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Abstract

This paper reviews some of the work in the area of statistical circuit design. While space does not

permit a more then superficial survey of the entire field, specific emphasis is placed on those

techniques more familiar to the authors.

1 Introduction

Statistical analysis and design of electronic circuits has been an
active field of research for more than a decade now. While space
does not permit a detailed survey of all methods which have been
proposed, (see for example [62,32,8,39]) for good surveys of
these methods ) we will review some of the more recent work.
Particular emphasis will be placed on those techniques that are
most familiar to the authors and are specifically applicable to
integrated circuit design.

Basically statistical design techniques can be separated into two
cfoims- The first encompasses those techniques which are by
nature probabilistic, i.e.. the region of acceptability Rft (defined
precisely in Section 2) and the optimal nominal design are only
approximated in some statistical sense. Typically the nominal
design will correspond to the expected value of a probability
distribution function and by the process of sampling from this
distribution it is possible to make statistical inferences on the
location and the characteristics of Ra. The second class of
methods are deterministic This class of methods includes those
techniques which either try to find a mathematical programming
problem whose solution is equivalent to that of the statistical
design problem, or else try to approximate the region of
acceptability deterministicaily and, based on this approximation,
select the best nominal design.

Probabilistic ethods require a large number of samples (usually
many thousands) to obtain a solution with a reasonable confidence
interval. However, since they are essentially independent of the
number of designate parameters, one should expect a threshold
above which these methods would be computattonatty
advantageous. Another advantage of probabilistic methods is their
potential capability of convergence to the global solution of the
problem independently of any assumptions on the region of
acceptability. On the other hand convergence of deterministic
method is in general dependent on some convexity assumption as
is usual in mathematical programming. Other potential advantages
of deterministic methods derive from the fact that the number of

•independent parameters in integrated circuit design in generally
small [45]. Furthermore, the information gained by deterministic
methods can be useful to the designer in redefining constraints to
,the problem, and allowing him to gain a deeper insight into the
circuit behaviour. Methods such as the simplicial approximation
[20], for example, generate an approximation to the region of
acceptability which can be used for inexpensive Monte Carlo
analysts [21]. Other schemes [63]approximate each constraint.
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and allow the designer to identify active (relevant) constraints and
thereby predict the influence on the yield of lightning or relaxing
the values of constraints.

The paper is organized as follows. In the next section we review
some of the basic concepts and definition necessary in the sequel.
In Section 3 some of the more interesting probabilist used methods
for statistical design are desbribed. This should give the reader an
idea of the trends of the current work in this area. Section 4
contains a similar summary concerning deternwiistic methods.
Finally in section 5 some new results are presented.

2 Mathematical Formulation

In what follows we denote the destcmabte parameters of a circuit
by the n-vector p.. The m circuit attributes which characterize the
circuit behavior are called performance functions and are
represented as an m-vector f(p). Evaluation of f(p) which is
typically of the tern (see for example [19,27,10])

i <P<xJc4M)dt (1)

requires, for nonlinear dynamic networks, the solution of a set of
algebraic differential equations

N(xtip,t)

where t represe

(2)

sents time, and x is a vector of node and branch
voltages and currents.Sokition of (2) is refered to as a circuit
simulation.

It is convenient to view f(p) as a mapping fiR" -» Rm, where R°
represents the input or parameter s£ac£ and Rm represents the
output or performance space. In electronic design problems the
performance functions are usually differentiable. We can the
vector whose components are the partial derivatives of f the
gjarfSTJi of f(p)v and represent it by Vf(p).

It should be dear from the outset that a function evaluation
especially in the form of (2) is a computationally intensive task. The
simulation of moderate sized networks can take minutes of CPU
time. Therefore, the complexity of any statistical design method
will be fundamentally measured by the number of function and
gradient evaluations required. The work involved in the backward
integration required by the adjoint method [18] for evaluating the
gradient has been verified [27] to be of the same order of a circuit
simulation.

A particular realization of the circuit corresponding to the
parameters p, will be accepted if the performance functions satisfy
some upper and lower bounds, i.e., if

^<KP)<^ (3)

where f1- and f0 are m dimensional vectors representing the limits
of acceptable perfoimances.We will sometimes express these
constraints as f(p)<y. We assume limits on the values p.
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PL<P<PU (4)

White these limits can frequently have a physical interpretation,
their main objective is to guarantee the boundedness of the set (5)
Constraints (4) will be designated as box constraints. In input
space, constraints (3) and (4) define the region ojf acceptability:

Ra » {plf^P^-P^P^P} (5)

which represents the set of points corresponding to acceptable
circuits.

