NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The SLIDE Simul ator:
A Design and Eval uation Tool
For 1/O and Interfacing Strategies

by
Arthur H A tman
DRG- 01- 3- 80
Decenber, 1979

The SLIDE Simulator
A Design and Evaluation Tool
For 1/O and Interfacing Strategies

Arthur H. Altman
Department of Electrical Engineering
Carnegie-Mellon University
Pittsourgh, Pa. 15213

Master's Research Project Report
December 2, 197S

This research has been supported by the US. Army Research Office, under grants
«DAAG29-76-G-0221, «DAAG29-78-G-0070, and »DAAG29-79-C-0197, and by the
Department of Electrical Engineering, Carnegie-Mellon University. :

UNIVERSITY LIBRARIES
¢

. .- LVLV.-SA 15213
P

Acknowledgements

There are many people who in one way or another aided and abetted the author in making
this project a success. My advisor, Professor Alice Parker, was an inexhaustable source of
support, comments and criticism, not to mention premature terminations of employment ; she
has had a profound influence on my outlook as an engineer. As for the other members of my
committee, Dr. Mario Barbacci and Dr. Don Thomas, their doors were never closed, and they
have provided useful suggestions and encouragement during the past year and a quarter.
Rich Bollingcr broduced the preprocessor software, and suffered' through countless bull
sessions helping this hardware type crawl through the software maze. John Wallace and
Karem Sakallah provided valuable information and insight into, respectively, the SLIDE
language and simulation in general. Finally, | thank my friends and my family in Montreal,
Pittsburgh, and elsewhere, for their love and support - for making it worth doing.

Table of Contents

1. Introduction

2.

Motivation and Background

2.1 The Need For SLIDE Simulation

2.2 Inclusion Of the Mulli-Level Simulator
2.3 A Hardware Simulator Taxonomy

2.4 Discussion of SARA and SABLE

3. SLIDE Simulator : Implementation and Executing Environment

3.1 Implementation
3.2 The Multi-Level Simulator
3.2.1 Requirements for Multi-Level Simulation
3.2.2 SIMULA
3.2.3 Data and Control Structures of the Simulator Core
3.2.4 The Module Interconnections
3.3 SLIDE Simulation Overview
3.3.1 Overall Relationship to the Core
3.3.2 SLIDE Device Functioning During Simulation

4. Mapping SLIDE to SIMULA

4.1 A Review of SIMULA
4.2 SLIDE Device -Implementation
4.3 SLIDE Processes

4.3.1 Issues

4.3.2 Implementation
4.4 Inside The SLIDE Process

4.4.1 Hardwnro

4.4.2 Subroutines

4.4.3 Statements

4.4.4 Timing

4.4.5 Expressions

5. SLIDE Code Generator

5.1 Context Of Operation

5.1.1 Pre-Compiled Code

5.1.2 Preprocessor

5.1.3 Final Simulator Program
5.2 Discussion of Operation

5.2.1 Uniqueness of Variable Names

5.2.2 Procedure Interaction and Related Comments
5.3 Points Of Interest

6. The SLIDE Simulator Tost Case

6.1 Peripheral Dovico Description
6.2 Summary Of Simulation Test Results

7. Conclusions

N

oo 0 b

13
16
17
17
18
21
23
23
24

26

26
27
27
27
28
34
34
37
38
41
42

47

47
47
47
49
51
51
51
54

58

58

61

63

Reforences ‘ 67

I. Simulator Commands 70

Il. Test Traces And Commentary .73

C e m— L iy - — et n i

it
List of Figures

Figure 1: Simulalor Structure

Figure 2: Producing a Runnable SLIDE Simulator

Figure 3: Partilioning of a Digital Device in the Multi-level Simulator
Figure 4: Representation of an Inverter Module

Figure 5: Represcnlation of Device Interconnection by Wire
Figure 6: Sltalic Dala Structures of SLIDE Processes

Figure 7: Structures of the SLIDE Scheduler

Figure 8: SLIDE Fxpresasion Implementation

Fipure 9: Proceduie Interaction In The Code Generator
Figure 10: SLIDL Simulator Tesl Case

Figure 11: SLIDE Process Slructure of the Peripheral Device Model
Figure 1-1: Resulls of example ADD commands

Figure 1l1-1:. Daisychaining of UNIBUS NPG Line

Fipure I1-2: [irst Tesl Run : Trace |1

Figure I1-3: First Test Run: Trace 2

Figpure 11-4: First Test Run @ Trace 3a

Figure I1-5: First Tesl Run : Trace 3b

Figure 1I-6: First Test Run @ Trace 3¢

Fipure 1[-7: First Teat Run @ Trace 3d

Figure 11-8: First Test Run : Trace 3e

Figure 11-9: Seccond Test Run : Trace |

Figure 11-10: Third Tes! Run : Trace 1

Figure I1-11: Third Test Run : Trace 2

14

19
20
22
30
31
a4
53
59
60
71
74
76
77
78
79
80
81
82
83
84
85

1. Introduction

With the advent of LSI technology digital system designers have had to search for
structured approaches to the design task, because the cost of using traditional design
techniques for LSl-based systems has become prohibitive. These highly complex designs are
simply not amenable to the last minute patch-up, the ambiguous documentation, and the
premature attention to detail that characterised the "good old days™ of a thousand or so
transistors on a chip.

The notion Of top-down digital system design [6] has been promulgated by various
engineers for a number of years as the best alternative to ad hoc design. The main thrust of
this approach is the orderly progression from a high-level design specification for a system
to an equivalent low-level design specification, using computer simulation of designs in moving
from one level of abstraction to another. References [6] and [5] describe this approach, in
which the design specification of a system and the simulation model of that system are in fact

equivalent. What should be remembered is that

1. this design methodology implies that digital design specifications must be
formally described at a number of levels, and that

2. each level of abstraction to be dealt with directly by the designer needs a
simulation capability at that level for the designer to use.

In light of the above, it is not surprising that formal descriptive systems (and their
associated simulators) for digital hardv/are have been fruitful and multiplied, so to speak.
What is surprising is the lack of attention that has been paid to the area of interfacing and
I/O hardware. After all, it is clear that interconnection design has a significant effect on the
price and performance of complex digital systems such as multiprocessors. Nonetheless, until
recently no complete register-transfer level hardware descriptive language existed to
address the nocd to describe, for example, the behaviour of peripheral devices on an 1/O bus.
Currently existing general purpose hardware descriptive languages , as well as past 1/O
hardware descriptive proposals, have been found unsuitable in one way or another for
describing complicated interconnection strategics [22]. With current simulation techniques,
one is limited to goto and circuit- level simulations of /O hardware, unless one is willing to
construct a simulation program from a programming language such as APL or a simulation
language such as SIMULA. An approach which allows a cleaner user interface is to compile
from a hardware descriptive language to a programming language for simulation purposes.

It is evident that a real gap has existed in the set of hardware descriptive languages.
SLIDE, a Structured Language for Interface Design and Evaluation, has been developed at
Carnegie-Mellon to serve as a stand-alone behavioural description language for 1/O and

1

interfacing strategies [22]. It is intended Unit SLIDE will serve as a specification, verification,
and simulation vehicle within the larger context of the design automation effort at CMU, filling
the I/O descriptive gap.

Not surprisingly in the context of this discussion, the most immediate technical task arising .
from the existence of SLIDE was simulation. The goal of this Master's Research Project was
to provide, as a first application of SLIDE, an I/O and interfacing hardware simulation facility
for the CMU DA community, subject to these constraints :

- SIMULA-67 [1] , because of its rich repertoire of discrete event simulation
primitives, was the programming language of choice.

- SLIDE simulations wore to be incorporated into a developing multi-level
simulation facility.

It should bo noted that these two problem constraints came about at different points in
time. It was indeed decided a priori to simulate SLIDE using SIMULA-67 as the simulation
vehicle. However, the other main constraint to the problem , to embed SLIDE device

Ill

descriptions in a "multi-level™ simulator [8], was only introduced in the spring term. This

point is addressed in the next chapter.

The above task was simplified by the existence of a SLIDE compiler [23]. This compiler
does a syntactic check on SLIDE descriptions and produces a Global Data Base parse tree
similar to that used by ISPS [2], [3]. Even so, the programming problem as stated gave rise
to these sub-problems :

- A suitable mapping from SLIDE to SIMULA had to be devised such that the
resulting code would be compatible with the multi-level simulator.

- A code generation program had to be written that would produce the required
mappings.

- Software had to be designed that v/iould glue together the translated SLIDE
descriptions and the multi-level simulator.

The purpose of this report is to describe the nature of the problems encountered , and the
solutions produced, during the past 15 months of this project.1 Chapter 2 provides some
motivation and background related to the problem of SLIDE simulation. Chapter 3 discusses
the implementation and executing environment of the SLIDE simulator. Chapter 4 describes

lThroughout this report, a certain clogroo of familiarity will bo assumed on the reador'o part with SLIDE. Reference
[22] IB a good introduction to tho language.

the way SLIDE w.r; mapped into SIMULA, and Chapter 5 illustrates the code generator
program that produces these mappings. Finally, an example test case of the SLIDE simulator

is presented in Chapter 6, and the report is completed with conclusions in Chapter 7.

2. Motivation and Background

The SLIDE simulator is a tool that will answer a number of questions a systems designer
might raise with respect to an interface or interconnection strategy. These questions include:

- Does the design function as planned

Is the design sensitive to wirelengths and other timing dependencies

What is the effect of occurrence of exception conditions on operation of the
proposed design

- What are the bottlenecks which limit speed of operation of the design

What is the average device latency and is the maximum allowable latency
exceeded’

Is resource allocation with the proposed strategy vulnerable to starvation and/or
deadlock problems, and does it add an "acceptable” amount of overhead or not

It should be noted here that some properties of interconnection strategies (deadlocks, for
example) might only be discovered through formal verification procedures, such as that
propose'd by Wallace [24]. However, simulation does provide a design aid which, if properly
constructed -and used, can provide a designer significant assistance in answering the above
guestions.

