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SUMMARY

The Han-Powell algorithm for nonlinear program*
aing has several attractive features. It i s very fast
and on test problems has outperformed i t s competition
by considerable margins. It i s also very robust. It
is neither necessary to begin with a feasible point
nor to tightly converge the constraints at each
iteration. Its only major disadvantage 3terns from i t s
use of certain nonsparse approximations to Hessian
rnacrices. These matrices are of dimension (m x m)
-.'hers a is the number of decision variables in the
problem. If the Han-Powell algorithm is directly
applied to the Optimum Power Flow (OFF) problem, a l l
the network variables are treated as decision
variables. For networks with about 1000 nodes, the
resulting Hessian-matrix-approximations become too
big to conveniently handle.

One remedy i s to use an elimination procedure to
reduce the number of decision variables. Berna, Locke
and Wester berg have suggested one such procedure. We
have tested i t and found i t to be promising, though it
does aot completely circumvent the difficulty of
dealing with large Hessians. This paper develops
another and seemingly more attractive elimination
procedure. The basic idea is an old one - to use the
equality constraints to eliminate some of the
variables. However, this idea is implemented in a
new way with concepts borrowed from the fields of
necwork dissection and parallel processing.

The computations are arranged in two nested
loops. At the start of each circuit through the
outer loop, the inner loop is invoked to eliminate
some of the variables. This i s done by satisfying
the OPF problem's equality constraints to a tolerance,
9, specified by the outer loop. The result is a
problem with fewer decision variables and fewer
constraints. The outer loop, applies the original
Han-Powell algorithm to this smaller problem. As i t
converges to a solution, i t tightens the tolerance,
9, given to the inner loop.

We have organized the computations so that the
inner loop is a conventional Newton-type-load-flow.
Initially, only one iteration is required of this
procedure. Later, as the outer loop converges, two
or three may be required per iteration of the outer
loop.

The method has been tested on small problems
(50 buses or less) and has been found to perform
admirably. Larger problems remain to be tested but
the prognosis is good.
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ABSTRACT

The Han-Powell algorithm has proved to be ex-
tremely fast and robust for small Optimum Power
Problems [1]. There is every reason to believe i t s
performance could be extended to large problems,
provided i t s one serious disadvantage is eliminated.
This disadvantage stems from i ts use of aonsparse
approximations to certain Hessian matrices. These
matrices are of dimension (a x a) where 3 i3 the
number of decision variables. Since al l the network
variables are retained by the algorithm as decision
variables, the Hessians quickly get too big to be
conveniently accommodated. One remedy is to add a
variable-reduction-procedure. Serna, Locke and
Westerberg [2] have developed one such procedure.
It helps but does not completely eliminate the
difficulties. This paper develops another reduction
procedure with concepts borrowed from the fields of
network dissection and parallel processing. The
computations are arranged in two nested loops. The
Inner loop eliminates n < m of the variables by
satisfying the problem's n equality constraints to
a tolerance that is tightened as the problem's
solution is approached. The outer loop applies the
Han-Powell algorithm to the reduced problem. Besides
eliminating the need for dealing with unvieldly
Hessians, this "reduced method'* appears to be as
robust as the original Han-Powell algorithm and
converges at least as fast for small problems. The
method has not yet been tested on large problems,
but it is reasonable to expect that it will perform
as well on them. *

INTRODUCTION

The phys ica l and e l e c t r i c a l a spec t s of optimum
power f low problems have been more than adequately
covered in the l i t e r a t u r e , e . g . [ 3 ] - { 9 J . For the
purposes of brev i ty , we w i l l not r e i t e r a t e them here.
Rather, we w i l l begin d i r e c t l y with a mathematical
d e s c r i p t i o n of the problem, namelv:

(OPF):

subject to

Min f{Z)
Z

g(2)-0

where . f is an objective function that usually
reflects fuel costs but can be
selected to represent other concerns
Ilka delivery losses and deviations
from some preselected schedule

Z is an a-vector of network variables
like bus voltages and generator powers

g is a function vector of dimension a.
An element of g represents the total
power entering a bus. Thus, the
equality constraints in (OPF) are
equivalent to the equations of a
traditional load flow.

h is a function vector of dimension p.
It embodies equipment ratings,
security limits, acceptable-quality-
of -service ranges and contingency
constraints.

Because transients are aeglecjted in OPF formu-
lations* the g and h vectors contain ao derivative or
integral operations but only algebraic functions.
Nevertheless, the OPF problem is difficult to solve.
The reason is that the g and h vectors are large.
Each can contain thousands of entries. As
operating conditions become more swrex^9 and they
inevitably will [10], the g and h vectors will be-
come even larger. Thus, we can expect the OPF
problem to grow even more computationally formidable
than it now i s .

