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The Han-Powell algorithm for nonlinear program-
ming has several attractive features. It is very fast
and on test problems has outperformed its competition
by considerable margins. It is also very robust. It
is neither necessary to begin with a feasible point
nor to tightly converge the constraints at each
iteration. Its only major disadvantage stems from its
use of certain aonsparse approximations to Hessian
catrices. These matrices are of dimension (m x m)
where m is the aumber of decision variables in the
problem. If the Han-Powell algorithm is directly
appiied to the Optimum Power Flow (OPF) problem, all
the network variables are treated as decision
variables. For networks with about 1000 nodes, the
resulting Hessian-matrix-approximacions become too
big to conveniently handle.

One remedy is to use an elimination procedure to
reduce the number of decision variables. Berna, Locke
and Westerberg have suggested one such procedure. We
have tested it and found it to be promising, though it
does not completely circumveant the difficulty of
dealing with large Hessians. This paper develops
another and seemingly more attractive elimination
procedure. The basic idea is an old one ~ to use the
equality constraints to eliminate some of the
varigbles. However, this idea is implemented in a
new way with concepts borrowed from the fields of
network dissection and parallel processing.
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The computations are arranged in two nested
loops. At the start of each circuit through che
outer loop, the inmer loop is invoked to eliminate
some of the variables. This is done by satisfying
the OPF problem's equality comstraints to a tolerance,
O, specified by the outer loop. The result is a
problem with fewer decision variables and fewer
constraints. The outer loop, applies the original
Han-Powell algoritlm to this smaller problem. As it
converges to a solution, it tightens the tolerance,
O, given to the inner loop.

We have organized the computations so that the
inner loop is a conventional Newton-type-load-flow.
Initially, only one iteration is required of this
procedure. Later, as the outer loop converges, two
or three may be required per iteration of the outer
loop.

The method has been tested on small problems
(50 buses or less) and has been found to perform
admirably. Larger problems remain to be tested but
the prognosis is good.
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ABSTRACT

The Han-Powedl algorithm has proved to be ex-
tremely fast and robust for small Optinum Powne
Problems [1]. There is every reason to believe its
performance could be extended to large problems,
provided its one serious disadvantage is eliminated.
This disadvantage stems from its use of aonsparse
approximations to certain Hessan matrices. These
matrices are of dimenson (a x a) whee 3 i3 the
numbea of decision variables. Since all the network
variables are retained by the algorithm as decision
variables, the Hessians quickly get too big to be
conveniently acocommodated. One remedy is to add a
variable-reduction-procedure. Serna, Locke and
Westerberg [2] have developed one such procedure.

It helps but does not completely eliminate the
difficulties. This paper develops another reduction
procedure with concepts borrowed from the fields of
network dissection and parallel processing. The
computations are arranged in two nested loops. The
Inner loop eliminates n < m of the variables by
satisfying the problem's n equality constraints to
a tolerance that is tightened as the problem's
solution is approached. The outer loop applies the
Han-Powedl algorithm to the reduced problem.
eliminating the need for dealing with unvieldly
Hessians, this "reduced method™ appears to be as
robust as the original Han-Powdl algorithm and
converges at least as fast for small problems. The
method has not yet been tested on large problems,
but it is reasonable to expect- that it will perform
as well on them. *

INTRODUCTION

The physical and electrical aspects of optimum
power flow problems have been more than adequately
covered in the literature, e.g. [3]-{9J. For the
purposes of brevity, we will not reiterate them here.
Rather, we will begin directly with a mathematical
description of the problem, namelyv:

(OPF): Min f{Z)
Z
subject to a(2)-o0
0(z) =0

where . f

Besides
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is an objective function that usually
reflects fuel costs but can be
selected to represent other concerns
llka delivery losses and deviations
from some preselected schedule

Z is an a-vector of network variables
like bus voltages and generator powers

g is a function vector of dimension a.
An eement of g represents the total
powa entering a bus. Thus the
equality constraints in (OPF) are
equivalent to the equations of a
traditional load flow.

h is a function vector of dimension p.
It embodies equipment ratings,
security limits, acceptable-quality-
of -service ranges and contingency
constraints.

