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Abstract

In this paper a new method for global optimization is presented. The method based on a one-step

one-dimensionai Bayesian technique seems to be very efficient, as a neighbourhood of the global

optimum is attained in a relatively small number of function evaluations. The method is then extended

to higher dimensional cases. A number of numerical examples is presented to illustrate the behaviour

of the algorithm.

1.Introduction

In electronic circuit optimization it is often destreable to'
determine the global minimum (maximum) of some muitiextremal
function which characterizes the performance of the circuit To
this juncture designers had to settle for results which were
obtainable using local optimization techniques. However, in the
past several years methods for global optimization have been
developed [1]. These methods differ from each other with regard to
accuracy and accompanying computational effort To be useful for
circuit optimization it is important that the method not require too
many function evaluations since each function evaluation entails a
computationally expensive circuit simulation. Because of this need
the recently developed probabilistic methods, and mainly Bayesian
methods, which involve a relatively small number of function
evaluations seem most appropriate. Unfortunately, Bayesian
methods \n their original form require the solution of complex
systems of recurrent equations expressing conditional probabilities
[3], and even the simplest one-dimensional case involves a
significant amount of computational overhead.

In this paper an effort to simplify the one-dimensional one-stage
Bayesian method is presented. The approach used for solution of
the one-dimensional problem is then generalized to second and
higher dimensional cases. However, for this simple and compact
algorithm only purely deterministic interpretation is possible. The
method proposed quickly determines the sequence of so called
observation points and locates a neighbourhood of the global
optimum. We believe, based on these results, that this simplified
method warrants further investigation.

2.One-Dimensional One-Stage
Bayesian Method

We begin our discussion of Bayesian methods by considering a
real stochastic process f(x,w), x € A C Rn. u € Q where Q is a set
of random events. This process is statistically determined by its km

order distribution functions

for any value of k and for any set of points x1,...,xk, where

P{f(x1,uKyr-..,f(x
k.uKyk} denotes the probability of an event

{f(x1
f«Ky1.-..f(x

k
twKyk} (2)

The stochastic function f(x,*>) may be considered to be a family
of functions, one for each value of u. We assume that the function
to be minimized f(x) is a particular element of that family, i.e.
f(x)«ffcuj). Moreover, we will assume later an a priori distribution
function (1) of the stochastic process.

Assume a sequence of k observation points x\...,xk and
corresponding function evaluations f(x1),...,f(xk), called
observations. Then the information known about f(x) can be
summarized by the vector zk

zk * (f(x1);...if(x
k)tx

1,...fx
k) (3)

The probabilistic method for seeking the minimum of f(x) is called
Bayesian if given the a priori decision of making a total of N
observations, the next observation point x0***"*1 is chosen so that
it minimizes the expected -deviation of fCx001'*1*1,^) from the
minimum f^ » ffx0*) = min f(x). Determining x o p t N > 1 requires
the solution of a complex system of (N +1) recurrent equations
containing conditional probabilities with respect to zk. k = 1,..,N. To
avoid this computational cost a simplified form of the algorithm
called the "one-stage" method is often used [4]. in this method,
solution of the system of recurrent equations is avoided by always
assuming that the next observation will be the last one.

Given k observation points, the one-stage Bayesian method
chooses the next point xK *1 to be the solution of the problem
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pk + 1 E {mm (f(xo p t k .«).f(x.«)) | zk} (4)

where E denotes expected value.

Unfortunately, as it will be shown later, the computational
overhead of the one-stage method is still significant, even for the
one-dimensional problem. The convergence and the efficiency of
the computation [4) strongly depends on the selection of a priori
distribution function (1). Among the possible choices, the most
convenient for the one-dimensional case has proven to be a
Wiener process. Features of the Wiener process such as the
normal distribution of every increment f(x • Ax,u>)-f(x,u), and the
independence of these increments for every pair of not overlapping
subintervais of A, make the computation of conditional
expectations (see eq.(4)) relatively simple.