We assume that the fluctuations in the manufacturing process
are characterized by a unimodai joint density distribution function
^P.Pg)- If the number of circuits fabricated is large, the
production yield will be equal to the probability that a circuit
outcome will satisfy the specification: i.e.,

Y(p°) « J ... /4>(p,p°)dp (6)

Evaluation of (6) & difficult as it requires the computation of a
multiple dimensional integral over a domain, Ra, known only
implicitly through equations (2) . Monte Carlo techniques
[31,28.60.26] have successfully been used to estimate (6) in
[9.65, 3. 52]. However, such methods tend to be very expensive if
reasonable confidence intervals to the estimator of Y, are to be
obtained.

A different approach to maximize (6) is that of Brayton, et a/.
[11,13], which is basically a generalization of the ideas proposed
in [20] for arbitrary statistical distributions. This method consists of
approximating the problem of maximizing yield, by a design
centering approach which is the geometrical problem of inscribing
the largest level set L Q(a) of the distribution 4><p,p0) in the region
of acceptability.The Icflrel set L o(a) is defined as

(7)

(8)

The yield maximization problem twhich can be-defined \

YM: max Y(p°)

is therefore replaced by the design centering problem

DC: min a

s.t L o ( a ) C R t (9)

the use of this norm has the advantage of making problem DC
solvable, as distances can then be related to a norm functional. In
general the solutions to YM and DC are different but will in general
be dose to one another. If $tp-p°) is unimodai, the contribution to
the integral (6) will decrease with the distance to p°. Because (9)
attempts to center the distribution in Ra, the region where the
values of the integrand function are significant wUJ contribute to
the yield. An interesting relation between problems DC and YM is
established in [39].

For many practical problems the level set in (9) can be related to
a norm n(x). Using this relation it is possible to define a norm fcojjbfc
which is the closed convex set

B 0(r) » {p|n(p-p°)£r} (10)

Frequently the distribution <l>(p,p°) is gaussian.in which case the
norm bodies are ellipsoids and the corresponding norm a weighted
second norm. Another interesting case, specially for the design
with descrete components is when tolerances are assigned to each
parameter. In this case the norm body is a orthotope and the
corresponding norm the max or infinite norm. Equation (10) would
in this case be written as in (11) where t is a n-vector whose
components represent the tolerance assigned to each parameter.

Bpo(t) » { y | lYj - pf| < t} (11)

3 Probabilistic Methods

Most methods available for yield estimation are statistical in
nature, and mainly consist on variations of the so called "crude"
Monte Carlo method [28, 26]. In this method N points p1 pN are

chose at random from a population with distribution <J> (p, p° ) and
the yield is approximated with the unbiased minimum variance
estimator

g(pj) (12)

g(p) » 1 if p € R a

g(p) * 0 if p € Ra (13)

The most significant drawback of Monte Carlo method is that to
obtain a good confidence interval for the estimator (l 2) a very large
value of N must be used as the variance of Y decrease with 1 / N 1 / 2 .
However, the method is independent of the dimensionality of the
multiple integral (6) and of any assumptions on FK These
properties make Monte Carlo techniques very attractive for
problems with a large number of destgnabie parameters and many
researchers have investigated methodologies to adapt Monte Carlo
techniques to statistical design problems. Another drawback of
Monte Carlo methods results from the statistical character of the
information obtained.Given two nominal points p1 and p2, if the
corresponding yields Y(p1) and Y(p2) are estimated by Monte
Carlo, it is difficult to compare the relative merit of .each solution
Y(p1), Y(p2 ) , particularly if the difference | Y(p1) - Y(p2) | is of the
order of the confidence interval of the estimators. In other words,
gradient information obtained by perturbation is unreliable.

3.1 Importance Sampling
Importance, sampling [28,60] is a scheme to achieve tighter

confidence intervals for the estimator of the yield, by modifying the
distribution of the population from which the samples are
extracted. Notice that (6) can be rewritten as

^ T ~ * WiM /«># (14)
— Q • (P4> J

where i is another ftad.f. subjected to the condition that it can be
zero only when 4>(p,p°) is zero. Sy drawing the N samples from the
distribution f the yield can be estimated as

" glp1)

the variance is now

(15)

is now giveaby .

>̂« 1/Niy . . . / J^afLdp.Y2]

this variance is minimized, actually made equal to zero if we select

r<p,p°)«

Of course to obtain such a distribution Y(p°) has to be known and
this dearly it is not the case. However if the designer has some
knowledge of the problem a distributions can be devised that
greatly reduce the variance of the estimator. Importance sampling
techniques under various forms have been proposed for statistical
design [21, a 52].

3.2 The Method of Antreich and Koblltz
An interesting application of equation (14) was suggested

recently by Antreich and Kobiitz [1]. Given a nominal design p°,
maximizing yield corresponds to finding a new nominal point .say
p1 and a new distribution $<p,p1) such that the integral (6) will be
maximized. If in (14) we make F(p,p°)*4»(p.p1) the yield a fp 1 is
given by

The yield at p1 is then the expected value

(16)
( P P )

Assuming that the distributions are normal with the same
covariance matrices. (16) is expanded in series around p° to obtain



a quadratic function in terms of the difference p1-p°. The
parameters required for the expansion can be evaluated by means
of a Monte Carlo analysis around p°. This quadratic can then be
maximized to obtain the ideal value of p1 although some care must
be taken as the approximation is local and the quadratic is not in
most cases concave.

