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Abstract

One of the main computational problems faced in the optimal design of

flexible chemical plants with multi-period operation is the large number of

decision variables that are involved in the corresponding nonlinear program-

ming formulation. To overcome this difficulty, a decomposition technique

based on a projection-restriction strategy is suggested to exploit the block-

diagonal structure in the constraints. Successful application of this

strategy requires an efficient method to find ah initial feasible point, and

the extension of current equation ordering algorithms for adding systematically

inequality constraints that become active. General trends in the performance

of the proposed decomposition technique are presented through an example.

Scope

Flexibility in chemical plants is normally introduced in practice by

applying empirical overdesign factors to sizes of equipment that have been

designed for a nominal operating condition. This procedure is clearly not

very satisfactory as it has little rational basis. For instance, with empiri-

cal overdesign it is unclear what range of specifications the overdesigned

plant can tolerate, or whether the plant is optimal according to a given cri-

terion. Therefore, there is clearly a need for developing design methods that

deal with flexibility in a more rational way.

Two classes of problems can be considered in the design of flexible

chemical plants. The first one is the deterministic multi-period problem

wherein the plant is designed to operate under various specified conditions

in a sequence of time periods. Typical examples are refineries that

handle various types of crudes, or pharmaceutical plants that produce several

products. The second type of problem deals with the design of chemical plants



where significant uncertainty is involved in some of the parameters. Examples

of this case arises when values of feed specifications, transfer coefficients,

physical properties or cost data are not well established. It must be noted

that a design problem can also be a combination of these two distinct types of

problems.

As has been shown by Grossmann and Sargent (1978, 1979) the two classes

of problems require the solution of a nonlinear programme where the number of

decision variables and constraints can become rather large. It is the purpose

of this paper to present an efficient solution procedure for the deterministic

multi-period problem, which in fact can also be applied for solving the problem

of design under uncertainty (Halemane and Grossmann, 1981). It is shown that

the block-diagonal structure in the constraints, and the fact that many

inequalities become active at the solution, can be exploited effectively for

reducing the computational requirements in the nonlinear programming problem.

Conclusions and Significance

It has been shown that the proposed projection-restriction strategy

exploits effectively the mathematical structure of the multi-period problem

for designing flexible chemical plants. The performance of the decomposition

method as seen in the example shows the most encouraging feature that

computational time only increases moderately with the number of periods in a

problem. Also, the reliability for obtaining the desired solutions is greatly

enhanced. Therefore, the proposed method provides a real possibility for

tackling large-scale optimizations of flexible plants with a reasonable com-

putational effort.



Introduction

A general approach based on nonlinear programming (NLP) for the design of

flexible chemical plants has been proposed by Grossmann and Sargent (1978, 1979).

The main features of their formulation are as follows.

In the case of the deterministic multi-period problem it is assumed that the

plant is subjected to piecevise constant operating conditions in N successive time

periods. Dynamics are neglected, as it is considered that the length of the

transients is much smaller than the time periods for the successive steady-states.

The variables in this problem are partitioned into three categories. The vector d

of design variables is associated with the sizing of the units. These variables

remain fixed once the design is implemented, and do not vary with the changes in

the operation of the plant. The vector z denotes the control variables that can

be manipulated in each period i so as to meet the specifications and also minimize

the operating cost. It should be noted that the vector z corresponds to a given

assignment of variables to the existing degrees of freedom in the operation of

the plant. Finally, the vector x1 corresponds to the state variables in the

operating period i (i=l,2,...N). Thus, the design problem leads to the nonlinear

programme,

1 2 N 1 2 N
minimize C - C(d,z ,z ,...z ,x ,x ,...x )

, 1 2 N
a,z ,z ,.. .z

s.t. . . .
h^d.E1,*1) = 0
i i i i - 1,2,...N (1)

g1(d,z1,x1) < 0

£(dfz
1
fz

2,...zN
fx

1
fx

2 ...xN)< 0

vh •••* d, zx,i=l,2,...N, are the decision variables in this problem, as the state

va ables x , i=l,2,...N, can be determined from the equality constraints which

represent the steady-state equations of the process. Note that in this formulation the

order in which the periods are considered can be arbitrary, since the operation in

each period is assumed to be independent of its relative position in the sequence.

However, any specificat 3 involving all the periods can be represented by the last

inequality constraint.