The purpose of this chapter is to elaborate on the research problem that was solved by
this project, and on why this problem was unique in light of previous work. As the first step
in doing this some clarification is provided in the next section as to the motives that were
served in this research.

2.1 The Need For SLIDE Simulation

To the reader familiar with the present body of work in digital hardware simulation, it may
seem unnecessary to have built this SLIDE simulation package. After all, behavioural
descriptions of 1/O hardware at higher levels than SLIDE have been written and simulated

using special purpose programming languages such as ASPOL [5]; the simulation problem is

"already solved”. The answer to this is two-fold. First, production of an 1/O hardware

simulator using cither special purpose or general purpose programming languages is not a
trivial task. It requires the user to manually produce code to handle the I/O primitives and
related semantics which SLIDE already describes and which the SLIDE “simulator will
automatically translate and execute. So the distance from conception to simulation s
considerably shortened with the SLIDE simulator. Second, SLIDE is being proposed as a

formal descriptive and formal verification tool as well as a descriptive language for a

simulator. In lhis connection, the development of SLIDE itself as a useful new hardware
descriptive language v/ili be enhanced greatly if "real world" user feedback on the language
can bo encouraged. The quality and quantity of such feedback from the users of a SLIDE
simulator will almost certainly be superior to that from the users of a sterile
paper-and-pencil language. It is clear that the simulation of SLIDE, then, was a research
problem that was indeed worth pursuing.

2.2 Inclusion Of the Multi-Level Simulator

Originally, it was thought that a dedicated simulator for SLIDE would be built along the lines
of the ISPS simulator at CMU [3]. Thus it would accept and simulate one SLIDE description at
a time. SLIDE nesting capabilities would be used to to describe inter-device structuring as
well as intr.i-device structuring. However, it was subsequently decided that SLIDE
descriptions of devices would instead be translated into functional modules for a multi-level
simulator [8] which was being constructed at the same time. This multi-level simulator is
designed to allow a urcr to simulate digital systems whose components may be gate,
register-transfer, or system level modules. It has as its heart a uniform interconnection and
representation mechanism for digital devices , and an interactive command language to allow
the user to build tost configurations from a library of device modules . From a simple
conceptual viewpoint, adding SLIDE to this simulator meant allowing SLIDE-described devices
to be added to the library.

There are a number of advantages to the above decision. For instance, one must recognise
that a given interconnection strategy (i.e., protocol, resource allocation, addressing , etc.)
assumes one or more topologies for device interconnection, e.g. star, loop. Since a particular
topology can have a wide variety of instantiations, it is desirable (even imperative) for the
designer of the interconnection strategy to test out that strategy using as many different
configurations of devices as possible. Having to rewrite the SLIDE description for each such
test would be inconvenient and slow. As it is, the SLIDE nesting constructs do not convey
topological information as well as they do behavioural information. If the SLIDE description of
a device could be fixed for each interconnection scheme, i.e., if the SLIDE nesting constructs
were reserved for internal device structuring, which is less variable than inter-device
connections, then once the member components of an interconnection strategy had been:
specified in SLIDE , they would not need to be recompiled while various system configurations
were being tested out. The multi-level simulation environment provides exactly such a
capability. |

Another advantage is increased utility for SLIDE as a design tool. This comes as a natural
by-product of being in a multi-level simulation environment, because general digital

components, not just their interfaces, can be interconnected and simulated at various levels of
detail.! Thus, more general tests of interconnection schemes can be provided than simply
those involving hooking up SLIDE-described devices to each other; for example a SLIDE /O
interface for a CPU could be connected to a high level functional description of the CPU,
which could in turn be interfaced to some gate-level device structure. This capability would
not have existed in a dedicated SLIDE simulator.

The principal disadvantage was in terms of project logistics. Because the implementation
of the multi-level simulator was already well underway when the decision to incorporate
SLIDE was made, this author was faced with a software fait accompli. This is one of the
reasons why the project was especially challenging : SLIDE simulation had to be designed to
conform to the r_nuIti-IeveI simulator structure” .

In summary, it can be said that the sum of the following points made this project "unique" :

- A new and different HDL was to be simulated

- It was to be set inside a multi-level simulator

Additionally, due to project timing problems, the burden of software compatibility was
unidirectional, which made the project task more difficult than originally anticipated.

Before moving on to discuss the SLIDE simulator itself, it may be helpful to try and
quantify the relationship this simulator has to existing hardware simulators. In the next
section, an informal taxonomy for digital hardware simulators is presented, and it is used as a
framework for comparison of some currently existing digital hardware simulators.

2.3 A Hardware Simulator Taxonomy

The following taxonomy for digital hardware simulators was developed during informal
discussions with some members of the CMU DA group. No claims are made for it other than
as a simple basis for discussion of the hardware simulator "space". This taxonomy is based
upon eight design decisions for this class of software. These design decisions are not
uncorrelated, and it is debatable whether a "complete" set of uncorrelated decisions exists at

References [1] and [20] discuss the advantages of being ablo to go from high level, low detail functional descriptionB
to low level, high rlolail structural descriptions within one simulation as A way of gotting around the drawbacks of
purely high level / purely low lovel simulation.

2
Some software extensions woro made to the multi-lovel simulator after the fact , however.

all for digital hardware simulator design. It should be noted that the set of all possible

outcomes of these decisions does not constitute a total ordering on the set of possible
simulators.

The eight design decisions are :

1. Types of descriptive languages

a. Abstract Models (e.g. Petri net)

b. Hardware Descriptive Languages

o

Special Purpose Programming Languages (e.g. GPSS)
d. General Purpose Programming Languages

e. General Purpose Programming Languages extended for hardware
description (e.g. AHPL [15])

2. Types of levels of abstraction

a. Circuit Level
b. Gate Level
c. Register Transfer Level
d. System Lovel

3. Number of Levels of Abstraction / Number of Languages
al/l
b. >1/1
c. >1/>1

4. Characterisation of Behaviour
a. Stochastic
b. Deterministic

5. Characterisation of Structure

a. Formal (e.g. SL/1 [10], SDL [21])

b. Informal (i.e. interactive commando)

6. Degree of Separation of Structure from Behaviour

a. None (e.g. CAP [18])
b. Weak (most simulators)
c. Strong (e.g. SARA [9])
7. Binding of Structure and/or Behaviour
a. Before Simulation (batch)
b. During Simulation (interactive)

8. Characterisation of Operation

a. Oriéntation
i. Event Oriented
ii. Activity Oriented
iii. Process Oriented

b. Execution
i. Table-driven
ii. Interpretive
iii. Compiled

Each of these design decisions will now be briefly described and discussed.

"Types of descriptive languages" refers to the category of structural and/or behavioural
descriptive vehicle that the user provides to the simulator as input. It is hoped that the
definitions of the five listed categories are intuitively obvious.

"Types of levels of abstraction” relates to the choice of descriptive focus that the
simulator will give to the user. The four generally agreed upon levels of abstraction are
enumerated ; *gain it is expected that the definitions are well Known lo the reader.

"Number of Levels of Abstraction / Number of Languages" refers to the intertwined
decisions about, first, whether the simulator will support modelling of components at different
levels of abstraction, and second, the number of descriptive languages that will be used to

describe that modclling. If one chose single-level modelling, it would imply a single
descriptive language. But multi-level modelling could be supported by a single descriptive

language such as ADLIB, as well as by assigning one language per level of abstraction.

"Characterisation of Bchaviour” altempts to make a distinclion between the probablistic
style of behavioural description (e.g. data arrives at a terminal in an exponentially
distributed fashion) and the more common deterministic style, wherein the actions of
components are described (to at least some degree) so that their behaviour at a given point

in time may be precisely known.

"Characterisation of Structure" refers to the dichotomy between methods of structure
description in simulalors. On the one hand, structure or topology may be described in an
informal, interactive fashion by the user. On the other hand, some simulators insist on the

use of formal methods to describe system structuring.

"Degree of Separation of Structure from Behaviour” refers to the emphasis that is placed
on the uses of the available descriptive languages. By extension, this also refers to the
_degree to which separalion of structure from behaviour is promoted by the simulator itself.
Some simulators want to separate the use of languages along strict structural / behavioural
lines ; others want a single language to do everything. Most simulators , though, allow their

descriptive languages to cross the boundaries to some degree.

"Binding of Structure and/or Behaviour"” is a design decision that relates to the point in
time when a user finalises the description of the system to be simulated. In a "batch”
simulator this binding must be done before simulation is to begin, and is fixed thereafter. In

an "interactive” simulator the binding can be modified after simulation has begun.

"Characterisation of Operation" is broken down into two sub-decisions. The first is
orientation, which describes the overall outlook of the simulator as it executes. The second is

execution, which describes the method by which the actual running simulation is achieved.

The three orientation categorics are cevenl |, aclivilty, and process oriented! . These
categorics grow oul of the notion of "discrete event simulation”, whereby the work that is
done by the model being simulated is broken down inlo discrete units of work, and each of
these work units has a certain execulion time ascociated with it. An activity is the chosen
fundamental unit of work in a simulation for a given viewpoint or level of abstraction.

Whether or not it can be further dissected is of litlle concern ; it is selected to be a single

lThooo calogories were dorived from tha discussion of simulation languages found in reference [16).

work step for the particular level of abstraction. A process is an ordered collection of
activities, and like activities, processes arc discrete entities that occur dynamically. An event
is an instantaneous change of system state that can cauoc activities or processes to initiate
or suspend execution. One can say that a simulating system is characterised by the dynamic
interactions of processes, and these interactions are governed by the occurrence of events.
Activity oriented and process oriented simulators are those that are concerned with the
dynamic scheduling and rescheduling of activities and processes, respectively. The viewpoint
in process oriented simulators (and to a lesser degree activity oriented simulators) is biased
in a vertical, multi-level direction, in that a given activity can be expanded into a process at a
lower level of abstraction, and of course a process can be expanded into one or more
activities. In contrast, event driven simulators are concerned with the scheduling of events.
The butlook in an event oriented simulator is horizontal, ie., it ranges over the entire
simulated system, and is typically restricted to a single level of abstraction.