3.3 The Method of Bias [22]
Observe that the integral (6) can be extended over the whole

space in the following way

Y(p°) * If g(p) * (p,p°) dp (17)

where g(p) was defined in (13). Furthermore the gradient with
respect to p° can be found by differentiating (17), and noting that
g(p) is not a function

L g(P) (18)

dp

Hence from equations (17) and (18) we see that the yield and its
gradient are the expected values:

Y(p°) » E.V.[g(p)l

VY(p°) * E.V.[g(p)Vln<fr(p,p°)] (19)

If the N samples are generated as before, then the yield can be
estimated as in (12) and .simultaneously , we can estimate the
gradient as

. VY (p°) « ^ L * m t g(p') V in * (p\ p°) (20)

Thus the amount of additional work to compute the gradient is
very small as closed expressions for * ( p , p°) are normally
available. However given this information we can consider using it
to adjust the nominal so as to improve yield. A similar idea has
been developed by Bias in [22,23] . Although computationally
very intensive, the proposed method represents a significant
improvement over early techniques which were basically random
searches for the maximum yield [38,9]. In Bias method, rather
than use a direct formula as (20)(to determine gradients he
introduces the following expression to measure the sensitivity of
the yield with res08tt to a designate parameter

•*i - loo iPpMi (PVp^to1)! <*> (21)
w n e r e ppaas ^ a n d pfai ^ r e P r e s e n t *• conditional probability
densities for p1 given that for the value p1 the circuit respectively
passed or failed the specifications. The extreme values of M, range
from zero for a totally insensitive parameter to two for a parameter
which completely controls circuit yield. The idea is to rank
parameters in order of sensitivity and assign new tolerances to the
more sensitive parameters by assigning the range of values for

1

3.4 The Method of Soin et al [ 6 1 , 30]
This is a conceptually very simple approach to design centering,

which can be expected to produce significant increases in the yield
in most applications. The method [61,30] is also based on
repetitive application of Monte Carlo analysis. For each analysis
the center of gravity of the samples lying outside and inside the
region of acceptabiiity,denoted by g° and g\ respectively, is used
to generate a direction of search, and the new nominal is chosen

(22)
where \ is a step size normally taken to be one.

The concept can be better illustrated by refering to figure 1,
where the results after drawing 5 samples ( p \ p2, ..., p5) are
illustrated.
After 5 samples a new nominal design p° is found,such that the
tolerance box is a subset of Ra and hence the corresponding yield
is 100%. However the method would probably have difficulties in
converging to acceptable solutions in some other situations.

i
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Figure 1: illustration of Soin method

3.5 The Method of K jellstrom el al [35, 36]
This method could be seen as a generalization of method

described in the previous section and is probably the most
promising technique for stochastic design. The method
[33,34,37,35,36] consists of exploring the input space with an
adaptative gaussian distribution which keeps the probability of
hitting the region of acceptability essentially equal to 1/e » 0.36a
Motivation for this method is based on the fact that from all
distributions with equal second order moments, the gaussian
distribution has the largest dispersion and hence is the one which
best covers the input space.Furthermore, the best rate of
information is obtained if the probability of getting a sample m R is
kept at 1/e.

Kjellstrom seeks to characterize the region of acceptability by its
center p* (first order moment) and extension Ma, (second order
moment), given by

( 2 3 )

P (24)

and $ (p,p) is afgaussian distribution with mean p* and correlation
matrix M t , which is updated after each success to keep Y
approximately constant and equal to 1/e.

4 Deterministic Methods

This class is characterized by methods which solve the statistical
design problem by mathematical programming techniques, and
has followed closely the progress made in this area,

4.1 Formulation as a Constrained Minimization Problem
A yield of 100% can be obtained by assigning tolerances to each

component In this situation the norm body is defined as in (11) and
a natural formulation of the 100% yield problem would therefore be

min c(po,t)

s.t Bpo(t) C Ra (25)

where c(p°, t) is some cost function reflecting the prices
associated with each element and its tolerances.A typical cost
function is Q .

cEk.̂ - (26)
t

where p° represents the nominal design and t is a vector
representing toler es. In most applications [50,51.4,5] only a
few of the infinite nunr\ber of constraints in (25) are used. These
constraints normally correspond to a subset of the 2" vertices of
the tolerance orthotope, which by some experimentations the
designer expects to be the critical ones.



