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Abst r act

One of the main conputational problens faced in the optimal design of
flexible chemical plants with multi-period operation is the large nunber of
deci sion variables that are involved in the correspondi ng nonlinear program
mng forrmulation. To overcome this difficulty, a deconposition technique
based on a projection-restriction strategy is suggested to exploit the bl ock-
di agonal structure in the constraints. Successful application of this
strategy requires an efficient nethod to find ah initial feasible point, and
the extension of current equation ordering algorithns for adding systenatical ly
inequality constraints that become active. Ceneral trends in the perfornance

of the proposed deconposition technique are presented through an exanpl e.

Scer

Flexibility in chemical plants is nornally introduced in practice by
applying enpirical overdesign factors to sizes of equiprment that have been
designed for a nominal operating condition. This procedure is clearly not
very satisfactory as it has little rational basis. For instance, with enpiri-
cal overdesign it is unclear what range of specifications the overdesi gned
plant can tolerate, or whether the plant is optinal according to a given cri -
terion. Therefore, there is clearly a need for devel opi ng desi gn et hods that

deal with flexibility in a nore rational way.

Two cl asses of problens can be considered in the design of flexible
chemcal plants. The first one is the determnistic multi-period problem
wherein the plant is designed to operate under various specified conditions
in a sequence of tine periods. Typical exanples are refineries that
handl e various types df crudes, or pharmaceutical plants that produce severa

products. The second type of problemdeals with the design of chemcal plants
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where significant uncertainty is involved in sone of the paranmeters. Exanples
of this case arises when val ues of feed specifications, transfer coefficients,
physi cal properties or cost data are not well established. It nust be noted
that a design problemcan al so be a conbination of these two distinct types of
pr obl ens.

As has been shown by Grossmann and Sargent (1978, 1979) the two cl asses
of problens require the solution of a nonlinear programme where the nunber of -
deci sion vari abl es and constraints can becorme rather large. It is the purpose
of this paper to present an efficient solution procedure for the determnistic
mul ti-period problem which in fact can also be applied for solving the probl em
of design under uncertainty (Halemane and Gossmann, 1981). It is shown that
t he bl ock-di agonal structure in the constraints, and the fact that many
i nequal ities becorme active at the solution, can be exploited effectively for

reduci ng the conputational requirements in the nonlinear programmng problem

Concl usi ons and Significance

It has been shown that the proposed projection-restriction strategy
exploits effectively the mathematical structure of the nulti-period problem
for designing flexible chemcal plants. The performance of the deconposition
nmethod as seen in the exanple shows the nost encouraging feature that
conputational tine only increases noderately with the nunber of periods in a
problem Also, the reliability for obtaining the desired solutions is greatly
enhanced. Therefore, the proposed nethod provides a real possibility for 4

tackling large-scale optimzations of flexible plants with a reasonable com

putational effort.




I ntroducti on

A gener al approach based on nonlinear programmng (NLP) for the design of
flexible chemcal plants has been proposed by G ossmann and Sargent (1978, 1979).
The main features of their fornulation are as foll ows.

In the case of the determnistic nulti-period problemit is assumed that the
plant is subjected to piecevise constant operating conditions in N successive timne
periods. Dynanics are neglected, as it is considered that the |ength of the
transients is nmuch smaller than the tinme periods for the successive steady-states.
The variables in this problemare partitioned into three categories. The vector d
of design variables is associated with the sizing of the units. These variables
remain fixed once the design is inplenmented, and do not var); with the changes in
the operation of the plant. The vector zi denotes the control variables that can
be mani pul ated in each period i so as to neet the specifications and al so mnim ze

the operating cost. It should be noted that the vector zi'

corresponds to a given
assignment of variables to the existing degrees of freedomin the operation of
the plant. Finally, the vector x.l corresponds to the state variables in the
operating period i (i=l,2,...N). Thus, the design problemleads to the nonlinear

pr ogr anme,

mninze ¢ = qdziZ .. N2 E, KN

a,zl,% .zN
s.t. . . .
hrd. EY, *1) = 0
[ i i - 1,2,...N (1)
gl(d, zt, xH) < 0
. £(diztz?, ... z2%x%x2 ... xMT 0
" vh eee* (, zxii=I,2,...N, are the decision variables in this problem as the state
va ables x , i=l,2,...N can be deternined fromthe equality constraints which

represent the steady-state equations of the process. Note that in this formulation the
order in which the periods are considered can be arbitrary, since the operation in
each period is assumed to be independent of its relative position in the sequence.
However, any specifi cat 3 involvi ng all the periods can be represented by the |ast

inequal ity constraint.




