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ABSTRACT

This paper addresses the problem of synthesizing heat exchanger networks that

have the flexibility of coping with prespecified changes in flowrates, inlet

temperatures and outlet temperatures in a finite sequence of time periods. A
v

multiperiod version of the mixed integer linear programming (MILP) transshipment

model is presented which accounts for the changes in pinch points and utility

requirement at each tjme period. Using this model as a basis, a systematic procedure

is proposed for synthesizing network configurations that require minimum utility cost

for each period of operation and involve the fewest number of units. Application of

this synthesis procedure is illustrated with two example problems.



SCOPE

A large number of synthesis procedures for the heat exchanger network problem

have been published over the last f i f teen years. Nishida et a/., [ 8 ] present an

extensive review of these procedures. The most recently published procedures

assume that a near optimal solution is characterized by networks that feature

minimum util ity cost and fewest number of units. Examples of these methods are the

pinch design method of Linnhoff and Hindmarsh [ 6 ] , the LP and MILP formulations

based on the transportation model by Cerda and Westerberg [ 2 ] and the LP and MILP

formulations based on the transshipment model by Papoulias and Grossmann [ 9 ] . The

basic assumption however, behind all these methods is that the f lowrates as wel l as

the inlet and outlet temperatures of the streams, are specif ied with fixed values.

Thus, these methods assume that the heat exchanger networks have only one single

mode of operation.

Marselle et at. [ 7 ] and Saboo and Morari [ 10 , 11] have addressed the more

general problem of synthesizing heat exchanger networks where the f lowrates and the

inlet temperatures vary within given lower and upper bounds. To tackle this problem

these authors identify a number of worst operating conditions and design the heat

exchanger network for these critical conditions. For instance, Marselle et a/. [ 7 ] ,

adopt as worst conditions the ones corresponding to the maximum heating, the

maximum cooling and the maximum total heat exchange. The objective is then to

synthesize a network configuration that can handle these three worst operating

conditions. Therefore, at this point they deal with a problem similar to synthesizing

heat exchanger networks for multiple operating conditions. To face this problem,

these authors suggest to design a heat exchanger network for each of the selected

worst points of operation, and then combine manually these network configurations.

However, no systematic procedure is given for the combination of these

configurations which may require considerable trial and error e f for t since in principle

these configurations can be quite different f rom each other. Furthermore, there is no
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guarantee that these networks will feature the fewest number of units.

In this paper a systematic procedure is presented for the problem of

synthesizing flexible heat exchanger networks for multiperiod operation. It is

assumed that in general different values" are specified for the flowrates, inlet and

outlet temperatures of the streams for N periods of operation. The objective in this

problem will be to synthesize a network structure that is feasible for the N periods

of operation, which has minimum utility cost at each period of operation and which

requires the fewest number of units. To tackle this problem, multiperiod versions of

the LP and MILP transshipment models proposed by Papoulias and Grossmann [9] are

developed .These formulations take into account changes of pinch points in each

period of operation. A systematic synthesis procedure based on these formulations

is presented and illustrated with two example problems.

CONCLUSIONS AND SIGNIFICANCE

This paper has addressed the synthesis problem of flexible heat exchanger

networks where flowrates, inlet and outlet temperatures can change in a finite set of

periods of operation. These changes result, in principle, in different pinch points and

changing subnetworks from one period to another. A systematic procedure based on

a multiperiod MILP transshipment model has been developed for minimizing the

number of units and the utility cost at each period of operation. The proper

formulation of the objective function and the assignment of the binary variables in

the mathematical formulation are of critical importance in order to maintain the one-

to-one correspondence between the predicted matches and the units required in the

network configuration. The application and effectiveness of the proposed procedure

have been illustrated with two example problems.



INTRODUCTION

Chemical plants often operate at different conditions. Typically a plant will

either process different feedstocks or operate at various capacity levels. Due to

interactions between the chemical plant and the heat exchanger network, variations of

operating conditions at the chemical plant will usually imply variations in the heat

exchanger network. For instance, when a chemical plant processes feedstock A, for

say the first two months, this will imply given values of flowrates and temperatures

for the streams of the heat exchanger network. If operation is then switched to

feedstock B, for say the following three months, this will normally result in different

values of flowrates and temperatures for the streams of the heat exchanger network.

Since different operation modes in a plant will often result in different values

of flowrates, i/ilet and outlet temperatures for the streams that participate in the heat

exchanger network, the problem of synthesizing flexible network configurations which

can handle a finite number of N different periods of operation becomes an important

design problem.

Specifically, the problem which is to be addressed in this paper can be stated

as follows:

Given is a set of hot streams H which have to be cooled, and a set of cold

streams C which have to be heated. Flowrates, inlet and outlet temperatures are

specified for these streams at N periods of operation. Auxiliary heating and cooling

are available from a set S of hot utilities and a set W of cold utilities. The problem

is then to synthesize a heat exchanger network configuration which remains feasible

for the finite set of the N periods of operation, and which satisfies the two

following criteria:

1. Minimum utility cost at each period of operation.

2. Minimum number of heat exchanger units.



The two criteria are based on the observation that a heat exchanger network which

requires minimum operating cost (criterion 1) and fewest number of heat exchanger

units (criterion 2) is very close to the economic optimal solution [6 ] .