Notice that in (4) the function <pk^,(x) denotes the average
improvement towards optimum. Considering a one-dimensional
case and assuming that f(x,u?) represents a Wiener process, it can
be shown [5] that

f (xo p t kVmk (x)

1/2 y.ooe dt)du

(5)

E{f(x)|zk} <x*(x)

mo(x)« 0 a*(x) « a2 x ffx0*0)» 0

It is convenient to order the observation points into a monotonicaUy
increasing sequence. Assuming A is the unit interval [0,1] we wiH
represent this sequence of points, at the km stage, by

0« x0Jl < x1 * < ...< x** »1 (6)

(Notice that x* of eq.(3) does not correspond to x*** here.)

Using well known properties of the Wiener process [2], the
conditional expected value and variance in each subtntervai
ry-i.k xi,k j ( i m 1 2 k) c a n ^^ ^ w | i t t e n ^

(7)and

where a is a parameter characteristic of the Wiener process whose
value must be estimated for each problem. For this purpose an
unbiased maximum likelihood estimator is used [4]. Estimation of
9 requires M initial, arbitraly chosen, observations (e.g. M » 6).

To determine the next observation point x k * \ the maximum
values of 9 k + 1 (x) in each subinterval have to be found and th»n
compared. This task is made easier by the following properties of

1. it is untmodai in each subtntervai

2. it is an increasing function of a and a nondecreasing
function of the subinterval length

3. it is a nonincreasing function of the difference
(mk(x)-f(xoptk)).

In any one-stage Bayesian method [5], the (k + 1)* approach to
the optimum x001. denoted as x 0 * * * 1 , is the point at which the
conditional expectation E{f(x)|zk*1} is minimzed. This is a

piecewise linear function of x (see eq.(7)), so xopt k *1 is the point at
which f (xu*1 ) , (i = 0,1 k+1) is of the lowest value. Although the
proof of convergence to the global optimum requires in the limit
that k—>co [5], usually no more than 10 to 20 observations are
needed to obtain a point in the neighbourhood of the minimum (at
least local), even for highly oscillatory functions as will be shown in
the examples.

The efficiency of the algorithm depends on a constant c>1 ,
which is associated to the variance of the Wiener process. For
large values of c the method becomes more "global" but usually
more observations are needed to locate the neighbourhood of the
global minimum. In Fig 1 the typical shape of <pk>1 (x) is shown.
Note that if N denotes the total number of observations . for small
values of c we increase the risk that the final solution may
correspond to a local minimum only.

3.Simplified Algorithm

A careful study of the behaviour of <pk ̂  ̂ x) suggests a method to
simplify the algorithm described by equation (5). Instead of
considering the function 9k>1(x) a new function wk<l>1(x) is
introduced:

wk+1»rnk(x)-cak(x) (8)

Observe that for c * 2. we can say with 97.7% confidence, that for
any point x. f(x)>wR^ 1 (x), and therefore it is reasonable to search
for the minimum of f(x) at the points where wR>1 (x) is minimal.
Further, notice that the function (•wR^1 (x)) has all the properties
listed for for <pk ̂  1 (x) in Section 2.

To determine the minimum'value of wR ̂  y (x) on the interval [0,1]
we follow a similar procedure, namely we find the minima of
wk^1(x) in all subintervais defined by (6) and select the one that
corresponds to the minimum value of wk^ t (x). The computational
effort associated with this procedure is clearly much smaller than
the work required to evaluate 9k+y (x) as the integral in (5) (error
function) can not be evaluated analytically, and some numerical
technique must be used.

In all numerical examples (see Section 5) the results obtained,
using (5) and (8) are in close agreement. For example the distances
between the points determined by both algorithms do not exceed
1.5% of the subinterval length (see Table 1 in Section 5). The
differences of 20% relate only to the subintervais on which mk(x) is
much greater than ffx0***), however the chance of selecting x k * 1

from such subintervais is rather small. The simplified algorithm (8),
has proven to be a convenient and reliable tool in all examples
considered. Using (8) in place of (5) decreases CPU time by about
a factor of 50 while maintaining almost the same quality as the
original Bayesian algorithm.

Unfortunately the simplified algorithm (8) introduces the risk of
missing the global minimum even if k-*oo. This will happen if the
minimum of wk^t(x) in some subinterval is greater than ffx0**-11).
While this risk will decrease for larger value of c, increasing c
usually will increase the number of observations required.