An equivalent formulation which was recently proposed by Poiak
and Sangiovanni-VincenteHi [53,54] expresses (25) as1

min c(p°,t)

(27)

s.t min max f. (p) < y , p » p° • t p

where ft is a vector whose elements are -1 < \L < 1. Polak and
Sangiovanni-VincenteHi showed that the constraints in (27) are
Upschitz and thus nondifferentiable. They suggest algorithms to
handle this type of problem. Their formulation is very general as it
can be extended to include tuning and is not dependent on
assumptions of convexity of the region of acceptability.
Convergence is established to a locally optimal solution of (27),
however no results have been published and the efficiency of the
algorithm is difficult to judge. The area of optimization of
nondifferentiable functions is an active one and significant
improvements might be expected in the near future.

4.2 The Method of Madsen and Schjaer-Jacobsen [43, 59]
Madsen and Schjaer-Jacobsen [44,59] have extended their

early work in minimax optimization to the problem of statistical
design. Their method represents a very natural formulation of
toierancing problems, which is easy to implement and has the
desirable feature of quadratic convergence in many applications.
In particular, their method is geared towards solving the following
minimax problem [40,41,42,43]

min max f (p) i » 1 , 2 , . . M m (28)
P i

An iterative procedure is used, which at every iteration replaces
the functions by their Taylor expansion:

min max fj(Pk).+

where \ is a bound on the maximum step allowed. This bound
is necessary to prevent (29) from having an infimum at infinite. The
parameter \ is adjusted automatically at each step according to
the goodness of the linear approximation and will be small near the
solution. This update procedure is empirical and further details
can be found in [40]. The minimax problem (29) can be solved
efficiently as a linear program, by introducing an additional variable

tolerances are fixed and the algorithm seeks a nominal design such
that the maximum possible value of the performances is minimized.
The third step, referred to as the Variable Tcierance Problem is the
most complex one where both tolerances and nominal are to be
designed. The approach used for this problem is quite inefficient as
a Regula-Falsi technique is applied to a sequence of Fixed
Tolerance Problems.

The algorithms can be summarized as:

t.The worst case problems (WCP), may be stated
formally as

WCP: <Pi(p,r) » max f ; (y ) i » i , 2 m
y€ar(p)

and corresponds to finding in the tolerance orthotope
centered at p, a point where the function f. assumes its
maximum value.

2. The fixed tolerance oroblemfFTPl is formulated as in
(33) and is of course a function of the tolerances.

FTP: 4>(r)amin max <p.(p,r)
P •

3. Note that the limiting case where r^o, known as the
jerfl tolerance problem (ZTP) and is basically an
optimization problem without toierancing

(32)

(33)

ZTP: 0(0) i min max f.(p)
P i '

4. Finally the variable tolerance problem can be stated as (34)

or

min max
P i

for a given value of f

max
y€BrBr(p)

'.(y>«< (35)

Note that the problems FTP, ZTP and VTP are in a form identical
to (28) and can therefore be solved using the algorithm described
above. Notice also that FTP and VTP require the solution of a WCP
and this subprobiem has to be solved at every iteration of the
algorithm. Because this can be a nontrivial optimization problem a
simplifying assumption is made that the maximum of thei. occur at
the vertices of the tolerance polytope.

min 7

V f . « p k T ) h k < 7 (30)

4.3 The Simplictal Approximation Approach
Director and Hachtei [20] proposed a technique for design

centering which represents a significant departure from previous
techniques. The method is an iterative procedure which generates
points on the n-1 dimensional surface Ra. Assuming convexity at
each iteration, an interior approximation to R is obtained. This

wherehk » p k * 1 • pk. If m>n, it is very often the case that dose approximation is the polytope ?k - co{v\ v2 v11} whose

•h k <X k

to the solution n +1 constraints will be active, this means that the
minimum of the function

Pk can be

F(p) » maxf.(p) (31) (36)

is attained at a point where F(p) is not differentiate. In this
situation the minimax problem is designated as rgflyjai and it can
be established that in this case the rate of convergence of the
algorithm is quadratic [43]. If at the solution n +1 constraints are
not active, the problem is called singular, in which case the
convergence of (30) depends critically on the value of \ and
therefore will normally be slow.

To extend the minimax concept to statistical design problems,
Madsen considers three sequential design steps in increased order
of complexity. The first, which is referred to as the Zero Tolerance
Problem, corresponds to the solution of (28) and is basically a
multiple objective optimization problem. The second step
corresponds to the Fixed Tolerance Problem case in which the

1The multiplication t ft is assumed to be term by term

k

vertices are the points on the boundary of
characterized by

P k - { P l / p ^ b . , i -1 ,Z . . . ,np}

where the c* represents the outward pointing normals to the faces
of the polytope, the b. the distance of the face to the origin and nF

the total number of the faces at iteration k. Normally the initial
polytope PQ is a simplex which is the convex hull of n • 1 initial
points on the surface of Ra, which are obtained by line searches in
the coordinate directions. At every iteration the largest normbody
(10) is inscribed in the polyhedral approximation Pk.Because the
distance from a point p to a hyperpiane is a linear function of p. this
inscription can be carried out efficiently with the following linear
program!

max r

it c* P + r n ^ ^ b j , j « 1 , 2 . . . . , rip (37)

At each iteration one of the active constraints in (37), or
equivalents, one of the faces touching the largest inscribed



nonnbody is broken and a search made to locate a new point on
the boundary of Ra. This point vk *1 . is added to the set of vertices
of Pk and the new approximation to Ra is obtained:

p k * i - c o ^ U v * * 1 } (38)

The procedure is terminated when there is a small variation of
center of the inscribed normbody for two consecutive iterations.