As for the design probl emunder uncertainty, consider that 9 is the
vector of uncertain paraneters. Asﬂ;vﬂng bounded val ues of these para*
net ers, dPlg 0 E.OU, a design strategy may be considered based on the
following reasoning: The initially installed plant may be defined by the
vector of design variables d. During the operation of the plant, the
control varialbes z would be adjusted, depending on the values of the
paraneters 9 being realized, so as to meet the design specifications.
Hence the purpose of design is in selecting d such that the plant will be
able to neet the specifications for all possible realizations of the
paranmeters 9, while mnimzing the expected val ue of an appropriate cost

function. This may be represented as a two-stage programm ng probl em

. h(d,z,x,9) =0
mnimze Eymn d,z, x,9) g(d,z,x,9) <0 (2)
d 9| =z f(d <0 -~

S.t. - U
V9, 90 <9<9, 3z : h(d,2,x,9) =0

9(d,z,x,9) 0

A direct approach to the solution of (2) poses the probl emof in-
finite dimensions in 9, denanding a trenendous conputational effort. However,
this difficulty can be overcome by usinng a discretization procedure
(Gossmann and Sargent, 1979; Hal emane and G ossnmann, 1981), involving a
finite nunber of points 9% i« ,2,...N and still ensuring feasibility for all
9 within the specified bounds. This reduces problem (2) to a special case
of problem (1), where the objective function is separable i nitheiN points (or
peri ods) and where there is no coupling of constraints for z , x , variables

of different periods. That is, the problemhas the form
n

Ce . _ : i {
y i m zg C = C(d) +‘_\‘/C’\d,z X))

d,z7,z ,...2 $=1

11

h(d,z"»x") =03 | _3,9,...x 3
g(d, z\xi) <0

f(d) <0

s.t.




It should be noted that (3) is also the nmost common formul ation

encountered for the multi-period problens since, very often, there is no

coupling of constraints for zf, x!, variables of different periods. Al so,

the usual cost functions are separable in the investnent cost and operating
cost for each period. Since solving the NLP in (1) is of fundanenta

i nportance for designing flexible plants, and problem (3) is a very

i nportant case having sone interesting properties, this paper will address

the problemon howto solve the latter NLP in the nost efficient way.

Conput ati onal Aspects

For large industrial problens the conputational requirenents for solving
the NLP in (3) can becone rather expensive. The nain reason for this is that
the nunber of control variables zi i ncreases with the nunber of periods N, so
that the nunber of decision variables in the NLP nay becone too large to be
solved efficiently by the current algorithns. Since the NLP approach for
designing flexible plants hag proved to be very effective in small problens,
and it also provides rational basis for overdesign, there is a very high
incentive for deriving an efficient nmethod for solving problem (3). This
requires that its nathenaticél strueture be fully exploited.

In order to take advantage of the sparsity of the constraints, state
vari abl es xi can be elimnated fromthe systemof equations so as to reduce
the size of the problem This can be achieved if the systemof equations is
ordered so as to provide a sequence of cal cul ati on where the nunber of torn
vafiables is mnimzed (see e.g. Christensen, 1970). |In this schene, at each
iteration of the optimzation the ordered systemof equations is solved. It
nust be pointed out, however, that by elimnating the equations and state

‘variabl es the nonlinear programme in (3) still has to handl e the |arge nunber

-




of decision variables given by d, z°, i =1,2...N Therefore, it is
necessary to exploit additionally another property of (3) for deriving an
efficient method of solution

Problem (3) has the interesting feature that it is an NLP with bl ock-
di agonal structure in the constraints, as shown in Figure 1. Since the
cost function is separable in the N periods this inplies that if the vector
dis fixed, then the problem deconposes in N uncoupled subproblens, each
having as decision variables the vectors zi,'for i *1,2,...N This would suggest
that it should be possible to derive a suitable deconposition scheme which
need not handle sinultaneously all the decision variables. ldeally, this
deconposi tion scheme should [essen the storage requirements, and nore
inportantly it should reduce substantially the conputational tine for

obtaining the optimal solution.

Deconposi tion Strategies

The two basic deconposition strategies that can be used for solving
problem (3) are the feasible and infeasible deconposition schenes.
The feasible deconposition technique (Rosen and Ornea, 1963; Uneda,
Shindo and Tazaki, 1972) consists of the follow ng steps:
Step 1 - Find a feasible point d, 24 %I =2, . N for problem (3).
Step 2 - By keeping the vector d fixed, solve the N subproblens (that
is, for i=*1,2,...N):

mnimze - Cd,z xY
Zl
s.t. hrd. z' *1) =0 (4)
gV. zV) <0

Step 3 - Keeping the vectors z*!, 1=1,2,...N fixed, solve the problem




N
minimize C = c°(d) + Z clea,zt,xhy
i=1
s.t. hica,zl,x!) = o}
) =1,2,... (5)
gl(d,z',x") < 0

£(d) < 0

Step 4 - If convergence is not achieved, return to step 2.