The three execution modes arc table-driven, interpretive, and compiled. Given a system
description, a table-driven simulator will build tables that will be used to drive a special
program. The execution of this program in accordance with what is in the tables constitutes
the simulation of the description. An interpretive simulator will scan the description,
executing what it seer, as it goer, without any sort of intermediate translation step. A
compiled simulator will actually translate the system description into an executable program,
and then run that program to simulate the system.

To reiterate, this hardware simulator taxonomy is ™\ informal attempt to provide a
discussion base. Each reader will probably be able to punch his or her own set of holes
through it, and encouraging just that was part of the reason for presenting it.

Examples of various leaves on the above taxonomy tree may be found in the general body
of design automation and hardware descriptive literature. Among multi-level simulators such
as NmPc [17], Multi-Sim [7], and MODAL [12] are found the leaves having the closest
relationship to lhe Sl IDF. simulator. Two leaves in particular, SARA [9] and SABLE [13], will
be discussed in the following section.

2.4 Discussion of SARA and SABLE

SARA embodies an extremely general design tool of which behavioural simulation is only a
part. One of the fundamental concepts of SARA is the required separation of structure from
behaviour to enforce intended design modularity. In this regard, two sets of modelling
primitives are provided in SARA, one for structure and one for behaviour. The structural
primitives are embodied in a language called SL/1 [10], and the behavioural primitives exist in

li

the form of Graph Models of Behaviour (GMG) [19].

An SL/1 structural model is built up with "modules" whose internal structures are not
visible from the outside. Modules interface with each other through "sockets" which can be
connected to other modules' sockets. Since one can substitute the unseen internal structure
of a system module for an explicit structure of interconnected modules without affecting
other parts of the system, hierarchical modelling becomes possible.

These structural models are empty shells in the sense that there is nothing in particular to
simulate in the absence of a behavioural model. GMB's provide behavioural specification, and
are simulated with a GMD simulator [19]. They are divided into control primitives and data
primitives; thus ’the designer is required to be able to make this separation in describing his
design. The control primitives are in the style of Petri nets, having control nodes, control
arcs, and tokens. Additional control primitives are input and output control "logics", which
control the flow of tokens according to logical relationships among the associated control
arcs. The data primitivrs consist of data sets (which arc passive collections of data), data
processors - controlled (by a control node) and ync gnlrglird -, and data arcs to glue together
sets and processors.l Iking these primitives the user can create a hierarchical model of the
behaviour of the system. Before it can be simulated though, the behaviour of the processors
must be specified. PUP, a modification of PL/1
processors.

, iIs used to describe the actions of the

After a behavioural model of control and data graphs has been specified the GMO simulator
can execute it on a "token machine". The capabilities of this simulator include interactive
commands to start and end simulation, set breakpoints, specify initial token distributions, and
examine the graph states.

A more recent development in the hardware simulator domain is SABLE [14]. SABLE stands
for Structure And Behaviour Linking Environment , and as its name suggests, it represents a
more integrated approach to structural and behavioural description. As in SARA, different
description mechanisms are used to specify behaviour and structure. System components,
called complyper., are modelled as self-contained units that communicale through nets. Unlike
SARA, components are not separated as to data and control; it is up to the user to enforce
any such distinction. The structural nesting of components and component interconnections
are described-in a structural description language called SDL [21]. The behaviour of a
component is described in ADLIB [13], an extension of PASCAL. SABLE will pull together

IA CPU would bo an oxamplo of a controlled thin processor; combinational logic would be an example of an

uncontrolled data proencnor.

ADLIB-specificcl components according lo wh.it it sees in the SDL structural model for a given
system, so that a r.yr;lem thus modelled can be simulated. Now, since a given system can be
described at various structural levclr. with SDL, i.e. levels of structural refinement in a
hierarchically modelled system, and at various data levels with ADLIB, i.e., layers of data

structures that approximate other data structures, multi-level simulation is indeed achieved in
SABLE.

There are two modes of behaviour specification for SABLE components. One is
characterised by reaction to events at component nets, the other by clocked behaviour.
These are the only mechanisms provided to activate component actions. Components are not
allowed to access nets that are not their ov/in. What results is a high degree of modularity in
the simulated model, since the internal details of components have no effect other than where
they are immediately employed.

At this point, one can go back to the taxonomy tree and locate SARA and SABLE. On an
item-by-item basis, it is found that
- SARA uses an abstract language (GMB) and a slightly modified general purpose

programming language (PL1P) to describe behaviour; SABLE uses an extended
general purpose programming language (ADLIB).

- SABLE and SARA cover levels of abstraction from system level to gate level, but
SABLE uces only 1 language while SARA uses two.

- SABLE and SARA characterise behaviour detcrministically, and structure formally
(SDL and 5L/1).

- By providing separate descriptive mechanisms for behaviour and structure both
SABLE and SARA promote a strong degree of separation between the two.

- In both SARA and SABLE the binding of structure and behaviour takes place
before simulation begins.

- SARA is best described as an event oriented simulator ; SABLE is a mix of event
oriented and process oriented actions.

- The execution of SABLE can bo characterised as compiled (into PASCAL) whereas
that of SARA is interpretive.

Having gone through Ihir» exercise, the degree of similarity that exists between SARA and
SABLE should ‘be more evident. Comparison and contrast along topological lines with the
SLIDE simulator will bo delayed until some notion of its structure and function has been
related. The next chapter will provide such an overview.

13
3. SLIDE Simulator : Implementation and Executing Environment

The purpose of this chapter is to describe how the user goes about producing a runnable
simulator from SLIDE, as well as the nature of the resulting simulation environment.

3.1 Implementation

As has been previously mentioned, SLIDE devices are simulated inside a simple multi-level
simulator. SLIDE devices use this simulator as a software breadboarding faclility, allowing the
user to interconnect interfaces and simulate them. Figure 1 illustrates the relationship that
SLIDE modules have with this multi-level simulator core,and Appendix 1 provides a summary of
~ the interactive simulator commands that arc available to the user.

By way of explanation of this implementation, consider an example scheme in which n
different kinds of devices are to be interconnected. The communication strategy specified for
the scheme dictator, tho interfacing behaviour of each device type. So the first step in
realising a simulation of the communicating system is to write a SLIDE behavioural description
for each type of component. Note that only one description per device type need be written.
Once the n device types have been so specified, a number of processing steps are done on
those SLIDE descriptions, the end result of which is a runnable simulation environment. This
environment contains a library of devices that now includes executable models of each of the
n original dovic n typos. These models exist as dynamic data and control structures, so that
unprcdctcrminecl numbers of these devices can be interactively created and connected. In
this way, the designer can proceed to put together a variety of sample configurations and
simulate them using the software breadboard of the simulator core.

Various properties of each SLIDE description may be parameterised. This is done by
allowing numbers in a SLIDE description to be replaced by special identifiers called
simulation time parameters (STP). STP's sre bound interactively, by the user,for each
instance of a SLIDE functional module in the simulator.

14

Figure 1: Simulator Structure

INTERACTIVE CONTROL

SOFTWARE BREADBOARD CORE

I
DEVICE LIBRARY

/

/ ¥ 3

Standard Devices SLIDE Devices Other Devices

SLI DE SLI DE
DESCRI PTI ON DESCRI PTI ON
I
SLIDE SLI DE
COMPILER COWPI LER
f
f
SLI DE SLIDE
CODE CODE
GENERATCR GENERATCR
RAW
STMULA
CODE
PREPROCESSOR i
STMIILA
COMPI -
LER
LINK
UNNABLE USER
SIMJLLATOR | NTERACTI ON

Figure 2: Producing a Runnnble SLIDE Simulator

K

It has been mentioned that there are corlain processing steps that the user performs to
produce a runnable SLIDE simulator. These processing steps are illustrated in Figure 2. To
begin, the SLIDE descriptions must be checked for syntactic correctness, and so the first step
is to put each one through the SLIDE compiler. Once the descriptions have been syntactically
cleaned up, the compiler will produce a GDQ parse tree file for each of them. A Global Data
Base (GDB) is an ASCII representation of the parse tree of a SLIDE description. The mapping
from SLIDE source to GDD is a reversible transformation. For details of the SLIDE compiler
and the GDD it produces see reference [23].

The next step involves performing the mapping for each GDB file from parse tree to
SIMULA code. The SLIDE-to-SIMULA code generator is responsible for performing this
function. The form of its output is not a monolithic SIMULA program, however. It is a
collection of SIMULA code fragments, where each fragment has a label associated with it that
marks where that particular fragment is to go within the eventual simulation program. Now,
after each GDB file has been put through the code generator, it is time to combine the
various SIMULA fragments into a single program. The preprocessor, which was designed and
written by Rich Bollinger, is used to perform this function. The preprocessor operates on the
labelling information provided in the fragment files to piece together one syntactically correct
SIMULA program.* Notice that in addition to whatever SLIDE files are provided by the user,
the preprocessor uses as input a pnrt of the multi-level simulator core. This part contains a
library of standard devices such as gates and counters , plus the simulator monitor. This part
of the core provides the necessary skeletal code to guarantee that the output of the
preprocessor is indeed a complete SIMULA program.

The rest of the multi-level simulator core consists of support code for both SLIDE
simulation and general simulation. This code has been precompiled ; it is linked with the
compiled preprocessor output to produce the final runnable simulator.

