NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

COMPARISON OF TWO METHODS FOR DESIGN CENTERING

by
L. M. Vidigal and S.W. Director

DRC-18-31-81

September 1981

COMPARISON OF TWO METHODS FOR DESIGN CENTERING ${ }^{1}$

L.M. Vidigal ${ }^{2}$ and S. W. Director
Department of Qectrieal Engineering Carnegie-Mellon University
Pittsburgh, Pennsylvania

Abstract

Two methods recently proposed to solve the design cantering problem $[2,9]$ are compared. Although the methods are formulated differently, they are shown, under general assumptions, to yield the same solutions. Simplifications required to make the methods efficiently implementable introduce, however, significant

 differences from an utilization point of view.
1. Introduction

Finding the best nominal design in order to maximize the yield is an important problem in tC design. Because of the unavoidable fluctuations ' m the manufacturing process, the actual values of the circuit parameters, denoted by the vector p, is characterized by the known joint density distribution <jrtp-p p°). where p° represents the nominal values. Oesign centering methods [1.5,31 try to imbed in the so-called region of acceptability R_{Jf} the largest convex domain $\mathrm{B}_{\mathrm{r}}(\mathrm{p})$ related to $\left.<\mathrm{pip}^{2}-\mathrm{p}^{\circ}\right)$. as shown below. The region of acceptability can for our purposes be defined as the int

$$
\begin{equation*}
R_{a}=\left\{p \mid f(0) \leq f_{\text {max }}, j=1, \ldots, m\right\} \tag{1}
\end{equation*}
$$

where the f_{f} represent the performance functions which characterize the circuit behavior. R_{t} is assumed to be simply connected. The contours of equal probability of $?<p$) can be associated for all the distribution of interest with a norm $n(p)$. See for example [3]. $\mathrm{B}_{\mathrm{r}}(\mathrm{p})$, often referred to as a norm body, is defined relative to $n(p)$

$$
\begin{equation*}
B_{r}\left(p^{\circ}\right)<\left\{p \mid n\left(p-p^{\circ}\right)<r\right\} \tag{2}
\end{equation*}
$$

and represents a body centered at p° whose size is proportional to r. The first method we will look into is the approach referred to as (VTP) in [2], and can be formulated as
(VTP): maximize \mathbf{r}

$$
\begin{equation*}
\text { such that } \max _{i} \max _{y \in 8_{f}}^{f_{i}}(\mathbf{y}) \leq l_{\max } \tag{3}
\end{equation*}
$$

In this approach a maximally sized body is to be found, such that inside the body none of the performance functions wiH exceed their maximum allowable value. We note from the outset that the main difficulty in solving (3) derives from the maximization subproblem

[^0]\[

$$
\begin{equation*}
\underset{y_{i} \mathbb{S}_{2}\left(p^{-}\right)}{\operatorname{maximize}} \quad f_{1}(y) \tag{4}
\end{equation*}
$$

\]

as it must be solved for all constraints \mathbf{i} * $1 . \ldots . . \mathrm{m}$ and is likely to have local maxima, making gradient based methods unreliable. That (4) is iikery to have local maxima can be inferred from the fact that quite often the $t\{y)$ are convex functions and $B_{r}\left(p^{\circ}\right)$ is a parallelepiped.

The second method, refered to as the $\{H P$) method, is formulated as:

In this method the points on the boundary of the region of acceptability which are closest to the nominal design are located and then this distance is maximized. Searching for these near points is based uoon the fact that they limit further expansion of the body $\mathrm{B}_{\mathrm{r}}(\mathrm{p})$. It is possible to prove that if the performance functions are either quastconvex or quasiconcave, their accumulation points are the points where the largest body touches the boundary of the region of acceptability.

The domain of the innermost minimization is the intersection of the region of acceptability with the surface $f,(y) * f \wedge$, i.e. in the boundary of R_{a}, we will assume this domain to be nonempty. Otherwise the constraint tyy) if dropped from the set of constraints the region of acceptability remains unchanged.An algorithm can easily detect this situation by verifying that for the constraint i there is no feasible solution to the minimization problem. The main difficulty that arises in solving (5) isthesubproblem

$$
\begin{aligned}
& \text { minimize } n<y-p^{0} \text {) } \\
& \begin{array}{c}
\text { such that } \quad f(y)<f^{\wedge}, j>1 \ldots . . . m \\
f(y) \geq l^{\prime}
\end{array} \\
& f_{i}(y) \geq \prime^{\prime} \text { max }
\end{aligned}
$$

The difficulty here is that (6) is a constrained minimization problem which is computationally intensive in itself, and one which must be solved repeatedly.