In the original paper [20] the new vertex of the polytope was
determined by breaking the largest of the faces of the polytope.
The size was determined by measuring the radius of the largest n-1
sphere inscribed in the active face. A line search is then made
outwards from this center to obtain a new vertex of the polytope.
Many other schemes are possible for updating the- polytope.
Sangiovanni-Vincentetli [64] proposed four different update rules
and proved that for any of these updates the algorithm would
converge to an optimal solution of the design centering problem.

* 4.4 The Method of Brayton et a/ [12]
The approach followed is similar to the proposed by Madsen and

Schjaer-Jacobsen [59.41] which was described above. Since in
-this method only first order information is used to solve the FTP, a
poor convergence rate usually results when the minimax problem
is singular. The method proposed by Brayton et a/ [12] to solve the
FTP and the VTP differs in two main aspects. First the FTP is
transformed into a constrained mathematical programming
problem and solved with a quasi-Newton algorithm. This allows for
second order information to be obtained and better global and
local convergence should be expected. The second difference
concerns the approach to the VTP, which is also converted into a
constrained problem and solved directl, as explained below.

The ZTP can be. transformed into a constrained optimization
problem in the following way:

min y

min —

I f

s.t f.(p)-T<0 i - iA. . . ,m (39)

An efficient way of solving (39) is the use of a variable metric
algorithm for constrained optimization. The method suggested is a
variation of the algorithms proposed by Han [29] and Powell
[56.57,58] (Han-Powell algorithm). Notice that a straightforward
application of such an algorithm to (39) would not take into
account the special structure of the problem, i.e. that it is linear in
y. For this reason the Han-Powell algorithm is modified in the
following way. At each iteration an approximation to the solution
pK,y is known as well as a set of Lagrange multiplier Xk. The Han-
Powell algorithm would obtain the next direction of search, by
solving the following program.

minJ-(d,5)TOk(d,5) + 6

s.t f.(x*) (40)

where Ok is a positive definite approximation to the Hessian with
respect to p of the Lagrangian function of (38).

Due to the special structure of the problem, linearity in y, the
matrix

" " f,(M (42)

has only zeroes in the last row and column. Therefore; the
approximation to the inverse of V 2 L should be initiated and kept

(43)lo o j
and the quadratic program 140). has the simplified form

s.t. fi(x
K) + ^f.(xk) d-y-3<0 iai.2,...m (44)

The FTP is solved taking a similar approach. Trie equivalent
form for this problem is

min

s.t. < 0 1,2 m (45)

where ?;(p) is defined in (32) and represents the solution of a WCP
centered at p with a fixed value or r. Problems (45) and (39) have a
similar formulation, but solving (45) is a much harder task for two
reasons. Evaluating <pt(p) requires the solution of a WCP. and this
subproblem may require a significant number of gradient
evaluations. Also the functions <p.((p) are net differentiable and
therefore the class of algorithms available to solve (45) is smaller
than for (39).

Assuming the vertex hypothesis.i.e.,that the maxima of f.( will
occur at the vertices of the tolerance orthotope, it is possible to
convert (45) into a constrained optimization problem with
differentiable constraints as follows. Let v(j) represent the jth
vertex of the tolerance orthotope and define f^p)»f., (p + rXtXv(j)),
i.e. the value of function f.( at vertex j of the tolerance box Br(p).
Under the aforementioned hypothesis, inequalities (46) and (47)
are equivalent

max f.(y) < y
y€Br(p)

(46)

(47)

Problem (45) would, under these assumptions, be equivalent to:

(48)s.t

notice that there are mx* constraints, and solving a nonlinear
problem with such a dependence on the number of designate
parameter soon becomes very difficult or impossible.2 . It is
desirable to keep the number of constraints reasonably bounded.
This could be achieved by keeping only the f- corresponding to the
vertices which are solutions of the WCP, but the global solution of
this problem is difficult to obtain and may occur at more than one
vertex. To overcome this difficulty,a list L is kept of all vertices
which are probable candidates to be the maximum of f, over the
tolerance polytope. Then in (48) only the indices j existing in L are
considered to obtain (49). As a result only a moderate number of
constraints is kept These constraints can be updated dynamically
(with L) so as to always include the vertices of Br(p) which are
good candidates to correspond to active constraints in (48). The
method used to update L is described below.

mm 7

(48)

|€L,

The algorithm to solve (49) is similar to the one described for the
fixed tolerance problem, except that before solving the quadratic
program (40) a worst case algorithm is applied to each
performance function. One iteration of the algorithm can be stated
succintry as follows:

1. Solve the worst case problem for each function

2. Add to the vertex list L ajl vertices visited during (1).
Note: function and gradient evaluation are expensive.

*We notice that (48) is equivalent to the formulation used in [50.51. 4. 6]



and it is natural to use ail obtained information in step
(3).

