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LNTRODUCT] ON.

This paper describes a means of representing a design specification
in a conputer-processable form so that it may be used to check a design
or to assist in actually designing certain quantities. In a design
mode, a conputer program will automatically accept design variables that
have firm values assigned to them and will fornulate concise, synbolic
descriptions of the constraints on the remaining variables such that all
pertinent specification criteria will be satisfied.

Note. — This is a report of research currently in progress at
Carnegi e-Mellon  University. Wile it has been denonstrated by the
devel opnent of a program that the ideas are workable, it is very likely
that many nodifications will be nmade to the inplenmentation and to the
representation, over the next few months as experience is gained with
the system Refer to the technical report by the sane authors, to be
released in the fall of 1980 [5],

SPECI FI CAT| ON REPRESENTATI ON

In order to allow the automatic reformulation of design
specifications and constraints, tw mjor and related issues nust be
consi der ed. First, a means of representing the specification in
conput er- processable form nmust be devel oped. The representation nust
allow efficient processing of design data against the specification, in
order to either Judge adequacy or to produce design constraints, which

. are algebraic expressions that express allowable values for those design

variables that do not have fixed values. Then, the requisite algorithns
must be developed that will enable a program to process a portion of a
specification along with its associated data, in the checking or in the
design rmode. Utimtely, this processing wll be initiated
automatically (when a user attenpts to change a data value in a data
base), or in response to a users request to check a design.

This section deals with the issue of representation; the question of
processing that representation is considered in the following section.
The representation will be based on a network of decision tables to
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describe the meaning of design specifications [2, 3? *t é].

Network Representation. — It has long been recognized that the use of a

system of decision tables is a convenient, precise way to represent the
semantics of design specifications. Such a representation is shown in
Figure 1 for a portion of a CSA specification [1] that deals with the
required amount of longitudinal (flexural) reinforcing in a singly
reinforced concrete beam
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Figure 1. Decision Table Representation of a Specification

There is a hierarchical relation anong the variables (hereafter
called "data items") in a design specification. Before sone data may be
calculated, others (their "ingredients") have to have known val ues (the
former are called "dependents" of the latter). This relationship was
exploited in [*], when a set of algorithms was developed to process
specifications for a design check. ""

Al the data items in a specification (or a portion of one) were
represented in network (or graph) form Individual data were
represented by nodes and the edges (arcs) in the graph represented
direct data dependencies. That is, fromany datum in the network, arcs
were directed to all of its direct dependents. Thus, by following the
arcs in a reverse direction froma node, all of its direct ingredients
could be reached. This representation allows a conputer program to
conpute only the values that are absolutely necessary when checking a
design (nmore will be said about this in the section on specification
processing). Figure 2 shows the dependency network for the portion of
the CSA specification of Figure 1.

This network representation contains no indication of the logic

necessary to perform any of the conputations to evaluate a datum it
only shows the data dependencies. In order to allow a conputer program
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Figure 2: Dependency Network

to assist in the textual organization of specifications [6], the network
model was extended to include more of the structure of the individual
decision tables. Added to the network were nodes representing the
individual rules and conditions. The requirement that a table be used
to conpute the value of only one datura allowed the assignment of a
unique node in the network to the result of a table. The ingredients of
that node were all of the rules of the table. Ingredient to each rule
was the action to be taken if the rule governs, and the conditions that
mist be checked to see if the rule does govern. The ingredients of the
conditions were all of the data contained in the algebraic expression of
the condition.

Only ninor additions to the above described network are necessary to

create the new "fully expanded" representation that nmeets the two
requi renents nentioned earlier. :

— The network representation will again derive

Einal Representation.
directly from the decision table representation, and the graph wll

consist of the following five types of nodes:

1. "Basic Data" - these nodes represent the basic input values to the
system they represent data, the value of which are are normally
not calculated from the specification but must be derived from the
particul ar design (for exanple, beam depth). Note, however, that
we are proposing a system whereby some of the basic data may be
calculated from the specification, providing the values of enough
of the other basic data are known.

2. "Derived Data" - these represent internediate data in the system
which are generally needed in sone further calculation. The
specification gives explicit rules for calculating these values.
VW may distinguish two types of derived data:
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-a "requirement" is a datum (always boolean) evaluating to
"satisfied" or "violated".
a "deternmination" is any other derived datum (numeric or
bool ean).
Some derived data are generated for internal use by the system
and are not explicitly nmentioned in the specification. These are
usual Iy included for efficiency or for sinplification and clarity.
For instance, we will frequently label a particular condition with
a datum name so that only one instance of the condition expression
need be included in the network.

3. "Expressions" - These are algebraic expressions and are used to
conpute some value (nuneric or boolean).  These will be the
expressions that are found in the specification.