3.2 The Multi-Level Simulator

1Ono inloror.tinps nnporl of thin in that llm BIMill A code "onoraled from tho SIIDT modulon doon nol havo lo bo
exactly nlructurrd on defined by SIMULA r.yninx ruler. For oxample, declarations can bo gonoratod and inGorfod on tho
fly by tho codo “onor.ilor m the GDR filo in proconnod; the preprocessor will clean up and roordor tho SIMULA code for
tho SIMULA compiler. Thin dtntribution of tho tankn of a complex problem among different software look simplified the
programming problem grontly '

PSR al $¥) BN o3 B <N RTINS -, - ' e > T T T R TR

3.2.1 Requiremonts for Multi-Level Simulalion

The multi-level simulator provides a decentralized, dynamically alterable environment for
the interconnection and simulation of digital systems. It embodies the basic vertical

communication1

requirements described by MacDougall [16] for multi-level simulation. In a
nutshell, MacDougall asserts that standardised vertical communications are the fundamental
prerequisite to multi-level simulation. An invariant interface for inter-component
communication should exist that all components both can and must use to communicate with

. each other, no matter what their relative levels of abstraction may be.

This standard interface must be general enough to support the varying amounts of data
detail that will be transmitted through it. The design of the interface itself and of the
communications that it supports should be done with the emphasis on efficiency, since thjs is
clearly an area where a litlle extra overhead one way or the other will have a significant

effect on simulation execution speed.

A side effect of this interfacing requirement is that a certain amount of separation between
structure and behaviour is encouraged on the user’s part. Having to define a standard
vertical communications interface pre-supposes the ability to draw a dotted line around an
entity and label it a "component”, which in turn needs to be interfaced to other “"components"."
Thus, the problem of describing a collection of hardware is broken down into one of defining
components (having behaviour and internal structure) and defining their interconnections
(external slructure or topology). So software that supports multi-level simulation must by
extension encourage the partitioning of the digital system description problem into
behavioural and structural description sub-problems.

3.2.2 SIMULA

The implementation of the simulator core is based on the coroutining and discrete event
simulation primitives provided by SIMULA-67 [4]. A simulation program written in SIMULA
uses special coroutines called processes. For a process to execute, it must be scheduled by
placing it in a special linked list called the event list. The list is ordered by the simulation
time associated with cach process. The process at the front of the list is due to resume
execution, and the lime associated with this process is considered to be the "current®
simulation time. A process can be removed from the list and rescheduled at a later time.

Thus, time moves ahead in discrete jumps, and the simulation is process oriented .

lCt:ommunicalion from one level of abstraction to another.

1-
3.2.3 Data and Control Structures of the Simulator Core

The structure of the simulator core is characterized by three classes of dynamic data
structures and the operations performed on them. These are: The Element® the Chain and
the Simulation Process (SP). Together, the Element, Chain and the SP completely specify the
functioning of a given digital device module.

The Element and the Chain constitute the common external characteristics of the device
modules; the internal structural and behavioural differences have been abstracted away.
Together, the Element and the Chain form the standardised vertical communication interface
that MacDougall describes, enabling multi-level modelling and simulation.

The SP contains the information internal to a device module - the meat of a device
description. It is a general data structure that can reference a number of SIMULA processes.
The SP is the structure that corresponds to a "component" in the simulator ; SP's can only
communicate with other SPY* through the provided interface , that is, the Element and the
Chain. Figure 3 illustrates the partitioning of a device along the above lines.

The Element is designed ar. a passive vehicle for the interconnection of device modules.
Each Element contains n set of records representing the "ports" of a device. Ports can be
connected to other ports, and the stale of the data represented by the ports of a device
module indicates the externally visible state of the device.

The active part of tho interconnection mechanism resides in the Chain. One Chain is
associated with ench clement; the Chain is responsible for the actions and reactions of a
device with respect to ils ports. The Chain also acts as an intermediary between the SP and
the Element, which do not interact directly. The Chain is implemented as a coroutine, whose
actions are performed in zero time and are invisible to the SIMULA scheduler.

An example of a simple device module representing an inverter is given in Figure 4 . The
SP is shown as SIMULA code, the Element ir, represented as an abstract data structure, and
the Chain is illustrated in its role as interface between the two.

19

Figure 3: Partitioning of a Digital Device in the Multi-level Simulator

% | ELEMENT

CHAIN B

20

L EVENT D PORT 1
5> PORT 2
Lo DATA
I NI TIALI SATI ON
\\Hl LE TRUE DO OHAIN
BEG N
SCHEDULE S.P.:
DETACH
END:
DATA
\\H LE TRUE DO
BEG N

END;

GET THE DATA AT PORT. 1
COVPLEMENT I T;

WRI TE THE RESULT TO PORT2;
PASSIVATE:

S.P.

Figure 4: Representation of an Inverter Module

21
3.2.4 The Modulo Interconnections

Modules can be interconnected in two ways in this simulator - directly and via special wire
modules. Direct connections allow the data records at one port to be directly accessible by
all connected ports. This concept is useful, for example, when a CPU module has been
~ described as a number of submodules, whose ports exist only as an abstraction. (A Z80 CPU
has been described in this manner [8]). This method of interconnection allows structured
design and pretesting of each submodule.

The more common connection method for large system simulations is the wire connection,
meant to correspond to the usual physical interconnection of digital devices. A wire can be
considered a degenerate case of a digital module, having no SP or explicit ports. Through its
chain, the wire houses the actual wire data, and identification information and procedures
which allow its logical behavior to be modelled. A wire connection is modelled as the direct
access of ports to the same wire device, not to each other. A good example of this type of
connection is an open-collector bus, since the data presented to the bus wires at a port
might not reflect the actual logic values on the bus.

Wire typos arc dktinguished by logical behavior, data representation , and synchrony ;
interconnection!"* of wircr. with differing properties is in general not allowed by the simulator.
The user can interactively wire together the components of his system, producing a structure
like that shown in Figure 5. Changer, in the system being simulated can be made by adding
components without halting program execution.

22

Figure 5: Representation of Device Interconnection by Wire

PCRT 2
n AII n BII
ELENENT PCRT 6 ELENENT
L] ﬂ‘ll n Bll
CHAIN CHAIN

__ CONNECTI ON
______ LINKED LI ST OF PORTS CONNECTED TO THI'S WRE

]

The multi-lovel simulator trentr. Ihe creation of complete devices as something to be
delayed until just before actual simulation. When the user is interactively connecting ports,
only the Elements are involved; the Chain and the SP are not yet created. When the
simulator does create the rest of the device, it will only explicitly create the Chain. The
Chain is expected to create lhe SP as part of its initial actions, and the SP in turn will initiate
the remaining internal data and control structure initialisation.

'During execution, the SP's may write to ports by depositing data in the appropriate wire
device, via a series of references. The vi/ire Chain coroutine is called, and it proceeds
through a linked li&t of the ports connected to the wire, activating the Chain associated with
each port. This givos each relevant device the opportunity to schedule processes, and it
proceeds in zero simulation time. Delays are introduced only by the scheduling of processes
related to a device module and by explicit delays within each device module's SP.

3-3 SLIDE Simulation Overview

The previous sections have provided a glimpse of the way SLIDE simulations are produced
along Wlith the surrounding core environment, and a summary of the workings of the core
itself. The discussion moves on now to consider more closely the particular nature of the
SLIDE device / simulator core relationship, followed by an explication of the mechanics of
SLIDE simulation.

3.3.1 Overall Relationship to the Core

Given thr Inck of simulating a rcjjisler-lransfcr level hardware descriptive language such
as SLIDE , there is no inherent reason why that simulation cannot be accomplished in either
table-driven, interpretive, or compiled mode. However, in addition to the normal requirement
for speed of execution in an interactive program, in this project there was a requirement of
compatibility with the multi-level simulator core. The nature of device simulation in the core
forced the simulation of SLIDE descriptions to be done in compiled mode. This most immediate
result of the embedding decision characterises lhe nature of the relationship between SLIDE
and the core.

As has boon alludoH !o olr.cwhore in this report, there is a one-to-one relationship
between a SLIDE description and a resulting device in the simulator. That is, SLIDE
descriptions will be mapped to exactly one library device, not three or ten. This may seem to
be a trivial point, but the fact is that there were alternatives. It was suggested early in the
project that SLIDE descriptions bo automatically analysed structurally as well as behaviourally

to ultimately produce a group of directly connected subcJcvices. The aggregate behaviour of

A

the subdevicc; would constitute the simulation of the original SLIDE description. This
alternative was rejcclrd because it v/iould havo been necessary to force an artificial software
structure onto tho coro in order to accomoriale SLIDE interprocess relationships, and because
it would have added an order of magnitude in complexity to the problem at hand without
adding any fidelity or efficiency lo the simulation. The more intuitive notion of one library
device per SLIDE description v/as chosen instead, the tradeoff being in the relative difficulty
of deleting devices from interconnection structures; deletion in the multiple device approach
should be easier, theoretically.

Since SLIDE descriptions map into one Element, one Chain, and one SP, their superficial
characteristics do not immediately set them apart from other devices. What does set them
apart is their imdcrlyinu characteristics - for example the behaviour and data structuring of
the SP for a SLIDE device. Note that the degree of complexity of the SP for a given device,
even a SLID!. dovicr, is not disccrnable by tho core. This reflects the software decision to
bury the details of SLIDE behaviour so that they v/ould not affect the multi-level simulation as
such. Even those software extensions that v/crc made to the core such as adding in a new
wire type that could handle the high level of data detail required for SLIDE simulation were
just that - extensions, not design modifications. To sum up, then, the relationship of SLIDE
devices to the core is equivalent to that of non-SLIDE devices.

3.3.2 SLIDE Dovico Functioning During Simulation

The outlook of SLIDE device simulation is process oriented in that t_he focus of attention is
-the manipulation of SLIDE processes on the SIMULA scheduling list. But even beyond the
narrow definition of "process oriented", SLIDE simulation necessarily reflects the point of
view of SLIDE descriptions, and the SLIDE process is the fundamental descriptive tool of the
language. So to describe the simulation of SLIDE processes is to describe the basic
functioning of SLIDE device simulations.