Existing methods for solving OPF problems, e.g.
[3]-[9]9 have several deficiencies stemming from
their use of penalty functions to handle constraints
(which slow convergence), variable swapping schemes
(which increase logical complexity) and feasible
point algorithms (which require the starting point
to meet a l l the constraints). In addition, existing
methods are often la^iri^g in robustness. Under
stressful circumstances they often bog down or fai l
to converge {12].

In reference [1] Giras and Talukdar suggested
the use of the Han-Powell method [13]-[15] with a
variable-reduction scheme developed by Berna,
Locke and Wester berg [2]. The resulting algorithm
is fast and very robust but s t i l l uses certain
large and aonsparse Hessian matrices. la this
paper ue will describe a reduction procedure that
appears to be more convenient while preserving the
speed and robustness of the original algorithm.

THE HAN-'OWELL ALGORITHM

In each i t e r a t i o n of t h i s algorithm, 2 - . , an
est imate to the s o l u t i o n of (OPF), is improved by
taking a step of l ength 2 in a direct ion-of-govement ,
3. la other words, Znmwt, the improved es t imate , is
obtained from

2n ,



The dir ect ion-of-aovement is determined by
solving a Quadratic Programming Problen whose ob-
j e c t i v e function is a. second order approximation of
the or ig ina l object ive function and whose constraints
are f i r s t order ( l inear) approximations of the
or ig inal constraints . The Quadratic Programming
Problem has the fora:

(QPP):

subject to

Min
S

3ZT
$mQ

where T

f , g f h

and H

hr ^ r S-C

denotes transpose

are evaluated at Z"ZQld» as are
their derivatives

is a positive definite approximation

to 32f/3Z3ZT, the Hessian of f
which in turn, is the Lagrangian of
(OPF).

For the first two iterations E is usually set
to unity. Thereafter, it is updated by plugging
the latest available information on the gradients of
f into formulae given in [13]. This updating pro-
cess is the identifying characteristic of a
Variable Metric (alias: Quasi-Newton) Method.

Once (QPP) has been formulated it can be salved
by a standard Quadratic Programming code like [16],
to give S. Sext, the step# size a is chosen so that

where ? is a penalty function of the form:

^(Z)-f(Z)+XTg(Z)-HiT[Min(o,h(Z))] (2}

and \,u are non-negative vectors. Han [15] has
shown that if X and u are sufficiently large-the
overall method will converge even when the starting
point is infeasible.

Further details on the algorithm can* be found
in [13]-[14]. Ve will conclude the discussion here
with a brief critique of its features.

Its aain strengths are speed and robustness.
On test problems it has outperformed its competition
by considerable margins [21, [13]. Moreover, it is
neither necessary to begin with a feasible point nor
to tightly converge the constraints at each iter-
ation. Even with starting points well outside the
feasible region the method rapidly converges to an
optimum solution.

Its only aajor disadvantage stems from the use
of the Hessian approximation, H. This matrix is
nonsparse and of dimension (m x a). In OPF problems
"a is often 1000 or greater. The resulting H
aatrices are too large to conveniently tackle with
available Quadratic Programming codes.

3ema, Locke and %*esterberg [2] have
suggestad an elimination procedure that reduces the
s ize of the matrix to be handled in (QPP)* but r e -
quires a good deal of precomputation. In the next
sect ion ve w i l l present what appears to be a more
at trac t ive reduction procedure.

A BESTED REDACTION PR0CZDUR2

The bas ic idea that w i l l be developed here is an
old one - to use the n equality constraints in
(OPF) to el iminate n of i t s var iables . • This idea is
central to the 3. educed Gradient and G2C net hods,
though their primary intent in using it is to s a t i s f y
constraints; ours is to sake the optimization
problem smaller. Also, we w i l l implement the idea in
a new vay with techniques borrowed from the areas
of network d i s sec t ion and para l le l processing.

F ir s t , we part i t ion the a-vector of network
var iables , Z, into two subvectors X and U so that X
is of dimension n and U is of dimension m-a. In
the same vay, we part i t ion the d i r e c t ion-of-movement-
vector, S, into 5_ and S r . Ve w i l l refer to tJ as
the reduced-decision-vector and to 3^ as the reduced
direction-of-movement.

Mext* we eliminate the variables in X and
find S~.

u

Finding the Reduc ed -Dir ect ion-of —Movement

Rewriting (OPF) in terms of U and X g ives :

(OPT1): Min f(U,X)

subject to g(U,X)«0

Let S-y(U) (3)

be a solution to tha equality constraints in CQPF'l,
i . e .