4. "Decision Tables" - these represent the results of a computation
performed be executing a decision table. They are essentially
col lection nodes, provided so that the datum that is conputed via
the table nmay have only one ingredient.

5. "Rules" - These nodes represent the rules of a decision table, and
each is a collection node for the various conditions and the -ene
action associated with each rule.

Directed arcs extend to each node fromall of that node's ingredients
as follows: -

1. "Basic data" have no ingredients, and because they have no arcs
leading in to them are referred to as "initial" nodes.

2. "Derived data" may have only one ingredient and that may be one of
the following: the expression that is used to conpute the value
of that datum or, the decision table generating the value of the
node.

3. "Expressions" (which were called functions in [3]) have only basic
or derived data as ingredients, and these are all of the data that
explicitly appear in the expression.

4. "Decision tables" have only rules as ingredients.

5. "Rules" have _one action, and zero or nore conditions as
ingredients. The arcs from the condition nodes to the rule are
labelled with the value the condition nust have for the rule to
govern. If a rule has no condition ingredients, it is assumed to
be an "else" rule.

In some cases, the left to right order of the arcs leading to a node
is inmportant. As there is generally an assuned left to right ordering
when checking the rules of a decision table, the ordering of the arcs
fromrule nodes to table nodes is maintained and is significant.

There should be exactly one derived datum in the network (or
subnetwork)® that has no arcs leading from it. This node, called a
“termnal" node, wll represent the wunion of requirenments from the

3the term "subnetwork" will wusually be used to refer to a portion of
the specification (i.e. a sub-requirement) that directly leads to a
hi gher level requirement - for exanple, the portion dealing with "p*"
(PBOK) in Figure 3.
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specification to be satisfied.

For exampl e, Figure 3 shows a portion of the "fully expanded" network
representation of the specification shown in Figure 1. The derived
datum node labelled "DESCK' is a termnal node which represents the
requi rement that states that the reinforcenent is adequate if three
sub-requirenents are satisfied. The derived datura node |abelled "PBXK'
is a termnal node of the subnetwork which represents the
sub-requirenent dealing with "bal anced" reinforcing.

Fi gurel 3: Fully Expanded Network

SPEQLEL CATION_PROCESSI NG

The objective of specification checking is to determne the value of
.the topnost requirement; that of design is to nmake the val ues of one or
nore topnost requirenents evaluate to "satisfied". Described in this
section is a procedure to process the network in either a checking or
desi gn node.

The checking procedure described in [4] was a recursive one. It
involved starting with the termnal node of the network and attenpting
to conpute a value for it. However, before conputing the value for any
datum in the network, the values of all of its direct ingredients mnust
first have been conputed. By maintaining a flag with each datura to
indicate if it currently had a value, the above procedure resulted in
eval uating the m ni mum possi bl e anount of the network.

The new procedure for evaluation described here slightly extends the
basic nethod of the earlier report. Wen the topnost node of the
network has been deternined, the programw ||l attenpt to conpute a val ue
for that node. The procedure will first recursively evaluate each of
the node's ingredients. Wen all such values have been determned, the
value of the node in question nmay be determned by applying one of a few
rules (depending on the type of node) as explained below The naj or
difference fromearlier work will be in the types of values allowed for
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each of the data. Wiere the previous work allowed only nuneric or
bool ean values, the current program allows the followng values for
basi c data:

- a sinple nuneric or bool ean val ue.
- any arbitrary al gebraic expression.

- no value defined. In this case, the program assumes that the data
item is to be a designable quantity, and the variable nane is
carried synbolically through all conputations.

- any nunber of single values of the above types, along with a
bool ean expression of the conditions under which each value is
valid. The list of the constraint - value pairs required for this
is termed a "production list".

Al gebrai c Expressions. —These, r*f~Arred to here as sinply expressions,
are representations of algebraic expressions in a formthat a conputer
program can evaluate. They may contain variables, constants, operators
(addition, exponentiation, etc.) and references to funotions (SQRT, MN,
MAX, SIN etc.).

Production Lists. — A production list is a neans used to express a
series of alternate values, and the conditions (or constraints) for
whi ch each of the values is nmeaningful. Formally, a production list is
a list of "n" constraint-value pairs, <G,V;> where n£ 1 and
11iin C, the constraint, is a boolean expression, and V;, the
value, is any algebraic expression. For any i, if C' evaluates to
"true", then Vi is the value of the production list. The constraints
nust be checked in order of increasing i, and the first one evaluating

to "true" governs. G, (the last constraint) will often be the constant
"true" in order to supply V, as the value of the production list if none
of the other constraints is satisfied.