It should be noted that the two criteria cited above"- are independent of the

length of each time period. Therefore, no duration need to be specified for the time

periods. The case when the actual duration of some periods is rather small, which

might not justify having full heat integration in them (i.e. .criterion 1), will be treated

as a special case at the end of the paper in the discussion section.

The following basic assumptions will be made for modeling the multiperiod

heat exchanger network synthesis problem :

1. The enthalpy of the process streams is a linear function of temperature.

2. A minimum temperature approach is specified by the design engineer.

3. The dynamic effect of changing flowrates, inlet arid outlet temperatures
from one period to another is neglected.

In this paper, the (LP) and (MILP) transshipment models proposed by Papoulias

and Grossmann [9 ] will be extended for synthesizing flexible heat exchanger

networks for multiperiod operation. As will be shown, the extension of these models

will take into account the changes of pinch points in each period of operation.

Application of the proposed formulations will be illustrated with two example

problems.

REVIEW OF THE TRANSSHIPMENT MODEL

The previous work which has been done by Papoulias and Grossmann [9 ] on

the transshipment models for heat exchanger networks is based on the assumption

that the flowrates and the inlet and outlet temperatures of the streams have fixed

values. Under this assumption, this case corresponds to the synthesis of heat



exchanger networks for one period of operation. Since in this paper the

transshipment models will be extended to the multiperiod ones, a brief review will

be presented first for the one period case.

The LP version of the transshipment model by Papoulias and Grossmann [9] is

used for the calculation of the minimum utility cost and the identification of the

pinch points for a given set of hot and cold streams. As a first step, the whole

temperature range is partitioned into K temperature intervals based on the inlet

temperatures of the streams [4]. By applying heat balances for each temperature

interval (see Fig. 1a), the utility cost problem can be formulated as follows:

min Z* 2 1 c s i (QS
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utilities with unit costs CS., CW. respectively; S, W are the sets of hot and cold

utilities respectively. The first set of constraints are heat balances around each

temperature interval k, where k=1. to one corresponds to the interval with the highest

temperature. As can be seen in Fig. 1a, the heat residuals that enter and leave the

temperature interval k are represented by Rk_.» Rk respectively, Q!), Q?. correspond



to the heat contents of hot stream i and cold j at interval k; the sets H , C stand

for the set of hot streams i and cold streams j that are present at temperature

interval k. The second set of equalities in (P1) denotes that the first and last heat

residual are zero, while the rest of the constraints are the nonnegativity constraints.

Note that the variables in this formulation are QS., QW. and R . The solution of this
I J K

LP transshipment model will result in the prediction of the minimum utility cost, and

the identification of the pinch points which correspond to those temperature intervals

whose outlet heat residuals have zero value.

Using the available information from the solution of the LP transshipment

model (P1), which provides the minimum utility cost and the location of the pinch

points, the set of temperature intervals is partitioned into subnetworks. The

subnetworks are defined by subsets of temperature intervals which do not contain

pinch points as shown in Fig. 2. Also, the required hot and cold utilities calculated

from the LP are treated as additional hot and cold streams. That is, augmented sets

of hot and cold streams { H , CA ) are defined to include both process streams, as

well as, utility streams. With these considerations, an MILP transshipment model is

developed for each subnetwork to determine the minimum number of matches and

the heat to be exchanged at each of these matches. By denoting the possible

existence of each match with 0-1 binary variables, the problem for minimum number

of matches at each subnetwork is as follows [9 ] :

mm ^ I E
I € HA j € CA

s.t.

• H < v < i e v k€IT

j€ CAk
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The first two sets of constraints are energy balances for each hot stream i and

each cold stream j around every temperature interval k (see Fig. 1b). IT is the index

set for the temperature intervals involved in the subnetwork. H_ is the set of hot

streams i and the hot utilities that exist at or above the temperature interval k. CM

is the set of cold streams j including the cold utilities that exist at the temperature

interval k. The variables Rjk, R jk.1 are heat residuals which correspond to hot stream

i at temperature intervals k and k-1 respectively. The variables Q.. denote the heat

exchanged between hot stream i and cold stream j at temperature interval k. The

term Q£ is the heat load of hot stream i including the hot utility, that enters the

temperature interval k. The term Qc is the heat load of cold stream j including the

cold utility, that enters the temperature interval k.

The potential existence of a specific match between hot i and cold j, which is
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associated to a potential unit in the network, is represented by the integer variables

y... The summation of continuous variables Q.. for a given pair (i, j), representing the
IJ IJK,

total heat exchanged between these steams, is related with the integer variables y..

by the third set of constraints. If y.. is equal to zero, there is no match (i, j) and the

amount of heat which is exchanged at this match must be zero. If y.. is equal to one,

the match (i, j) exists, but there must be an upper bound on the heat which is

exchanged implied by the heat content which is available at the hot streams and the

heat content that is needed at the cold streams. This upper bound is denoted by U ..

The last two sets of constraints are the nonnegativity constraints which must exist

for both the residuals Rjk and the heat exchanged Q j k .

Finally, the objective function involves a minimization of a weighted sum of the

number of matches that can possibly take place in the given subnetwork. If the

weights w.. are set to values of one, the objective function corresponds to the

minimization of the number of matches, which as shown in Floudas and Grossmann

[ 3 ] , is equivalent to the number of units required in a feasible network. The one

period MILP transshipment model (P2) can be solved independently for each

subnetwork to determine the matches and the heat exchanged at each match via the

y . and the Q... variables, respectively. Based on this information, the final network
IJ IJK

structure is derived manually for each subnetwork. The final configuration is then

simply given by joining the configurations of each subnetwork.