As for the design problem under uncertainty, consider that 9 is the

vector of uncertain parameters. Assinning bounded values of these para*

meters, 0 < 0 < 0 , a design strategy may be considered based on the

following reasoning: The initially installed plant may be defined by the

vector of design variables d. During the operation of the plant, the

control varialbes z would be adjusted, depending on the values of the

parameters 9 being realized, so as to meet the design specifications.

Hence the purpose of design is in selecting d such that the plant will be

able to meet the specifications for all possible realizations of the

parameters 9, while minimizing the expected value of an appropriate cost

function. This may be represented as a two-stage programming problem,

minimize E
d 9

min C(d,z,x,9)
h(d,z,x,9) = 0
g(d,z,x,9) < 0
f (d) < 0 ~

(2)

s.t.
V 9 , 9^ < 9 < 9, 3z : h(d,2,x,9) = 0

g(d,z,x,9) < 0

A direct approach to the solution of (2) poses the problem of in-

finite dimensions in 9, demanding a tremendous computational effort. However,

this difficulty can be overcome by using a discretization procedure

(Grossmann and Sargent, 1979; Halemane and Grossmann, 1981), involving a

finite number of points 91, i«l,2,...N, and still ensuring feasibility for all

9 within the specified bounds.This reduces problem (2) to a special case

of problem (1), where the objective function is separable in the N points (or

periods) and where there is no coupling of constraints for z , x , variables
4

of different periods. That is, the problem has the form
n

minimize C = C°(d) + V C^d

s.t.
h(d, i
g(d,z\xi) < 0 *

f (d) < 0



It should be noted that (3) is also the most common formulation

encountered for the multi-period problems since, very often, there is no

coupling of constraints for z1, x1, variables of different periods. Also,

the usual cost functions are separable in the investment cost and operating

cost for each period. Since solving the NLP in (1) is of fundamental

importance for designing flexible plants, and problem (3) is a very

important case having some interesting properties, this paper will address

the problem on how to solve the latter NLP in the most efficient way.

Computational Aspects

For large industrial problems the computational requirements for solving

the NLP in (3) can become rather expensive. The main reason for this is that

the number of control variables z increases with the number of periods N, so

that the number of decision variables in the NLP may become too large to be

solved efficiently by the current algorithms. Since the NLP approach for

designing flexible plants has proved to be very effective in small problems,

and it also provides rational basis for overdesign, there is a very high

incentive for deriving an efficient method for solving problem (3). This

requires that its mathematical structure be fully exploited.

In order to take advantage of the sparsity of the constraints, state

variables x1 can be eliminated from the system of equations so as to reduce

the size of the problem. This can be achieved if the system of equations is

ordered so as to provide a sequence of calculation where the number of torn

variables is minimized (see e.g. Christensen, 1970). In this scheme, at each

iteration of the optimization the ordered system of equations is solved. It

must be pointed out, however, that by eliminating the equations and state

variables the nonlinear programme in (3) still has to handle the large number



of decision variables given by d, z1, i = 1,2,...N. Therefore, it is

necessary to exploit additionally another property of (3) for deriving an

efficient method of solution.

Problem (3) has the interesting feature that it is an NLP with block-

diagonal structure in the constraints, as shown in Figure 1. Since the

cost function is separable in the N periods this implies that if the vector

d is fixed, then the problem decomposes in N uncoupled subproblems, each

having as decision variables the vectors z , for i * 1,2,...N. This would suggest

that it should be possible to derive a suitable decomposition scheme which

need not handle simultaneously all the decision variables. Ideally, this

decomposition scheme should lessen the storage requirements, and more

importantly it should reduce substantially the computational time for

obtaining the optimal solution.

Decomposition Strategies

The two basic decomposition strategies that can be used for solving

problem (3) are the feasible and infeasible decomposition schemes.

The feasible decomposition technique (Rosen and Ornea, 1963; Umeda,

Shindo and Tazaki, 1972) consists of the following steps:

Step 1 - Find a feasible point d, z1, x1, i=l,2,...N, for problem (3).

Step 2 - By keeping the vector d fixed, solve the N subproblems (that

is, for i=*l,2,...N):

minimize Cx(d,z1,x1)

z 1

s.t. h^d.z1,*1) = 0 (4)

gV.zV) < 0
Step 3 - Keeping the vectors z1, 1=1,2,...N fixed, solve the problem:



N

minimize C = C (d) + ) C (d,z ,x )d £ x

s.t. h (d,zX,x ) = 0 |
i=l,2,...N (5)

g1(df«
1
fx

1) < 0 '

f (d) < 0

Step 4 - If convergence is not achieved, return to step 2.