As an exanpl e, consider the problemof designing a concrete beamwith
three values of norment given along the span, say at U and 8' from the
left support, and at the center-line. The production list used to
express the noment mght be:

(<X'1 4, 287000> <X 1 8, 492000> <TRUE, 656000>}
where "X' is the distance from the left support. The production Iist
states:

"if X is less than or equal'to 4, then the value is 287000,
else if X is less than or equal to 8, then the value is M2000,
el se the value is 656000."

Note that production lists can be assigned to basic data. Thus, the
systemw |l handl e any additional constraints on the input data that can
be put in the formof a production list, and will handle "nulti-val ued"
data such as morments along a span. The constraints that are thus put on
the basic data are carried through the network in the evaluation
process, and the final result is expressed in terns of the initial
constraints.

Network FEvaluation. — Now that the concepts of expressions and
production lists have been introduced, we nay address the issue of
network evaluation. This is the process of conputing the value of the
termnal node of the network, given specific values for sone or all of
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the initial nodes. 1If all of tha basic data have simple numeric values,
then tha the avaluatton is a design chack, and the resulting valums of
the terminal noda will be tha boolean constant "“satisfactory" or
"violatad". 1f some of the basic data are undafined (have no value
assigned), then the evaluation process is one of design, and the
resulting value of tha terminal node will be a constraint expression
involving the undefined variables (and any additional variables the user
may have supplied, such as "X" in tha example above). The constraint
will be a boolean axpression that will specify the values of the basic
data for which the topmost node will avaluate to "satisfied". In other
words, the constraint expression indicates "allowable" values of the
undafined basic data.

Then the processing of the network may be stated as follows. To
avaluate any node, use that node's currently defined value if it has
one, Otherwise, perform one of the following, depending on the type of
the noda:

1. Basic Datum - attempt to retreive the value from somewhere
external to the system (the current system asks the user to type
in the value). If unable to obtain a value (currently indicated
by a null input), then return an expression consisting only of the
data naame.

2. Derived Datum - evaluate the datum's ingredient (it may have only
one) and raturn that value.

3. Expression - evaluate all of the ingredients. As any of those
values may be production lists, the value of the axpression may be
also. The value of the expression is formed by taking all
possible combinations of values in the production lists of all the
ingredients. Each combination so formed is one possible set of
values for the variable 1ingradients, and these values are
substituted into the expression to get one possible value for the
expression. The constraints corresponding to each variable value
are AND'ed together to form the constraint for the resulting
expression value. For example, consider the expression "a + b".
If the value of "a" is {(Ca1,A1> <Caz,A2>}, and the value of "b"
is (<Cpy,By> <Cb2.A2>), then the value of the expression is
{(Ca1 AND Cbi' A1+B1> <Ca1 AND Chz, A]#Bz) (Caz AND Cb" A2+B’>
(Caz AND Cbz, Az#Bz)).

4. Rule - evaluate the condition ingredients in turn. If any
evaluate to "falsa", then the value of the rule is "undefined".
Otherwise, evaluate the action ingredient. All of the constraints
and all of the values in the production lists of all of the
conditions are "AND"'ed to form one expression. This in turn is
"AND"'ed to each constraint in the action's production list, and
the resulting list becomes the value of the rulae,.

5. Jable - evaluate each rule ingredient in turn. If the value is
"undafined"”, then this rule plays no part in the final value of
the table. If tha constraint portion of the value of the rule is
trua then the rule governs, then the valus of thea table is the
value portion of the production 1list of tha governing rule.
Otherwisa no particular rule governs, and the value of the table
is simply the concatenation of the production lists of each of the
rules,

- .
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The final value of the terminal node will be the production 1list
{<C, "satisfied"> <true, "violated">}, whera "C" {s a constraint
axprassion stating allowable valuas of tha designable data.

] a-~ . == In normal design practice, it is quite common
for the values of some of the basic data to change, requiring that the
network be re-evaluated to either re-check the design, or to re-design
some of the basic data. When this happens, the natwork processor should
not have to re-evaluate the entire network, rather it should only have
to re-do those portions affected by the changed data.

At present, we have a two-valued indication of the status of any
glven node: either the node has or does not have a valua. When a datum
node is evaluated, its presence flag is set to "valid" to indicate that
it has a value. If the value of any node is ever changed from that used
during network evaluation, than the presence flag of that node and of

all its direct and indirect ingredients must be set to '"void". Note
that this is essentially identical to the procadura "WARN" given in [U4].
EXAMPLE PROCESSING

An example will serve to demonstrate some of the capabilities of the
system. Ultimately it is intended that the system accept specification
input in a form as close textually to the decision tables of Figure 1 as
most common input devices will allow. For the present system, the
tables must be hand translated to the form shown in Figure 4. The
translation from decision table form to the "internal" form shown 1is
very easy, and will be simple and straight-forward to automats.