The advantage with this technique is that the original problem is re-
placed by a sequence of subproblems with a smaller number of decision vari-
ables, However, convergence to the solution can become extremely slow
particularly in the neighborhood of the solution (see Grigoriadis, 1971),
since in fact this decomposition technique is equivalent to an alternate
search in orthogonal directions in the space (d, (zl,zz,...z )).

In the infeasible decomposition technique (Brosilow and Lasdon, 1965;
Lasdon, 1970; Stephanopoulos and Westerberg, 1975b) it is first necessary

to reformulate problem (3) as:

N

o, i

a minimize C = C (d) + Z C (d
d,dl,a2,,,.daV

1 ’ ’ i=1

i i)

’ccoz

s.t. 3
nlal,zt,xl) =0

gtat,zt,xh) <0 i=1,2,...N (6)
flaly <o

A
d =at

£ <o
Since the lagrangian of this problem is given by:
A N
L =c°) + ) cteat,zt,xh
i=1

[(xi)T pl + oHT gt + oHT £+ HT @ - di)]

"'p £ )




wher e \i] y} , & » FT » p are the Kuhn-Tucker nultipliers, problem(6) can be

deconposed into the followi ng Nt subproblens:

hininize (A(dl,*i,*5 - (1Tt dt
s. t. n‘(a{ z{, ;) “u
gi(di,zi,xi) <0
A(dh) <0 (8)

for i=l,2,...N, and N

mnimze C(d) + > (FT*)"d
A * _ %
d i =l
s.t. f(0) <0
The infeasible deconposition strategy then consists of the follow ng steps:

Step 1 - Guess the miltipliers TTY, i=l,2,...N

Step 2 - Solve the N+I subprobl ens in (8).

A

Step 3 - If the constgaints d =d , i=l,2,...N are not satisfied,
adjust the T by solving the dual problem
- L —_ —_ i _l
s saee iHl i T * i
maximize C(d)+}' C(dzx)+(rr)(d-d) (9)
TTITT2TX?
and then return to step (2).

Note that in this deconposition technique it is not necessary to start
with a feasible point in problem (3) as with the previous strategy. However,
there are basically two difficulties when using this technique. The first
one is that the nethod may not converge to the solution due to the non-
convexities that are present in design problens which give rise to dual gaps.
This difficulty can be overcome with the method proposed by Stephanopoul os
and Westerberg (1975a), but with the disadvantage that it requires a signifi-
cant anount of conputational effort. A further disadvantage with the infeasi-

bl e deconposition schene is that a feasible solution is obtained only at the




exact solution of the dual problem Considering that one is dealing with
nonl i near problens, this can becone a significant drawback in practice.
Wth the two deconposition schemes that have been presented above it
i's uncl ear whether probl em (3) can be solved nore efficiently than when the
problemis tackled with all decision variables sinultaneously. It is for

this reason that an alternative deconposition scheme nust be considered.

The Projection-Restriction Strateqgy

Gigoriadis (1971) and Ritter (1973) have suggested a deconposition
techni que for the case when the objective function is convex and the con-
straints are linear in problem (3). As per the classifications given by
CGeoffrion (1970) this strategy belongs to the class of Projection-Restriction
Strategies. The basic ideas ;alre described in the follow ng steps:

i, i=l,2,...N for problem(3).

Step 1 - Find a feasible point d, zl., X
Step 2 - (Projection)
Fi xing the values of the vector d, solve the N subproblens in (4).
Step 3 - (Restriction)
(a) For each subproblemi convert the n" inequal ity constraints gi

that are active in step 2 into equalities, and define
. .
i h i .
hR= [i] , SR=8|1 |S|>2>___N . (10)
: 8
A

wher e trﬁ‘, gﬁ are the redefined sets of equality and inequality
constraints and g; are the sets of inequality constraints that
are not active in step 2.

(b) Elimnate n; vari abl es Zﬁ fromthe vector

| ! |
7 . ca.so as to define
]




i
21=21| J.'=x 1 H
R =4I *R [ i-1,2¢..N (11)
ZA .
wher e zi is the redefined vector of control variables which results
fromelimnating the vector ziof nt el enents, and x* is the expanded
A A i\

vector of state variables.

Step 4 - Solve the restricted problem
N
mnimze C=C(d) + )V C(d z" 4)
f P %
d,zl,z2 zN E

FE S S R

1A Jtv 1C

s.t. hE <d,«,xj) - 0. | (12)
ol @edehgof TEVEN
f(d) <0

Step 5 - Return to step 2 and iterate until
(a) no further changes occur in the values of the variables d, or
(b) the same set of inequality constraints becone active again, in

step 2.