Because transients are aeglecjted in OF formu-
lations* the g and h vectors contain ao derivative or
integral operations but only algebraic functions.
Nevertheless, the OFF problem is difficult to solve.
The reason is that the g and h vectors are large.
Each can contain thousands of entries. As .
operating conditions become more swrex”g and they
inevitably will [10], the g and h vectors will be-
ocome even larger. Thus we can expect the CHF
problem to grow even more computationally formidable
than it now is.

Existing methods for solving G problems, e.g.
[3]-[9]9 have several deficiencies gemming from
their use of penalty functions to handle constraints
(which slow convergence), variable swapping schemes
(which increase logical complexity) and feasible
point algorithms (which require the starting point
to meet all the constraints). In addition, existing
methods are often latixilg in robustness.” Unde
stressful circumstances they often bog dom or fail
to converge {12].

In reference [1] Giras and Talukdar suggested
the use of the Han-Powedl mehod [13]-[15] with a
variable-reduction scheme developed by Berna,
Locke and Wester berg [2]. The resulting algorithm
is fast and very robust but still uses certain
large and aonsparse Hessian matrices. la this
pape ue will describe a reduction procedure that
appears to be mare convenient while preserving the
gpeed and robustness of the original algorithm.

THE HAN-OWELL ALGORITHM

In each iteration of this algorithm, zoi , an
estimate to the solution of (OPF), is improvea’ by
taking a step of length 2 in a direction-of-govement,
3. la other words, Zyma, the improved estimate, is
obtained from -

Zz - -
- zoldms




The direction-of-aovement is determined by
. solving a Quadratic Programming Problen whose ob-
jective function is a. second order approximation of
the original objective function and whose constraints
are first order (linear) approximations of the
original constraints. The Quadratic Programming
Problem has the fora:

(QPP): Min {£+ "'E—, S+ % s'us:
S 3Z° =
subject to g+ Z_. $Q
3z"
. it »
hr ~r SC
z
where T denotes transpose
f,g¢h are evaluated at Z"Zgg» as are
their derivatives .
and H is a positive definite approxination
to 3%/323Z", the Hessian of f
which in turn, is the Lagrangi an of
(CPF). :
For the first two iterations E is usually set
to unity. Thereafter, it is updated by pl uggi ng
the latest available infornation on the gradients of

f into fornulae given in [13]. This updating pro-
cess is the identifying characteristic of a
Variable Metric (alias: Quasi-Newton) Method.

Once (Q@QPP) has been fornulated it can be sal ved
by a standard Quadratic Progrgnm' ng code like [16],

to give S. Sext, the step: size a is chosen so that
<
3 =¥ -
"J(znnv) '{zoldﬁ) oLa e
where ? is a penalty function of the form:

~NZ)-F(Z)+XTg(Z)-HiT[Min(o,h(Z))] (2

and \,u are non-negative vectors.

Han [15] has
shown that if X and u are sufficiently |arge-the
overall method will converge even when the starting’

point is infeasible.

Further details on the algorithm can* be found
in [13]-[14]. Ve wll conclude the discussion here
with a brief critique of its features.

Its aain strengths are speed and robustness.

On test problens it has outperformed its conpetition
by considerable margins [21, [13]. Moreover, it is
neither necessary to begin with a feasible point nor
to tightly converge the constraints at each iter-
ation. Even with starting points well outside the
feasible region the nethod rapidly converges to an
opti mum sol ution.

Its only aajor disadvantage stens from the use
of the Hessian approximation, H  This matrix is
nonsparse and of dimension (mx a). |In CPF problens
"a is often 1000 or greater. The resulting H
aatrices are too large to conveniently tackle with
avai l abl e Quadratic Programm ng codes.

