
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

USING DESIGN SPECIFICATIONS FOR DESIGN

by

Neal M. Holtz and Steven J. Fenves

DRC-12-03-81

August 1981

1§
ilill
X rji ^

t~» CO

USING DESIGN SPECIFICATIONS FOR DESIGN

Neal M. Holtz1 and Steven J. Fenves2, M. ASCE

INTRODUCTION

This paper describes a means of representing a design specification
in a computer-processable form so that it may be used to check a design
or to assist in actually designing certain quantities. In a design
mode, a computer program will automatically accept design variables that
have firm values assigned to them, and will formulate concise, symbolic
descriptions of the constraints on the remaining variables such that all
pertinent specification criteria will be satisfied.

Note. — This is a report of research currently in progress at
Carnegie-Mellon University. While it has been demonstrated by the
development of a program that the ideas are workable, it is very likely
that many modifications will be made to the implementation and to the
representation, over the next few months as experience is gained with
the system. Refer to the technical report by the same authors, to be
released in the fall of 1980 [5],

SPECIFICATION REPRESENTATION

In order to allow the automatic reformulation of design
specifications and constraints, two major and related issues must be
considered. First, a means of representing the specification in
computer-processable form must be developed. The representation must
allow efficient processing of design data against the specification, in
order to either Judge adequacy or to produce design constraints, which
are algebraic expressions that express allowable values for those design
variables that do not have fixed values. Then, the requisite algorithms
must be developed that will enable a program to process a portion of a
specification along with its associated data, in the checking or in the
design mode. Ultimately, this processing will be initiated
automatically (when a user attempts to change a data value in a data
base), or in response to a users request to check a design.

This section deals with the issue of representation; the question of
processing that representation is considered in the following section.
The representation will be based on a network of decision tables to

^Graduate Student, Department of Civil Engineering, Carnegie-Mellon
University, Pittsburgh, PA 15213.

2University Professor, Department of Civil Engineering,
Carnegie-Mellon University, Pittsburgh, PA 15213.

92

DESIGN SPECIFICATIONS

describe the meaning of design specifications [2, 3? **t 6].

Network Representation. — It has long been recognized that the use of a
system of decision tables is a convenient, precise way to represent the
semantics of design specifications. Such a representation is shown in
Figure 1 for a portion of a CSA specification [1] that deals with the
required amount of longitudinal (flexural) reinforcing in a singly
reinforced concrete beam.

pt23S.

MlMu

DE8OK Biatttfled

DE8OK • violated

Y

Y

Y

Y

1
•
e

Y

fe 14000

Kt«O.BB

Ki • 0 BB -O.OOOOBli; - 40001

Y

Y

N

Y

0.86 K^Q / 87000 \
fv \B7000-My/

M - fmjto

b - bmmn% width

d -b«»m d*p«h

A9 - area of ralnforclng «t»«l

fy - yield strength of felnforcli

*o -conoreto strength

Figure 1: Decision Table Representation of a Specification

There is a hierarchical relation among the variables (hereafter
called "data items") in a design specification. Before some data may be
calculated, others (their "ingredients") have to have known values (the
former are called "dependents" of the latter). This relationship was
exploited in [**], when a set of algorithms was developed to process
specifications for a design check. ""

All the data items in a specification (or a portion of one) were
represented in network (or graph) form. Individual data were
represented by nodes and the edges (arcs) in the graph represented
direct data dependencies. That is, from any datum in the network, arcs
were directed to all of its direct dependents. Thus, by following the
arcs in a reverse direction from a node, all of its direct ingredients
could be reached. This representation allows a computer program to
compute only the values that are absolutely necessary when checking a
design (more will be said about this in the section on specification
processing). Figure 2 shows the dependency network for the portion of
the CSA specification of Figure 1.

This network representation contains no indication of the logic
necessary to perform any of the computations to evaluate a datum; it
only shows the data dependencies. In order to allow a computer program

COMPUTING IN CIVIL ENGINEERING

Figure 2: Dependency Network

to assist in the textual organization of specifications [6], the network
model was extended to include more of the structure of the individual
decision tables. Added to the network were nodes representing the
individual rules and conditions. The requirement that a table be used
to compute the value of only one datura allowed the assignment of a
unique node in the network to the result of a table. The ingredients of
that node were all of the rules of the table. Ingredient to each rule
was the action to be taken if the rule governs, and the conditions that
must be checked to see if the rule does govern. The ingredients of the
conditions were all of the data contained in the algebraic expression of
the condition.