Floudas and Grossmann [3 ] have recently shown that with the MILP transshipment

model (P2), a one-to-one correspondence can be established between the matches

predicted by the binary variables and the units that are required in a feasible network

structure. This structure may or may not involve splitting, mixing or by-passing of

streams. Thus, with the solution of problem (P2) there is no need to either merge or

introduce more units than what is predicted by binary variables in each subnetwork.



EXTENSION TO MULTIPERIOD PROBLEM

This paper will show how the transshipment models (P1) and (P2) can be

extended for synthesizing heat exchanger networks under multiperiod operation. In

particular, the following transshipment models will be considered:

1. Multiperiod LP transshipment model.

2. Multiperiod MILP transshipment model.

The multiperiod LP transshipment model will be used to determine the minimum

utility cost and the location of the pinch points at each period of operation. On the

other hand, the objective of the multiperiod MILP transshipment model is to

determine the minimum number of matches that is required in a feasible network to

achieve the minimum utility cost at each period of operation.

The extension of the one period LP transshipment model to multiperiod

operation is straightforward. The LP transshipment model (P1) is simply solved for

each period separately to identify the minimum utility cost and the location of the

pinch points at each period of operation. Using the information on the location of

the pinch points, corresponding subnetworks can be identified for each period of

operation.

The extension of the one period MILP transshipment model (P2) to the

multiperiod MILP transshipment model is however, a nontrivial task. This is due to

the fact that in principle the location and the number of pinch points from one

period of operation to another can change. This implies that from one period to

another the number and the boundaries of the subnetworks can undergo substantial

changes. Therefore, the main question which then arises is how to assign the binary

variables at the subnetworks of each period, and how to formulate a suitable

objective function for minimizing the number of units which accounts for the fact

that these units can be shared among the various periods of operation.
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OBJECTIVE FUNCTION FOR CHANGING SUBNETWORKS

In a network under multiperiod operation, the pinch points/ and so the

subnetworks, may in principle change from one period to another. Therefore, in order

to formulate the multiperiod MILP transshipment model it is necessary to account for

the fact that units must perform multiple tasks, while keeping in mind that the

objective is to develop a feasible network structure which has minimum utility cost

at the N periods of operation, and involving the fewest number of units.

In this work the following major assumptions will be made on the heat

exchanger units for a flexible network for multiperiod operation:

1. Each unit can handle variable heat loads.

2. Each unit is assigned to the same pair of hot and cold streams at each
period of operation.

»
3. When a given pair of streams exchanges heat over several subnetworks in

a given period of operation, a different unit is required for that pair of
streams in each subnetwork.

The first assumption implies the availability of by-passes in each heat

exchanger unit to adjust the desired heat loads. The second assumption is used for

practical convenience, because otherwise extensive piping may be required to use a

given unit for different pairs of streams. Finally, the last assumption merely ensures

that no heat exchanger crosses the pinch point. This assumption is not really required

as shown recently by Wood et al. [13] . However, since usually large areas are

obtained if heat exchangers cross the pinch, the third assumption wil l be used

instead.

From the solution of the UP transshipment model (P1) for each period of

operation, the location of the pinch points at each period is available. The location

of these pinch points is used to partition the temperature intervals into subnetworks

for each period (see Fig. 2). Thus, the pinch points and the subnetworks that

correspond to each period of operation are known prior to developing the network
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structure.

Consider that the binary variable y . is defined to denote a match between hot

stream i and cold stream j at the subnetwork st of period t. If one were to

formulate the multiperiod version of the (MILP) transshipment model as the

minimization of the sum of these binary variables, subject to the constraints as in

(P2) for all the subnetworks in each period, this would be clearly equivalent to

synthesizing a network independently for each time period. The reason. is that this

objective function would not recognize that it is better to have units that can be

assigned to the same pair of streams at different time periods.

In order to circumvent this problem, the objective function to be formulated

must try to minimize the number of different units that should be included in the

network structure. The number of units that is required for a given pair of streams

( i, j ) at N periods of operation, is given in terms of the binary variables for that

pair by :

max

where ISt is the index set for the subnetworks at each period of operation t. As

shown by equation ( 1 ), u. corresponds to the largest number of matches that must

be performed for the pair ( i, j ) at any given period t. Since the objective is to

minimize the number of units required for all hot and cold processing streams and

utilities, the objective function for the multiperiod MILP transshipment model can

then be expressed as :

min 2~ 2L [ max { 2- yiis * ] ( 2 )

i G H j € C t-1.2-N s 6 | S
 J t

A ' A t t
where H is the augmented set of hot streams and hot utilities, and CA is the

^ A
augmented set of cold streams and cold utilities. The objective function in ( 2 ) will
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then minimize the actual number of units that is required for a network under

multiperiod operation.

In order to give some insight as to how the objective function in ( 2 )

discriminates networks with fewer number of units, consider the example in Table 1

which involves two hot streams H1, H2, two cold streams C1, C2, a hot utility S and

a cold utility W. Two periods of operation are considered ; the first one with a pinch

point, the second without a pinch point. Both options require 8 matches in period 1

(4 above and 4 below the pinch) and 4 matches in period 2. As can be seen, option

A requires 8 units since the four matches in period 2 can be performed with the

same units of period 1. On the other hand, option B requires 10 units since period 2

uses two matches ( H2-C1 and S-C1 ) which are not performed in period 1. Clearly,

option A is the preferred one. It can be easily verified that the objective function

( 2 ) would select option A because it predicts precisely 8 units for this option and

10 units for option B.