The advantage with this technique is that the original problem is re-

placed by a sequence of subproblems with a smaller number of decision vari-

ables. However, convergence to the solution can become extremely slow

particularly in the neighborhood of the solution (see Grigoriadis, 1971),

since in fact this decomposition technique is equivalent to an alternate

1 2 Nsearch in orthogonal directions in the space (d,(z ,z , ...z )).

In the infeasible decomposition technique (Brosilow and Lasdon, 1965;

Lasdon, 1970; Stephanopoulos and Westerberg, 1975b) it is first necessary

to reformulate problem (3) as:

N

A minimize C = C°(d) + ) (^(d1,*1^1)

s.t. i i • i
h (d sz ,x ) - 0

zi,xi) < 0

< 0

d = d1

i=l,2,...N (6)

f(d) < 0

Since the lagrangian of this problem is given by:

N

L - C°(d) +

+ p T f (7)



where \ , y, , o » IT » p are the Kuhn-Tucker multipliers, problem (6) can be

decomposed into the following N+l subproblems:

minimize (^(d1,*1,*1) - (TT 1) 1 d1

s.t. n (a ,z ,x) = u

^(d 1) < 0 (8)

for i=l,2,...N, and

minimize C (d) + > (FT*) d
A *-*

d i=l

s.t. f(d) < 0

The infeasible decomposition strategy then consists of the following steps:

Step 1 - Guess the multipliers TT1, i=l,2,...N.

Step 2 - Solve the N+l subproblems in (8).
Ai

Step 3 - If the constraints d = d , i=l,2,...N, are not satisfied,

adjust the T by solving the dual problem:

N

O A r-i F i i I i i T * i l
maximize C (d) + } C (d ,z ,x ) + (rr ) (d - d ) (9)

TTI TT2 TX^ ^

and then return to step (2).

Note that in this decomposition technique it is not necessary to start

with a feasible point in problem (3) as with the previous strategy. However,

there are basically two difficulties when using this technique. The first

one is that the method may not converge to the solution due to the non-

convexities that are present in design problems which give rise to dual gaps.

This difficulty can be overcome with the method proposed by Stephanopoulos

and Westerberg (1975a), but with the disadvantage that it requires a signifi-

cant amount of computational effort. A further disadvantage with the infeasi-

ble decomposition scheme is that a feasible solution is obtained only at the



exact solution of the dual problem. Considering that one is dealing with

nonlinear problems, this can become a significant drawback in practice.

With the two decomposition schemes that have been presented above it

is unclear whether problem (3) can be solved more efficiently than when the

problem is tackled with all decision variables simultaneously. It is for

this reason that an alternative decomposition scheme must be considered.

The Projection-Restriction Strategy

Grigoriadis (1971) and Ritter (1973) have suggested a decomposition

technique for the case when the objective function is convex and the con-

straints are linear in problem (3). As per the classifications given by

Geoffrion (1970) this strategy belongs to the class of Projection-Restriction

Strategies. The basic ideas are described in the following steps:

Step 1 - Find a feasible point d, z1, x , i=l,2,...N, for problem (3).

Step 2 - (Projection)

Fixing the values of the vector d, solve the N subproblems in (4).

Step 3 - (Restriction)

(a) For each subproblem i convert the n^ inequality constraints g*

that are active in step 2 into equalities, and define

8A

8I isl>2>---N (10)

where tu, g* are the redefined sets of equality and inequality

constraints and g are the sets of inequality constraints that

are not active in step 2.

(b) Eliminate n* variables z* from the vector

' • ca •so as to define
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2R 2I ' *R i ' i-l,2f...N (11)

where z is the redefined vector of control variables which results

from eliminating the vector z of n. elements, and x^ is the expanded
A A i\

vector of state variables.

Step 4 - Solve the restricted problem:

N

minimize C = C°(d) + V CL(d,z^,4)

z1 z 2 zN i=l
1A. Jtv 1C

s.t. h£ <d,«*,xj) - 0. (12)
} i = l 2 N

f (d) < 0

Step 5 - Return to step 2 and iterate until

(a) no further changes occur in the values of the variables d, or

(b) the same set of inequality constraints become active again, in

step 2.

Note that in step 4 the projection-restiction strategy really consists

in solving problem (3) simultaneously for all variables, but in general with a

smaller number of decision variables, since many of these get eliminated by

the active constraints determined in step 2. Clearly, the effectiveness of this

strategy relies heavily on the number of inequality constraints that actually

become active at the solution.