[ ¥

3ema, Locke and %*esterberg [2] have
suggestad an elimination procedure that reduces the
size of the matrix to be handled in (QPP* but re-
quires a good deal of precomputation. In the next
section ve will present what appears to be a more
attractive reduction procedure.

A BESTED REDACTION PROCZDUR2

The basic idea that will be developed here is an
old one - to use the n equality constraints in
(OPF) to eliminate n of its variables. » This idea is
central to the 3. educed Gradient and G2C net hods,
though their primary intent in using it is to satisfy
constraints; ours is to sake the optimization
problem smaller. Also, we will implement the idea in
a new vay with techniques borrowed from the areas
of network dissection and parallel processing.

First, we partition the a-vector of network
variables, Z, into two subvectors X and U so that X
is of dimension n and U is of dimension m-a. In
the same vay, we partition the direction-of-movement-
vector, S, into 5_and S;,. Ve will refer to tJ as
the reduced-decision-vector and to 3~ as the reduced
direction-of-movement. -

Mext* we eliminate the variables in X and

find S~.

u

Finding the Reduced-Dir ection-of —Movanait

Rewriting (OPF) in terms of U and X gives:

(OPTY): Min f(U,X)
U,X
subject to g(U,X)«0
nr, 0
Let Sy(U) (3)

be a solution to tha equality constraints in CQPF'I,
i.e.

2T, y(z))=0 : : )

3y replacing X with v(U) in (0?F") we get a smaller .
problem in n fewer variables, namely:

(ROPF): Min f (U,y(U))
U

subject to h(Uev(r))>0

Applying the Han-?owell method to this smaller
problem we get the Quadratic Programming Problem
whose solution, SV, is the reduced-direction-of -

movement. This Quadratic Programing Problem has
the form: '
. RTPEy T T .
(RQPP): .Slln if r(7uf) Su+4__3 uGSu]
subject to bt-(7 h)*s 20
u u
wnere i = (5)

e : (6)

i~




and G is a positive definite approximtion to the

Hessian 3%73U3UY f is the Lagrangian of (ROPF).

Estisating the Coefficients of (RCPP)

To assenble (HQPP) -we need f., h, Tt"f, 7“hand G
all evaluated at r>UoId1' the incumbent estimate for

the decision-variable-vector. - As already mentioned,
G is calculated from the gradients, 7uf and 7uh.

These in turn can be obtained from (5) and (6).
Explicit expressions for all the terms in the right-
hand-sides of.these equations are readily available
except for 3y*/3U. In addition, we need to know y
in order to evaluate f and h.

In sammary then, to assemble (RQPP), we need to
datersine the values of y(U ,) and 3Y*(U , J/3U.

Hov is ihis to be done? A similar problem arises
%t certain tearing and dissection methods are used
to divide large networks into smaller pieces that
can be solved in parallel (see, for example, [17],
[1S]). Experience with these methods indicates that
Y and its derivatives do not have to be knom

exactly. Instead, they can be approximated by the
results from a Newton-type-iteration as follows:
Gueag Ko .
Set . "
80y %) |
SR ot g0, K )ikm0, 1, .. .2-1 (T)
vhera £ is such that {| \-X, o I <o
and 3 is a tolerance to be discussed in
the "Renmarks" at the end of this
section.
Set (U 0%, (8)
T . T AT -1
Set -3y wold) _-33 (Uold’xr) % mald’xr) 9

E U 3K

(This expr'%sion is mogt easily derived by
differentiating (4) to give:

- T T .T
Qw8 2 3
XD 3y

and noting that y and X are interchangeable)

Step Size Selection

Once (RQPP) has been assembled it can be solved
for Syt the reduced-direction-of-movement, by using
any Quadratic Programming code, e.g. [16]. The
next problem is to find the step size, a.