The main drawbacks of the objective function ( 2 ) are that it involves a max

operator, and that it requires defining a rather large number of binary variables for

the solution of the multiperiod (MILP) model. However, both of these drawbacks can

be circumvented as shown below.

The max operator in the objective function ( 2 ) can be easily removed by

reformulating ( 1 ) as :

min X X uij
i 6 H A j € C A

( 3 )

X yijs
 i e H

stG.St

where u. is treated as a scalar variable which will be equal to the max expression in
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( 1 ), since at least one of the inequalities in ( 3 ) will become active due to the

linearity of the objective function. The price one clearly pays with this reformulation

is the introduction of a potentially large number of inequalities. However, these can

greatly be reduced together with the binary variables based on the following

observation.

In networks under multiperiod operation, many pairs of hot and cold streams

( i, j ) satisfy either of the two following conditions :

Condition A : The match for the pair ( i, j ) is only possible in a single
subnetwork at each time period.

Condition B : The match for the pair ( i, j ) is possible in several subnetworks in
only one period of operation denoted as the dominant period; in all
the other periods the match is only possible in a single subnetwork.

These cc^nditions can be exploited to simplify the objective function in (3) as

follows. For the case when condition A holds, it is known a priori that not more

than a single unit is required for the pair ( i, j ) since there is potentially only one

match per period. Therefore, in this case the variable u.. can be replaced by a single

binary variable y* That isr

where PA will denote the pairs ( i, j ) that satisfy condition A. This in turn implies

that the binaries y can be replaced by yA and that the inequalities in ( 3 ) are not

required for this case. An example for this case is given in Fig. 3 in which the pair

( i, j ) can potentially exchange heat in the intermediate subnetwork of period 1, the

bottom subnetwork of period 2 and in period 3 which has only one subnetwork. As

can be seen the binary y* can be assigned to the match ( i, j ) in the three periods

to represent the potential existence of the unit.

For the case when condition B holds, it is known a priori that in the dominant

period, where the pair ( i, j ) can possibly exchange heat in several subnetworks,

units can become available for the other periods where the same match is possible
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in a single subnetwork. Furthermore, when matches for this pair are involved in the

dominant period, this will define the maximum number of units. Hence, in this case

the variable u. can be replaced by a summation of binary variables for only the

dominant period. That is.

uij - X v l ( I . J ) 6 P B < B >

where yB. are binary variables associated with the subnetworks s . of the dominant
ijsd d

period d, and P is the set of pairs ( i, j ) that satisfy condition B. This implies that

the inequalities in ( 3 ) are not needed in this case, and that the binary variables y. ,

s G IS, t=1JSI can be replaced by y? , s. 6 IS . In the dominant period these

variables represent a potential unit in each subnetwork, while in the non-dominant

periods their summation will represent the possible availability of these units.

To illustrate this case, consider the example in Fig. 4 in which the pair ( i, j )

can potentially exchange heat in the three subnetworks of period 1, in the bottom

subnetwork of period 2 and in period 3 which has only one subnetwork. Thus the pair

( i, j ) satisfies condition B. Note that the three binary variables are defined for each

subnetwork in period 1, while their summation is assigned to the subnetworks in

period 2 and 3. In this way, one or more matches in period 1 will make these units

available for periods 2 and 3. On the other hand, if no match is performed in period

1 but rather in periods 2 and 3, one of the three binary variables will be forced to

take a value of one denoting the existence of a unit. Clearly, in this case not more

than one binary variable would take the value of one because u as given by ( 5 ) is

minimized in ( 3 ). Thus, condition B allows for a given pair of streams the treatment

of non-dominant periods through the binary variables of the dominant period.

It should be noted that matches satisfying conditions A and B can be readily

identified' from the solution of the (LP) transshipment model for the N periods of
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operation. Also, although conditions A and B may appear to be rather restrictive, in

practical applications most pairs of streams tend to satisfy these conditions.

Therefore, usually only a modest number of binary variables has to be used to

represent the potential units in a network under multiperiod operation.

It should also be noted that for pairs of streams not satisfying conditions A or

B, one could possibly use a reduced number of binary variables, but then there is no

guarantee that the minimum number of units will be obtained. To illustrate this case

consider the example in Fig. 5, where the pair of streams ( i, j ) can potentially

exchange heat above and below the pinch in both periods. Thus, neither condition A

nor B is satisfied. Suppose that instead of using the binary variables y.. , y j 1 2 for

period 1, and Y 2y ^j 22 * o r Per*o<* 2, one would assign the variable y! for matches

above the pinch in the two periods and the variable y2 for matches below the pinch

in the two periods ( see Fig. 5 ). The following situation would then occur. If in

either period matches take place above and below the pinch, the two binaries will be

activated so that two units will be predicted which is the correct number. If the

matches take place above the pinch in the two periods, y.! will be activated; if the

matches take place below the pinch in the two periods, y2 will be activated. In these

cases one unit will be predicted which again is the correct number. However, suppose

that in period 1 the match takes place above the pinch and that in period 2 it takes

place below the pinch. Clearly both y.! and y.2 will be activated predicting two units.