Grigoriadis (1971) and Ritter (1973) found that in their problems

relatively few inequality constraints in the subproblems would become active*
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Therefore, they proposed to eliminate all the variables z1, i=l,2,...N, in

step 3; Grigoriadis (1971) with the use of the pseudoinverse of the corre-

sponding matrix of z1, and Ritter (1973) with a square matrix which was

generated when solving the subproblems. Unfortunately these techniques can

not be extended readily to the case when constraints are nonlinear, since

they rely heavily on the assumption of linearity of the constraints. However,

as will be shown, the basic idea of the projection-restriction strategy can

indeed be used for designing flexible chemical plants.

An examination of the results for flexible plants obtained by Grossmann

and Sargent (1978, 1979) shows that a surprisingly large number of inequality

constraints are actually active at the solution, as can be seen in Table 1.

The main reason for this appears to be the monotonicity of the cost functions

which is characteristic of design problems.

Since in general one can expect to have a large number of active con-

straints at the solution, it clearly suggests that the projection-restriction

strategy can greatly simplify solving problems of the type as formulated in (3).

However, for successful application of the projection-restriction strategy

there are two problems that have to be considered. The first one is finding an

initial feasible point in step 1. The second is a procedure for the elimination

of variables in step 3 which avoids singularities in the system of equations.

These points are discussed in the following sections.

Finding a Feasible Point

The problem of finding a feasible point for a design problem is in general

a nontrivial task, because of the nonlinearities involved. In problem (3) the

main difficulty when using the projection-restriction strategy consists in

finding a value of d such that feasible solutions exist for the subproblems in (4)



One approach to find a feasible point is to replace the cost function in (3)

by the sum of squares of deviations of the violated constraints, thus leading

to the nonlinear programme:

minimize £
4

s.t. li (d,z ,x ) = ON, (13)
•- 1,2,...N

gl

(d,zi,xi) = ON

f (d) < 0

This problem can be handled by an NLP algorithm based on an active set

strategy for the constraints as indicated by Sargent and Murtagh (1973).

Since the objective function in (13) has discontinuous second order derivatives

the optimization should be performed with the steepest descent direction in the

constraint space. As this procedure does not require an estimation of the

inverse of the Hessian matrix, storage requirements can be reduced.

Although solving (13) simultaneously for all variables works very well for

relatively small problems, it may be desirable to use a decomposition scheme for

large problems. An alternative is to use the steps similar to those in the

feasible decomposition strategy, with the objective function as given in (13)

above. Hence it consists of the following steps:

Step 1 - Guess a starting point d,z ,x ,i=l,2,...N.

Step 2 - By keeping the vector d fixed, solve the N subproblems

(i.e. for i=l,2,...N):

i v r i i i i 2

minimize Q1 - / I max |0,g.(d,z ,x )} I

z1 * £i L J J
s.t. i i . (14)

g (d,z .x1) < 0

Step 3 - By keeping the vectors z , i-l,2,...N fixed, solve the problem:



N mN

) X \max {°>§j (d.z1,*1)} I

s.t. hi(d,zi,xi) = 0 i (15)

minimize
d

i=l,2,...N
g ( f , 1 ) < 0 J

f (d) < 0

Step 4 - If convergence is not achieved (\> 0) return to step 2.

It is observed that unlike in the case of finding the optimal solution

of (3), the convergence of this method to find a feasible point is quite good.

The reason for this is that the NLP defined by (13) has an infinite number of

minima when the feasible space is non-empty. In this case the objective

function defines a plateau of zero-value for the feasible region as shown in

Figure 2, and hence there is usually no problem of slow convergence in the

neighborhood of a feasible solution. Also, note in Figure 2 that outside the

feasible region the contours of ̂  in (13) are quadratic in the constraint

functions so that the objective function will tend to be well behaved.

Variable Elimination in the Restriction Step

The elimination of variables in step 3 of the projection-restriction

strategy is performed for each period i by including the active inequality

constraints in the set of equations. This implies that from the state and

control variables x 1 ^ 1 a set of control variables z* must be determined, and
K

that the sequence of calculation for the new set of equations h- has to be

derived, for each period i * 1,2,...N.