Despite the similarities of both algorithms, due to the lack of
appropriate mathematical proof for their equivalence, the algorithm
(8) has to be considered seperately. Our simplified approach is in
fact a new deterministic way of subinterval division and selection of
the next observation point. We can make a physical interpretation
of this procedure. Specifically, the selected value x k* 1 is the point
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Figure 1: Functions f(x)-bold line,
n > ^-sol id and wk> ^xj-dotdash;

Section 5.1 example i;k«5

of "the lowest potential energy" between successive pairs of
observations f(x*-1Jl) and flx*) (see Fig 1).

4.Extension to Higher Dimensions

Because of the dose agreement between both algorithms we are
motivated to extend the method proposed in Section 3. For higher
dimensions we replace the interval division defined by (6), by a
simplicial division of the region A. Initially some points are selected
and used to partition this region. As a new point is determined, a
new simplicial division can be found.

In the one-dimensional case mk(x) is a piecewise linear function
connecting successive f(x ik), (i«0,1 k). In the n-dimensional

we assume that %(x), x€ACRn, is for each simplex a
hyperpJane joining the vertices (observation values). Similarly the

quadratic'equation for ak(x) is generalized to a n-dimensional
quadratic surface for each simplex. The coordinates of the optimal
point x.0*, (j = 1.2 n) for any simplex s are given by

x.°3 - xf•• - a.V
i i i

2 2
1 n (9)

• xf3 • j 9 1 coordinate of the center of hypersphere
described on considered simplex s

• r* - radius of this hypersphere

• a? - j* coefficient in the expression for m* (x) (10).

mj(x) • a"
(10)

As in the one-dimensional case, mj (x) contains all the
observation values calculated for vertices of a given simplex.
Similarly <r* (x) becomes zero at the observation points. Using (10),
the algorithm (9) maintains all the properties mentioned in Section
3 regardless of the dimension n. It may happen that the optimum
x0** obtained from (9) will lie outside the subregion under
consideration. Then a solution in an adjacent face of this
subregion is sought

As in the one-dimensional case the next observation point x * * 1

is the point of "the lowest potential energy" among all the points
x 0 3 (one for each simplicial division), i.e., xk *1 is the point at which
w k* 1^ is minimum in whole hypercube [0,1]°.

This algorithm was used with several two-dimensional functions.
The results as discussed in the next Section seem very promising.
The number of observations required increases only slightly in
comparison with one-dimensional case.

As a final note, the problem of estimating a is stressed again. To
be consistent we have used classical formula for the unbiased
maximum likelihood estimator [4]. The meaning of the constant c
remains unchanged in higher dimensions.

Function

f{x)
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i
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1
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1
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Bayesttn Method

.7789

.7570

.7430

.7227

3680

3461

3336

3164

6316

6364

7334

7.609

Simplified Method

.7624

.7599

.7437

.7204

3720

3461

3327

3147

&451

6366

7346

7356

Table 1: Comparison of xk* points determined by
the Bayesian method and the simplified method



Function

' , M

O«x*1

ffm23B2

Oferfi

6*» 1-229

.3w

•tttot*O

6"» 9-308

c

1

2

3

7

1

2

3

7

1

2

3

7

Bayesian Method

X

.7798

.7789

.7792

.7775

.7787

.7768

.7816

.7735

3963

3876

3883

3878

.7504

.7484

.7480

.7466

5.7656

-.4838

.4818

•4855

.4840

4.5587

4.5800

«*)

-1.1232

•1.1232

•1.1232

-1.1227

•1.1232
•1.1224

-1.1227

•1.1187

•1.0008

•1.0006

•1.0008

-1.0007

•1.1250

•1.1248

-1.1247

•1.1210

•113243

•9.4350

-12.0303

-12.0171

•12.0287

-12.0236

-94841

•8.3486

ote.

23

7

9

32

22

32

20

32

9
11

15

9

22

25

17

32

8

9
16
15
14
11
25

29

Simplified Method

X

.7799

.7790

.7794

.7816

.7797

7765

.7812

.7720

3985

3963 I

3983

3986

3965

3982

.7498

.7529

5.7817

5.7929

5.8401

5.8436
5.3230

5.6285

4.5539

4.5654

Kx>

-1.1232

•1.1232

-1.1232

-1.1226

-1.1232

-1.1221

•1.1229

•1.1162

•1.0008

•1.0006

•1.0008

•1.0006

•1.0008

-1.0008

-1.1250

-1.1224

-12.0312

-12.0311

-11.6783

•11.6256
-11.8820

•113258

•9.4826

•8.4865

obs.