Only minor additions to the above described network are necessary to
create the new "fully expanded" representation that meets the two
requirements mentioned earlier.

Final Representation. — The network representation will again derive
directly from the decision table representation, and the graph will
consist of the following five types of nodes:

1. "Basic Data" - these nodes represent the basic input values to the
system; they represent data, the value of which are are normally
not calculated from the specification but must be derived from the
particular design (for example, beam depth). Note, however, that
we are proposing a system whereby some of the basic data may be
calculated from the specification, providing the values of enough
of the other basic data are known.

2. "Derived Data" - these represent intermediate data in the system
which are generally needed in some further calculation. The
specification gives explicit rules for calculating these values.
We may distinguish two types of derived data:

DESIGN SPECIFICATIONS 95

- a "requirement" is a datum (always boolean) evaluating to
"satisfied" or "violated".

- a "determination" is any other derived datum (numeric or
boolean).

Some derived data are generated for internal use by the system,
and are not explicitly mentioned in the specification. These are
usually included for efficiency or for simplification and clarity.
For instance, we will frequently label a particular condition with
a datum name so that only one instance of the condition expression
need be included in the network.

3. "Expressions" - These are algebraic expressions and are used to
compute some value (numeric or boolean). These will be the
expressions that are found in the specification.

4. "Decision Tables" - these represent the results of a computation
performed be executing a decision table. They are essentially
collection nodes, provided so that the datum that is computed via
the table may have only one ingredient.

5. "Rules" - These nodes represent the rules of a decision table, and
each is a collection node for the various conditions and the one
action associated with each rule.

Directed arcs extend to each node from all of that node1s ingredients
as follows:

1. "Basic data" have no ingredients, and because they have no arcs
leading in to them, are referred to as "initial" nodes.

2. "Derived data" may have only one ingredient and that may be one of
the following: the expression that is used to compute the value
of that datum, or, the decision table generating the value of the
node.

3. "Expressions" (which were called functions in [3]) have only basic
or derived data as ingredients, and these are all of the data that
explicitly appear in the expression.

4. "Decision tables" have only rules as ingredients.

5. "Rules" have one action, and zero or more conditions as
ingredients. The arcs from the condition nodes to the rule are
labelled with the value the condition must have for the rule to
govern. If a rule has no condition ingredients, it is assumed to
be an "else" rule.

In some cases, the left to right order of the arcs leading to a node
is important. As there is generally an assumed left to right ordering
when checking the rules of a decision table, the ordering of the arcs
from rule nodes to table nodes is maintained and is significant.

There should be exactly one derived datum in the network (or
subnetwork)^ that has no arcs leading from it. This node, called a
"terminal" node, will represent the union of requirements from the

3the term "subnetwork" will usually be used to refer to a portion of
the specification (i.e. a sub-requirement) that directly leads to a
higher level requirement - for example, the portion dealing with "p^"
(PBOK) in Figure 3.

% COMPUTING IN CIVIL ENGINEERING

specification to be satisfied.

For example, Figure 3 shows a portion of the "fully expanded" network
representation of the specification shown in Figure 1. The derived
datum node labelled "DESOK" is a terminal node which represents the
requirement that states that the reinforcement is adequate if three
sub-requirements are satisfied. The derived datura node labelled "PBOK"
is a terminal node of the subnetwork which represents the
sub-requirement dealing with "balanced" reinforcing.

Figure 3: Fully Expanded Network

SPECIFICATION PROCESSING

The objective of specification checking is to determine the value of
the topmost requirement; that of design is to make the values of one or
more topmost requirements evaluate to "satisfied". Described in this
section is a procedure to process the network in either a checking or
design mode.

The checking procedure described in [4] was a recursive one. It
involved starting with the terminal node of the network and attempting
to compute a value for it. However, before computing the value for any
datum in the network, the values of all of its direct ingredients must
first have been computed. By maintaining a flag with each datura to
indicate if it currently had a value, the above procedure resulted in
evaluating the minimum possible amount of the network.