Since a number of algorithms are available for selecting decision variables

and determining sequences of calculation for rectangular systems (Lee et al.,

1966; Christensen and Rudd, 1969; Edie and Westerberg, 1971; Leigh, 1973;

Stadtherr et al., 1974; Book and Ramirez, 1976; Hernandez and Sargent, 1979)

it would seem that they could be applied without difficulty in our problem of

designing flexible plants. It must be pointed out, however, that difficulties
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may arise when deriving the solution procedure for the restricted problem (12)

since the added inequality constraints can lead to redundant or inconsistent

equations, and hence, produce a singular system of equations. Therefore, these

algorithms must be extended according to the following procedure for eliminating

the variables in each period i in the restricted problem:

Step 1 - Add all the active constraints g^(d,zx,xX) = 0 to the system of

equations hX(d,z ,xX) = 0, thus giving rise to a new system of

equations h_(d,z ,x ) = 0.

Step 2 - Perform the optimal reordering of the new system of equations

(d,z ,xX) = 0, by minimizing the number of torn variables in

Step 3 - Select control variables z as decision variables, and delete
K.

equations if necessary so as to obtain a non-singular square

system of equations.

It should be noted that due to the reordering of variables in step 2, the
vector z1 can in fact contain some of the state variables from x1. Also, it is

R

essential to keep the design variables d as decision variables throughout, and

not to force them to become either state or torn variables during the reordering.

Also, since it is possible that the resulting system in step 2 has more equations

than variables, a suitable equation ordering algorithm must be used, for instance

the one by Leigh (1973). The optimal sequence determined with such an algorithm

is one where the system h (d,zX,xx) = 0 is reordered as shown in Figure 3 in
R

two sets of equations:

s(u,v) = 0
(16)

r(u,v) = 0 .

Here the subsystems s and r are a partition of the vector of equations h^,

whereas the vectors of variables u and v are a partition of the vector
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i T i T T
[ (z ) ,(x ) 3 • As shown in Figure 3, s is the set of non-recycle equations

with lower triangular structure, which can be solved sequentially for the

vector v given a value of u, and r corresponds to the set of recycle equa-

tions. Since v can be treated as an implicit function of u, the system of

equations in (16) can be reduced to the form

r(u,v(u)) = 0 (17)

The vector u represents the set of decision and torn variables, that is,

T i T T
u = C(ZR).9 t ] and for the optimal sequence its dimensionality is at a

minimum.

In order to delete the appropriate equations in step 3 it is suffi-

cient to choose the largest nonsingular subset of equations at the current

point. Since for a fixed u, the subsystem s in (16) can be assumed to be

non-singular due to its lower triangular structure, the singularity of the

system can be analyzed through the jacobian J (r,u) of (17) (see Halemane

and Grossmann (1981)), which is given by

(r,u) .|£. - ^ ( l * ) " 1 |1 (18)j
c \

This jacobian matrix can be evaluated numerically at the current point by

performing perturbations in the vector u. To determine the equations to be

deleted the following procedure can be followed. The square submatrix J* of

highest rank is obtained by performing a Gaussian elimination on the jacobian

matrix (18). The variables in u that correspond to the columns of the sub-

matrix J* will be chosen as torn variables t, whereas the remaining variables

in u will correspond to the decision variables z^. Those equations r in r

R r

that are not included in the rows of the submatrix J* , will be deleted and

treated as inequality constraints. In this way, the jacobian matrix of the

resulting system of equations can be ensured to be of full rank and hence

non-singular. Also, note that the jacobian matrix J to be analyzed is usually
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of much smaller size than the jacobian of the system in (16).

The procedures indicated above for finding an initial feasible point

and for the variable elimination in the restriction step, complete the

algorithm required for the projection-restriction strategy.

Example

To evaluate the performance of the proposed projection-restriction

strategy,an example problem has been solved. The flowsheet consists of a

reactor and a heat exchanger as shown in Figure 4. The reaction is assumed

to be first order exothermic, of the type A—>B. The flowrate through the

heat exchanger loop is adjusted to maintain the reactor temperature below

T* as given in Table 2 and to get a minimum of 90% conversion.
Imax

This plant is to be designed so as to produce different products in N

successive periods within each year. The performance equations of such a

system, for any period i, i=l,2,...N, are as follows:

Reactor, material balance:

F X o - Cil)/CL = Vlko - P ^ / R T J ) & (19)
Reactor, heat balance:

LL L - FocX - v+ "4 <20)

Heat exchanger, heat balances
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Heat exchanger, design equations:

< 4 = AU( A T )m (23)

i (T1-Tw2) " CT2"Tvl)

i 1 wz z (24)
Xl w2
L2 wl

The values of the parameters of the problem are given in Table 2. The

design problem corresponds to an optimization problem with the equality con-

straints given by the performance equations above, and the following inequality

constraints for each period i, i=l,2,...N.