Note that in step 4 the projection-restiction strategy really consists
in solving problem (3) simltaneously for all variables, but in general with a
smal | er nunber of decision variables, since many of these get elimnated by
the active constraints determned in step 2. Cearly, the effectiveness of this
strategy relies heavily on the number of inequality constraints that actually
becone active at the solution. _

Gigoriadis (1971) and Ritter (1973) found that in their problens

relatively few inequality constraints in the subproblens would becone active*
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Therefore, they proposed to elininate all the variables zf, i=l,2,...N in
step-3; Q@igoriadis (1971) with the use of the pseudoi nverse of the corre-
spondi ng matrix of zi, and Ritter (1973) with a square matrix which was
gener at ed when sol ving the subprobl ens. thbrtunately these techni ques can
not be extended readily to the case when constraints are nonlinear, since
they rely heavily on the assunption of linearity of the constraints. However,
as will be shown, the basic idea of the projection-restriction strategy can

i ndeed be used for designing flexible chemcal plants.

An exam nation of the.results for flexible plants obtained by G ossnann
and Sargent (1978, 1979) shows that a surprisingly |arge nunber of inequality
constraints are actually active at the solution, as can be seen in Table 1.

The nmain reason for this appear s to be the nonotonicity of the cost functions
which is characteristic of design problens.

Since in general one can expect to have a large nunber of active con-
straints at the solution, it clearly suggests that the projection-restriction
strategy can greatly sinplify solving problens of the type as formulated in (3).
However , for‘successful application of the projection-restriction strategy
there are two problenms that have to be considered. The first one is finding an
initial feasible point in step 1. The second is a procedure for the elimnation
of variables in step 3 which avoids singularities in the systemof equations.

These points are discussed in the follow ng sections.

Fi ndi ng a Feasi bl e Poi nt

The problemof finding a feasible point for a design problemis in genera
a nontrivial task, because of the nonlinearities involved. In problem(3) the
main difficulty when using the projection-restriction strategy consists in

- finding a value of d such that feasible solutions exist for the subproblens in (4).
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One approach to find a feasible point is to replace the cost function in (3)
by the sumof squares of deviations of the violated constraints, thus |eading
to the nonlinear programme:

N 1

‘ , 2
mninze £ = z [max {O,g;(d,zi,xi)}]
d,zl,zz,...zN i= iZi
s.t. itz ,x') = on (13)
1 =-1,2,...N
gl
f(d) <0

This problemcan be handl ed by an NLP al gorithmbased on an active set

strategy for the constraints as indicated by Sargent and Mirtagh (1973).

Since the objective function in (13) has discontinuous second order derivatives
the optimzation should be performed with the steepest descent direction in the
constraint space. As this procedure does not require an estination of the
inverse of the Hessian matri x, storage requirenents can be reduced.

Al t hough solving (13) sinultaneously for all variables works very well for
relatively snall problens, it may be desirable to use a deconposition schene for
| ar ge probiens. An alternative is to use the steps simlar to those in the
feasi bl e deconposition strategy, with the objective function as given in (13)
above. Hence it consists of the follow ng steps:

i

Step 1 - Quess a starting point d,zi,x =2, N

Step 2 - By keeping the vector d fixed, solve the N subproblens

(i.e. for i=l,2,...N:
. m . . . -
i _ VI S
nininife Q- | max |O;g.€?,z X))
Z * £1 L J
S.t. hi (d,i ’xl)-o (14)

gi(d,zi.xa)lg 0

Step 3 - By keeping the vectors zi, i-1,2,...Nfixed, solve the problem




\'hll LIRS 4 . ‘|2
LoX " (d.2,*)}

mninize ¢ =
d i=l }=
s.t. hi(d,z',x") =0 | (15)
. 4 b i=l,2,...N
g (dig ) <07
f(d <0
Step 4 - If convergence is not achieved (\> 0) returnto step 2

It is observed that unlike in the case of finding the optinmal solution
of (3), the convergence of this nethod to find a feasible point is quite good.
The reason for this is that the NLP defined by (13) has an infinite nunber of
m ni ma when the feasible space is non-enpty. In-this case the objective
function defines a plateau of zero-value for the feasible region as shown in
Figure 2, and hence there is usually no problemof slow convergence in the
nei ghborhood of a feasible solution. Also, note in Figure 2 that outside the
feasible region the contours of ~ in (13) are quadratic in the constraint

functions so that the objective function will tend to be well behaved.