However, this is incorrect since only one unit is required which can be used in the

two periods. Therefore, in general for pairs not satisfying conditions A and B, one

would have to assign individual binary variables y.. to each period in the objective
l j s t

function in ( 3 ) to predict the correct number of units.
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MULTIPERIOD MILP FORMULATION

Having addressed the problem of formulat ing a suitable object ive funct ion and

assigning proper binary variables fo r minimizing the number of units in f lexible

networks for mul t iper iod operat ion, the MILP transshipment model proposed by

Papoulias and Grossmann [ 9 ] w i l l be extended for this problem.

To formulate mathematical ly the mult iper iod MILP transshipment model , the

fo l low ing indices and index sets are restated :

Indices

i hot streams { including hot ut i l i t ies )

j cold streams ( including cold ut i l i t ies )

k temperature interval

s subnetwork of period t

t per iod of operat ion

d dominant period

Index sets

HA hot streams and hot ut i l i t ies

CA co ld streams and co ld ut i l i t ies

IS t subnetworks s t at per iod t

IT temperature intervals fo r s t

P pairs o f streams ( i, j ) sat is fy ing condi t ion A

PB pairs o f streams ( i, j ) sat is fy ing condi t ion B

The mathematical formulat ion o f the MILP transshipment model for minimizing

the number o f units for N periods of operat ion, and over all the subnetworks, is then

the following:
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min X Z uij ( P3

i€HA ]€CA

s.t.

(a) CONSTRAINTS FOR NUMBER OF UNITS

uij s Yu U J > 6 P,

«u • Z . vL ( i . j ) 6 PB

u i j * Z . y j j S t t . 1 « N i € H A j € C A ( I . J ) ^ P A . P B

s t € I S t

(b) HEAT BALANCE CONSTRAINTS

(c) LOGICAL CONSTRAINTS

k € I T
st

t=1..N (i, j) 6 PA
A
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H Q i j k s • "*? y ^ s * ° s d G l s d tsd

k € IT

* i iiks. ii
k € IT sd € ISd

y u s ^ 0 s , e i s « t # d

> «. j)€PB

k € IT

S t € I S t t = 1 " N i G HA

(d) NONNEGATIVITY CONSTRAINTS

R. ^ 0

ijks

U ^ 0
•J

(e) 0-1 CONSTRAINTS

' ^

The objective function in ( P3 ) represents the number of units required for a

network under multiperiod operation as discussed in the previous section. In the

actual implementation the variables u.. for the pairs ( i, j ) € P. , P_, defined in the
IJ AS

first two equations in (a), can clearly be eliminated and substituted in the objective

function.

The constraints in (b) represent similar heat balances as in Fig. 1b for hot

stream i and cold stream j, respectively, at every temperature interval k of each

subnetwork st in the period of operation t, H^ is the set of hot streams present at
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or above the interval k in period t. CAkt is the set of cold streams present in interval

k of period L The variables R.. , R. . , are heat residuals that correspond to hot
IRS I, K"" 1 , S.

stream i, at subnetwork st of period t and temperature intervals k and k-1,

respectively. The variable d... denotes the heat exchanged between hot stream i and

cold stream j at temperature interval k at subnetwork st. The constant term Q^ is

the heat load of hot stream i entering the temperature interval k in subnetwork st.

The constant term Qc. is the heat load of cold stream j entering the same
jKs t

tempetature interval in period t.

To relate the heat exchanged between a pair (i, j) (summation of continuous

variables Q... ) with the binary variables y.., y* yB , the next set of four
IJKS IJ IJ IJS^

inequalities in (c) are introduced, where U*x represents the upper bound for possible

heat exchange between streams ( i, j ) at subnetwork s. This upper bound can be

computed a priori, and is given by the smallest of the heat contents of hot stream i

and cold stream j in subnetwork s. The first inequality applies to pairs satisfying

condition A; the next two for pairs satisfying condition B; the last one for pairs not

satisfying either of the two conditions. Each inequality has simply the effect of

preventing the transfer of heat between a hot stream i and cold stream j in a given

subnetwork st when no unit is selected for the corresponding pair. That is the

corresponding sum of Q.. is forced to zero if the corresponding binary variables

are also set to zero. In the case when the binary variables are set to one, the

inequality merely states that the total heat exchanged in a given subnetwork for a

given pair ( i, j ) is limited by the upper bound U?i.

Finally, the constraints in (d) and (e) represent non-negativity constraints for the

continuous variables and 0*1 constraints for the binary variables.

Problem ( P3 ) corresponds to a mixed integer linear programming problem

which can be solved with standard branch and bound enumeration methods. It should

be noted that in general this problem cannot be decomposed into the solution of
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subnetworks as with the one period problem (P2). The reason is that in (P3) there are

interactions between subnetworks. These are caused by the binary variables in the

third constraint and in the logical inequalities in (C) for the pair ( i, j ) 6 P .

Therefore, in general, problem (P3) must be solved simultaneously.

The importance of the above formulation, is that it provides the basic

information required to derive a flexible heat exchanger network structure for

multiperiod operation. This information consists in matches that take place, and the

heat exchanged in them at every period of operation. Furthermore, the matches can

be associated with specific units for the network configuration.