3. Solve the quadratic program, equivalent to (44)

2

d- / . 5 <0 1 m

(50)
where

4. Drop from the vertex list L all vertices which did not
correspond to active constraints in (50), except if that
was the vertex corresponding to the global maximum

5. Check the step (d,5) can be accepted. If not reduce
the step size.

6. If a step is rejected, add to the vertex fist the number
associated to the vertex that caused the rejection.
When the step is accepted add to the vertex list all
vertices visited during the WCP.

7. Go to a

To solve VTP, (35) is reformulated as

max r

& ^ ( P . O - f ^ ^ O i-IA-Mfli (51)

it is important to note the difference between this problem and
problem (45). In (45), r is fixed and the algorithm win try to situate
the constant sized tolerance box in a position where the maximum
possible function value is minimized. In (51) the maximum
permissible value is given and the objective is to select a nominal
design and the maximum value of r such that the constraint f^ , is
not violated.

The procedure used to solve (51) is essentiafly identical to the
one described in the previous section. The major difference
concerns the structure of the Hessian, which does not have, as
before, a column and a row of zeros. The gradient of the
constraints with respect to r are, in general, not constant as in (39).

4.5 The method of Bandler and Abdel-Malefc (71
if the region of acceptability is not convex, polyhedral

approximations become a poor representation to R^ as win be
further explained in the next section. A possible method to
overcome this problem is to appoximate the performance functions
with higher order polynomial functions. Such a method was first
proposed by Bandler and Abdel-Malek [7], who for pratical reasons
limited the polynomials to be of second order. The performance
functions f; are initially approximated by quadratic polynomials:

where the N=«(n +i)(n + 2)/2 coefficients are determined by
evaluating the function value at N different points, normally around
the initial nominal design. These approximations can then be used
as a cheap substitute of the performance functions,to solve an
optimization problem such as for example (27), because evaluating
the value and the gradients of (52) is a trivial task. Note that if the
points chosen initially to evaluate P,(p) are not close to the active
vertices of the tolerance orthotope , then the quadratic
approximations can be a poor representation of the constraints.
New updates to the polynomials must then be recomputed and the
optimization step repeated. This scheme should be compared with

the method proposed in the next section where an effort is made to
approximate locally the constraints in the regions where its
relevance to the inscription problem is expected.

An algorithm for optimal tolerance assignment for yields smaller
than 100% is also proposed. The following nonlinear program is set
up:

minimize c(p°,t) (53)

subject to Y(p°ft)>YL

where Y(p°,t) represents the yield for a nominal p° and a tolerance
vector t .YL is the minimum acceptable yield, a number specified by
the designer. To solve (53) the yield and its gradient must be
evaluated. The technique used makes a number of further
assumptions, besides the use of the quadratic approximations
described above. First the intersections of the approximations with
the edges of the truncated p.d.f. (tolerance polytope) are used to
further linearize the quadratic approximations. Linear cuts of the
tolerance orthotope are thus obtained . If the p.d.f. is uniform and
the cuts do not overlap, than the yield is a simple ratio of volumes.
However for general distributions the evaluation of the yield is
difficult One approach, in this case, is to regionalize the tolerance
orthotope into smaller orthotopic cells. A Monte Carlo analysis is
then carried to estimate the probability of the parameters falling in
each of the cells.

5 A Second Order Approximation to Ra

5.1 Introduction
The Simpliciai Approximation, method for design centering,

which we described in Section (4.3) was developed under the
assumption that Ra is convex. When Ra is not convex, the solution
obtained using the Simpliciai Approximation algorithm can be
deceptive. Fig 2 illustrates a hypothetical two dimensional situation
where two constraints define a nonconvex region.

Assuming that the level sets associated with the joint density
functions are 2-spheres, it would be desirable to determine a
solution dose to c2. However, in this hypothetical case the
Simpliciai Approximation algorithm would converge to a solution
dose to c1 and not only result in an infeasible nominal design, but
also in a very small yield.

In a typical engineering design situation one should not expect a
convex region of acceptability, examination of many examples
[14,5,49.25]). seem to indicate that the region of acceptability
can be viewed as the intersection of sets which are either coj£gg
or ttMTiotementarv convex fi.e.. a set WTK)S6 cwnptement is convex)
[2]. The most general dass of performance functions which result
in feasible regions which are intersections of sets which are
convex and complementary convex are those that are ouasL
convex or quasi-concave. Thus we are motivated to consider this
dass of functions in some detail.