3y replacing X with v(U) in (0?Fr) we get a smaller .
problem in n fewer variables, namely:

(ROPF): Min f (U,v(U))
U

subject to h(Ufv(r))-0

Applying the Han-?owell method to this smaller
problem we get the Quadratic Programming Problem
whose solution, S ,̂ is the r educ ed -d ir ect ion-of -
movement. This Quadratic Programing Problem has
the form:

(RQPP): :iin -;f-r(7 f) TS +4 3T GS ]
- u u - u u

subject to b*-(7 h) *S -0
u u

wnere
^ s (5)

(6)



and G is a positive definite approximation to the

Hessian 32f /3U3UX; f is the Lagrangian of (ROPF).

Estisating the Coefficients of (RQPP)

where ( U )

To assemble (HQPP) we need f, h, T^f, 7^h and G,

a l l evaluated at r>Uold1 the incumbent estimate for

the decision-variable-vector. As already mentioned,
G is calculated from the gradients, 7 f and 7 h.

These in turn can be obtained from (5) and (6).
Explicit expressions for a l l the terms in the right-
hand-sides of.these equations are readily available
except for 3v /3U. In addition, we need to know y
in order to evaluate f and h.

In summary then, to assemble (RQPP), we need to
datersine the values of y(U ,,) and 3YX(U , J/3U.

How is ihis to be done? A similar problem arises
%-han certain tearing and dissection methods are used
to divide large networks into smaller pieces that
can be solved in parallel (see, for example, [17],
[IS]). Experience with these methods indicates that
Y and i t s derivatives do not have to be known
exactly. Instead, they can be approximated by the
results from a Newton-type-iteration as follows:

vhera

Set

Set - 3 v

is such that \ - X r _ L I I - 0

3 is a tolerance to be discussed in
the "Remarks" at the end of this
section.

(8)

3U

- 1

(This expression is most easily derived by
differentiating (4) to give:

3C :D 3y

and noting that y and X are interchangeable)

Step Size Selection

Once (RQPP) has been assembled it can be solved
for Snt the reduced-direct ion-of-movement, by using
any Quadratic Programming code, e .g . [16] . The
next problem is to find the step s i z e , a.

There are several ways to adapt the Han-Powell-
step-size-selection-procedure (c . f . equations (1)
and (2)) to our s i tuat ion. Perhaps the simplest is
co continue with the reduced formulation (ROPF)
and choose 3 so that:

C1C)

U is the vector of Xunn Tucker ault i -
piiers determined in solving (RQPP)

y'(U) is a linear approximation to V(U),
nameiv:

We have found this approach to work reasonably veil.

The Overall Algorithm and the Tolerance,3

The overall algorithm has the form shown in
Fig. 1. To implement it ve need a v ây to select 3.

Habbat, Sangiovanni-Vincentaili and Hsieh [131
have considered a related problem in necvork dis-
section. In their problem the outer loop was capable
of quadratic convergence when y(U) was known exactly.
They showed that the outer loop would continue to
converge quadratically when y(U) was approximated
as in (7) and (3) provided that

e - (i3)

where AU is the change in the value of C prescribed
by the outer loop in the previous i terat ion .

The Han-Powell algorithm (our outer loop) can
achieve quadratic convergence (when the number of
act ive inequality constraints is a-a) but usually
converges at a lower (super l inear) rate . ' This
would suggest that we use a formula of the fora:

with 1 - 3 - 2 . This issue i s s t i l l under i n v e s t i -
gation. So far our experience has been that one
i terat ion of the inner loop suff ices t i l l
the overall solution is approached when cwo or three
inner loop i terat ions may be necessary.

THE REDPCED-OECISIOS-VARIABLS-VSCTOR

In t h i s sect ion we consider the problem of
part i t ioning the network var iables , Z, into the
reduced-decision-variable-vector, U, and the other
vector , X. The part i t ion must be such that we can
find a y($) with which to replace X. That i s , it
must be poss ib le to so lve the equality constraints
in (OPF) for X in terms of tl. We w i l l describe a
partition that meets this criterion and is attractive
for other reasons as well.

The elements of Z are given by:

and is*.3uC}

r.jo. is the complex voltage of the i-ch
X L J L bus

?>jQ is the complex power injected into
L the i-th bus by a generator, load,

ac-tie-line or dc-line



W Is a set of the settings for the
tap changing and phase shifting
transformers. The elements of W
are assumed to be continuous.

A,3,C are the sets of slack, generator
and load buses.

