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Introduction

Optimal control and estimation problems are currently solved by

embedding a differential equation solver into the optimization

strategy. The optimization algorithm chooses the control profile or

parameter estimates and requires the differential equation routine to

solve the equations and evaluate the objective and constraint

functionals at each step. Two popular methods for optimal control

that follow this strategy are Control Vector Iteration (CVI) and

Control Vector Parameterization (CVP). CVI requires solution of the

Euler-Lagrange equations and minimization of the Hamiltonian while

CVP involves repeated differential equation solutions driven by direct

search optimization [ l ] .

Both methods can be prohibitively expensive even for small

problems because they tend to converge slowly and require solution of

differential equations at each iteration. In this note we introduce a

method that avoids this requirement by simultaneously converging to

the optimum while solving the differential equations. To do this we

apply orthogonal collocation to the system of differential equations

and convert them into algebraic ones. We then apply an optimization

strategy that does not require satisfaction of equality constraints at

each iteration. Here the method is applied to a small init ial value,

optimal control problem, although we are by no means restricted to

problems of this type.
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Method Development

Unlike finite difference ODE solvers, orthogonal collocation

applies a polynomial approximation to the differential equation and

requires satisfaction of the equation at discrete collocation points,

the zeros of orthogonal polynomials [2] . The polynomial solution is

thus a continuous function of t that is often as accurate as a finite

difference solution using many more points. For example, the poly-

nomial approximation for initial value problems defined over a finite

interval is:

where a. - unknown coefficients

P. 1 - (i-1) order Legendre polynomial.

The coefficients a. in (1) can be found by substituting y (t)

into the initial value problem: g? = f (y , t ) ; y(0) = y and solving:
dy
-TT— - f(y ,t) = 0, at discrete points t. which are the roots of P (t)at n l n

= 0. This system can be solved by Gaussian elimination if f(t,y) is

linear or by Newton's method if f(t,y) is nonlinear. In either case,

the system of ODE's is converted into algebraic equations.

Recently, optimization techniques have been developed [3,4] that

solve algebraic equality constrained problems without requiring satis-

faction of the equations at each iteration. Among the most promising

of these is the Successive Quadratic Programming (SQP) [4] algorithm.

Loosely speaking, this method linearizes inequality and equality

constraints and constructs a convex quadratic objective function from

gradients of the objective and constraint functions. The resulting



quadratic program (QP) can be solved using any standard, finite-step

QP algorithm (e.g. . [5f6]). Solution of the QP determines the search

direction while a one-dimensional minimization along this direction

locates the next point. Here, only the linearized sets of equality

constraints are solved by the QP. As SQP converges to the optimum,

the solution of the linearized sets converges to the solution of the

equality constraints. In fact, if no degrees of freedom are present

for optimization, the SQP algorithm reduces to Newton's method.

Because we no longer need to solve the collocation equations at

each iteration, this Simultaneous Optimization and COLLocation

(SOCOLL) method can prove to be very powerful for optimization

problems described by differential equations.

Consider the following initial value optimization (Mayer optimal

control) problem:

Min F[y(t ) , u(t ) ,q,t ] (2)
Cu(t).q} .

s . t . dy/dt = f(y,u,q,t)

h(y,u,q,t) = o

g(ysU,q,t) £ 0

where u(t) - continuous control variables
y(t) - state variables

q - constant control parameters
h - algebraic equality constraiants
g - algebraic inequality constraints
F - objective functional
tf - fixed final time

N

We can substitute polynomial approximations: y - y + t ) a* *\* i

for y(t) and include the coefficients a. as decision variables in the

optimization problem. However, it is difficult to provide bounds and



starting points for these coefficients because they have no physical

significance and thus no a priori estimated ranges. To remedy this,

an equivalent formulation is found by writing the approximation as a

Lagrange interpolation polynomial:

n n

yn(t) = Y7i J t i ( t ) Vh6re X i ( t ) = ff (t""tj

Here t = 0 and t., i=l,n, are zeros of an nth order Legendre poly-

nomial defined from 0 to t f . Choosing y.= y (t.) as decision vari-

ables for the optimization problem, it is now much easier to supply

meaningful bounds and starting points from physical insight about

the problem. Other decision variables are the constant parameters, q

(if present) and coefficients u. of the polynomial approximation to the

control profiles. The control profiles may be approximated by:

n n
where X. (t) = IT

although we are not limited to this form.