2. Equivalence of Methods

It is ilustrative to recognize that if \mathbf{R}_{a} is simply connected, the performance functions are differentiate and their gradients do no vanish at the boundary of R_{\sim}. bd(R_{a}). then a locally optimal solution to (3) is also locally optimal to (5).

For convenience we define .

$$
\begin{equation*}
\text { bd,(Rj-\{peR,|f,(rt-f,,,., }\} \tag{7}
\end{equation*}
$$

andthesảts

$$
\begin{equation*}
M_{T}\left(p_{r}\right)=01 \mid f_{f}(0) \cdot \max \quad f_{-}(p)> \tag{8}
\end{equation*}
$$

VTncenteUi proved [10] that a solution 0°, ?) to probinn (3$)^{*}$ locally optimal if
and
$\left.\left.0 € \operatorname{CO}^{m} \mathrm{y}_{\mathrm{t}} \quad\{\mathrm{Vfjtp}) \mid \mathrm{pcM} .0^{\circ} /\right) . \mathrm{fj}(\mathrm{p})=f_{\max }\right\}$

This last mpromion can oe mierprataa geometrically to mean that the convex hull defined by gradients of the cunauaima at the points where the body touches the boundary of \mathbf{R}_{t}, contains the origin, intuitively, if this situation occurs, there is no direction in which the center could be moved such that the radius of the body couWincreater.

To establish the equivalence between the two problems* it is enough to show that any point $0 € M_{3}\left(f I^{\circ}, f\right)$, exists in $b d_{1}(R a)$ and is at a nwtimai distance from $\&^{\circ}$. Assume ttwe is a point p "ebdi(Ra) such that $\left.\mathrm{n}<\mathrm{p} "-\mathrm{S}^{\circ}\right)<n\left\{f i^{\wedge}{ }^{\circ}\right.$) then p^{*} exists in the interior of $\mathrm{B}_{\mathrm{r}} .\left(\mathrm{fl}{ }^{\circ}\right)$ and there is an $«>0$ such that $\mathrm{B}_{\epsilon}(\mathrm{p}) \mathrm{CB}$? « $\left.{ }^{\circ}\right)$. By assumption $V f_{1}\left(p^{\prime \prime}\right) \quad m \quad 0$ and there ta therefore a point $P^{*} € B\left(p^{*}\right)$ such that $\left.\left.f t p^{\prime \prime}\right)>K p^{\prime \prime}\right)$. But this contradicts the hypothesis that (0 V) is optimal as for p^{*} we would have $p^{*} €$

3. Relation Between Subproblems (4) and (6)

The relation between problems (4) and (8) can be made dearer
 $i, i+i, \ldots, m$. if the constraint i is not superfluous, $i . \wedge$ se constraints for most cases are not active and the solution to (6) would remain unchanged. We rewrite therefore (6) in the following form

$$
\begin{array}{ll}
\text { minimize } & n\left(y-p^{9}\right) \tag{11}\\
\text { such that } & f_{i}(p) \geq f_{n=1}
\end{array}
$$

On the other hand, using (2) subproblem (4) can also be rewritten as

$$
\begin{array}{ll}
\text { maximize } & f_{f}(y) \\
\text { such that } & n\left(y-p^{0}\right) \leq r \tag{12}
\end{array}
$$

for p° and r constants.
As illustrated in Rg. 1 for the norm $n(x)=\|x\|$ $\max \mid x 1^{\wedge}-1, \ldots \wedge$, in subproblem (10) for a constant sized paraHeHpiped we search for the

point where f_{i} is maximized. In (11) the opposite problem is solved: given a fixed value of the function f_{p}, the minimum value of r is found such that the resulting norm body will have at least a common point with the surfac» $\mathrm{f}_{;}(\mathrm{p})-\boldsymbol{t}_{(x m x}$.