SYSTEMATIC PROCEDURE FOR THE MULTIPERIOD PROBLEM

Having derived the mathematical model for multiperiod operation, the complete

synthesis procedure can be stated to derive a feasible heat exchanger network

configuration with the minimum number of units, and which requires minimum utility

cost for the N periods of operation. Specifically, the steps are as foMows:

1. For each period of operation :

a. Partition the temperature range into temperature intervals using the
inlet temperatures of the process streams at that period [4 ] .

b. Derive the energy balance equations at each temperature interval and
solve the LP transshipment model (P1) to determine for that period
of operation:

i. Pinch points.

i i . Duties of the hot utilities, QS. , i € S.

i i i . Duties of the cold utilities, QW. , j € W.

2. Using the available information on the pinch points for each period,
determine the corresponding subnetworks. Define the set PA of pairs (i, j)
that are involved in a single subnetwork at each period of operation;
define the set P of pairs ( i, j ) that are involved in only one dominant
period at several subnetworks.
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3. Formulate and solve the multiperiod MILP transshipment formulation ( P3 )
to find the minimum number of matches using the utilities predicted in
step 1. This solution yields:

a. The required matches for the streams.

b. The heat that is transferred at each match for every period of
operation.

4. Using the information provided at step 3, a configuration of the heat
exchanger network which satisfies all the periods of operation is derived
manually.

The above systematic procedure will aid the engineer to derive a feasible

configuration for the heat exchanger network which operates under different operating

conditions. It should be noted that this procedure does not generate automatically

the actual network structure, but it provides the information as to which matches

should take place for the different units, and how much heat they must exchange at

each time period. It is also important to note that this procedure does not address

the problem of sizing the heat exchangers in the final network configuration. As

suggested by Beautyman and Cornish [ 1 ] , the areas could be selected as the largest

area that is required at a given period in each heat exchanger unit since by-passes

are assumed around each unit. An alternative approach would be to optimize the

areas using the projection-restriction strategy for optimal multiperiod design problems

proposed by Grossmann and Halemane [ 5 ] .
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EXAMPLE 1

This example problem consists of two hot, two cold streams, one hot and one

cold utility. There are three periods of operation in which the flowrates, the inlet and

outlet temperatures take different values, The data for these periods of operation

are shown in Table 2. The objective is to derive a heat exchanger network which is

feasible for the three periods of operation, and requires minimum utility cost with

the fewest number of heat exchangers. By assuming a minimum temperature

approach of 10C, the whole temperature range is partitioned into temperature

intervals based on ail the inlet temperatures of the streams at each of the three

periods of operation. Solving the LP transshipment problem for minimizing the utility

cost at each period of operation yields the results shown in Table 3.

i

Note that no pinch occurs in period 2 and that the pinch points are different in

periods 1 and 3. Hence, period 2 has only one subnetwork while periods 1 and 3

have two subnetworks as shown in Fig. 6. Period 2 requires the largest amount of

steam, while period 3 requires the largest amount of cooling water. In particular, the

hot utility changes from 338.4 to 1602.128 and to 10 kW, while the cold utility

changes from 432.154 to 0 and to 1793.146 kW. Therefore, the utility requirement

from period to period changes quite drastically.

Since the network requires steam and cooling water, the total number of

streams involved are the hot streams H1, H2, S (Steam) and the cold streams C1, C2,

W (Water). Using the information about the subnetworks shown in Fig. 6, one can

identify which pairs of streams ( i, j ) satisfy condition A or condition B. The pairs

of streams satisfying condition A ( i.e. pairs that can only exchange heat in only one

subnetwork at each period of operation ) are the following:

PA = { H1-C1, H1-C2, H2-C1, H1-W, H2-W, C2-S }

Hence, each of the six pairs of streams above requires the assignment of a single
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binary variable y*

The only pair of streams satisfying condition B is the pair PB = { H2-C2 },

since it is involved in the two subnetworks of period 1 and in one subnetwork for

periods 2 and 3 as seen in Fig. 6. Hence, this pair requires the assignment of the

binaries y,,- n~ ,, y.,- „ o for the top and bottom subnetworks in period 1. Their
HZ. CZ, 1 HZ, LZ, Z

summation is considered to be the potential units for periods 2 and 3. Since all pairs

of streams satisfy either condition A or condition B, this implies that the multiperiod

MILP transshipment model can be formulated with a total of eight binary variables.

The resulting multiperiod MILP transshipment model involves 8 binary variables,

55 continuous variables and 67 rows. Solving this problem using the LINDO

computer code [12], seven units are predicted for the flexible network configuration.

The corresponding matches and the heat exchanged at each unit in each period of

operation are shown in Table 4. The CPU time (DEC-20) for solving the multiperiod

MILP transshipment model was 20 seconds.

Using the information in Table 4, a configuration of the heat exchanger network

is derived manually as shown in Fig. 7. Notice that in this configuration there is

splitting of the first hot stream (H1) and of the second cold stream (C2). Also notice

that there are two heat exchanger units, 2 and 5, for the same match H2-C2. In

period 1, the pinch point that occurs at 249-239C, takes place between these two

units. In period 3, the two units lie below the pinch point which occurs at 259-249C;

hence the unit 2, after the mixing point for C2, is shut. At period 2, this unit is also

shut together with the units 6 and 7 for cooling water. The utilities required by this

configuration at each time period are the minimum utilities shown in Table 3.

To appreciate the importance of the systematic procedure presented in this

paper, consider the heuristic approach in which heat exchanger networks are

synthesized separately for each period, and then combined manually into a final
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network.