This formulation easily accommodates algebraic inequality and

equality constraints, g and h, which are often difficult to handle

with control vector iteration [7].

Having defined the set of decision variables x = [y. ,u. ,q], we

write the ODE's as algebraic equalities at n collocation points. If

additional constraints, g, h, at other points in time t , are present,

these are included in the nonlinear program also. By substituting

equations (3) and (4) into (2), the approximated problem now becomes:



Min F(yn(tf),un(tf),tf,q)
U q

s . t . r± = dyn(ti)/dt - f(yi,u1,t1,q) = 0 , i-l,n (5)

y / * y i * yu

U i * Ui * Uu

or equivalently:

Min F(x) (6)

s.t. r(x) = 0

h(x) = 0

8(x) * 0

x, £ x £ x
X u

We now simply apply the SQP method to (6). At each iteration, k,

SQP sets up and solves the QP:

k T 1 T k
Min VF(x ) d + - i dXB d

s . t . r(xk) + 7r(xk)Td = 0

h(xk) + tfh(xk)Td - 0

g(xk) + Vg(xk)Td ^ 0

x- £ xk + d ^ x
U k+1 H

to determine the search direction, d, for the next iterate x + * e r e

the B matrix is constructed from gradient information at previous

iterations.

This approach yields an implicit orthogonal collocation solution

to the ODE's, is easy to apply and converges to the optimum

superlinearly. To illustrate performance of this method, consider the

following optimal control problem [!]•



Example

A batch reactor operating over a one hour period produces two

products according to the parallel reaction mechanism: A -• B,

A -»• C. Both reactions are irreversible and first order in A and have

rate constants given by:

k i

where k • 10 /s

k20 = 5 . io n / s

El » 10000 cal/gmol

E2 = 20000 cal/gmol

The objective is to find the temperature-time profile that maximizes

the yield of B for operating temperatures below 282°F, The optimal

control problem is therefore:

Max B(1.0)

s.t. -r- • - (k- + k )A

$ = k i A

A(0) = AQ

B(0) - 0

T £ 282°F

Introducing the following transformations:

2
rr ^ xr ~ ** it s 1r tt —. %

y l A y 2 A 1 f 2 2
1 A

o o L z



simplifies the optimization problem to:

Max y2(1.0)

y2 = u y l

y1(0) - l , y2(0) = o

0 £ u £ 5

Note that the control variable u(t) is the rate constant k. and

directly corresponds to temperature. This insight eliminates the

exponential terms and simplifies the structure of the problem.

The simultaneous optimization and collocation (SOCOLL) method

was compared to the two traditional methods for solving optimal

control problems: control vector iteration (CVI) and control vector

parameterization (CVP). With CVI, the Hamiltonian:

H = - Xx(u + u 2 /2 ) y i + X2u yL

is maximized with respect to u(t). Given an initially guessed control

profile, the algorithm first integrates the state equations forward in

time to get £, then the adjoint equations (X = -3H/a^) backward

in time to obtain X^. The control profile, u(t), is then updated

using 3H/3u. Here we apply the conjugate gradient algorithm of

Lasdon et.al. [8], with the method of Pagurek and Woodside [9] used

to handle control bounds. The CVP method was much more straight-

forward; the control profile was defined by feedback terms in y-,

that is u = b + b- y- + b« y-. Optimal values for b. were found

by applying the Complex method of Box [10] to the optimization

problem. Both CVI and CVP used the DGEAR subroutine [11], a version

of Gear's method for stiff initial value problems, to solve the ODE's.
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For this problem the converged solution to CVI can be made

arbitrarily accurate by specifying tolerances for the ODE solver and

the optimality conditions. (All tolerances in this study were set to

10 .) With CVP, the final control profile is optimal only with respect

to a linear combination of basis functions and can never be better

than with CVI.