There are several ways to adapt the Han-Powell-
step-size-selection-procedure (c.f. equations (1)
and (2)) torour situation. Perhaps the simplest is
co continue with the reduced formulation (ROPF)
and choose 3 so that:

¥(T___JeMin

v, +as )}
new 2e[0,1] ald 1

C10)

sl

where 4 (CY=E (L, 7 (U))+as [Mnio, 2(T, 7 (E)) 3] (V)

U is the vector of Xuhn Tucker aulti-
piiers determined in solving ROPP) .

y'(U) is a linear approximation to Y(U),
nameiv:
VAT, O+ S (T (z2)

W have found this approach to work reasonably veil.

The Overall Al gorithm and the Tol erance, 3

The overall
Fig. 1.

algorithm has the form shown in
To inplenent it ve need a “ay to select 3.

Habbat, Sangi ovanni-Vincentaili and Hsieh [131
have considered a related problem in necvork dis-
section. In their problem the outer |oop was capable
of quadratic convergence when y(U) was known exactly.
They showed that the outer |oop would continue to
converge quadratically when y(U) was approxinated
as in (7) and (3) provided that

el [|u? (i3)
where AU is the change in the value of C prescribed
by the outer loop in the previous iteration.

The Han-Powell algorithm (our outer loop) can

"achieve quadratic convergence (when the number of

active inequality constraints is a-a) but usually
converges at a lower (super linear) rate. ' This
would suggest that we use a formula of the fora:

Haai|?
with 153-% . This issue is still under investi-
gation. So far our experience has been that one

iteration of the inner loop suffices till
the overall solution is approached when cwo or three
inner loop iterations may be necessary.

THE REDPCED-OECISOSVARIABLSVSCTOR

In this section we consider the problem of
partitioning the network variables, Z, into the
reduced-decision-variable-vector, U, and the other
vector, X. The partition must be such that we can
find a y($) with which to replace X. That is, it
must be possible to solve the equality constraints
in (OPF) for X in terms of tl. We will describe a
partition that meets this criterion and is attractive
for other reasons as well.

The elements of Z are given by:

.o . .
z*-ma.‘,vi,ei,qi,w k€8¢ and is*.3uC}

where rr.jo. is the complex voltage of the i-ch
*LJL  bus
1?L>jQ is the complex powe injected into

the i-th bus by a generator, load,
ac-tie-line or dc-line




W Is a set of the set

tings for the

tap changi ng and phase shifting

transforners. The elenents of W

are assuned to be continuous.

A 3,C are the sets of slack, generator

and | oad buses.

We sel ect the reduced decision vector, U so

It contains the variables over. which the dispatcher
has direct

OuLer loup

Fig.
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» Guess old

and independent control.

Specifically:

T I
U-"l?-‘.v .?i,wlm aad |£S)

".{‘-{P,‘,Qk, fi,qi,vh. ::.n}ku, 1eB, heC}

Y Ba—

i ']
Select 3

Guess X |
(a}

Calculate ~ from (

7

\V S

Yeas

on r luop

=

Cal cul ate "EUQM)
and> 3y~ ( U,, 43739
(8) and (9)

from

Sol ve (RQPP) to get

Sy

Find the step size,
and U from (10)
pew

a,

-

the CPF sol ution?

Is U cl ose enough to
new

No

Set

Uo 1d- Uncw

Iies

STCP

A Flow Chart of che Overall Al gorithm

Fes

This choi ce stakes X the set of variabl es whose

val ues are calculated by a conventional |oad flow.
Thus, as long as a load flowis possible we can ex-
press X in terns of a —a situation that experience
i ndicates occurs for a wide range of val ues of U,
probably all the U's of interest. The partition has
ot her advantages as well, anong them [1]:

1. The partition is constant and does aot have to
be changed repeatedly as happens with many
reduced gradi ent procedures.