Suppose a configuration is derived for each period separately using information

from the minimum utility consumption for each period in Table 3. These

configurations are shown in Fig. 8. These networks are clearly quite different from

the configuration shown in Fig. 7. Furthermore, if one were to combine the matches

from the three networks in Fig. 8 the following 8 matches are obtained :

{ H1-C2, H1-C1, H2-C2, H2-C2, H2-C1, S-C2, H1-W. H2-W }

But the configuration found in Fig. 7, that was obtained with the multiperiod (MILP)

transshipment model, has the following 7 matches:

{ H1-C2, H1-C1, H2-C2, H2-C2, S-C2, H1-W, H2-W }

Therefore the match H2-C1 that is predicted by the heuristic approach does not

exist in Fig. 7, This means that, apart from the fact that it could be a non-trivial

task to combine the configurations for the different periods in Fig. 8, the resulting

network with the heuristic approach would feature one more unit than the network in

Fig. 7.

EXAMPLE 2

This example problem consists of four hot, three cold streams, one hot and one

cold utility. There are three periods of operation in which only the flowrates take

different values. The data for these periods of operation are shown in Table 5. The

objective is to derive a heat exchanger network which is feasible for the three

periods of operation and requires minimum utility cost with the fewest number of

heat exchangers. Assuming a minimum temperature approach of 10C, the whole

temperature range is partitioned into temperature intervals based on the inlet

temperatures of the streams. Solving the LP transshipment problem for minimizing

the utility cost at each period of operation yields the results shown in Table 6.
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Note that no pinch occurs in period 3 and that the pinch points are different in

periods 1 and 2. Period 2 requires the largest amount of steam while period 3

requires the largest amount of cooling water. In particular, the hot utility changes

from 11 to 231.36 to 0 kW while the cold utility changes from 1531,96 to 347.424 to

2925.856 kW.

Using the information about the location of the pinch points at each period of

operation, the corresponding subnetworks can be identified as shown in Fig. 9. From

this figure the following 10 pairs of streams are involved in only one subnetwork,

satisfying condition A:

P ={ H1-C3, H2-C3, H3-C3, H1-W, H2-W, H3-W, H4-W, S-C1, S-C2, S-C3 }
A

Hence, each of the pairs in P requires the assignment of a single binary variable yA.
A IJ

Also from Fig. 9, the pairs of streams present in two subnetworks at only one

period of operation, which, satisfies condition B, are the following 9 pairs:

PB={H4-C3, H1-C1, H1-C2, H2-C1, H2-C2, H3-C1, H3-C2, H4-C1,H4-C2}

The dominant period for H4-C3 is period 1, while for the rest of pairs the dominant

period is period 2. Hence, each pair in PD requires the assignment of two binary

variables. Since no other pairs of streams violate conditions A or B, a total of 28

binary variables is required for the muUiperiod MILP transshipment model ( 10 for P ,

18 for PB ).

The resulting multiperiod MILP transshipment model involves 28 binary

variables, 217 continuous variables and 169 rows. Solving this problem using the

UNDO computer code [12], 14 units are predicted for the flexible network

configuration. The corresponding matches and the heat exchanged at each unit in each

period of operation are shown in Table 7. The CPU time (DEC-20) required to solve

this problem was 311 seconds.

Using the information in Table 7 a configuration of the heat exchanger network
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is derived manually as shown in Fig. 10. In this configuration there is splitting of

the second cold stream (C2), of the third cold stream (C3> and of the fourth hot

stream (H4). Notice that there are two heat exchanger units, (2 and 3), for the match

H4-C3, and two units, (4 and 9), for the match H1-C2. Two units are required for the

match H4-C3 since these streams exchange heat in period 1 above and below the

pinch point which occurs at 249-239C. Similarly, two units are required for the match

H1-C2 since these streams exchange heat in period 2 above and below the pinch

point which occurs at 150-140 C. Also, from Table 7 and Fig. 10, it can be seen that

not all heat exchanger units are used in the three time periods.

DISCUSSION

As has been illustrated with the two example problems, the proposed procedure

provides a systematic approach for synthesizing flexible heat exchanger networks for

multiperiod operation. This procedure involves the solution of the LP transshipment

model at each period of operation, and the solution of a multiperiod MILP

transshipment model. These models can be solved with reasonable computer time as

has been shown in the examples.

It should be pointed out, however, that the bottleneck in the proposed

procedure is the manual derivation of the network configuration based on the

matches and heat exchanged at each match and at each time period predicted by the

multiperiod MILP model. A promising approach, however, would be the extension of a

recent procedure by Floudas and Grossmann [3] for the automatic generation of

network configurations for a single period of operation. This procedure, which is

based on nonlinear programming, derives the network configuration from the solution

of the one - period (MILP) transshipment model. The automatic synthesis of

networks for multiperiod operation, which includes the sizing of exchangers, will be

the subject of a future publication.
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Finally, it should be noted that the assumption of imposing the criterion for

minimum utility cost at each time period could be relaxed using the following

strategy. Consider that from the N periods of operation, only a subset of 1ST periods

are long enough to justify their maximum heat integration. Problem (P3) could then be

solved for these N' periods so as to determine the matches required for the network

structure. The utility cost for each of the remaining N-N' periods could then be

minimized, with the constraint of using as only possible process stream matches,

those determined for the N' periods. The solution for each of the N-N' periods would

then be as follows:

1. Solve the (LP) transshipment model (P1) to identify the subnetworks that
arise when there no restrictions on matches.

2. Formulate a modified version of the (MILP) transshipment model (P2) which
treats the heat loads of the utilities as variables and has the following
features :

a. The objective function of (P2) is replaced by the utility cost.

b. Heat balances are included for all subnetworks.

c. Constraints are placed on the binary variables, which state that the
number of matches for a given pair of process streams must be less
or equal than the number of matches determined for that pair in the
N' periods.