At the beginning of the simulation (t«0) , after variable initialisation, all the SLIDE
processes of a given device instance are given a chance to begin executing if they can.
According to the semantics of the SLIDE language, a process may start executing whenever

1. Its declared initialisation conditions become true, AND
2. All the processes of which it is a subprocess are executing, AND

3. No process at the same "process level" is executing and has a higher priority.

Processes that could have started but for cither or both of the second two points above

are put into a spedial linked lisl. As each SUIDE process slarls ils execution, it evokes the
"SLIDE Scheduter” which checks this list to sec if any of the members can start up as a result
of ils initialisation. The SLIDC Scheduler will also assure that any executing process which is
at the same "process level” \bul of a lower priorily than the process which is about to begin
executing, will be terminated. As a SLIDE process executes its actions, variables such as
lines, buffers and registers will be accessed. Each time such a hardware variable is written
to, it is responsible for checking if any of the relevant expressions of which it is a member
are now lruc,l and if they are, evoking the SLIDE scheduler. As each SLIDE process
terminates, whether by completing its actions , or by the mechanisms described above, it is
entered into the special linked list. The lisl is once again checked to see if any of its
members can begin execution.?

This special linked list is the key data structure in the operation of the SLIDE scheduler. It
will conlain those processes that are likely to allempt to begin executing due to implicit
changes in system stale |, i.e., SLIDEC process initiations or terminations, as opposed to explicit
changes in system slate , i, changes in SLIDE variables. This list fulfills a need for
scheduling efficiency ; it would not olherwise be known, when an implicit state change
occurred which proceanes would need to be checked for possible initiation and which could

be safely ignored. Contrasl this with explicit state changes , where the set of processes that
can be safely ignored is fixed.

It should be noted that whenever a member of the list is being checked, it will be removed
from the list if ils Boolcan initiation conditions are found to be false. This ensures that

members of the list arc only those that could be started due to implicit state changes.

Relovant oxpreraiong are thase which appear in tha initialisation condilions of a process, or in a DELAY statoment

?In torminating, tha old inalance of a procans is garbaga-collncled, and a now inslance of tho process is created. It
is this now instance that ontars the lisl.

4. Mapping SLIDE to SIMULA

The programming taf>k presented by this project was, like many non-trivial tasks, best
attacked by breaking it down into a set of sub-tasks to be performed. The SLIDE simulation
task was broken down into three sub-tasks , namely

- A SIMULA code mapping had to be devised that would not only simulate the
intended behaviour of a SLIDE description as closely as possible, but would also
fit into lhe multi-level simulator environment.

.- With this mapping specified, a program had to be written that would do the
actualtranslation from GDD file to SIMULA.

- Software had to be written to take a group of such translated SLIDE descriptions
and incorporate them into lhe multi-level simulator.

The rest of this chapter will elaborate on the first of these tasks and on the nature of the
software solution. The last two tasks will be dealt with in subsequent chapters.

4.1 A Review of SIMULA

The classical code generation tak > that of mapping a complicated high level language into
a simple low level language, °C- Tertian to PDP-11 assembly language. In the case of this
project, it wns required to translate instead from a register-transfer _ level hardware
descriptive language to a powerful special purpose programming language. While this meant
that the solutions had to be to a certain extent ad hoc, this did present. a certain advantage,
namely, the ability to build a sophisticated body of support code that would enable the
eventual code generator to produce shorter and simpler programs. To have reached as high
a level of complexity in assembly language support code as was reached in SIMULA would
have required infinitely more time and effort.

The semantics of SIMULA provide mechanisms for building new capabilities on top of
existing oner, in a structured fashion. This feature of the language was to be at least as
important as proce',» oriented simulation primitives were to the successful completion of the
project. One can define in SIMULA a dynamic structure called a class. Like PASCAL records,
SIMULA classes contain heterogeneous data, nnd numerous instances of a given class, called
objects, can be cronlrd during program execution. In addition, though, SIMULA classes can
" have actions c'l'*ocuilrd with them , nnd each object will have its own copy of the actions of
the class. Ther.e action’, are executed no coroutines. Once a class has been specified, it may
be used as a prefix to create subclasses which, in addition to any attributes they may have -
defined for themselves will automatically have access to the attributes of the prefix. For
example, given class A , A class B, D class C, D—objects will have copies of A-type data and |

a7

actions that they cnn accrv.r. in addition lo those in lhe actual definition of D. Similarly,
C-objccts will havo hotii A and B capabilities available. The order of execution of "actions is

according to'prefix order-, when a C-objecl executes ils actions, it will run through A actions
: i «
and B actions before doing C-actions.

The simulation primitives provided in SIMULA are embodied in a special prefix that the
language provides called class SIMULATION. SIMULA processes are objects of the class
PROCESS, a prefix that SIMULATION makes available to the programmer. The'task at hand in
producing simulations of SLIDE processes was in part to build up-the correct capabilities
using PROCESS as a building block.

4.2 SLIDE Device Implementation

Every SP of a SLIDF device modulo in the simulator is a subclass of class BOX. Class BOX
contains the data and routines that am constant for each SLIDE device; device specific data
and procedures are specified in the subclass itself. The subclass therefore houses all the
SLIDE hardware variable., the priority tree, rind pointers to other relevant data. Creating a
new instantiation of the SLIDE device in the simulator means that a new BOX subclass object
is created, <m<\ this in turn causer, the creation of every data and control structure needed
for the simulation of the SLIDE device.

4.3 SLIDE Processes

4.3.1 Issues

In bringing together the divergent concepts of SLIDE process simulation and SIMULA
process simulation, certain programming issues had to be addressed.

-Each SLIDE modulo, is a mapping of an independent SLIDE description, each
having its own Sl IDE process structure. The process structure and hence the
particular scheduling constraints of a given SLIDE device are independent of all
other SLIDE devices. The multi-level simulator has already been seen to run in a
decentralized fashion; each device ic. a collection of autonomous SIMULA objects.
It soemod consistent lo make each SLIDE device responsible for the scheduling
of its associated processes, rather lh.m create a central core scheduler of some
sort. So, Ihe SP nf a SLIDE device was given lhe control structures to implement
the scheduling la*.k for that device. Each SLIDE device module houses a related,
but unique, version of the SLIDE scheduler.

- SIMULA processes as such are not endowed by class SIMULATION with sufficient
scheduling dala structures to correctly model SLIDE processes. A SLIDE process
within a SLIDE description is a member of a complex priority tree, specified in
the description by the static nesting of the process ancl by explicit priority

numbering. Initiation and termination of a GLIDE process must always be

referenced to lho priority tree. Such bookkeeping is clearly beyond the scope

of a SIMULA process. Resides, the concept of termination itself , implying the

automatic garbage-collection and recreation of a process and all its
subprocesses, does not exist for SIMULA processes. Thus , most SLIDE process

semantics had to be built up, using class PROCESS as a prefix, plus additional -
control structures.

- Each SLIDE scheduler within a SLIDE module needs to be invoked as the result of
many different events. For example, a process can be started or terminated due
to a change in a SLIDE variable (explicit stale change). Because of the priority
structure, a process can also be initiated or terminated as a side-effect of some
other process initiation/termination, even if these processes do not explicitly
communicate at all (implicit state change). The SLIDE DELAY statement adds
another complication by allowing a process to reschedule itself at any time, and
to be woken up on some set of conditions* (possibly subject to a timeout).
Hence extra control structures were designed to allow a simulating SLIDE device
to evoke the scheduler at all such significant events.

4.3.2 Implementation

To more car.ly understand the nature of the implementation of SLIDE processes in the
simulator, it is worthwhile to examine SIMULA processes. SIMULA processes are not only
characterised by their explicitly defined actions and data, but also by the external control
structures they are associated with. The SIMULA scheduler, consisting of the SIMULA event
list and related scheduling routines, governs the "global context", if you will, of SIMULA
process behaviour. SLIDE processes are also characterised by an external control structure,
the SLIDE scheduler, and by their membership in a fixed data ‘structure (the SLIDE process
priority tree) as well ;is by their own explicitly defined actions and data. Together, these
data and control structures govern the global context of SLIDE processes. '

Figure 5 illustrates the static data structures of a SLIDE process. In the implementation of
SLIDE processes, class PROCESS was used as a prefix to provide the rudimentary capabilities
of interaction with the SIMULA scheduler. Two other properties that are common to every
SLIDE process arc physical membership in the aforementioned priority tree and possession of
an explicit priority number. These attributes were combined with class PROCESS to produce
class SLIDEPR, the prefix for all SLIDE processes. Each SLIDE process is implemented as a
SLIDEPR subclass with its own particular data and actions (body).

The next question in SLIDE process implementation concerns process termination, which

physically calls for the particular process to be garbage collected and replaced. Now,

lThoso conditions aro arithmetic and/or logic «?xprossion9 of SLIDE variabloii

regardless of initiation or termination, the membership of a SLIDE process in the priority tree
is fixed. It is of no value to constantly create, destroy, and recreate parts of a priority tree
along with the SLIDE processes themselves. So rather than support direct SLIDE process
membership in the priority tree, it was decided lo separate the two by implementing the tree
as an independent data structure which the 51 IDE process would reference through a pointer.
Thus, as SLIDE process instances arc created and destroyed, only pointers to the priority
tree come and go, not the components of the tree itself.

