uses dynamic circuits internally, there exists a minimum cdlock frequency. The target maximum clock rate is at
least 1I0MHz :
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Figure7. Input/outputtimingdiagram

The timing diagram for the running sate is depicted in Figure 8. To read a control pattern from the
control pattern memory, the control pattern address (CA[0-4]) must be supplied one dock cycle earlier. It
takes two cycles for input data to go through the internal circuit being controlled by the contral pattern and
come out at the output ports. Theinput timing for die FIFO control sgnalsis the same as for the data input,
and FIFO gatussignalsappear twoclock cycleslater.

Thetiming for loading/testing the contral pattern, FIFO/delay control code, and internal data is shown in
Figure9. The control pattern and FIFO/delay control codes are written/read eight bits (CQO-7D at atime.
Thereforeit takes eight cyclesto read/write one 64-bit word. To accessa 64-bit internal data item through the
bit-serial scan ling, on the other hand, takes 64 cycles, since only one bit is shifted in/out through the CQO]
pin every cycle. Pins CCJO-7] output control patterns, FIFO/delay control code or internal data only when
the CSpin isactiveand the MC pinsindicate reading. Otherwise, CQO-7] become high-impedance.
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Figure 10 depicts the internal timing diagram for the running state. LINC contains four (approximately
50 ns) stages, each requiring one half dock cycle to execute, which accounts for the two cycle minimum mput
to output delay sated in the datapath description.

14
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6. APPLICATION EXAMPLES
6.1. Corner Turning

Functional units of a system often have different data input and output formats. As a result, outputs of a
unit may have to be reassembled before they can be used as inputs to another unit. A reassembling operation
that occurs frequently is known as “corner turning.” We show how corner turning can be efficiently carried
out with LINC.

The corner turning operation is like matrix transposition. That is, given an input matrix, say in column-
major ordering, we want to transpose it so that the output will be in row-major ordering. This definition is
illustrated by Figure 11 (a). For example, comer turning operation is needed in preparing input data for some
systolic arrays [1], and in packing bytes into words and unpacking words into bytes.

(a)
dy, ¢, b, a, —> 4, 4; a, a,
d, ¢, b, a, —> b, b, b, b,
d, ¢, b, a, roomeh vt | ¢, ¢, ¢
d‘ c‘ b‘ a‘ % d‘ d: d: dl
(b)
d, ¢, b, a, -0—0—0> a, a, a, a,
d, ¢, b, a, CROSSBAR o—o0—> b, b, b, b,
d, ¢y b, a, ——>c, ¢, ¢, ¢
d, ¢, b, a, —>d, d, d, d,

Figure 11. (a) “Corner turning”, and (b) its implementation

Referring to Figure 11 (a) we see for example that inputs a,, a,, 4, and g, all arrive at the same time, but
they must be buffered so that thcy can be output from the same output port serially. It is easy to see from
Figure 11 (b) that by providing buffer delays both before and after a crossbar, the corner turning can be
accomplished. Since LINC does provide these buffering facilities and the crossbar, it can implement the
corner turning operation.

For transposing large matrices, we can use multiple copies of LINC, as depicted by Figure 3 (b) and
Figure 4. Alternatively, we can multiplex in time a single copy of LINC. For example, Figure 12 shows that
we can transpose an 8x4 matrix by transposing the first four rows of the matrix followed by the remaining
four rows. Of course, if the size of the matrix 2xceeds that of the programmable delays and pipeline registers
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of LINC, additional buffersoutsde LINC must be used.

da C, My aald: c, b, a, —> 44 4, a- ag 4, a- B B
da Cy bt asl dy Ty % —> bc A bs bs b, ba bz b1
LINC

dy ¢; v Lt o by ag —> Cs ]' X 7€4 "3
d, ¢, b, | d, ¢, b, a, — d, g i e O

Figure12. Transposingalargematrix by multiplexingLINC

Asitsdatapath indicates, LINC can buffer inputsat itsinput ports, and send them through the crossar to
any of the output ports, at which data can again be buffered by the pipdineregiger files. These features seem
to be general and powerful, Corner turning isjust one example of many data shuffling operations that LINC
can efficiently implement