Using the SOCOLL method, the problem was first approximated

by Lagrange interpolation polynomials for n ranging from 1 to 5.

Because the control profile is only specified at n collocation points,

its approximating polynomial (4) is of one order less than the

polynomial for y. To provide a fair comparison between CVI, CVP and

SOCOLL, the starting points for y- and y~ were set to values of the

initial feasible simulation at the collocation points. The three methods

were compared for two initially guessed constant profiles: u(t) = 1.0

and u(t) = 5.0. These correspond to operation at temperatures of

196°F and 282°F, respectively, for the entire reaction time.

The results are presented in Table 1. Starting from either

profile, the CVI and SOCOLL methods converged to optimal points. The

SOCOLL methods were much faster and their maxima, as N increases,

approach the optimum obtained with CVI from above. Note that the 5

point SOCOLL solution is within 0.5% of the CVI optimum, although

CVI required from 2.5 to 8.7 times as much computational effort.

Surprisingly, the CVP method did not require excessive com-

putational effort. This is due to the small number of decision vari-

ables and the ease in solving the equations with DGEAR. It should

also be mentioned that three additional runs of the CVP method were

needed in order to establish judicious bounds for values of b.. These



are not shown in Table 1. Often, these methods can be prohibitive

because direct search methods are slow to converge, especially for

large problems, and, of course, because the bounds on b. cannot be

specified a priori. The CVP optimum is 0.8% lower than the CVI

maximum even though CVP solved the differential equations as accu-

rately as CVI did. Moreover, the CVP objective can never reach the

CVI optimum because the functional choice for u(t) is incomplete.

Since the SOCOLL approximation approaches the true optimum as n

increases, its results are not as restrictive as CVP's.

Table 2 compares values of the optimal control profile for CVI,

CVP and 5 point SOCOLL at the collocation points. Here the agreement

between CVI and SOCOLL is much better than with CVI and CVP.

Figure 1 shows the optimal control profiles for the methods compared

above. Here we observe a limitation of SOCOLL. As with other

collocation methods, SOCOLL cannot approximate steep gradients well

unless higher order terms or collocation on iFinite elements are used.

Also, constraints on the control trajectory can easily be applied and

satisfied at collocation points but may not be satisfied elsewhere

(e .g . , between 0.95 and 1.0). Again, collocation on finite elements

embedded in SOCOLL can handle this limitation. For this example,

however, we can obtain a better solution through some insight into

the control trajectory. We note that the value of u. is 5.0 at the last

collocation point. Since the trajectory defined by the Lagrange

interpolation polynomial violates the upper bound on u between the

last collocation point and 1.0, we merely "clip" u(t) by defining it

as:

u(t) = min (5., u
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Since u >^ 5*0 only after the last collocation point (0.953),

the control profile can be clipped without affecting the collocation

constraints or continuity and differentiability (wrt x) of the objective

function. We applied the following clipping procedure:

If un(1.0) >_ 5.0, find tc e [0.953,1.0] where un = 5. Set

u(t) = 5 for t e [t ,1]; the variables yj(t) and y2(t),

t e [t ,1] are calculated by:

Yj(t) = y ^ ) exp[-17.5(t-tc)]

y2(t) = y2(tc) + (-5/17.5)yx (tc)[exp{-17.5(t-tc)}-l]

since the differential equations are linear once u is constant. The

clipped SOCOLL optimum is within 0.1% of the CVI optimum. Agreement

with CVI at collocation points is not as good as with the undipped

SOCOLL method but its control trajectory is bounded between 0 and. 5

and agrees reasonably well with CVI and Figure 1.