Further addressing the question of termination, it is important to try and implement this
task as efficiently as possible, since this is potentially a major source of execution overhead.
This task entails the removal of all references to the dynamic data structure modelling the
SLIDE process -at tho time, and redirecting them at a brand new instance of that data
structure. If there was always only one pointer to a given SLIDE process, and that pointer
was always easy to locale, this would reduce the workload of the task immensely. This is
precisely the purpose of Ihc flak object depicted in Figure 6. Flak objects "take the flak", in
that all data structures wanting to directly reference a SLIDE process must settle for an
indirect reference through the flak object instead. As is seen in Figure 6 , although the
SLIDE process is abfe to reference its representative node in the priority tree directly, that

node must go through the flak object to reference Ihc SLIDE process.

au

PRIORITY
TREE

/_’ E Node

e Arc

¢ > Sibling

Node

Q

i

{ 0 1 Flak

NI |

SMULA
| EfiDCESS.
PRIORITY SLIDEPR
_______ - SLIDE Process

T _

Figure 6: Static Data Structures of SLIDE Processes

31

Figure 7: Structures of the SLIDE Scheduler

AN \
SoER S \ check = ool J
£ ¥ /
chkactivity chkpriority > kil |
PRIORITY]
- B TREE j‘g
X"‘“‘""“ﬁ‘-‘*z X invokes Z

X—T"———1HZ X accesses Z

¥

The part of the 51.101' proce” implementation described ahovo is a fixed data structure.
The "SLIDE Scheduler" is embodied in an external control structure that operates on this
fixed data structure as well as on itself, to provide the scheduling function for SLIDE
processes. Three components arc involved in achieving this. First, there is the SIMULA
scheduler, which comes "free" with class PROCESS. Second, there is a dynamically varying
special linked list , named cool, of SLIDE processes (actually, flak objects) . Third, there is a
set of six major scheduling routines that operate on the priority tree and the special linked
list cool to perform the actual process manipulations. These routines are named check,
chkactivity, chkpriority, Killodblchks and homm. The structure of the SLIDE scheduler is
illustrated in Figure 7.

Procedure chock is the central scheduling routine for SLIDE process simulations. Its
operation can be charnrteriscd as follows. In any SLIDE description, there will be a finite
number of DPI AY 'tntements of the kind that contain a Boolean expression, and a finite
number of initinlir.ation condition declarations (or SLIDE processes, each of which will also
involve one SLIDE Boolean expression. All these expressions have the property that if they
become true sometime during the simulation, a SLIDE process may need to be scheduled or
rescheduled. Procedure check catalogues these expressions and the processes they affect.
Whenever check(i) is invoked, the ith catalogue entry is evaluated, anc] if the listed expression
is found to be true then check will attempt to schedule the associated process. Whenever
SLIDE hardware variables have data written lo them (explicit stale change), they will invoke
check once for each catalogue expression in which they appear. The other source of check
invocations is the mechanism that handles implicit state changes, which will be described in
due course.

How far and in vyh.l manner the process scheduling attempted by check will proceed
depends on the type of entry (initialisation or DELAY statement), and on the current state of
the simulated device. For example, if the expression in a DELAY statement occurring in an
inactive SLIDE process should happen to become true, it should not and will not have any
scheduling effect on the process. In the absence of such obvious anomalies , scheduling will
indeed be attempted, for a DELAY statement entry, all that is required is that the associated
process be active for- the SIMULA scheduler to be immediately invoked. The scheduling task
for an initialisation entry is more complicated, as this calls for verifying that the various
SLIDE procer.s initiation rules will not be violated if the given process is allowed to start. To
handle this necessary bookkeeping, two Boolean procedures are provided : chkactivity and
chkpriority. Check will invoke each of them in turn , and if they both return true this
indicates that the process can indeed begin execution consistent with SLIDE prbcess initiation
rules, and so check can invoke the SIMULA scheduler.

Procedure chkaclivily is responsible for the enforcement of the SLIDE process rule that
states that a process cannot be initialed unless all the processes of which it is a subprocess
are already executing: |l (Joes this by traversing the priority tree, making sure that every
ancestor of the given SLIDE process is active, i.e., scheduled on the SIMULA event list.
Procedure chkpriorily is charged with the enforcement of the rule that states that a SLIDE
process may only bo initiated if no process at the same process level is executing and has a
higher explicit priority numbering. It also accomplishes its task by traversing the priority
tree, but this time it examines the siblings of the given SLIDE process. If any of them is
active and has a higher explicit priority number than the given SLIDE process, then
chkpriority returns false. While chKpriority is running, if any of the siblings is found to be
active and possess a Lower priority than the given SLIDE process, then that sibling will be

terminated , as is dictated by SLIDE semantics.

Now, if either of chkpriority or chkactivity returns false, the situation is a special one. The
given SLIDI' procrv.s has had its initialisation conditions come true, but could not start
because of tho current Male of the device simulation. It is now possible that strictly due to
the initiation or termination of some other profess (implicit stale change), this process could
become eligible to r.Inrl. It is imperative to keep track of such a process so that it can be
given a chance to start if it can. This is done by having check insert the process into the

linked list cool for future reference.

Another set of processes that could he initialed due to an implicit stale change is the set
of newly-terminated processes, and these too will be inserted into cool by the routine that
handles SLIDE process termination, procedure kill. Procedure Kill, besides performing the
actual garbage collection and creation chores, also terminates all the descendants of the
terminated process, as listed in the priority tree.

The mechanism for handling the scheduling task with regard to implicit state changes can
now be described. |I.inked list cool has been seen to contain all the processes at a given
point in time that could be initiated by an implicit stale change. The scheduling of the
processes in the linked list cool is done in response to every implicit state change that occurs.
Whenever a 5UDE process is initialed , ils very first action is to attempt to activate every
member of cool. This is done by invoking procedure clblchk, which removes each member
from the list in turn and invokes check for its corresponding initialisation entry. Whenever a -

process is ahoiil to terminate, ils last action is to have itself "kilTcd and procedure check

R WOLIEIR A, UTRREREET A - c. DHAC) »-1 . on*o* IR L -, TS TTRRIYT

29

properly invoked, all horn an inclopenden! third party SIMULA process, homm.l This
completes the? description of the implementation of SLIDE processes as such. The next
section discusser. Ihn implementation of lho body of the SLIDE process itself.

4.4 Inside The SLIDE Process

4.4.1 Hardwaro

SLIDE variables can be lines, registers, and buffers, as well as combinational logic and
associative memories. To achieve their simulation, SIMULA classes were written to emulate
the behaviour of each hardware type.

The common characteristics of SLIDE line and register variables, such as read / write
capability and the ability to detect bit transitions, were distilled into a SIMULA prefix, class
hard. Subclasses for lines and registers were built up with class hard. In class hard the
actions of reading nnrl writing data, and of cMocting positive and negative transitions on bits,
are implemented as procedures. The actual actions of the class consist of more than the
expected variable initialisation function, however. The actions of class hard relate to that
part of SLIDE process bookkeeping that accomodates explicit state changes.

A hardware vaiiable can affect a given DELAY statement or initialisation condition if it
appears (either directly or lhiough combinational logic to which it is an input) in the
Boolean expression contained therein. From the last section, it is known that all such Boolean
expressions arc catalogued in procedure check of the SLIDE scheduler. Therefore, included in
the mapping of a SLIDE hardware variable is a list of the catalogue entries in procedure
check that the particular variable can affect. The invoked actions of a hard object are to
cycle through Iho entries so listed, calling check for each entry. 'Whenever a SLIDE line or
register variable (“nd in a similar fashion, a SLIDE buffer variable) is written to by a SLIDE
process, these actions of the variable will be scheduled. In this way, every explicit state
change which could result in some other SLIDE process needing to be non-procedurally
initiated is provided for. Providing the above list limits the scope of the search to only those
entries that am relevant to a particular variable.

Now, class hard is a subclass of class PROCESS, so its actions are treated like those of any
other SIMULA process. This means that the cycling action occurs autonomously from the

Homm must ho a filMIH.A proc™r, innIP.-KI of n procoflnro, bocnuno ihn tnrminnting procoss shouldn't force its own
garbogo collodion, which if would bo doing if lo invokp homm meant a procoduro call This point will come up again
when SLIDE hnrdwnre variahinn aro doacribrd

KD}

SLIDE proccss thal «rt the variable, ic., as a ~eparalely execuling entity, But if as was noted
above, these aclions always occur during a wrile, il scems reasonable to inquire why they
are scparaled from the wrile procedure in «uch a manner, rather than incorporated into it.
The reason lics with the familiar case of SLIDE process termination. It is possible that during
the course of il« execution, a SLIDE proceas could in writing data to a hardware variable
cause a higher priority brother process to begin execuling. SLIDE semantics dictate that the
first SLIDE process would have to lerminale. This cannot be done directly from a procedure
called by thal process. As was the case with homm, providing a third party process from
which nceded terminalions can be directed serves to mainlain orderly execution. This is

accomplished by making SLIDE hardware variables into SIMULA processes.

SLIDE global lines and registers represent a special case. They are the variables that are

mcant to correspond 1o "pins” in the SLIDE device description, so they have a responsibility
to nol only behave in a manner conaictent with olher line and register variables, but also to
interact with the device inlerface lo the rest of the simulator. This relationship with the
standardised communication interface is crystallised along the following lines. For each global
variable in the deacription, one porl in the Flement of the SLIDE device module will be
assigned. The port and the global variable will cooperate to provide correct data to each
other when necessary. Thal is, each time a global variable is writlen to, the resulling data is
passed up lo the corresponding port to be wrillen to any wire that may be connected there.
Conversely when a SLIDE device Chain is woken up, because the wire connected 1o one of its
ports has been wrilten to, the Chain will pass the data down to the associated global line or

register.

A spccial casc of the global line is the SLIDE synchronous line. The requirement for
petiodicily in behaviour called for a modification of the way the read [/ write functions were
handled as compared with other lines and registers. A new SIMULA process called the
history process was desipned that focuses on the port in the Elemenl that has been
associated with a given synchronous line. Each sync line has one history process provided
for it. The hislory process is firsl aclivaled al time zero of a simulation and proceeds with
its aclions indefinitely. These actions consiat of reading the data at the port once each
period and pushing it ‘into an internal FIFQ buffer. Therefore, the history process provides
an external periodic mechanicam to which sync line actions can be referenced. Given this, the
establishment of the correct read [/ write behaviour was straightforward. Whenever an |
excculing SLIDE stalement allempls to read a sync line, that aclion will be rescheduled on the
SIMULA cvent list just after the hislory pracess for that line. Whenever an executing SLIDE

statement altempls to wrile 1o a sync line, thal action will be rescheduled to just before the
history process.

an

As an illustrative example, consider SLIDE devices A and B in the simulator library, each
possessing a synchronous line of the same periodicity. The user creates one copy each of A
and D , and connects the respective ports together by wire in the simulator. Say that A is

executing a section of SLIDE code of the form :

LOOP 1000 T MES DO
BEG N

X - r NEXT
END r

where x is the sync line and r is a local register, and say that B is concurrently executing
this piece of SLIDE code :
LOOP 1000 TIHLS DO
BEGIN

bh -y NEXT
END

where bb is a SLIDE buffer and y is the sync line. If the declared periods of y and x are c

time units, then a snapshot of the SIMULA event list would look like this :

Proces$ Ascociatod Timo
A nc 1
AY, hislory nc | Order Of
B& history nc _| Execution
B nc \/

where n is an integer. The ordering of the history processes relative to one another is
arbitrary. Ar; each procf?',s completes its loop actions it immediately attempts another access
to its sync line. This will be rescheduled to time (rwl)c. Thus by automatically delaying .
accesses to synchronous variables until they line up with the associated history processes,

the desired periodic behaviour of sync lines is achieved.