Variable Elimnation in the Restriction Step

The elimnation of variables in step 3 of the projection-restriction
strategy is performed for each period i by including the active inequality
constraints in the set of equations. This inplies that fromthe state and

Inl 3 set of control variables z* nust be determned, and

K 1

that the sequence of calculation for the new set of equations h® has to be

control variables x

derived, for each period i * 1,2,...N

Since a nunber of algorithns are available for selecting decision variabl es
and determ ni ng sequences of calculation for rectangul ar systens (Lee et al.,
1966; Christensen and Rudd, 1969; Edie and Wsterberg, 1971; Leigh, 1973;
Stadtherr et al., 1974; Book and Ramrez, 1976; Hernandez and Sargent, 1979)
it would seemthat they could be applied without difficulty in our problem of

designing flexible plants. It nmust be pointed out, however, that difficulties
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may arise when deriving the solution procedure for the restricted problem (12)
since the added inequality constraints can lead to redundant or inconsistent

equati ons, and hence, produce a singular systemof equations. Therefore, these
algorithnms nust be extended according to the follow ng procedure for elimnating
the variables in each period i in the restricted problem .

Step 1 - Add all the active constraints gx(d,z;,x*) = 0 to the system of

equat i ons hi(d,zi,xi) = 0, thus giving rise to a new system of
equat i ons hiﬁd,zi,xi) = 0.

Step 2 - Performthe optimal reordering of the new systemof equations

h;(d,zi,xx) = 0, by mnimzing the nunber of torn variables in
zi,xi.

Step 3 - Select control variabl es zf as decision variables, and del ete
K

equations if necessary so as to obtain a non-singular square
system of equati ons.

It should be noted that due to the reordering of variables in step 2, the

vect or lecan in fact contain some of the state variables fromx!. Aso, it is

essential to keep the design variables d as decision variables throughout, and

not to force themto beconme either state or torn variables during the reordering.
Also,_since it is possible that the resulting systemin step 2 has nore equations
than variables, a suitable equation ordering algorithmmust be used, for instance
the one by Leigh (1973). The optimal sequence determned with such an al gorithm

" .
is one where the systemh-(d, zX x) = 0 is reordered as shown in Figure 3 in

~

R
two sets of equations: "L
s(u,v) =0
(16)
r(u,v) =0.

Here the subsystens s and r are a partition of the vector of equations h*,

whereas the vectors of variables u and v are a partition of the vector
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[ (2 )T,(>i< )Tg. As shown in Figure 3, s is the set of non-recycle equations
with lower triangular structure, which can be solved sequentially for the
vector v given a value of u, and r corresponds to the set of recycle equa-
tions. Since v can be treated as an inplicit function of u, the system of
equations in (16) can be reduced to the form
r(u,v(u)) =0 (17)

The vector u represents the set of decision and torn variables, that is,
uI = qzé.gtT] and for the optimal sequence its dimensionality is at a
m ni mum

In order to delete the appropriate equations in step 3 it is suffi-
cient to choose the largest nonsingul ar subset of equations at the current
point. Since for a fixed u, the subsystems in (16) can be assumed to be
non-si ngul ar due to its lower triangular structure, the singularity of the
system can be anal yzed t hrough the jacobian J c(r, u) of (17) (see Hal enane

and G ossmann (1981)), which is given by

by B M) L (18)

\ ~

This jacobian matrix can be evaluated nurerically at the current point by
performng perturbations in the vector u. To deternine the equations to be
deleted the following procedure can be followed. The square subnatrix J’; of
hi ghest rank is obtained by perfornming a Gaussian elimnation on the jacobian
matrix (18). The variables in u that correspond to the colums of the sub-
matri x J*::w' Il be chosen as torn variables t, whereas the renaining variabl es

inuwll correspond to the decision variables z*. Those equations r inr
R r

that are not included in the rows of the subnatrix J*c , wll be deleted and
treated as inequality constraints. In this way, the jacobian matrix of the
“resulting systemof equations can be ensured to be of full rank and hence

non-singular. Al so, note that the jacobian natrix 3% to be anal yzed is usually
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of much smaller size than the jacobian of the systemin (16).
The procedures indicated above for finding an initial feasible point
and for the variable elimnation in the restriction step, conplete the

algorithmrequired for the projection-restriction strategy.

Exanpl e

To evaluate the performance of the proposed projection-restriction
strategy, an exanpl e probl em has been sol ved. The flowsheet consists of a
reactor and a heat exchanger as shown in Figure 4. The reaction is assumed
to be first order exothernmic, of the type A—B. The flowate through the
heat exchanger loop is adjusted to naintain the reactor tenperature bel ow

Tfna as givenin Table 2 and to get a mni mumof 90% conver si on

This plant is to be designed so as to produce different products in N
successi ve periods within each year. The performance equations of such a
system for any period i, i=l,2,...N are as follows:

Reactor, material bal ance:

FXo-S" =" priR1y) & (19)