We select the reduced decision vector, U, so
It contains the variables over which the dispatcher
has direct and independent control. Specifically:

a a d l £ S }

G u e s s

Select 3
Guess X

0

Calculate ^ from (7)

1 §!
! v

::o

Calculate ^

and> 3y (U .

(8) and (9)

from

i
Solve (RQPP) to get

Find the step size, a,
and U from (10)

new

Is U close enough to
new

the OPF solution?

No lies
STOP

Set

Fig. I A Flow Chart of che Overall Algorithm.

This choice stakes X the set of variables whose
values are calculated by a conventional load flow.
Thus, as long as a load flow is possible we can ex-
press X in terms of a — a situation that experience
indicates occurs for a wide range of values of U,
probably all the Ufs of interest. The partition has
other advantages as well, among them [1]:

1. The partition is constant and does aot have to
be changed repeatedly as happens with many
reduced gradient procedures.

2. It Is aesthetically satisfying to use the
variables over which the dispatcher has direct
and independent control as the decision
variables in optimization. Stott [12] has noted
that these variables may also be better for
dealing with contingency constraints, suppression
of ineffective rescheduling and finding an
operationally laplementable sequence of control.
adjustments from che existing point to che
computed optimal point.

3. The code from a Newton-type-load-flow can be
used to generate the approximation, Y(U), and
its derivatives.

AN SXAMPI2

We have run a number of small examples (less
than 50 buses) and compared che Han-Powell algorithm
with our "reduced algorithm." The results indicate
that the "reduced algorithm" is at least as robust
(in i t s ability to converge to an optimum solution
from infeasible starting points) and converges in
the same number or fewer overall iterations. As an
illustration consider the AE? 30 Bus Test System
shown in Fig. 2. Parameter values and operating
data for this system can be found in [6]. We used
this data together, with the generator cost functions
and starting values given in Table I and II . The
resulting OPF problem had 60 equality constraints,
30 inequality constraints and 69 network variables.
The Han-Powell algorithm converged in five itera-
tions, our "reduced algorithm" in four iterations
of the outer loop with an average of cwo load-flow*
iterations per outer-loop-iteration. We have not
made operation counts but the advantages of the •
"reduced algorithm'* are fairly apparent. While the
Han-Powell algorithm must contend with 60 variables
and Hessians of dimension (69 x 69) the "reduced
algorithm" has nine decision variables and a
Hessian of dimension (9 x 9). This reduction in
size is achieved at the expense of about one
additional load-f low-iteration per outer-loop-
iteration; a computational bar gin by any standards.

CONCLUSION

The Han-Powell algorithm has several features
that make it very attractive for OPF problems.
Specifically, it is logically straightforward and
can be applied without resorting to intricate
maneuvers; it is very robust and will converge to
an optimum solution even from inf easible starting
points; and it converges rapidly. Its one major
disadvantage in che context of OPF problems stems
from i t s use of a l l che network variables as
decision variables. As a result it oust contend
vith large Hessian matrices.



la this paper we have described a procedure
for reducing the size of the decision vector by a
variables, where a is the number of equality con-
straints in the OPF problem. Thereby, the Hessian
satrices are made correspondingly smaller.

The reduction is achieved by using one to three
iterations of a Newton-type—load-f low within each
iteration of the overall optimization procedure.

The reduction makes is possible to accommodate
large networks containing 10Q0 buses or more.
However, cests en such networks remain to be per-
formed. A concern is the number of iterations chat
will be required. In general, optimization methods
of the type used here provide only Quadratic
Termination - a property that implies an increase
ia che number of iterations with increase in network
size. However, there is a mitigating factor. The
Han-Powell algorithm and our modification of i t ,
approach quadratic convergence rates as Che number
of active inequality constraints approaches the
number of decision variables. Quadratic Convergence
la such quicker than Quadratic Termination. With
i t , the number of iterations is usually independent
of problem size. OP? problems tend to be'constraint-
bound. Therefore, it is reasonable to expect that
the method described here wil l require about as
many iterations for large networks as it does for
small ones•

TABLE I

Ci ' V i +

where C ,̂ P
of the i-ch

i
(Bus #)

1

2

3

4

30 (slack)

Generator

T i

Operating Costs

are Che cost and power output (ISO
generator.

a i

4

3.

2.

1.

10

25

00

00

00

00

a
"i

0.025
. 0.025

0.00375
0.0625
0.00834

TABLE II Starting Point

All angles are zero.
All voltages, except
Slack sec to 1.06.

i

Pi°

i
50

slack bus,

2

50

set to

3

5 0 -

unlty.

4

40

REUSENS

Fig. 2 AEP 30 Bus Test System
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