Definition 1: A function hR" — R1 is Quasi-convex if
given p1, p21 R°, then for any value of the scalar $, 0<

(54)
A function f is ouaaj-concave if its negative, -f, is

quasi-convex.| •

If the function is dtfferentiable it can be shown [46] that (54) can
be replaced by the following implication:

i.e., if fCp2) < f(p1) then the directional derivative at p1 is
non increasing.

Our interest in quasi-convex functions derives from the following
property, [46]

Theorem 2: Let f be a real value function defined on
a convex set. Then f is quasi-convex if and only if the
set

Lfl * {p|f(p)<a} (56)



v is convex for each a e R. J

Figure 2: Hypothetical nonconvex region of acceptability.
SA algorithm would produce as a solution c1.

Correct solution c2.

We will often refer to the set La as defined in (56) as a level
contour of the function f. For the class of quasi-convex and quasi-
concave functions the constraints (3) imply that the region of
acceptability wilt be the intersection of the convex sets C. and
complementary convex sets D; where

and

{p|fj(p)<^}

{p|fj(P)> fj"}

{p|fj(P)>t}
{p|f:(P) £ fa

if f. is quasi-convex (57)

if fk is quasi-concave

if f. is quasi-convex

if f. is quasi-concave (58)

to ease the notational burden we define two new functions qfp)
d h ( ) i h t h tand h.(p) in such a way that

{ptej(p) < g.u} jeJg «

0, » {p|hj(p) < h"} jeJh (59)

where the g. are quasi-convex functions and the h.(p) are quasi-
concave functions, which we will for convenience refer to,
respectively, as convex constraints and complementary convex
constraints.

Note that a and h. are both in absolute value equal to i . For the
description of the algorithm* separation of the constraints into two
types is very helpful, but it should be noted that in a real design
problem the functions f{ are only known implicitly through a system
of nonlinear differential equations and therefore defining the g] and
the h. can in itself be a nontrivial problem.

In order to have the boundaries well defined we make a final
assumption about the performance functions.. Specifically we
assume that the gradients of f. wiH not vanish at the boundary of Rt.

5.2 Main Algorithm
If the region of acceptability is convex convergent methods such

as the simpliciai approximation algorithm [20,64] exist for solving
the DC problem. We now show that a stationary solution to DC in
the more general case can be found by solving a sequence of
problems where the region of acceptability is replaced by a convex
approximation.

are replaced by
the resulting approximation to Ra, Ra is
lt b R i th i t t i f th

if the complementary convex constraints
supporting hyperpianes a a

convex. This situation results because Ra is the intersection of the
convex sets C with half spaces, and approximates Ra interiorly.

For a given nominal point c, the largest norm body that can
possibly be inscribed in Ra is limited by the points on the boundary
of Ra which are closest to c. We are assuming, of course, that the
measure used for the distance is the norm associated with the
distribution 4><p,c) as mentioned in section 2.

These considerations suggest the following algorithm:

Main algorithm

SteoQ Letc0 be an acceptable point, i.e., c° eRa

LetkaO, Js Jh

Steo i For all i 6 J solve the following near point problems

NPk]: min n(p-ck)

s.t. g ^ g H 1-1.2 nc

\(P)<hfc k*1,..,j-1.i*i,..,nc (60)

Steo £ a) If NPk has no solution, drop constraint j from further
consideration, i.e. j * J-j

b) Else, if pkti is a solution to NPRj, evaluate the
approximations

Steo 2 Solve the yield maximization problem, with the convex
region of acceptability

YMCk: max r

s.t

j eJ (61)

Steo 4 if the solution to YMCk is locally optimal to DC, then
STOP

Go to Step 1

One step of the above algorithm is illustrated in Figure 3 where
the norm body is assumed to be a circle.

Given the center of the last inscribed circle, ck, we solve
subproblems N P M and N P ^ to find the points p M and p w on the
surfaces h^p) » h^andh2(p) » h!j. The convex approximation to
R is then built by introducing the two half spaces R / p ) ^ and fi

^ ^ 2 j
Ra is then built by introducing the two half spaces R / p ) ^ and fi2

^ The new center ck*1 is then determined by inscribing the
largest circle in the convex region.

Remarks

1. We assume the knowledge of an initial feasible design
c°t which exists in the interior of Ra.

2. If no solution can be found to HP^.then the constraint
h. is superfluous in the sense that it does not constrain
the design, and can be dropped, giving useful
information to the designer.

3. Step 3 assumes the existence of a convergent method
for the case where Ra is convex. We recall that such
methods exist e.g. the simpliciai approximation
algorithm.

JLW

\

Figure 3: Illustration of a step of Main Algorithm



It is possible to prove that such an algorithm will converge to a
solution of the problem DC defined in (9) [63].