Reactor, heat bal ance:

com| e - b QX - v 4 9

Heat exchanger, heat bal ances:

i i

Q= i ('r - T3) (21)
Qe = WiC (Ty) = T,p) | (22)
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Heat exchanger, design equatioms:

i _ i
QHE = AU(AT)m (23)

i
. (T ) - (T,-T_,)
(AT); 1” w2 2 "wl (24)

lTl-TWZ}
4£A\ i
TZ-Twl

The values of the parameters of the problem are given in Table 2. The
design problem corresponds to an optimization problem with the equality con-
straints given by the performance equations above, and the following inequality

constraints for each period i, i=1,2,...N

A
V> 0 (25)
A> 0 (26)
vis o (27)
A g
V-V >0 (28)
wis o (29)
Fi >0 (30)
i i1
0.9 < (G4, = C4y)/C, < 1.0 (31)
i .1
Ty < Tipax (32)
_oris o (33)
1”22
To < <'r1 p< 356 (34)
i
T1 - Twii F (35)
i
Ty = T2 8 (36)

The objective function being minimized is the total annual cost ($/yr),

N
A
C = (2304 Vo'7 + 2912 A ) 0.3 + 2 (2.20x10 “wl + 8.82x10° F )t (37)

i=1

where t© corresponds to the number of hours of operation for each period

i=1,2,...N, in one year. The objective function includes the investment cost
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of the reactor and heat exchanger, and the operating cost of the cooling

wat er and recycle.

A
There are 2+9Nvariables V, A CM, T4 T5 T, Py W, Vi, (AT) .
Qij g i=1,2,...N 6N equations and 2+10N inequal ity constraints and bounds,

for a problemwith N different periods. This gives rise to 2-K3N degrees

of freedom Selecting as decision variables the design variables V, A and
the control variabl es T T*é T’;;z, i=l,2,...N the sequence of calculation
for the equations in each period is given in Table 3. The correspondi ng NLP
consists of 2r3N decision variables, 6N nonlinear inequality constraints and
N | i near ihequality constraints. Note that (25), (26), (32), (34) and (36)
are sinple bounds on the decision variables, that (33) is a linear inequality
and the renaining constraints are nonlinear.

The problemwas solved for five cases corresponding to N=1,2,...5. In
each case, the plant is designed to produce N different products that have
different feed flowates, concentrations, reaction rate constants, etc. as
shown in Table 2. In all the five cases, when solving the subproblens in the
projection step it was found that constraint (31) is active at its |ower bound,
and constraints (32) and (34) are active at their upper bounds, for all periods..

Addi ng these active constraints to the equations in Table 3 the variabl es Ti,

T’é, T:;Q, i=l,2,...Nwere elimnated by ordering the new system of equati ons.
= A

This gives rise to only two decision variables V and A for the restricted
problem as shown in Table 4. In all cases, the opti mumsol ution was found by
solving this restricted problem thus requiring only a single pass for the
proj ection-restriction strategy.

The starting point given in Table 2, which is infeasible, was used for
all five cases. The initial feasible points used in the projection-restiiction

strategy were obtained by mnimzing alternately with respect to d and z |,
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i=l,2,...Nthe sumof squares of deviations of violated constraints. The
optim zations were performed using the variable-netric projection nethod

(Sargent and Murtagh, 1973), and the solutions were obtained with a

tol erance of 10 for the normof the gradient of the objective function

projected in the constrained space.

The opti nmal sizes of the reactor and the heat exchanger are presented
in Table 5 for the five cases. The formulation of the problemitself
ensures that these optiml designs are flexible, as they meet the specifica-
tions for the various products involved at a m ni mumannual cost.

The conputing requirenents for finding the initial feasible points are
shown in Table 6. Here, it was found that optimzing alternately for d and
zi is nore efficient than considering all these variables simnultaneously,
particul arly when the nunber of periods increases. However, the nore signi-
ficant gains in conputational requirenents are achi eved when the projection-
restriction strategy is applied, once the problembecones feasible. Table 7
gives the CPU-tine requirements for the projection and restriction steps.
Table 8 and Figure 5 give a conparison of the conputational requirenments in
solving the design problemw th and wi thout the deconpqsition. A striking
feature in the performance of the proposed deconposition strategy is that the
CPU-tinme increases only linearly with the size of the design problem It is
interesting to note that the design problem for the five-period case was
sol ved by using the proposed deconposition strategy in only 31.4 sec which

is about the sane tine required for solving the one-period problemwithout

using any deconposition.

Di scussi on

The results of the above exanple show that the perfornance of the
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proposed deconposition strategy for the design of flexible chemcal plants
is very encouraging. An inportant trend in the results is that the conputa-
tional tinme required is approximately linear with the size of the design
probl em (nunber of periods). This suggests that reduction in the conputa-
tional effort with the proposed nethod in larger problens should be even nore
dramatic, when conpared with the sinultaneous optimzation of all the decision
variables. This is to be expected, since experience with different nonlinear
programmng algorithns indicate that they are much nore likely to be successfu
in converging to the optimal solution when the nunmber of decision varialles is
relatively small .