62. Sygtalic Array Implementation

CMU is currently building a programmable systolic array processor that can efficiently perform many
essential computationsin signal processing, such asthe FFT and convolution. Asdepicted in Figure 13 thisis
a one-dimensional systalic array that takes inputs from one end cell and produces outputs at the other end,

_with data and control all flowing in one direction. We call this particular systolic array a Warp fprocessor,,

suggesting that it can perform varioustransformations at very high speed [5,6].

addr--"
)\(( —-—-;\I E - ——> eee
- CELL 1 CELL 2 CELL 3 CELL 1
r—x ) — - —> ¥
end ---> S , b= ) nay m=d

Figurel3. TheWarpprocessor

Each cell of the Warp processor uses a pipdined 32-bit floating-point chip set ffom Weitek [10] that can
perform 10 million floating-point operations per second (MFLOPS). A 10-cdl Warp processor can process
1024-point complex FFTsat arate of one FFT every 600 fis. Under program contral, the same processor can
peform many other primitive computations in dgnal, image and vison processng, incuding two-
dimensional convolution and complex matrix multiplication, at a rate of 100 MFLOPS. Together with
another processor capable of performing divisions and square roots, the Warp processor can also efficiently
carry out a number of difficult matrix operations such as solving covariant linear sysems, a crucial computa- -
tion in real-time adaptive sgnal processing.

Figure 14 summarizes the datapath of each cell of the Warp processor. For the CMU prototype that is
being built, we use only off-the-shelf components, and each cell isimplemented on one board. We note that
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all the components inside the region surrounded by the dotted lines are “gluc chips” and they can be
implemented efficiently with LINC. In particular if LINC is used, a board of the same size will be able to
host three or more Warp cells.

WCODE
g 4
i
LINC !
ilﬂ —ﬁ_'.; 3:1 )
l .
]
Yi-1 ——3) e Y-FILE ' Sy,
1
i1 1 A 21 :
Tt g X-FILE ! S x,
!
addr, ., : ADDR-FILE CROSSBAR Rg:?,u "% _I — addr ,
i ,
L [+
]

[ |
L---..___e.} j ALU
ﬂ' REG FILE

— |

Figure 14. Warp cell implemented with LINC

Y

In general, through LINC, processors and memories can be linked together to form various processor
arrays, as illustrated in Figure 15.

6.3. Fast Fourier Transform

We describe how an n-point fast Fourier transform (FFT) can be carried out on a processor implemented
with LINC, based on a scheme originally proposed for the Warp processor [5].

The FFT uses log, n stages of n/2 butterfly operations, with data shuffling between stages. The so-called
constant geometry version of the FFT allows the same pattern of data shuffling between all stages [9].

In the Warp processor array, the butterfly operations for the i-th stage of the FFT are executed by cell i,
and the results are stored to the data memory of cell i+ 1. The data memory of each cell is double buffered,
so that cell j can write into the data memory of cell i+ 1 while cell i+ 1 is working on stage i+ 1 of another
FFT problem. In this way, if many FFTs are to be performed, all cells in the array can be kept occupied at all
times.

Figure 16 shows the cell block diagram, with LINC controlling ail data flow to the processing units.
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Figurel5. Processorarraysimplementedwith LINC
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Figure 16. Cell of constant geometry FFT processor using LINC
A butterfly operation is defined as:

e+ o | ”
= [ort (b- HV - b, Wl +j[a.x {b; w,+ bpw)],

requiring four real multiplications and six real additions. Using LINC to control the data flow, it is possble
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to fully occupy the ALU so that it actually takes the minimum of six cycles to do a butterfly. This is
accomplished by interleaving up to four different butterfly operationsin all cellsat all times. LINC solvesthe
problem of reusing the inputs to each butterfly twice, by storing such inputs ingde LINC and reading them
out at the appraopriatetimes.

We now define the data ¢reams for LINC and for the cell. The cell >>*dda gream provides the input for
the data memory and is written into the address provided by the w-addr sream. The r-addr sream provides
the read address for the data memory, and the data memory provides the butterfly inputs (a9, & by, bj) for
LINC. The weight inputs for the butterfly operations (w;, w;) arc provided by the x-data Sream. There are
also feedback loops in the cell from the outputs of the ALU and multiplier back to the inputs of LINC. This
allows LINC to control the correct accumulation of the results of the butterfly. The cell ~output is the output
from the ALU, while the rest of the output streams are smply the corresponding input streams, delayed by
two cycles (the pipeline dday of LINC). All data sreams pass systalically from cdl to cdl, including
addressesfor the data memory. Thisisagood reason to implement the FFT in the congtant geometry version,
because the method uses the same data shuffling between all cdlls.