V > 0 (25)

A > 0 (26)

V^O (27)

V - V 1 ^ 0 (28)

W 1 > 0 (29)

FJ > 0 (30)

Tl < T L x <32>
Tj - Tj > 0 (33)

Twl 1^21 356 (34)

Tl " TwZl * ^35>
T2 " Twl> S <36>

The objective function being minimized is the total annual cost ($/yr),

A
 N

C = (2304 V0*7 + 2912 A 0' 6) 0.3 + V (2.20x10"^ + 8.82xlO*4F^)ti (37)

i=l

where t corresponds to the number of hours of operation for each period

i=l,2,...N, in one year. The objective function includes the investment cost
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of the reactor and heat exchanger, and the operating cost of the cooling

water and recycle.

There are 2+9N variables V, A, C^, T*, T*, T^, F*, W1, V1, (AT)*,

Qjjg, i=l,2,...N; 6N equations and 2+10N inequality constraints and bounds,

for a problem with N different periods. This gives rise to 2-K3N degrees

of freedom. Selecting as decision variables the design variables V, A, and

the control variables T^ T*, T*2, i=l,2,...N, the sequence of calculation

for the equations in each period is given in Table 3. The corresponding NLP

consists of 2-r3N decision variables, 6N nonlinear inequality constraints and

N linear inequality constraints. Note that (25), (26), (32), (34) and (36)

are simple bounds on the decision variables, that (33) is a linear inequality

and the remaining constraints are nonlinear.

The problem was solved for five cases corresponding to N = 1,2,...5. In

each case, the plant is designed to produce N different products that have

different feed flowrates, concentrations, reaction rate constants, etc. as

shown in Table 2. In all the five cases, when solving the subproblems in the

projection step it was found that constraint (31) is active at its lower bound,

and constraints (32) and (34) are active at their upper bounds, for all periods.

Adding these active constraints to the equations in Table 3 the variables T-,

T*, T 9, i=l,2,...N were eliminated by ordering the new system of equations.
A

This gives rise to only two decision variables V and A for the restricted

problem, as shown in Table 4. In all cases, the optimum solution was found by

solving this restricted problem, thus requiring only a single pass for the

projection-restriction strategy.

The starting point given in Table 2, which is infeasible, was used for

all five cases. The initial feasible points used in the projection-restriction

strategy were obtained by minimizing alternately with respect to d and z ,
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i=l,2,...N the sum of squares of deviations of violated constraints. The

optimizations were performed using the variable-metric projection method

(Sargent and Murtagh, 1973), and the solutions were obtained with a

tolerance of 10 for the norm of the gradient of the objective function

projected in the constrained space.

The optimal sizes of the reactor and the heat exchanger are presented

in Table 5 for the five cases. The formulation of the problem itself

ensures that these optimal designs are flexible, as they meet the specifica-

tions for the various products involved at a minimum annual cost.

The computing requirements for finding the initial feasible points are

shown in Table 6. Here, it was found that optimizing alternately for d and

z1 is more efficient than considering all these variables simultaneously,

particularly when the number of periods increases. However, the more signi-

ficant gains in computational requirements are achieved when the projection-

restriction strategy is applied, once the problem becomes feasible. Table 7

gives the CPU-time requirements for the projection and restriction steps.

Table 8 and Figure 5 give a comparison of the computational requirements in

solving the design problem with and without the decomposition. A striking

feature in the performance of the proposed decomposition strategy is that the

CPU-time increases only linearly with the size of the design problem. It is

interesting to note that the design problem for the five-period case was

solved by using the proposed decomposition strategy in only 31.4 sec which

is about the same time required for solving the one-period problem without

using any decomposition.

Discussion

The results of the above example show that the performance of the
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proposed decomposition strategy for the design of flexible chemical plants

is very encouraging. An important trend in the results is that the computa-

tional time required is approximately linear with the size of the design

problem (number of periods). This suggests that reduction in the computa-

tional effort with the proposed method in larger problems should be even more

dramatic, when compared with the simultaneous optimization of all the decision

variables. This is to be expected, since experience with different nonlinear

programming algorithms indicate that they are much more likely to be successful

in converging to the optimal solution when the number of decision variaLles is

relatively small.