To complete this discussion of SLIDE hardware , the SLIDE buffer, the SLIDE table (
associative memory) and SLIDE combinational logic will be touched upon. The SLIDE buffer
implementation is similar in principle to that of class hard, except that bit transition checking
does not exist, and a fifo queue data structure is implemented to accomodate buffer read /
write semantics. SLIDE buffers will set a global Boolean flag whenever an attempt is made to
read them while empty or to write to them while full.

SLIDE tables arc implemented as subclasses of a prefix class table. The principle of

operation of the SLIDE table implementation is to have two integer vectors store the defining

Q7

mappings . Thus LNCOOQOing and DFCODing are equally easy. SLIDE tables will set a global
Boolean (lag whenever an attempt is made to encode or decode a data value which did not
exist in the defining mapping.

SLIDE combinational logic is also implemented similar to class hard, except that it is not a
SIMULA process, and it is a read-only resource. Whenever a read is performed, the value of
the combinational logic resultant is updated according to the current input data to the
defining expression. It is not the case that the combinational logic output values change
whenever an input changes. These updates only occur when the combinational logic itself is
accessed . This of course saves considerable overhead over the more simple-minded method,

and is just as accurate from the simulation point of view.

SLIDE combinational logic is not implemented as a process because it doesn't need to be ;
the variables that it uses in the defining expression , which must eventually boil down to
lines, registers, and buffers, are aware of their indirect memberships in expressions as inputs
to combinational logic as well as their direct memberships. Hence, the variables will contain in
their special vectors the necessary entries in procedure check. Since whenever check is
actually invoked it v/ill attempt to access the given combinational logic in the expression, the
required updates will always be performed in time.

4.4.2 Subroutines

The basic mapping for a SLIDt. subroutine is onto a SIMULA procedure. This is
straightforward enough, but there is one interesting point concerning their implementation. A
SLIDE subroutine can be called from anywhere within the SLIDE process in which it was
declared. In addition, <\ny of the subprocesses of the defining SLIDE process may also call
the subroutine. This posed a problem that relates to the cataloguing of processes and
Boolean expressions in procedure check in the SLIDE scheduler. Beforehand, each expression
in check could be identified a priori with a unique SLIDE process. This is cléarly not the case
with an entry in check that corresponds to a DELAY statement expression when the DELAY
statement occurs in a SLIDE subroutine.

The solution to tho problem entailed extending the cataloguing in check and the mapping of
DELAY statements to provide for variability in the identity of the affected SLIDE process
during device simulation. 1l ako entailed providing in the mapping of SLIDE subroutines some
bookkeeping facilities to keep track of subroutine calls, so that virtually all cases could be
correctly handled. (For example, concurrently executing SLIDE processes invoking the
identical subroutine and executing the identical DELAY statement.) ' |

23
4.4.3 Stalomonts

The SIMULA mapping of the CALL, NOP, BR, and IF statements in SLIDE are all
straightforward and intuitive, and will not be elaborated upon here. The IFERROR statement
is just an IF statement that is Keyed on a global Boolean flag. This flag is set whenever a
SLIDE buffer is improperly accessed, and whenever an attempt is made to ENCODE or DECODE
data that not in the specified SLIDE table. Execution of the IFERROR statement clears the
flag. The more interesting mapping tasks v/ere those for LOOP and DELAY statements, and for

parallel compound statements.

The LOOP statement mapping would have been trivial except that the SIMULA WHILE
statement turned out to be unusable. This was due to the fact that SLIDE expression
evaluation in SIMULA requires the execution of a number of SIMULA statements , in general.
Thus SIMULA IF statement constructs had to be employed to achieve the desired functioning.
For example, LOOP 100 TIMES DO <stmt> UNTIL <cxprcssion> maps into :

FOR i:=1 STEP J UNTIL 100 DO

BEGIN
<51mt>
<Rxprcv;sion evaluation until Boolean resultant>
IF Lloolean resultant THEN GOTO exit;

END;
exit

The SLIDE DF.LAY MMement is tin? pivotal statement of the language. It provides the fine
in-line timing control that facilitates the accurate description of I/O hardware operation.
While the mapping of the statement DELAY 100 was trivial, because the SIMULA HOLD
statement is semanlicnlly identical , the other two forms of the statement required some
thought. For DELAY UNTIL/WHILE <cxprcssion> the following mapping was used :

label : <r»xprcr.sion evaluation up to Boolean resultant>
IF (NOT) Boolean resultant THEN
BEGIN

HOLD(very large number);
GOTO label;
END;

To complete the mapping, the catalogue of Boolean expressions in procedure check of the
SLIDE scheduler is updated with <crpression> anci the identity of the process in which the
DELAY statement occurred. From the above example it is seen that the DELAYed process is
never actually removed from the SIMULA event list, just placed very far down it in simulated
time. While this forcer, an otherwise unnecessary GOTO loop to be included in the mapping, it

does serve to provide an easy distinction between processes. that have not yet begun

a9

execution (then nol on lho event list) and OfXAYed processes. The SLIDE scheduler uses
this distinction to great advantage.

The final version of the DELAY statement, DELAY 100 UNTIL/WHILE <cxpression> ELSE

<stmt> resulted in a more complex mapping :

xi=cuiTcnt r,iimilotcd time;
| abe 11 : <PXx|>1 r'-°.ion evaluation up to Boolean resultant>
IK (NOD Boolean resulUnt THEN
BEGIN
liriL.rU (100;.- SLIDE CLOCK) + x - current simulated time);
IT x i (IOOvr SLIDE CLOCK) <> current simulated time

* TURN
BLGIN
<stmt>;
GOTO |oho 12;
END
ELSE GOTO label 1;
END;
label2:

To understand Ihir. mapping, it is important to keep in mind that this, code will be appearing
inside what is actually a SIMULA process. As the code is entered, the variable x is set to the
simulated time at that point in execution. If the expression evaluation results in the IF
statement condition being true, then the execution of this SIMULA process must be
suspended. This is dono by invoking 1ho SIMULA command HOLD, which freezes execution and
schedules the process to be resumed 100 M- S| IDE CLOCK time units from now (since x =

current simulated time) . When execution resumes , it will be at the statement following HOLD.

Upon resumption of execution, current simulated time v/ill be greater than or equal to x. If
it is also greater than or equal to x « 100\ SI.IDC CLOCK , then the DELAY statement has
"timed out" and the statements <stmt> must be executed. If the DELAY statement has not
timed out, resumption of execution could hnvo taken place one of two ways. Either the IF
statement statement condition has indeed gone hue, or an uncalled-for reactivation has taken
place. The latter possibility does exist because of the nature of the implementation of
procedure check in the GLIDE scheduler,l which does not discriminate between DELAY
statement expressions in an executing SLID!" process. In either case, looping back to label 1
produces the correct behaviour. In the fiisl case, the program will drop through to label2.

In the second ense, the process will be suspended for the amount of time left until a time out

1

A molhod for nlloring lhn implnmoninlinn of procedure chock to plnminnto this popmbilily is montionod in (ho
conclusions.

'10

would occur, given the original limo al which Iho DELAY began.

The mapping of parallel compound statements is intended to provide "FORK and JOIN"
behaviour. Given the following example :

BEG N
END s
BEG N
END NEXT
<31mt >

SLIDE semantics dictate that the actions in these two statement streams be started at the
same lime (I'ORK) ; nnd that <slmt> not be executed until all the actions in the two streams
have completed (JOIN).

To accomplish thi'., each statement stream is mapped into a separate "degenerate" SLIDE
process ; drgrnrjrntr? in that it will have no entry in lho priority tree. As an example, given
an executing process A in which three parallel compound statements are encountered, name
the compound statements 1,23 and their respective statement streams A, M, and T. The
following mappings would result : |

PROCESS A : Antivote 1
DELAY UNTIL 1 is finished

PROCESS 1 : Activate 2

A

DELAY UNTIL 2 is finished
PROCESS ? : Activate 3

M

DELAY UNTIL 3 is finished

PROCESS 3 : T

After the activation statements take place , processes A, 1, and 2 are suspended at-the
same simulation time, and process 3 begins execution at that same simulation time. By virtue
of the DELAY statements, process A cannot resume execution until all of 1, 2, and 3 have

i

completed theif action'.. Thus the FORK and JOIN behaviour is achieved. Note that as
: separ‘ate processes, the throe statement streams do indeed execute autonomously and in
parallel. fhe so-called DELAY statements shown in the example are meant to signify the form
of theJ resulting SIMULA mappings . For instance, each of A, 1 , and 2 will have an entry in
~check, and their associated expressions will be " 1 (or 2 or 3 respectively) is finished". The
same mechanisms will be used to reschedule the processes as would be used for a real SLIDE
DELAY statement.

As a closing nolr, this mapping for parallel compound statements also includes an
accounting mechanism for the degenerate processes. This is necessary to insure correct
SLIDE process termination. In the above example, if A was to be terminated, the accounting
mechanism would insure that processes 1, 2, and 3 would be terminated as well.