It is interesting to rfote that (11) and (12) are in some sense duals of each other since they have the objective function and the constraint interchanged. We saw before that the solution to these two subproblems for (\$.?) was the same. We further notice that a local solution to (11), assuming that $n(x)$ is locally Lipschitz, is given by [4].

$$
\begin{align*}
& \left.0 € r_{0} 3 r K y-p^{0}\right)-r_{1} V f .(y) \\
& r_{00} r_{1} \geq 0 \tag{13}\\
& r_{1}\left(f_{1}(y) \neq n=0\right.
\end{align*}
$$

where $3 n\left(y-p^{\circ}\right)$ represents the generalized gradient of $n\left(y-p^{\circ}\right)$. Similarly, for (12)

$$
\begin{align*}
& 0 \in r_{0} \#_{i}(y)+r_{1} \partial n\left(y-p^{O}\right) \\
& r_{o} f_{1} \geq 0 \tag{14}\\
& r_{1}\left[n\left(y-p^{0}-r\right]=0\right.
\end{align*}
$$

The similarity of these problems is enchanced if we nouica that at the solution of (3) and (5) we must have r^{\wedge}.

4. Implementation of the Methods

The implementation of the two methods is similar in the sense that the subproblems (4) and (6) are solved at each iteration and the function and gradient information gathered during this process is used by the outer maximization. In the first case the problem can be reduced to a constrained nonlinear problem which can be
solved by some constrained variable metric methods. Specśficafly, a variation of Poweffs algorithm [7] is used, in the second method, the equivalent information is used to generate a second order approximation to the constraining surfaces and the largest normbody is inscribed in that simplified approximation to the region of acceppebiity.
Seiving subprotẋeni (4) at each iteration would result in a computationely sxpansnw agofiuvn. nwrarora nw nonnoaay $\mathrm{B}_{\mathrm{f}}(\mathrm{p})$ is imricad to ttw cas* wtwr ${ }^{*} \mathrm{ft}^{\star}$ corresponding norm is I loo.
$B_{r}(p)=\left\{y\left|b_{1}-a\right| \leq r\right\}$

The temis ror irns resmcoon is xnac m most practical camat the maximum of (4) witf occur at a vertex of $8_{\mathrm{r}}(\mathrm{p})$, therefore reducing the set where the search is to be done to a finite set This set can however stiii be very large and in [2] a scheme referred to as splitting is introduced. TWa technique, which is baaed on previous information, predicts where the local maxima of (4) are Hkaly to occur. Reducwgèmeiearchfbramaxirnumtothesatofverticaeof $\mathrm{B}_{\mathrm{r}}(\mathrm{p})$ can however introduce significant errors in the case where the region of acceptability is not one (finenakraly convex [1], or the region of acceptability has hoiee in its interior, as iHuatratad in Fig. 2.

The (NP) method doea not have thia limitation*
Although methods exist tar immminat probetam when the obiective function is imodifterentiaMe. a.g> [6], and thia is presently an area of active raae*ch, all algorithms for thia general problem tend to require a very large number of function and gradient (generalized gradients) evaluations making them unsuitable to be used in subproblem (6) where repealed solutions are required. In our HiHxemeiHation we limited the algorithm (NP) to the casee where the norm is diffeientfable, and used alao Powers constrained verimbit meric sigorithm to satve subproblems (6).

From the designer's point of view, the (NP) method yields ifiteresting information on howweilthe econstraints are formulated. At early stages of a design, it is very often the case that a large number of cmisuaintt m tentatively specified, dearly if the solution to (6) corresponds to a value of $t \mathrm{M} \wedge$ the constraints can be modified. Further, the relative distances to the final nominal? ${ }^{0}$ give an indication on how strongly the*.constraint affects the circuits yield.

A limitation of the NP method which could be serious is 9 the initial design is very far from the final solution, the quadratic approximations might have to be updated, thereby significantly increasaig xnecoai of me atgoninni.

5. Examples

We tried both methods on a group of examples to compare the behavior of both methods. For the (VTP) we used the infinite norm, while for the (NP) we used the ל̧-norm, this accounts for the
different solutions obtained with both methods. (Note also the theoretical advantage of the (VTP) methods of not requiring a feasible starting point).
Example 1 In this example we have a single aonve. Quadratic performance function

$f_{t}(p)-0505\left(p ?+p_{2}^{2}\right)-0.9 p_{1} p_{2}$

constrained to be smaller than a1.
Starting Point R \mathbf{n} * Point Number of F.E. Number of OE.