In the Appendix a simple analysis is presented which explains the linear

relation for the computer time obtained in the example. It is also shown in

the Appendix that when the number of periods is large the projection-restiction

strategy can be expected to perform better than the simultaneous solution

even if the percentage of control variables that are eliminated in the

restriction step is not very large.
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Nomenclature for the example problem

2
A : Heat transfer area of the heat exchanger, m
i 3
C. : Concentration of reactant in the feed, kg mole/m

i 3
C.- : Concentration of reactant in the product, kg mole/m

C : Heat capacity of the reaction mixture, kJ/kg mole K
P

C : Heat capacity of cooling water, kJ/kg K

(EX/R) : Ratio of activation energy to gas constant, K

F : Feed flowrate, kg mole/hr
o

F^ : Flowrate of the recycle, kg mole/hr

k : Arrhenius rate constant of reaction, hr
o

Q1 : Heat exchanger load, kJ/hr
xiili

T : Temperature of feed, K

T1 : Reactor temperature, K

T1 ; Recycle temperature, K

T - : Inlet temperature of cooling water, K

T ^ : Outlet temperature of cooling water, K

t : Length (time) of i period of operation, hr

2
U : Overall heat transfer coefficient, kj/m hr K
i 3

V : Reaction volume, m

V : Volume of reactor (design capacity), m

W1 : Flowrate of cooling water, kg/hr

6 : Minimum approach temperature, K
( A H ) * : Heat of reaction, kj/kg molerxn

(AT)1 : Mean temperature difference, K

Superscript i refers to the period of operation,
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Appendix

Based on some simple assumptions, a relationship can be derived between

the CPU-time and the size of the design problem in terms of number of periods.

Let n, be the number of design variables, n the number of control

variables in each period and N the number of periods considered in the design

problem. Assume that the CPU-time t for the projection step is given by

If a>0 < a< 1, is the average fraction of the control variables remaining

in the restriction problem, then the CPU-time t for the restriction step can
K

be expressed as

tR = Ar(nd + N a n z ) r (A2)

Also, let the CPU-time t for solving the problem without decomposition be

tq = V nd + NV q (A3)

If K is the number of iterations (passes) through the projection and

restriction steps that is required for convergence, then the total CPU-time

needed to solve the design problem using the decomposition strategy is

tm = KNAp(nz)
P + KAr(nd + Nanz)

r (A4)

In general the exact values of p, q, r and A , A , A^, K depend

on the particular problem at hand. However, for a given problem the values

of A , A and A can be expected to be of the same order of magnitude, and

for a gradient based non-linear programming algorithm one can expect to have

the values of p, q and r to lie between 2 and 3. Also, the value of K is

likely to be small.
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If all the control variables are eliminated in the restriction step,

a = 0 and from (A4) it is then clear that the CPU-time t_ is linear
XT K

in N the number of periods, as given in (A5) :

( n z ) P + ^ r ^ d ^ ( A 5 )

This is in fact the trend that is observed in the results of the example

problem, as can be seen in Figure 5.

The relative savings in computation time in using the decomposition

strategy can be determined from (A3) and (A4),

KNA (n )P + KA (n, + N a n ) r

t / t = L_5 L - | 2 (A6)

** Q V n d + N n z ) q

Since A , A , A are of some order of magnitude, 0 < a < 1 and p, q, r > 1,

it is clear from (A6) that the relative advantage in using the decomposition

strategy is enhanced by larger values of N and smaller values of a. In fact,

for a given value of N there is a threshold value a for a, below which

savings in CPU-time can be ensured by using the decomposition strategy.

This threshold value determines a useful range 0 < a < a > which can be

determined from (A6) with t_ < t-., thus obtaining a as

« t = [j(Aq/ArK) (nd + N n z )
q - N(Ap/Ar) (n z)

P 1 - n<J J /Nnz (A7)

Assuming A = A = A and p = r = q, (A7) can be simplified as

where A indicates the minimum fraction of control variables to be eliminated

in the restricted problem. Figure Al shows some plots of /J versus N as given

by the expression in (A8) above for the case when n, = n . There are two sets
d z

of three plots, for q= 2,3 and K = 1,2,3. As can be seen from this figure,
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/} is smaller for larger values of q and for smaller values of K. Also,

for a given q and K, /$ decreases rapidly with N even for relatively small

values of N, and approaches zero asymptotically for large N.