2. It Is aesthetically satisfying to use the
vari abl es over which the dispatcher has direct
and independent control as the decision
variables in optimzation. Stott [12] has noted
that these variables may al so be better for
dealing with contingency constraints, suppression
of ineffective rescheduling and finding an
operationally |apl enentabl e sequence of control.
adj ustnments from che existing point to che
conput ed optinal point.

3. The code from a Newton-type-I|oad-flow can be
used to generate the approximtion, Y(U), and
its derivatives.

AN_SXAMPI 2

We have run a numba of small examples (less
than 50 buses) and compared che Han-Powdl algorithm
with our "reduced algorithm." The results indicate
that the "reduced algorithm" is at least as robust
(in its ability to converge to an optimum solution
from infeasible starting points? and converges in
the ssme numbe or fewer overall iterations. As an
illustration consider the AE? 30 Bus Test Sysem
shomn in Fig. 2. Parameter values and operating
data for this system can.be found in [6]. We usad
this data together, with the generator cost functions
and starting values given in Table | and II. The
resulting OFF problem had 60 equality constraints,
30 inequality constraints and 69 network variables.
The Han-Powell algorithm converged in five itera-
tions, our "reduced algorithm" in four iterations
of the outer loop with an average of awo |oad-flow*
iterations per outer-loop-iteration. We have not
mede operation counts but the advantages of the
"reduced algorithm'* are fairly apparent. While the
Han-Powd| algorithm mug contend with 60 variables
and Hessians of dimension (69 x 69) the "reduced
algorithm" has nine decision variables and a

Hessian of dimension (9 x 9). This reduction in

size is achieved at the expense of about one
additional load-flow-iteration per outer-loop-
iteration; a computational bar gin by any standards.

CONCLUSI ON

The Han-Powell algorithm has several features
that meke it very attractive for OFF problems.
Specifically, it is logically straightforward and
can be applied without resorting to intricate
maneuvers, it is very robust and will converge to
an optimum solution even from infeasible starting
points; and it converges rapidly. Its one magor
disadvantage in che context of problems stems
from its use of all che network variables as
decision variables. As a result it oust contend
vith large Hessian. matrices.

[ 29




la this paper we have described a procedure
for reducing the size of the decision vector by a
variables, where a is the numbe of equality con-
straints in the OF problem. Thereby, the Hessian
satrices are made correspondingly smaller.

_ The reduction is achieved by using one to three
iterations of a Newton-type—load-flow within each
iteration of the overall optimization procedure.

The reduction makes is possible to accommodate
large networks containing buses or more
However, cests en such networks remain to be per-
formed. A concern is the numbe of iterations chat
will be required. In general, optimization methods
of the type used here provide only Quadratic
Termination - a property that implies an increase
ia che numbe of iterations with increase in network
size. However, there is a mitigating factor. The
Han-Powdl algorithm and our modification of it,
approach quadratic convergence rates as Che numbe
of active inequality constraints approaches the
numba of decision variables. Quadratic Convergence
la such quicker than Quadratic Termination. With
it, the numba of iterations is usually independent
of problem size. OP? problems tend to be'constraint-
bound. Therefore, it is reasonable to expect that
the method described here will require about as
many iterations for large networks as it does for
small ones

TABLE | Generator Operating Costs

2
S ovvi Tl
where C:_‘, P:L are Che cost and power output (18O
of the i-ch generator.

i ai R
(Bus #)
1 4.25 0.025
2 3.00 . 0025
3 ~2.00 0.00375
4 1.00 0.0625
30 (slack) 10, 00 0.00834

TABLE |l Starting Point

All angles are zero.

All voltages, except slack bus, set to unlty.
Slack sec to 1.06.

i | 2 3 4
Pioﬁ') 50 50 50- 40
2
SQOVERDALE
7 -
N 152KV
33KV

REUSENS

Fig. 2 ABP 30 Bus Test System
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