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ABSTRACT

Two methods recently proposed to solve the design cantering
problem [2,9] are compared. Although the methods are
formulated differently, they are shown, under general assumptions,
to yield the same solutions. Simplifications required to make the
methods efficiently implementable introduce, however, significant
differences from an utilization point of view.

1. Introduction

Finding the best nominal design in order to maximize the yield is
an important problem in tC design. Because of the unavoidable
fluctuations m the manufacturing process, the actual values of the
circuit parameters, denoted by the vector p, is characterized by the
known joint density distribution <jrtp-p°). where p° represents the
nominal values. Oesign centering methods [1.5,31 try to imbed in
the so-called region of acceptability RJf the largest convex domain
Br(p) related to <pip-p°). as shown below. Tne region of
acceptability can for our purposes be defined as the i

(1)

where the f, represent the performance functions which
characterize the circuit behavior. Rt is assumed to be simply
connected. The contours of equal probability of ?<p) can be
associated for all the distribution of interest with a norm n(p). See
for example [3]. Br(p), often referred to as a norm body, is defined
relative to n(p)

Br(p°) « {p|n(p-p°)<r} (2)

maximize f.(y) (4)

as it must be solved for all constraints i * 1 m and is likely to
have local maxima, making gradient based methods unreliable.
That (4) is iikery to have local maxima can be inferred from the fact
that quite often the t{y) are convex functions and Br(p°) is a
parallelepiped.

The second method,
formulated as:

to

{UP): max min mm rtfyp0})
. r i W > * _

the {HP) method, is

(5)

In this method the points on the boundary of the region of
acceptability which are closest to the nominal design are located
and then this distance is maximized. Searching for these near
points is based uoon the fact that they limit further expansion of the
body Br(p). It is possible to prove that if the performance functions
are either quastconvex or quasiconcave, their accumulation points
are the points where the largest body touches the boundary of the
region of acceptability.

The domain of the in st min tio n is the intersection of
the region of acceptability with the surface f ,(y) * f ^ , i.e. in the
boundary of Ra, we will assume this domain to be nonempty.
Otherwise the constraint ty^ is superfluous in the sense that
if dropped from the set of constraints the region of acceptability
remains unchanged.An algorithm can easily detect this situation by
verifying that for the constraint i there is no feasible solution to the
minimization problem. The main difficulty that arises in solving (5)
isthesubproblem

and represents a body centered at p° whose size is proportional
to r. The first method we will look into is the approach referred to as
(VTP) in [2], and can be formulated as

minimize n<y-p°)

sucn that fj(y) < f^ , j»1 m

(VTP): maximize

such that max max
i y€8f

(3)

In this approach a maximally sized body is to be found, such that
inside the body none of the performance functions wiH exceed their
maximum allowable value. We note from the outset that the main
difficulty in solving (3) derives from the maximization subproblem

1Thfc work «aa support** io part by tha Haionai Soanca Foundation undar
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(6)

The difficulty here is that (6) is a constrained minimization
problem which is computationally intensive in itself, and one which
must be solved repeatedly.

2. Equivalence of Methods

It is ilustrative to recognize that if Ra is simply connected, the
performance functions are differentiate and their gradients do no
vanish at the boundary of R bd( Ra). then a locally optimal
solution to (3) is also locally optimal to (5).
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For convenience we define

bd,(Rj-{peR,|f,(rt-f,,,.,}

andthesats

01 |f.(0) . m a x f-(p)>

VTncenteUi proved [10] that a solution 0 ° , ?) to
locally optimal if

and

0 € CO y t {Vfjtp) | pcM.0 o/).fj(p)

(7)

(8)

( 3 ) *

(9)

(10)

This last can oe mierprataa metrically to
that the convex hull defined by gradients of the cunauaima at the
points where the body touches the boundary of Rt, contains the
origin, intuitively, if this situation occurs, there is no direction in
which the center could be moved such that the radius of the body
COUWi

To establish the equivalence between the two problems* it is
enough to show that any point 0 €M.(fl °, f ) , exists in bd.(Ra) and
is at a nwtimai distance from &°. Assume ttwe is a point
p"ebd.(Ra) such that n<p"-S °) < n{fi^ °) then p* exists in the
interior of Br. (fl °) and there is an «>0 such that B€(p ) C B? « °).
By assumption Vf.(p") m 0 and there ta therefore a point
P* € B (p*) such that ftp") > Kp"). But this contradicts the
hypothesis that (0 V) is optimal as for p* we would have p* €

° * f

3. Relation Between Subproblems (4) and
(6)

The relation between problems (4) and (8) can be made dearer
by dropping from (6) the requirement that f-fi)^nm. i«i.~«i-
i,i + i,...,m. if the constraint i is not superfluous, i.^se constraints
for most cases are not active and the solution to (6) would remain
unchanged. We rewrite therefore (6) in the following form

R g u r e i :

point where f. is maximized. In (11) the opposite problem is
solved: given a fixed value of the function f., the minimum value of r
is found such that the resulting norm body will have at least a
common point with the surfac»f;(p) - t(xmx.