The new procedure for evaluation described here slightly extends the
basic method of the earlier report. When the topmost node of the
network has been determined, the program will attempt to compute a value
for that node. The procedure will first recursively evaluate each of
the node's ingredients. When all such values have been determined, the
value of the node in question may be determined by applying one of a few
rules (depending on the type of node) as explained below. The major
difference from earlier work will be in the types of values allowed for

DESIGN SPECIFICATIONS 97

each of the data. Where the previous work allowed only numeric or
boolean values, the current program allows the following values for
basic data:

- a simple numeric or boolean value.

- any arbitrary algebraic expression.

- no value defined. In this case, the program assumes that the data
item is to be a designable quantity, and the variable name is
carried symbolically through all computations.

- any number of single values of the above types, along with a
boolean expression of the conditions under which each value is
valid. The list of the constraint - value pairs required for this
is termed a "production list".

Algebraic Expressions. — These, r^f^rred to here as simply expressions,
are representations of algebraic expressions in a form that a computer
program can evaluate. They may contain variables, constants, operators
(addition, exponentiation, etc.) and references to funotions (SQRT, MIN,
MAX, SIN, etc.).

Production Lists. — A production list is a means used to express a
series of alternate values, and the conditions (or constraints) for
which each of the values is meaningful. Formally, a production list is
a list of "n" constraint-value pairs, <Ci,V1>, where n £ 1 and
1 1 i i n. C^, the constraint, is a boolean expression, and Vt, the
value, is any algebraic expression. For any i, if C^ evaluates to
"true", then Vi is the value of the production list. The constraints
must be checked in order of increasing i, and the first one evaluating
to "true" governs. Cn (the last constraint) will often be the constant
"true" in order to supply Vn as the value of the production list if none
of the other constraints is satisfied.

As an example, consider the problem of designing a concrete beam with
three values of moment given along the span, say at U1 and 81 from the
left support, and at the center-line. The production list used to
express the moment might be:

(<X 1 4, 287000> <X 1 8, 492000> <TRUE, 656000>}
where "X" is the distance from the left support. The production list
states:

"if X is less than or equal'to 4, then the value is 287000,
else if X is less than or equal to 8, then the value is M92000,
else the value is 656000."

Note that production lists can be assigned to basic data. Thus, the
system will handle any additional constraints on the input data that can
be put in the form of a production list, and will handle "multi-valued"
data such as moments along a span. The constraints that are thus put on
the basic data are carried through the network in the evaluation
process, and the final result is expressed in terms of the initial
constraints.

Network Evaluation. — Now that the concepts of expressions and
production lists have been introduced, we may address the issue of
network evaluation. This is the process of computing the value of the
terminal node of the network, given specific values for some or all of

98 COMPUTING IN CIVIL ENGINEERING

the Initial nodes. If all of the basic data have simple numeric values,
then the the evaluation is a design check, and the resulting value of
the terminal node will be the boolean constant "satisfactory" or
"violated". If some of the basic data are undefined (have no value
assigned), then the evaluation process is one of design, and the
resulting value of the terminal node will be a constraint expression
involving the undefined variables (and any additional variables the user
may have supplied, such as "X" in the example above). The constraint
will be a boolean expression that will specify the values of the basic
data for which the topmost node will evaluate to "satisfied". In other
words, the constraint expression indicates "allowable" values of the
undefined basic data.

Then the processing of the network may be stated as follows. To
evaluate any node, use that node's currently defined value if it has
one. Otherwise, perform one of the following, depending on the type of
the node:

1. Basic Datya - attempt to retreive the value from somewhere
external to the system (the current system asks the user to type
in the value). If unable to obtain a value (currently indicated
by a null input), then return an expression consisting only of the
data name.