These results are indicative of applications to other initial

value optimal control problems. The accuracy of the solution is

limited only by the error introduced by the collocation procedure.

Once a problem formulation has been chosen that insures that

collocation can be applied accurately, then the accuracy of the

solution to the optimal control problem is subject only to the

tolerance on the optimality conditions.

The implementation of the SQP algorithm used here also has

local superlinear and global convergence properties. It operates in a

much smaller space than the CVI algorithm and will generally be

more accurate than the CVP algorithm because it is not as limited by

the basis functions for the optimal control profile.
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Conclusions

A simple method has been described for efficiently solving

dynamic optimization problems. For a small optimal control problem

we show that very good approximate optima can be found with

relatively little computational effort. The formulation presented above

can easily be extended to handle collocation en finite elements (for

stiff systems of ODE's) as well as two point and other boundary

value problems. A key point observed in the solution of this small

problem is that the system of differential equations is never solved

explicitly. Instead the optimization algorithm converges simultaneously

to solve the set of ODE's and find the optimal trajectory. Thus, the

often considerable computational effort of solving a set of ODEfs at

each iteration is saved.

To conclude we note the following points:

1. The SOCOLL strategy handles stiff ordinary differential equations
without difficulty since it yields an implicit collocation solution.

2. The solution of this method is only limited by the accuracy of
the collocation procedure.

3- The optimization procedure solves the collocation equations only
once. It converges to the optimum and the equation solutions
simultaneously.

4. The optimal control problem is thus transformed to a nonlinear
program. Multiple boundary conditions and point constraints that
cannot be handled easily with CVI and CW present no problem
within this framework.

Therefore, we can expect the SOCOLL metbod to be an efficient

and effective tool for solving a wide variety of dynamic optimization

problems. The results given here can be generalized to larger, more

complicated problems by applying finite element collocation.
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TABLE 1
COMPARISON OF METHODS

Starting Profile u(t) = 1.

Method CPU Sees.*

1 pt.
2 pt.
3 pt.
4 pt.
5 pt.
5 pt.

SOCOLL
SOCOLL
SOCOLL
SOCOLL
SOCOLL
SOCOLL

(clipped)
CVI
CVP

0.84
1.44
5.64

11.83
17.92
14.12

45.16
30.07

Optimum

0.66667
0.59438
0.59308
0.57858
0.57661
0.57263

0.57349
0.56910

No. Iterations

9
11
30
41
44
30

20**
377***

Starting Profile u(t) = 5.

Method CPU Sees.* Optimum

1 pt.
2 pt.
3 pt.
4 pt.
5 pt.
5 pt.

SOCOLL
SOCOLL
SOCOLL
SOCOLL
SOCOLL
SOCOLL

(clipped)
CVI
CVP

1.38
2.41
9.69

14.92
26.06
32.60

226.35
18.61

0.66667
0.59438
0.59308
0.57858
0.57661
0.57275

0.57322
0.56910

No. Iterations

21
20
52
53
62
66

58**
213***

* Execution Times, DEC-20 Computer, Carnegie-Mellon Computation Center
** Number of CVI Profile Updates

*** Number of Objective Function Calls

TABLE 2
OPTIMAL PROFILE AT COLLOCATION POINTS

0
0
0
0
0

t

.0469

.2308

.5000

.7692

.9531

CVI

0.76702
0.87847
1.15798
1.85941
5.00000

5 pt SOCOLL

0.76074
0.84027
i:16616
1.66126
5.00000

5 pt SOCOLL
(clipped)

0.78692
0.97820
1.04957
2.30851
4.99738

CVP

0.83969
0.77699
1.11780
2.27606
3.34930



FIGURE 1. Comparison of Optimal Profiles

CVI 5 pt. SOCOLL

CVP 5 pt. SOCOLL (clipped)



Optimal Control Profile (u(t))



 