It is interesting to rfote that (11) and (12) are in some sense duals
of each other since they have the objective function and the
constraint interchanged. We saw before that the solution to these
two subproblems for {$.?) was the same. We further notice that a
local solution to (11), assuming that n(x) is locally Lipschitz, is
given by [4].

0€ro3rKy-po)-r1Vf.(y)

minimize
such that

(11)

On the other hand, using (2) subproblem (4) can also be
rewritten as

(13)

where 3n(y-p°) represents the generalized gradient of n(y-p°).
Similarly, for (12)

(14)

maximize f.(y)

such that

for p° and r constants.

As illustrated in Rg. 1 for the
max |x 1^-1,. . .^ , in subproblem (10)
paraHeHpiped we search for the

(12)

for a constant sized

The similarity of these problems is enchanced if we nouca that at
the solution of (3) and (5) we must have r ^ .

4. Implementation of the Methods

The implementation of the two methods is similar in the sense
that the subproblems (4) and (6) are solved at each iteration and
the function and gradient information gathered during this process
is used by the outer maximization. In the first case the problem can
be reduced to a constrained nonlinear problem which can be



solved by some constrained variable metric methods. Specsficafly,
a variation of Poweffs algorithm [7] is used, in the second method,
the equivalent information is used to generate a second order
approximation to the constraining surfaces and the largest
normbody is inscribed in that simplified approximation to the region
Of

different solutions obtained with both methods. (Note also the
theoretical advantage of the (VTP) methods of not requiring a
feasible starting point).

Example 1 In this example we have a single aonve. Quadratic
performance function

Bf

I

Serving subprotxeni (4) at each iteration would result in a
sxpansnw agofiuvn. nwrarora nw nonnoaay

is imricad to ttw cas* wtwr* ft* corresponding norm isBf(p)
lo

ft(p) - O505(p?

oo.

ror irns resmcoon is xnac m most practical
maximum of (4) wtfl occur at a vertex of 8r(p), therefore reducing
the set where the search is to be done to a finite set This set can
however stiii be very large and in [2] a scheme referred to as
splitting is introduced. TWa technique, which is baaed on previous
information, predicts where the local maxima of (4) are Hkary to
occur. Reducwgmeiearchfbramaxirnumtothesatofverticaeof
Br(p) can however introduce significant errors in the case where
the region of acceptability is not one (finenakraly convex [1], or
the region of acceptability has hoiee in its interior, as iHuatratad in
F

constrained to be smaller than a 1.

Starting Point R n * Point Number of F.E. Number ofOE.

(VTP) (2.O40J) (OOOO) 8 8

(NP) (05,06) (OOOO) 6 6

Figure 2:

The (NP) method doea not have thia limitation*

Although methods exist tar immmna
obiective function is imodifterentiaMe. a.g> [6], and thia is presentfy
an area of active raae*ch, all algorithms for thia general problem
tend to require a very large number of function and gradient
(generalized gradients) evaluations making them unsuitable to be
used in subproblem (6) where repealed solutions are required. In
our HiHxemeiHation we limited the algorithm (NP) to the casee

he norm is diffeientfable, and used alao Powers

Figure 3:

Example 2 Thia example is taken from (8]

From the designer's point of
iteresting information on howweilthe

the (NP) method yields
constraints are formulated.

At early stages of a design, it is very often the case that a large
number of cmisuaintt m tentatively specified, dearly if the
solution to (6) corresponds to a value of t M ^ the constraints can
be modified. Further, the relative distances to the final nominal?0

give an indication on how strongly the* constraint affects the
circuits yield.

A limitation of the NP method which could be serious is 9 the
initial design is very far from the final solution, the quadratic
approximations might have to be updated, thereby significantly
increasaig xnecoai of me atgoninni.

5. Examples

We tried both methods on a group of examples to compare the
behavior of both methods. For the (VTP) we used the infinite norm,
while for the (NP) we used the L-norm, this accounts for the

The constraints are

Starting Point FtnalPoint Number of F.E. Number

(VTP) (2.0,2.0) (03a 1.01) 18 20

(NP) (O7,O9) (035,1.01) 15 46



Example 3 This example was taken from [8)

f2(p)

Conciuaion

We have shown that two apparently very different problems can
be seen as different formulations of the same body imbedding
problem, yielding under general conditions an identical result
With reasonable assumptions the problems lend themselves to very

* s : one (VTP) suitable for the worst case

constrained to fj

Starting Point F5nai Point Number of F.E.Number ofOE.

(VTP) (2.O2.0) (1.851,0.134) 33 87

(NP) (1.3A3) (1.832A142) 24 20

different tmpiemei
problem, the other (NP) for a general body center problem when
the norm is differentiate. It is interesting to note further that when
applied to similar problems they seem to have computational
requirements of the same order, when measured in terms of the
number of function and gradient evaluations.
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Example 4 Also taken from [8] has two performance function,
one convex and the other concave, both constrained to bemaisr
than 1.15

f 1 (p) .a96>(p 1 - i ) a

Starting Point Final Point Number of F£. Number o f O E
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