In the Appendi x a sinple analysis is presented which explains the |inear
relation for the conputer tine obtained in the exanple. It is also show in
t he Appendi x that when the nunber of periods is large the projection-restiction
strategy can be expected to performbetter than the simultaneous solution
even if the percentage of control variables that are elinmnated in the

restriction step is not very |arge.
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Norrencl ature for the exanpl e probl em

<L?

= <

6 :
ARG
(AT}

2

Heat transfer area of the heat exchanger, m
3
Concentration of reactant in the feed, kg nole/m

3
Concentration of reactant in the product, kg nole/m

Heat capacity of the reaction mxture, kJ/kg nole K
Heat capacity of cooling water, kJ/kg K
Rati o of activation energy to gas constant, K

Feed flowate, kg rnole/hr
Flowate of the recycle, kg nole/hr
1

Arrhenius rate constant of reaction, hr~

Heat exchanger |oad, kJ/hr

Tenperature of feed, K
Reactor tenperature, K
Recycl e tenperature, K
Inlet tenperature of cooling water, K

Qutlet tenperature of cooling water, K

Length (tine) of i  period of operation, hr
2
Overall heat transfer coefficient, kj/m hr K
3

Reacti on vol une, m -
Vol ume of reactor (design capacity), m
Fl owr ate of cooling water, kg/hr

M ni mrum approach tenperature, K
Heat of reaction, kj/kg nole

Mean tenperature difference, K

Superscript i refers to the period of operation,
i=1,2,...N
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éggendi X

Based on sone sinple assunptions, a relationship can be derived between
the CPU-tine and the size of the design problemin ternms of nunber of periods.
Let Ny be the nunber of design variabl es, n, the nunber of control
variables in each period and N the nunber of periods considered in the design

problem Assune that the CPU-tine tp for the projection step is given by
- p
tp = Ay (0P, (A1)

If #>0 < a<_l, is the average fraction of the control variables remaining
inthe restriction problem then the CPU-tine t_ for the restriction step can

K
be expressed as

tr = A(ng +Nan;)" (A2

Al'so, let the CPU-tine tQ for solving the probl emw thout deconposition be

tg = Vv"d *Nve (43)
If Kis the nunber of iterations (passes) through the projection and

restriction steps that is required for convergence, then the total CPU-tine

needed to solve the design probl emusing the deconposition strategy is

tm = KNA(N,)" + KA(ng + Nan,)' (Ad)

In general the exact values of p, g, r and AP' Aq, A", K depend
on the particular problemat hand. However, for a given problemthe val ues
of Ap, Aq and Ar can be expected to be of the same order of magnitude, and
for a gradient based non-linear programmng al gorithmone can expect to have

the values of p, gandr to lie between 2 and 3. Al so, the value of Kis

likely to be small.
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If all the control varizbles are eliminated in the restriction step,

= 0 and from (A4) it is then clear that the CPU-time tor is linear

in N the number of periods, as given in (AS5):

o =0 : t.. = KM (n )P + KA (n
Pz r

PR (A5)

r
3’

This is in fact the trend that is observed in the results of the example
problem, as can be seen in Figure 5.

The relative savings in computation time in using the decomposition

strategy can be determined from (A3) and (A4),

KNA (n )P + KA (n, + N a n))
to /t. = R_Z L ‘; z (A6)
Aq(nd + an)

r

Since Ap, Aq’ Ar are of some order of magnitude, 0 < a< 1l and p, q, r> 1,
it is clear from (A6) that the relative advantage in using the decomposition
strategy is enhanced by larger values of N and smaller values of a. In fact,
for a given value of N there is a threshold value at for a, below which
savings in CPU-time can be ensured by using the decomposition strategy.
This threshold value determines a useful range 0 < a at, which can be

determined from (A6) with tPR <t thus obtaining azt as

Q’
¢ q 1/r
a- = [l(Aq/ArK) (n':1 + an) - N(Ap/Ar) (nz)p} - nd]/an (A7)
Agsuming A = A A and p = r = q, (A7) can be simplified as
1/q n
d _ t
[I /Nn +1] -N—q_-f - 'ﬁ;z-—l-[s (A8)

where /5t indicates the minimum fraction of control variables to be eliminated
in the restricted problem. Figure Al shows some plots of ﬂt versus N as given
by the expression in (A8) above for the case when ng =n,. There are two sets
of three plots, for q= 2,3 and K = 1,2,3. As can be seen from this figure,
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/f is smaller for larger values of g and for snaller values of K Al so,
for a given g and K /§ decreases rapidly with Neven for relatively snall
values of N and approaches zero asynptotically for large N

As an exanple, take the case when g » 2 and when a single pass (K=l)
in the deconposition strategy can lead to the optinmal solution. |f the
desi gn probleminvolves five periods, only 8% of the control variables
must be elimnated to achieve a relative gain in CPU-tine with the
deconposition strategy. These percentages increase to 18%for K=2 and
28% for K=3. For a ten period problemthe percentages reduce respectively
to 4% 10%and 15%for K® 1,2,3. Thus, in general one can expect to
obtain significant gains in conputation tinme when solving the multi-
period problemw th the projection-restriction strategy, even when the

nunber of active constraints in not very |arge.