Notice that as stated here, the algorithm is not immediately
implementable because for a general problem there is no previous
knowledge of which constraints are convex and which are
complementary convex. In the next section we will further discuss
this problem and suggest practical ways to resolve this difficulty, as
well as methods to reduce the computational effort associated with
the use of the algorithm.

5.3 Implementabfe Algorithm
The algorithm proposed in the previous section is a significant

tool to solve design centering problems for nonconvex regions of
acceptability. There are however two main points which do not
make the method computationally attractive. The first concerns
the solution of subproblem YMCk. as most methods available for
solving this problem require a large number of possibly expensive
circuit simulations. Furthermore, if the problem has to be solved
repeatedly, even if information is shared in successive iterations,
the computational requirements will make the method unattractive,
particularly for problems in the time domain. The second difficulty
concerns the identification of the quasi-convex or quasi-concave
characteristics of the performance functions. These functions are
known only implicitly through the system of equations that
describes the networks behavior. Hence, using a criterion fiks (54)
would require the verification of an infinite number of inequalities.
Methods to finitely test quadratic functions are known, however,
and will be explained below.

Significant computational savings can obviously be obtained if
we decide to approximate the constraints by, for example, the first
three terms of a Taylor expansion. Global approximations to the
constraints are not in our opinion as attractive as local ones. From
the main algorithm introduced in the previous section it can be
infered that ideally we would like to approximate the cunsli afrits at
those points in every constraint which minimize the distance to the
initial design center c°. If this design is a reasonable one, the final
solution is not in general very distant although significant increases
in yield can be obtained by the process of centering. If this is not
the case the designer could always re-evaluate the approximation.

The flow of the Implementable Algorithm « summarized in the
following steps:

SteftQLetc°eR* k«0 , J - C i A - . - n ^

Steo i£ Solve the following near point problems for

constraints e.g.

min n<p-c°)

s.t l(p)*

(62)

NP min n(p-c°)

s.t. f.(p) < f f

^ ^ i*« (63)

Step IB

1 .If there is no solution to one of the near point problems
drop the constraint

2, Else, evaluate the gradient Vf . f ) and the Hessian
V2f.(•) at the solutions pUJ and pu of each problem

Step i£ From the Hessian and the gradient infer the
convexity characteristics of the constraints

Steo 12. Get local quadratic approximations to the

.'xp.pu.ij { 6 4 )

and with the information of 1C, rename it as g, or h.

Go to Step 2

§S2Qi£ Solve the near point problem as in Step 1 of the
main algorithm

Steo g Linearize the complementary convex constraints
as in Step 2 of the main algorithm

Steo 3 Solve the yield maximization problem YMCk

Slfifl 4 If the solution is locally optimal for the quadratic
approximations, then stop

Step 5 Go to Step 1E

Remark 1

Steps 1E to 5 correspond to the steps in the main algorithm
proposed above, except for the substitution of the constraints by
their quadratic approximations. Steps 1A to 10 are necessary to
evaluate the approximations and to discriminate quasiconvex and
quasiconcave constraints.

Remark 2

Evaluation of the Hessians can be done efficiently, if the
optimization algorithm used for Step 1A uses gradient information.
We use the Han-Powell algorithm [56,57,58] for constrained
optimization is used, and the gradients obtained at each step are
employed to build an approximation to the Hessian with an update
formula. However, two important differences must be accounted
for, in what concerns selecting an update formula. The first
difference concerns the direction of the step, which is not defined
by the update but solely by the optimization algorithm. The update
should therefore be capable of handling arbitrary directions. It is
weH known that the symmetric rank one update:

(65)

S»p -p y» Vf(p )-Vf(p)

only requires that the dtrecions of search be linearly independent
[17]. If the new direction to be used is not independent from the
previous ones, and the function is quadratic then the denominator
of (65) wiU vanish [55] making the test particularly easy. The
second difference results from the fact that for most optimization
procedures the approximation to the Hessian has to be kept
positive definite. In our case we want the update to approximate as
closely as possible the Hessian even if it contains negative
eigenvaiues.Update (63) has also this desirable property. .

Remark 3

Characterization of a general quasi-convex function is a problem
which is still not well solved [16]. Therefore we replace the
problem of characterizing quasiconvexity of the performance
function by a similar identification of the quadratic approximation:

1) - »

~ ( Q x 1 • g ) T ( x 2 . x 1 ) < 0 (66)

Although (66) does not allow the property of quasiconvexity to
be finitely tested immediatty, this is possible by checking the
eigenvalue of amatrix related to the Hessian (see [47,48.15,24]).

Summary

In this paper we have #ed some of the recent work in the
area of statrirtKT?* design. Space has not permitted us to cover all
approaches in equal depth. However the reader should be able to
obtain more detailed information about each method mentioned by
consulting the references.
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