As an example, take the case when q » 2 and when a single pass (K=l)

in the decomposition strategy can lead to the optimal solution. If the

design problem involves five periods, only 8% of the control variables

must be eliminated to achieve a relative gain in CPU-time with the

decomposition strategy. These percentages increase to 18% for K=2 and

28% for K-3. For a ten period problem the percentages reduce respectively

to 4%, 10% and 15% for K s 1,2,3. Thus, in general one can expect to

obtain significant gains in computation time when solving the multi-

period problem with the projection-restriction strategy, even when the

number of active constraints in not very large.



Table 1 - Active constraints in the problems solved by
Grossmann and Sargent (1978, 1979)

Problem
Number of
decision
variables

Number of
inequality
constraints

in the
problem

Number of
active con-
straints at the

solution

Pipeline 8

Multiproduct
Batch plant

(a) problem la 10
(b) problem 2 14

Reactor-separator
system 7

Heat exchanger
net-work 15

20

23
39

24

65

11
14

4

15



Table 2 - Data for the example problem

T = 333°K, T w l = 300°K, S = 11.1°K, U = 1635.34 kj/m
2 hr K

Period

(E^R)

k1

o

I
T*

1

- 555.6

= 23260.
i

0.6242

= 167.4

32.04

45.36

= 389.

2

583.3

25581.

0.6867

188.4

40.05

40.82

383.

3

611.1

27907.

0.74

209.3

48.06

36.29

378.
Imax

(8000/N)

Starting point:
A
V =

A =

T2 =

Tw2 =

14.1584

11.1484

367

328

333

m3

m2

°K

°K

°K

527.8

20930.

0.5619

146.5

24.03

49.90

394.

500.

18604. kJ/kg mole

0.4994 m /kgmole hr

125.6 kJ/kg mole

3
32.04 kg mole/m

54.43 kg mole/hr

400. °K

hr

i = 1 to N.



Table 3 - Equation Ordering In the Projection Step

V A R I A B L E S

CO

I
O

N

H

W

24

23

20

19

21

22

V A

X

A
X

X

X

X

*l2

X

X

T1w2

X

X

X

X

4

X

X

X

X

X

X

v1
 FJ W 1

X

X

X



Table 4 - Equation Ordering in the Restriction Step

V A R I A B L E S

55
O

31

32

34

19

<! 23

w 21

22

V A

X

X

X

X

<

X

X

X

X

X

X

X

X

4

X

X

X

X

(AT)i

X

X X

X

F 1 i

1 W

X

X



Table 5 - Solution of the example problem

Number of "K 1 Optimum
periods N V (m ) A (m ) Annual Cost ($/yr)

1 5.318 7.562 0.980 x 104

2 5.318 8.417 1.010 x 104

3 5.318 9.513 1.042 x 104

4 7.915 9.262 1.096 x 104

5 7.915 9.095 1.080 x 104

Number N indicates periods 1,2,...N taken together.



Table 6 - Computational results for finding an initial

feasible point - CPU Time1

2
Number of Optimize all variables Optimize alternately

periods N simultaneously d and z

1 0.228 0.204

2 0.371 0.432

3 3.745 0.670

4 1.763 0.878-

5 2.954 1.083

DEC-System 20 sec.

Number N indicates periods 1,2,....N taken together.



Table 7 - Computational results for the Projection-Restriction
algorithm - CPU Time1

"Number of
periods N ojection

4.531

12.129

15.918

21.998

27.311

Restriction

1.304

2.221

1.416

2.181

3.005

T o t a l CPU Time

5.835

14.350

17.334

24.179

30.316

3

4

-System 20 sec.

wumber N indicates periods 1,2,...N taken together.



Table 8 Computational results for solving the design problem - CPU Time

TJ umber
periods N

1

2

3

4

5

Number of
decision
variables

5

8

11

14

17

Number of
inequality
constraints

7

14

21

28

35

Computational Time

without with
decomposition decomposition

32.2

176.2

479.6

-

-

6.0

14.8

18.0

25.0

31.4

DEC System - 20 sec.

Number N indicates periods 1,2,...N taken together.



Figure 1. Block-diagonal structure in the constraints of problem 3.

Figure 2. Contours of the objective function in problem (13).

Figure 3. Structure resulting from equation ordering.

Figure 4. Flowsheet of the example problem.

Figure 5. Computational time (DEC-20, sec) for solving the design problem
versus the size of the problem.

Figure Al. Minimum fraction /3 of control variables that must be eliminated
as given in (A8).
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