2. Derived Datum - evaluate the datum's ingredient (it may have only
one) and return that value.

3. Expression - evaluate all of the ingredients. As any of those
values may be production lists, the value of the expression may be
also. The value of the expression is formed by taking all
possible combinations of values in the production lists of all the
Ingredients. Each combination so formed is one possible set of
values for the variable ingredients, and these values are
substituted into the expression to get one possible value for the
expression. The constraints corresponding to each variable value
are AND'ed together to form the constraint for the resulting
expression value. For example, consider the expression "a + b".
If the value of "a" is {<Ca1,A1> <Ca2,A2>}, and the value of "b"
is {<Cb1,B1> <Cb2,A2>}, then the value of the expression is

AND C b 2, A, <Ca2 AND C M ,{<Cal AND Cb1, A ^ B ^ <Ca1

<Ca2 AND Cb2, A2+B2>}.

**• lUla - evaluate the condition ingredients in turn. If any
evaluate to "false", then the value of the rule is "undefined".
Otherwise, evaluate the action ingredient. All of the constraints
and all of the values in the production lists of all of the
conditions are "AND"'ed to form one expression. This in turn is
BAND"'ed to each constraint in the action's production list, and
the resulting list becomes the value of the rule.

5. Table - evaluate each rule ingredient in turn. If the value is
"undefined", then this rule plays no part in the final value of
the table. If the constraint portion of the value of the rule is
true then the rule governs, then the value of the table is the
value portion of the production list of the governing rule.
Otherwise no particular rule governs, and the value of the table
is simply the concatenation of the production lists of each of the
rules.

DESIGN SPECIFICATIONS 99

The final value of the terminal node will be the production list
{<C, "satisfied"> <true, "violated">}, where "C" is a constraint
expression stating allowable values of the designable data.

Network Re-Evaluation. — In normal design practice, it is quite common
for the values of some of the basic data to change, requiring that the
network be re-evaluated to either re-check the design, or to re-design
some of the basic data. When this happens, the network processor should
not have to re-evaluate the, entire network, rather it should only have
to re-do those portions affected by the changed data.

At present, we have a two-valued indication of the status of any
given node: either the node has or does not have a value. When a datum
node is evaluated, its presence flag is set to "valid" to indicate that
it has a value. If the value of any node is ever changed from that used
during network evaluation, then the presence flag of that node and of
all its direct and indirect ingredients must be set to "void". Note
that this is essentially identical to the procedure "WARN" given in [M].

EXAMPLE PROCESSING

An example will serve to demonstrate some of the capabilities of the
system. Ultimately it is intended that the system accept specification
input in a form as close textually to the decision tables of Figure 1 as
most common input devices will allow. For the present system, the
tables must be hand translated to the form shown In Figure *4. The
translation from decision table form to the "internal" form shown is
very easy, and will be simple and straight-forward to automate.

DESOK « TABLE(R11,R12);
R11 « RULE(A11,PBOK,PMINOK,MUOK);
R12 « RULE(A12);

A11 << TRUE;
A12 « FALSE;
PBOK << P <= O.75fPB;
PMINOK « P > 200/FY;
MUOK « M <= MU;

P « AS/(B*»D);
PB « O.85iK1»(FPC/FY)i(87OOO/(87OOO+FY));

K1 << TABLE(R21,R22);
R21 << RULE(A21,C21);'
R22 << RULE(A22,NOT C21);

A21 << 0.85;
A22 « 0.85-0.00005§(FPC-4000);
C21 << FPC <= H000;

MU « PHI»B»D»D»FPCfQ»(1-O.59fQ);
PHI « 0.90;
Q << PiFY/FPC;

Figure *•: Example Network Input

The internal form is a set of standard algebraic expressions, with
the addition of the "<<" symbol (which may be read "is computed by").
This is a binary infix operator (muoh like the value assignment ":=" in

100 COMPUTING IN CIVIL ENGINEERING

PASCAL or "s" in FORTRAN), and is used to define the expression used to
calculate a value for the datum. The expression to the right of the
"<<" is stored as an ingredient of the datura to the left. The system
automatically creates all the dependent and ingredient relationships
from the input expressions. The indentation shown above is not
significant to the system, it is only provided for clarity.

An example session using the above described network is shown in
Figure 5. User input to the system is underlined, and all lines are
numbered at the left for reference.