Table 1 - Active constraints in the problens
G ossmann and Sargent (1978, 1979)

sol ved by

Nunber of Nunber of
Number of i nequal ity active con-
Pr obl em deci si on constraints straints at the
vari abl es in the sol ution
probl em
Pi pel i ne 8 20 5
Mul ti product
Bat ch pl ant
(a) problemla 10 23 11
(b) problem 2 14 39 14
React or - separ at or
system 7 24 4
Heat exchanger
net - wor k 15 65 15




Period 1 2
(EAR) - 555.6 583.3
-@ani = 23260. 25581.
mli
ki o= 0. 6242 0. 6867
= 167.4 188. 4
= 32.04 40. 05
Fi = 45.36 40. 82
T = 389 383.
1
t = (8000/ N
. _ A
Starting point: VvV =
A =
1 =
T

Table 2 - Data for the exanpl e problem

To = 333°K, Tw = 300°K

S=11.1°K, U= 1635.34 kj/nf hr K

611.1
27907.
0.7491
209. 3
48. 06
36. 29

378.

14. 1584 nt
11. 1484 nt
367 °K
328 °K

333 °K

527.8

20930.

0. 5619

146. 5

24.03

49. 90

394.

i =1to N

50Q.
18604.
0. 4994
125.6
32.04
54. 43

400.

%k

kJ/ kg nol e
m3/ kgrmol e hr
kJ/ kg nol e
3
kg nmol e/ m
kg nol e/ hr

°K

hr




Table 3 -

SQUAI | ONS

24
23
20
19
21
22

Equation Ordering In the Projection Step

VARIABLES

A AL T, ent 4 4 vi FIJ W
X X X X
X X X
X X X
X X X
X X X X
X X X




o &

<l

31
32
34
19

23

21
22

Table 4 -

Equation Odering in the Restriction Step

VARIABLES

>

i 1 i : i 1
v Ca1 Ta2 VY 4 AT, T, F
X
X
X X
X X
X X
X X X
X X X




Table 5 - Solution of the exanpl e probl em

ll\Unber of "K 1 pt i mum
periods N VvV (m) A (m) Annual Cost ($/yr)
1 5. 318 7. 562 0.980 x 10*
2 5. 318 ~8.417 1.010 x 10*
3 5. 318 9.513 1.042 x 10*
4 7.915 9. 262 1.096 x 10*
5 7.915 9. 095 1.080 x 104
1

Nunber N indi cates

periods 1,2,...N taken together.




Table 6 - Conputational results for finding an initial
feasible point - CPU Ti ne!

2I\Urr‘oer of Optimze all variables Optim ze alternatel y‘
periods N si mul t aneousl y d and z
1 0.228 0.204
2 0.371 0.432
3 3.745 0.670
4 1.763 0.878-
5 2.954 1.083
1

DEC System 20 sec.

2Nmber N indicates periods 1,2,....N taken together.




Table 7 - Computational results for the Projection-Restriction

algorithm - CPU Timel

2Number of
periods N Projection Restriction Total CPU Time
1 4.531 1.304 5.835
2 12.129 2,221 14,350
3 15.918 1.416 17,334
4 21.998 2,181 24,179
5 27.311 3.005 30.316

1DEC-System 20 sec.

2Number N indicates periods 1,2,...N taken together.
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Table 8 Conputational results for solving the design problem- CPU Tine
Conput ational Ti ma:l
Fyunver Nunber of Nunber of
periods N deci si on inequal ity wi t hout wth
vari abl es constraints deconposi tion deconposi tion
1 5 7 32.2 6.0
2 8 14 176. 2 14. 8
3 11 21 479. 6 18.0
4 14 28 - 25.0
5 17 35 - 31.4
1

DEC System - 20 sec.

2I\Unber N indicates periods 1,2,...Ntaken together..




Fi gure
Fi gure
Fi gure
Fi gure

Fi gure

Fi gure

5.

Al .

Bl ock-di agonal structure in the constraints of problem 3.
Contours of the objective function in problem (13).
Structure resulting fromequation ordering.

Fl owsheet of the exanple problem

Conput ational time (DEC 20, sec) for solving the design problem
versus the size of the problem

M ni mum fraction /§ of control variables that nust be elim nated
as given in (A8).
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