Programming LINC for this application is not a difficult tak. As we have already noted, data shuffling is
the same between all cells, which means that all cells require the same LINC control. A total of eight
different control patterns are used, sx for the main loop of the FFT and two more to alow for the case of
shifting in new weights for the current butterfly operation. The decison on whether to shift in new weightsis
made by the cdl controller, based on the method described in [5]. The general method by which LINC
controls the data for a butterfly operation is quite smple. Firg it buffers 6,and b, in one pipdine regiger file
connected to the multiplier, and the corresponding weights in the other pipeline regiger file connected to'the
multiplier. Then, asthe multiplier computes the products they are sent back through LINC and buffered in
the pipeline regiser files connected to the ALU. As soon as both operands are available, they are sent to the
ALU to continue the butterfly operation. Oncethe ALU finishes this set of computations, the results are sent
back through LINC once again, buffered asinputs to the ALU, and used as operands with & and & (which
are also buffered), to produce thefinal cell outputs. The important point to noticeisthat LINC providesthe
flexibility necessary to regulate several data sreams concurrently, without inserting unnecessary empty cycles
into the pipdines of the processng units. It is also important to note that up to four different butterfly
operations are going on smultaneoudy in one cell, but that LINC can handle all the necessary control with
only eight distinct control patterns.

6.4. Robot Ann Control

The problem of controlling a robot manipulator can best be described as a problem in transforming the
easly specified desired Cartesan (world) coordinates into the arm'sjoint coordinates. These transformations
are defined by a set of homogeneous transformations, each of which is a 4x4 matrix which when applied to a
coordinat€ s 4-vector (jy,z, and scale) trandormsiit into another 4-vector [7]- The sandard trangormations
include trandation, rotation, sretching and scaling. Since the major computational problem involved is that
of matrix multiplication (composing the necessary homogeneous transformations to tranfonn Cartedan to
joint coor dinates), a systalic array to perform matrix multiplication could provide the necessary computational
power for robot arm contr ol

A method for doing matrix multiplication with linear systolic arrays using pipelined arithmetic and mul- .
tiplier unitsis described in [5]. The systalic cell requires buffering for both data sreams associated with the
matricesbeing multiplied, and also for the result data sream. The cdll would look exactly like Figure 16, with
the only difference between such a cel and an FFT cell being the programming of LINC and the cdll
controller. The matrices we are discussing are 4x4, s0 a four-cell systalic array could process a single matrix
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multiplication in exactly sixteen cycles, since we know that by interleaving independent matrix multiplications
a new tak can enter each adder every cycle. Thisimplies that, with a 200 ns arithmetic unit cycle time, it
would take 3.2 /isto do a single matrix multiply.

Two robot arm problems that illustrate the necessity for the powerful processing elements we describe
‘above arc that of generating the robot arm joint position error and joint velocity set points. The equations for
solving these problems involve composng many homogeneous transformations and computing inverse
homogeneous trandformations, both of which require many scalar multiplications (to compute matrix
products and inner products, respectively). The equations needed to solve these problems[8] are quite
complex, but what is more important is calculating the necessary requirements on computing the solutions.
One part of the solution derivation reguiresa computation of approximatey 2000 multiplications (scalar, not
matrix) to do the necessary matrix multiplications. The time ddlay in computing the joint servo of a typical
robot arm isimportant in determining the computation rate, and requires a delay of lessthan 250 /is. Thisis
wdl within the capability of our systolic array, which can do the 2000 multiplications in
(1/4)-(2000>200ns(=100/is). Then the evaluations of the two set points can be done, requiring ap-
proximately ancther 1000 multiplications within the same 230 /isdday, which isalso easily met by the systolic
array'scapabilities.