>EVALUATE(DESOK);
the value of AS : >j_
the value of B : >JLL
the value of D :
the value of FPC
the value of FY
the value of M :

1
2
3
4
5
6
7

8
9

Enter
Enter
Enter
Enter
Enter
Enter

Which
[N1]

: M000:
>6Q00Q;

>IF X < L/8 THEN 656000*7/16

10
11
12
13
14
15

[N2]

Enter
Which
(N31

ELSE IF X < L/4 THEN 656QQQ*V4
ELSE 656000:

variable of (L X AS) do you wish to solve for ? >A&
(X < 0.125fL) AND (AS >= 0.44897103) AND (AS <= 1.6035076)
OR
(X < 0.25§L) AND (AS >= O.8O543933) AND (AS <= 1.6035076)
OR
(AS >= 1.1198247) AND (AS <= 1.6035076)
>ERASE(M);
UNDEFINED
>EVALUATE(DESOK):

the value of M : >±
variable of (M AS) do you wish to solve for ? >M

(AS > 0.33333333) AND (AS <= 1.6035076)
AND (M <= 674999.99fAS»(-0.H800000»AS + 1.0))

Figure 5: Example Network Evaluation

Line 1 shows initiation of processing by a request to evaluate the
topmost node, "DESOK". As the system attempted to process the
specification, it eventually determined that a value was needed for "AS"
(area of steel) and that "AS" was a basic datura. It thus requested that
the user enter the value (line 2; future versions of the system may
attempt to retreive the value from a data-base). The user typed nothing
(except for the input terminating ";") to indicate that "AS" is to be a
designable quantity. Lines 3 through 6 show numeric values being
entered for other basic data.

Line 7 shows that the user wanted to design for three different
values of applied moment. Rather than run the evaluation 3 different
times, he chose to enter 3 values at once, together with constraints
indicating when the values are valid. The variable names "X" and "L"
have significance only to the user (in this case "X" represents distance
along the span from the left support and "L" represents span length).
The expression for "M" was entered over 3 lines to improve readability;
this is of no significance to the system.

At line 8, the network processing has been completed. At this time,
the system attempts to rewrite all resulting constraint expressions so

DESIGN SPECIFICATIONS 101

that only one variable appears on the left of any relational operator
(<, <:, etc.). Here it found three variables in the result, so the user
was asked which of the three he wants as his primary designable
quantity.

Line 9 shows the resulting expression that gives allowable values for
"AS" for the three different moments (specified in terms of "X" and
"L"). The label "[N1]" is a system generated variable name, provided so
that the output expression may easily be referred to later.

At line 10, the value of "M" is erased, and consequently the values
of all data dependent on "M" are also erased. The topmost node is
re-evaluated (line 12), and a value for "M" is requested (line 13) t but'
not given. The values of the other data are retained from the previous
evaluation. The result at line 15 gives upper and lower limits for the
area of steel, "AS", and an upper limit for applied moment, "M", as a
function of "AS".

CONCLUSIONS

It has been demonstrated that it is possible to automatically
reformulate design checking expressions so that they may be used to
directly design quantities of interest. The facility should be useful
for designers who wish to use the specifications to compute values for
design data. It will be of particular use to data-base management
systems that implement the checking of design specifications as part of
the consistency maintenance function.

REFERENCES

[1] Canadian Standards Association.
£2A Standard A21. 1-1970. Code for .tha 4fiAi£Il J2l £lain fl£

Reinforced Concrete structures.
CSA, 1970.

[2] Fenves, S. J.
Tabular Decision Logic for Structural Design.
Journal Q£ £hS. 5frructural Division. ASGE. 92(ST6) :473-1*9O,

December, 1966.
[3] Fenves, S. J., Gaylord, E. H., and Goel, S. K.

Decision Xabla Formulation Q£ Uis. AI5£ Specifications.
Civil Engineering Studies, Structural Research Series No. 347,

University of Illinois, August, 1969.
[4] Goel, S. K., and Fenves, S. J.

Computer-Aided Processing of Design Specifications.
jQUrpa; Pf thu Structural Division. ASCE 97(ST1):463-479, January,

1971.
[5] Holtz, N. M., and Fenves, S. J.

Using Design Specifications for Design.
Work in Progress , Carnegie-Mellon University, Department of Civil

Engineering, Fall (projected), 1980.
[6] Nyraan, D. J., and Fenves, S. J.

Organizational Model for Design Specifications.
Journal of the Structural Division. A5££ 101(ST4):697-7i6, April,

1975.