DESOK << TABLE(R11,R12);
R11 << RULE(A11,PBOK,PMINOK,MUOK);
R12 << RULE(A12);
A11 << TRUE;
A12 << FALSE;
PBOK << P <= 0.75%PB;
PMINOK << P > 200/FY;
MUOK << M <= MU;
P << AS/(B"D);
PB << 0.85%K1#(FPC/FY)*(87000/(87000+FY));
K1 << TABLE(R21,R22);
R21 << RULE(A21,C21);
R22 << RULE(A22,NOT C21);
A21 << 0.85;
A22 << 0.85-0.00005%(FPC-4000);
€21 << FPC <= 4000;
MU << PHI®B#D®*D*FPC*Q*(1-0.59%Q);
PHI << 0.90;
Q << PYFY/FPC;

Figure U4: Example Network Input

The internal form is a set of standard algebraic expressions, with
the addition of the "<<" symbol (which may be read "is computed by").
This is a binary infix operator (much like the value assignment ":=" in
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PASCAL or "s" in FORTRAN), and is used to define the expression used to
calculate a value for the datum  The expression to the right of the
"<<" js stored as an ingredient of the datura to the left. The system
automatically creates all the dependent and ingredient relationships
from the input expressions. The indentation shown above is not
significant to the system it is only provided for clarity.

An exanple session using the above described network is shown in

Figure 5. User input to the system is underljned. and all lines are
nunbered at the left for reference.

>EVALUATE(DESOK) <
Enter the value of AS : >_
Enter the value of B : >JLL
Enter the value of D : »12,3;
Enter the value of FPC : MOOO-
Enter the value of FY : >6Q00Q
Enter the value of M: >F X < L/8 THEN 656000*7/16
> <

~N o0 RAWN

5 ;
8 Wich variable of (L X AS) do you wish to solve for ? >A&

9 [N] (X < 0.125'L) AND (AS >= 0.44897103) AND (AS <= 1.6035076)
xR
(X < 0.25%L) AND (AS >= 0.8(543933) AND (AS <= 1.6035076)
xR
(AS >= 1.1198247) AND (AS <= 1.6035076)

10 > .

o [N UNDEFI NED

» >EVALUATE( DESCK) :

13 Enter the value of M: >

4 Wich variable of (MAS) do you wish to solve for ? >M

L (W1 (AS > 0.33333333) AND (AS <= 1.6035076)

AND (M <= '674999. 99'AS»( - 0. H800000»AS + 1.0))
Figure 5. Exanple Network Evaluation

Line 1 shows initiation of processing by a request to evaluate the
topmost node, "DESCK". As the system attenpted to process the
specification, it eventually deternmined that a value was needed for "AS"
(area of steel) and that "AS' was a basic datura. It thus requested that
the user enter the value (line 2; future versions of the system may
attenpt to retreive the value froma data-base). The user typed nothing
(except for the input terninating ";") to indicate that "AS" is to be a
designable quantity. Lines 3 through 6 show numeric values being
entered for other basic data.

Line 7 shows that the user wanted to design for three different
values of applied noment. Rather than run the evaluation 3 different
times, he chose to enter 3 values at once, together with constraints
“indicating when the values are valid. The variable names "X' and "L"
have significance only to the user (in this case "X' represents distance
along the span from the left support and "L" represents span |ength).
The expression for "M was entered over 3 lines to inprove readability;
this is of no significance to the system

At line 8, the network processing has been conpleted. At this tine,
the system attenpts to rewite all resulting constraint expressions so

t hat
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only one variable appears on the left of any relational operator
:, etc.). Here it found three variables in the result, so the user
asked which of the three he wants as his primary designable

quantity.

" AS"
L")

Line 9 shows the resulting expression that gives allowable values for
for the three different rmoments (specified in terms of "X' and

The label "[N1]" is a systemgenerated variable name, provided so

that the output expression may easily be referred to later.

of

line 10, the value of "M is erased, and consequently the val ues
data dependent on "M are also erased. The topnost node is

re-evaluated (line 12), and a value for "M is requested (line 13)t but'
not given. The values of the other data are retained from the previous
evaluation. The result at line 15 gives upper and lower linits for the
area of steel, "AS', and an upper limt for applied moment, "M, as a
function of "AS".

CONCLUS| ONS

has been denonstrated that it is possible to automatically

refornul ate design checking expressions so that they may be used to
directly design quantities of interest. The facility should be useful
for designers who wish to use the specifications to conpute values for
design data. It will be of particular use to data-base management
systems that inplement the checking of design specifications as part of
the consistency maintenance function.
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