In this way, this procedure will determine the minimum utility cost for each of the

N-N' periods, but using only the process stream matches that are required for the N'

periods.
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Table 1: Example for objective function

MATCHES OF OPTION A MATCHES OF OPTION B

Period 1

H1-C1

H1-C2

H2-C2

S-C2
*

H1-C1

H1-C2

H2-C2

H2-W

Period 2

H1-C1

H1-C2

H2-C2

S-C2

-

Period 1

H1-C1

H1-C2

H2-C2

S-C2

H1-C1

H1-C2

H2-C2

H2-W

Period 2

H1-C1

H1-C2

H2-C1

S-C1

NUMBER OF UNITS

OPTION A : 8 units { 2 for H1-C1. H1-C2, H2-C2
1 for S-C2, H2-W }

OPTION B : 10 units { 2 for H1-C1. H1-C2. H2-C2
1 for H2-C1, S-C1. S-C2, H2-W }

Line indicates division between subnetworks



Table 2: Data for the example 1

PERIOD 1

Stream Fc [kW/C]
p

H1

H2

C1

C2

10.55

12.66

9.144

15

249

259

96

106

100

128

170

270

PERIOD 2

Stream Fc [kW/C]
P

T i n out

H1

HZ

C1

C2

7.032

8.44

9.144

15

229

239

96

106

120

148

170

270

PERIOD 3

Stream Fc [kW/C]
P out

H1

H2

C1

C2

10.55

12.66

6.096

10

249

259

116

126

100

128

150

250



Table 3: Minimum utility requirements for example 1

PERIOD 1

• QS=338.4 kW
• QW=432.154 kW
• Pinch point at 249-239 C

PERIOD 2

• QS= 1602.128 kW
• QW=0 kW
• No Pinch point

PERIOD 3

QS=10 kW
QW= 1793.146 kW
Pinch point at 259-249 C



Table 4: Matches and heat exchanged (kW) at each period in example 1

UNIT

1

2

3

4

5

6

' 7

MATCH

S-C2

H2-C2

H1-C1

H1-C2

H2-C2

H1-W

H2-W

PERIOD 1

338.4

126.6 ,

676.656

817.934

1177.066

77.36

354.794

PERIOD 2

1602.128

0

676.656

89.832

768.04

0

0

PERIOD 3

10

0

207.264

200

1030

1164.686

628.46

* Line denotes division between subnetworks.



Table 5: Data for example 2

PERIOD 1

Stream

H1

H2

H3

H4

C1

C2

C3

PERIOD 2

Stream

H1

H2

H3

H4

C1

C2

C3

PERIOD 3

Stream

H1

H2

H3

H4

C1

C2

C3

Fcp [kW/C]

8.79

10.55

14.77

7

7.62

6.08

15

Fc [kW/C]
P

7.032

8.44

11.816

7

9.144

7.296

18

Fcp ficW/C]

10.548

12.66

17.724

8.4

6.096

4.864

12

Tin
160

249

227

271

96

116

140

T.n

160

249

227

271

96

116

"140

Tin '
160.

249

227

271

96

116

140

out
110

138

106

146

160

217

250

out
110

138

106

146

160

217

250

out
110

138

106

146

160

217

250



Table 6: Minimum utility requirements for example 2

PERIOD 1

• QS=11 kW
• QW= 1531.96 kW
• Pinch point at 249-239 C

PERIOD 2

• QS=231.36 kW
• QW=347.424 kW
• Pinch point, at 150-140 C

PERIOD 3

• QS=0 kW
• QW=2925.856 kW
• No pinch point



Table 7: Matches and heat exchanged (kW) at each period in example 2

UNIT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

MATCH

S-C3

H4-C3

H4-C3

H1-C2

H2-C1

H2-C2

H2-C3

H3-C3

H1-C2

H3-C1

H4-C2

H1-W

H2-W

H3-W

PERIOD 1

11

154

693

178.72

152.4

407.36

232.1

559.9

0

335.28

28

260.78

379.19

891.99

PERIOD 2

231.36

0

677.6

70.32

182.88

491.472

161.208

909.832
*

152.704

402.336

22.4

128.576

101.28

117.568

PERIOD 3

0

0

641.872

0

60.96

83.136

111.04

567.088

0

329.184

408.128

527.4

1150.124

1248.332

Line indicates division between subnetworks
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Figure 1: Intervals for heat balance in
transshipment models
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Figure 2: Partitioning of temperature intervals into subnetworks
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Figure 3: Example for match (i. j) satisfying condition A
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Figure 4: Example for match (i, j) satisfying condition B



Figure 5: Example for match (i,j) not satisfying conditions A and B
with reduced number of binaries
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Figure 6: Streams and subnetworks for example 1
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Figure 7: Network configuration for example 1
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Figure 8: Independent networks for example 1
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Figure <fc Streams and subnetworks for example 2
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Figure 10: Network configuration for example 2