Robot arm contral is clearly- amenable to applying the computational power of a systalic array based on
LINC. It seemsthat die tak requirestoo much computation in too short a period of time for a conventional
architecture to be able to handle it effectively, and any other method of solving the problem requires ap-

_proximation algorithms that are not completely adequate for the tak. Asa measure of how cost-effective we
expect LINC to be in daoing this tak, we know that a Warp processor board can handle the computations
described above, and such a board would require only 45 chips using LINC. The flexibility available in
programming LINC to control data flow and the computational power of a systolic array can bea mgjor help
in alleviating the computational difficulties of robot manipulator contral.

6.5.3-D Computer Graphics

Hardware for high performance three-dimensional computer graphics can be viewed as conssting of two
main parts ageometry sysem and a display syssem. The geometry system transforms object descriptionsin
world coordinates into descriptions in normalized device coordinates. The display sysem eiminates hidden
aurfaces and outputs each pixel to a rager-scan display. There have been-saveral attempts to apply VLS
technology to both sysems[3,4]. In comparing the two systems, the geometry system requiresmany floating- -
point operationsand is appropriate for implementation with LINC and floating-point processor s, whereas the
display system needs sorting operations of fixed-point values. Although LINC could be useful in implement-
ing the display system we will not explore that idea at the present time. We will now discuss further die
ar chitecture of the geometry system.

Therearethreetaksin the geomary syétem:

» Matrix multiplication
For the transformation from world to normalized device coordinates, we need to perform
homogeneous transformations defined by 4x4 matrices. The computation involves many matrix-
vector multiplications.

* Clipping _
The trandormed data in hormalized device coordinates are clipped into the space which a viewer
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can see through a virtual window. In world coordinates, this space corresponds to a truncated
viewing pyramid with " front" and "back" planes.

«> Scaling _
Thisgep trandformsthe data in a homogeneous coor dinate system [x, Y, z, WA (where wisa scaling
factor) resulting from clipping, into ancther coordinate system [X'1Y's 2°,1].

XYZ
v
LINC
OUTPUT € x
Matrix Mult. " Scaling
G 1 TR ] gr ]
& )
LING LING LINC LING LINC LINC
H ﬁ -
Clipping 1 Clipping 2 Clipping 3

Figure17. | mplementation of the geometry system

Figure 17 shows the implementation of the geometry sysem. The firg cell performs the matrix mul-
tiplications, the next three cellsdo dipping, and the last cell doesthe scaling operation. Each ed! iscomposed
of copies of LINC, a floating-point multiplier and a floating-point ALU. (In the figure, one LINC box
representstwo copies of LINC).

The matrix multiplication cell has a random-access memory which stores the coefficients of the
homogeneous transformations. The cell inputs memory addresses and vertex vectors in world coordinates
[IC.y, z, 1]. Thetrandormed coor dinatesof a vertex vector areoutput every 32 LINC cycles.

Given an input point, each of the clipping cells clips every edge of a polygon by two planes that are

paralld in normalized device coordinates, such as x—w=0 and x+w=0. Thefirst part of a clipping cell
computes the two intersections of an infinite linewith thetwo planes. The second part sdects at most two
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points from the input point and the two intersection points. These sdected points correspond to the
endpoints of the edge of the polygon between the planes. Natice that data may be output at different rates.
That is, even though the data output rate from the matrix multiplier cdl is constant (1 vector per 32 LING
cycles), each clipping cell hasthe possibility of outputting no‘points, 1 point or 2 points. The FIFOs,in LINC
are usgful for smoothing this variance in 1/0 rates between cdlls. In particular the LINC at the inpiit of each
clipping cdll providesa FIFO to buffer inputs which may arrivein burgs

The scaling cell performs divisions to compute [x/w, y/w, zZ'w[. This can be efficiently implemented, for
example, by acustom chip being designed at CMU that is capable of computing reciprocals of 32-bit floating-
point numbers at therate of one every 200 ns. However, if no special hardware for divisons is assumed, we
can ill use existing schemes that can replace a quaotient computation (no remainder) with a few multiplica-
tions[2]. In particular, for 32-bit floating point numbers with a 24-bit mantissa, computing the inverse of w
takes no more than eighteen LINC cycles. With the addition of the sx LINC cycles required for multiplying
Xy and zby the inverse of w, we need no more than atatal of 24 LINC cyclesto scale one vertex vector.

Each cdll in Figure 17 is capable of computing one result vector in 32 LINC cycles (32/is). Thereforethe
maximum throughput of this system is approximately 9K verticesin oneframeperiod (30 ms).
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