(VTP)	$(2.040 J)$	(0000)	8	8
(NP)	$(05,06)$	(0000)	6	6

Figure 3:
Example 2 Thia example is taken from (8]
$\left.f_{1}(p)=0 p_{1}+1\left(p_{2}-1\right)^{2}+1\right)$
$f_{2}(p)=\theta_{1}-x_{2}+1$
$f_{3}(p)=p_{1}^{2}+p_{2}^{2}-1$
The constraints are $\mathrm{K}=1.5, \mathrm{i}=1,2.3$
Starting Point FtnalPoint Number of F.E. Number of G.E.

figure 4:

Example 3 This example was taken from [8]

$f_{1}(p)=1.5-p_{1}\left(1-p_{2}\right)$	$f_{4}=-f_{1}$
$f_{2}(p)=2.25-p_{1}\left(1-p_{2}^{2}\right.$	$f_{5}=-f_{2}$
$f_{3}=2.825-p_{1}\left(1-p_{2}^{3}\right)$	$f_{8}=-f_{3}$

constrained to $f_{i} \leq 1.5, i=1, \ldots, 6$
Starting Point Final Point Number of F.E. Number of G.E.

(VTP)	(20.20)	$(1.851,0.134)$	33	87
(NP)	$(1.3 .03)$	$(1.832,0.142)$	24	20

Figure 5:
Example 4 Also taken from [8] has two performence hunction, one convex and the other concave, both constrained to be smelior than 1.15

$$
\begin{aligned}
& f_{1}(p)=0.96+\left(p_{1}-1\right)^{2}+\left(p_{2}-0.8\right)_{2} \\
& f_{2}(p)=1.16-\left(p_{1}-1\right)^{2}-\left(p_{2}-0.8\right)^{2}
\end{aligned}
$$

Starting Point Final Point Number of F.E. Number of G.E

(VTP)	$(2.0 .20)$	$(1.000 .1 .004)$	31	32
(NP)	$(0.8,0.9)$	$(1.000,1.016)$	11	22

For this example and for function f_{2} the solution to subprobiem (4) is not in a vertex of the peralletipiped and therefore a significant sart of the final tolerance box is infeesible.

Conclusion

We have shown that tio apparently very different problems can be seen as different formulations of the same body imbedding problen. yielding under general conditions an identical result. With reasonable assumptions the problems lend themselves to very different implementations : one (VTP) suitable for the worst case problem. the other (NP) for a general body center problem when the nom is differentiable. It is interesting to note further that when applied to simitar problems they seem to have computational requinements of the same order, when measured in terms of the number of function and gredient evahuations.

Beferences

[1] Bandier, John W., Liu. Peter C. and Chen, James H. K. Worst Case Newwork Tolerance Optimization. IEEE Transactions on Microwave Theory and Techniques MTT-23(8):630-640, Auguet, 1975.
[2] Erayton, Robert K., Director, S. W., Hachtal,Gary D. and Vidiget, L M.
A New Algorithen for Statimical Circuit Design Beseed on OungiNewtion Mathods and Function Splitting-
IEEE Transactions on Circuits and Systems CAS-26(9):784 794, September, 1878.
[3] R.K. Erayton,S.W. Director and G.D. Hechted.
Yind Maximization and Worst-Case Design with Arbitrary Statistical Distributions.
IEEE Transactions on Eircuits and Systems CAS-27(9):756784. Sepember, 1960.
[4] Ciarke, Frank H .
A NEw Approach to Lagrange Nuttipliers.
Methematics of Operations Research 1(2):165-174, May. 1976.
[5] Director, Siephen W. and Hechtel, Gary D.
The Simpliciel Approximation Approsech to Design Centering.
IEEE Transactions oc Circuits and Systems CAS-24(7):383 372, hly, 1977.
[6] Nifilin, Robert.
An Algorithm for Constrained Optimization with Semiamocts Functiona.
Methematics of Operations Research 2(2):191-207, May, 1977.
[7] PoweliMad.D.
A Fast Algorithm for Nonlinearly Constrained Optimization Calculations.
In A. Dold and 8. Eckmann (editor), ** 830 Lec. Notes in Math., peces 144-157. Springer-Vertag, 1977.
[8] Schiemelacoben, Hants and Madsen,Kai.
Algorithms for Worsi-Case Tolerance Optimization. IEEE Transections on Circuits and Systems CAS-23(9):775783. September, 1979.
[9] Vidigali.M. and Director.S.W.
Deaign Centering: The Quasi-Convex, Quasi-Concave Performance Function Case.
In International Symposium on Circuits and Systems. IEEE. 1980.
[10] Sangiovanni-Vincentell., Abberto.
Personal Communication.
1980.

[^0]: ${ }^{1}$ Thfc work «aa support** io part by tha Haionai Soanca Foundation undar Gram ECS 79-23191.
 \wedge Haw trom tnaotmo Superior Tecmro.Lnboa.Poctuqat