30

15

9

26

21

29

20

30

. 16

22

22

12

21

32

16

26

24

10

32

31

32

31

21

26

Table 2: The results of the optimization
by the Bayesian method and the simplified method

5.Numerical Examples

5.1 One-dimensional Case

Three different one-dimensional multiextremal functions were
considered:

1. f1(x)»2(x-0.75)2 • sin(5wx-0.4*)-0.125 0 < x < 1

with global minimum at x » 0.7795 and f „_ »-1.1232287
ran

2. f jM.minCf^xtf^x)) 0<x<1

where f21(x) * 2 (x-0.75)2 • sin(8wx-0.5v) - 0.125

f ^ M * -125 +75(0.17-x) x<0.17

«1.25+35(x-0.17) x>0.17

with global minimum at x a 0.17 with f ^ * - 1 - ^ and two
significant local minima at x*0.75 where f(x) =-1.125, and
x « 0.99842 where f(x)» -1.0007867

with three equal minima at the points: -6.77457, 0.49139 and

5.79179 with tmm = -12.03125, and one signifcant local minimum at

x« 4.5577 with f(x)«-9.4947. Table 1 shows the comparison of

x11*1 points determined for those three functions by original

Bayesian method and the simplified one. for different values of

c. The results correspond to the case when the distances between

the observation points x'k (i « 0.1 k; k * 5) were equal.

An three functions were optimized by both methods. It
decided a priori to fix the number of observations at 32. Table 2
shows the two best results for different values of c and appropriate
observation numbers at which those values were achieved.

5.2 Two-dimensional Case

Two different two-dimensional multiextremal functions were
considered:

LBrantn's function.

yx.yj-aiy-bx^cx-d)2 • l(if)cos(x) + I

where a * 1 . b*5.1/4*2 , c»5 /v , d»6. I * 10. f»1 /8«

-5<x<10 t 0<y£15

This function has three equal global minima tnm • 0.397887 at
points (-3.14159.12.275). (3.14159, £275), (9.42478T2.475).

2. Goldstein's and Price's function.

[ y ) ( y 6 y 3 y ) ] x
[30 • (2x-3y)2(18-32x • 12x2 • 48y-36xy • 27V2))

This function has global minimum f^ » 3 at point (0.000, -1.000)
and local minima as below:

X

y

K«.y)

•600

-.400
30

•396
•602

35

1800
200

84

1.200
£00

840

1



Quarto

feytfU

6*-119396

- * * 2

6**444434

C

1

2

3'

7

1

2

3

7

x

9.4179

9.2918

9.3651
93230

93814

-3.2242

2.6962

.1303

.2085

.1703

.1601

.1512

.1562

.1371

.1388

y

2.2902

2.6383

2.7011

2.0587

3.2025

132242

12.9992

-1.0692

•1.0429

•3254

•3070

•3381

•9103

•3021

•J9O9

n*.y)

4301

5573

.4911

5573

3903

9928

.6371

1.4906

14.7923
32.7279

10.1322

11.1597

8.6230

8.8741

8-2519

&006S

Ob*

22

33

18

36

25

36

27

24

24

13

17

18

18

17

24

23

Table 3: Results for the optimization
of functions of two variables

Those functions were optimized by algorithm (8) and fixed
number of 36 observations was assumed in advance. Two best
results for different values of c are shown in Table 3. [1]

6.Conclusions

A new method for seeking the global minimum,which is based on
the probabilistic one-dimensional one-stage Bayesian method, has [2]
been developed. This method has features similar to the original
one but is much simpler and faster and the new formulation may be
easily extended to higher dimensions.

Experimental results confirm the efficiency of this method for [3]
global optimization, as the number of function evaluations required
grows only slightly with the dimensionality. While the method
presented here appears promising for use in global optimization, r4i
additional mathematical investigations are still needed.
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