4.4.4 Timing

The liming task in the simulation of a 51 IDE description was considered, and maintaining
time fidelity bolwrmi communicating 51.IDF processes was seen to be crucial for
interconnection simulations. Fortunately however, it was found that in general it is not
necessary for every action in a SLIDE process to occur at the absolutely correct simulation
time, because not every action is necessarily significant . A significant action is said to occur
whenever any SLIDE statement that could possibly cause the SLIDE scheduler to be invoked,
or could produce activity at the ports of the SLIDE device, is executed. It was decided to
include in the code generator an algorithm that would insert correct delays at proper points
with respect to significant actions, to reflect the true passage of time. By not having to
insert delays after non -significant actions, the simulation was expected to correspondingly
speed up at no cost to modelling accuracy.

The sequential passage of time in the body of a SLIDE process is embodied in the two
statement separators MFXT and ; (semicolon). The semicolon indicates that no time is to pass
between the completion of the previous statement and the start of the subsequent statement.
NEXT calls for the insertion of a delay lasting one SLIDE CLOCK period between those two
points. If all statements were treated equally, the mapping of time passage would simply
involve the insertion of a SIMULA HOLD statement wherever a NEXT appears in the SLIDE
description, and inserting nothing wherever the semicolon appears.

The desire to reduce the number of MOLD statements that occur in the generated code
makes the translation more complex. Each SLIDE process will be assigned a Boolean flag that
is to be true only if the statement just executed was significant. There is also an integer

counter that is used to keep track of the number of SLIDE clock periods that the simulated:

12

time of the cxreuting process if. off hy, by virtue of having ignored romc NdXT's. Now , the
code generator dotorminr® the significance of each statement in a process ,l as defined
above. If the statement to be executed is significant, it needs to be executed at the correct
simulated time, and so a corrective delay is inserted as follows :

|F counter \ 0 THEN

BEG N
HOLD(counter * SLIDE CLOCK);
counter := 0

END;

After any statement completes its execution , the code generator inserts code to set or
clear the Boolean flag as appropriate to the statement just executed. Then the following
code will be inserted if a NEXT was encountered after the statement in the GDB :

IF fitKi is iran. iiii.N

BEGIN
HDI D((counter +1J * SLIOF CLOCK);
countor :~ O;

END

ELSE
counter :~ countnr + 1;

Nothing is inserted if a semicolon was encountered.

With the insertion of the above code as necessary before and after SLIDE statements , the
overhead incurred duo to SIMULA HOLD statements is minimized consistent with time fidelity

requirements.

4.4.5 Expressions

The implementation of SLIDE expression evaluation centred on just a few concepts. By and
largo, this implementation was able to make use of the power of the SIMULA language to
produce a flexible mapping that simplified the job of the code generator in producing
executing expressions. -

The fundamental operand in Sl IDL K the bil-r.rgmenl, ie., a string of bits. There is no
inherent limit in Sl Il)f" to the width of bit r.rgmrnlo or to their accessibility. The mapping of
bit-segments into SIMUI A had to retain these properties, and this was achieved quite simply
in class Inter. Class inter provides a standardised representation medium for SLIDE data and
forms the basis for evaluation of SLIDE expressions. An inter object is a pointer to a one

lSectio'n 5.3 doRcribos tho problems of dolormining slalamonf significance

43

dimensional array of inlegers. Sloring the dala in an array removes most practical limils to
its scopel . Referring to the array through a pointer gives flexibility in operand manipulation
at the cost of rxlra «<torage. Mot arithmetic and bit-logical operalions are implemented to

accept inter objects as inpuls and to produce inter objects as outputs.

The mechanisms for expression evaluation arc twofold, and are illustrated in Figure 8.
First, there arc the various SIMULA procedures thal perform the actual SLIDE operations.
Second, there i« a runtime slack for storage of lemporary results. The SIMULA procedures
co-cxist inside an environment called class expression. Class expression, in addition to
housing the procedures, also houses a single inler object, into which operation results are
placed. Class expression will interact with the runlime stack to produce efficient and correct
expression evaluation. The runlime slack will push and pop inter objects. It can also
interchange the two objects at the top of the stack, which is uselul for correctly ordering

operands.

lCumm"y, ann SLIDE bit in mappoad inle one mtoger ; bit-alufling macron will be amployed in the fulure o produce a
bit-1o-bil mapping

a4

Figure 8: SLIDE Expression Implementation

{/V Procedure Inputs

SIMULA

PROCEDURES
for SLIDE

Operators

—

Result

CLASS EXPRESSION

RUNTIME

STACK

iy

One expression objocl m>d ono runtime st»vk will exif.t per SLIDE device instance (they are
located in the SP). More than one set is not necessary for a given SLIDE description.
Limiting the number to only one set in the whole simulator would open up the possibility of
inadvertent data contamination, because of the autonomous and independent nature of the
ongoing device simulations. The decentralised nature of the simulator core precludes the kind
of centralised control of expression evaluation that would be required otherwise .

" To close out this overview of SLIDE expression evaluation, the implementation of a unique
expression will be clir.cusr.rd. This expression had to bo realised completely outside the class
expression environment. This was the sequential behaviour expression, which takes the form
X EQL :V1:V?:V3: .. :Vn.. This expression will bo true if, at the simulated time of its evaluation,
the last n valuos on lho synchronous line were* first VI followed by V2 and so on to Vn. The

expression is falso otherwise. X must be a synchronous line, and the values Vi are constants.

The evaluation of lhis expression entails Knowing the exact behaviour over time of any
sync line, to within some maximum time window ".i/e. Recalling the implementation of the sync
lines, it is soon that tlu* hi-.lory ptocrs'. of a sync line, through its internal buffer, provides
exactly this rosourm. Tho history procoss maintains from time zero a record of occurring
values on tho lino. Thus, one component in sequential behaviour evaluation is provided by
the relevant history process.

For each occurronco of a sequmlul hrhaviour expression in a SLIDE description, there will
be ‘mapped ono ohjoc.t of class sequonco. Whenever the expression is evaluated, the actions
of the sequence object will be invoked.

The actions of the sequence object are split into a transient phase and a steady state
phase. In the transiont phase, the sequence object simply waits for enough values to have
occurred on tho lino to bogin actual testing for lho given sequence. Until simulated time
exceeds n timer; tho sync line period, there is nothing to test for, and the result of the
expression evaluation is always false.

After enough timo has passed, tho sequonco object will begin its steady-state phase. Upon
invocation, its actions aro to do a word by word comparison between the sequence to be
tested for and lho List n values on tho line ns recorded by tho history process in its buffer.
The elapsed timo between successive expression evaluations is taken into account, and the-
the location of tho window through which the history process buffer is examined is shifted
accordingly.

Thus, the evaluation of this typo of expression is entirely independent of class expression.

Each occurrence of a sequential behaviour expression results in a new sequence object being

created in the SP of the SLIDE device module. This differs from the conventional operator
implementation in that | for example, no matier how many AND's occur in a SLIDE description,
there will be only one ANDing procedure (inside one expression object) in the SP. However,
conventional operalors have no need lo consider lhe time between successive invocations ;
dependence on lhe passage of time necessilates a more complex implementation for
sequential behaviour expressions.

ai

5. SLIDE Code Generator

5.1 Context Of Operation

To fully understand the operating principles of the code generator program, it is necessary

to understand the overall context of its operation within the software system described in
Chapter 3.

5.1.1 Pre-Compiled Code

The mappings from SLIDE to SIMULA discussed in Chapter 4 were expressions of the
nature of the final SIMULA code. Exactly how they are supposed to come about, or where
they fit within a framework of automatic program generation was not discussed. To a first
approximation, desired SIMULA mappings can be broken down into two categories with
respect to the code generation problem : code that is generated anew for each SLIDE
description, and code that is always present in the multi-level simulator. The relationship
between the two is symbiotic ; the always-present code is a continually existing resource

that the code generator program will assume to be available to the code that it generates.

The domain of the always-present part of the SLIDE to SIMULA mapping consists of the
generally used SIMULA prefixes upon which specific instances of SLIDE entities are built, such
as class hard, and globally ur.ed procedures and variables. Conveniently, SIMULA provides a
facility for allowing classes, procedures, and data structures to be independently
pre-compilcd into one new external prefix. Any program that is prefixed by this external
class will have access to the constituent properties of the class. This methodology was used
to implement the always-present part. In the actual implementation, general support code for
the multi-level simulator core is a0 included in the makeup of the external class. The
advantage of all this is lies in that, for example, class hard has only to be written once and
compiled once to bo accessible to all subsequent SLIDE simulations. The precompilation
facility removes the need for the code generator to be constantly reproducing such code
each time it is executed.

5.1.2 Preprocessor

Another clement in the operational context of the SLIDE code generator is the
preprocessor. As was previously stated in Section 3.1, the preprocessor pieces together
fragments of SIMULA code from any number of code generatof output files into a single

SIMULA program. In the original implementation of the simulator core [8], a simple prograrh

existed to piece together the various device modules into a runnable simulator. It was

3

designed to allow a user lo write hio own device modules in SIMULA without having to worry
about gross syntactical drUiils. The current preprocessor takes this concept and expands on
it to provide a faenei"T| tool for the formatting of fragments of text.

A notion of the world-view of the preprocessor can be obtained from the following
analogy. This Report can be considered to be the root of a tree, whose sons could be
"Chapter 1", "Chapter 2", and so on, and each of these could have sons "Section 1", "Section
2", etc. The relationship of the "real" report to the tree is that the tree can completely
specify the ordering of the different parts, subparts, and so on of the report, such that the
report could just ns well be read by traversing the Irce (in the correct fashion) as by any
other means. Now, if the tree were stripped to the bare bones and retained, such that each
node contained- only a label such as "Chapter 3" or "Section 16", and the various textual
pieces of thn rrpoit wore mixed up into a random pile of fragments, with each fragment
tagged "Sulv.ff lion / of Section g of Chapter d", it would still be possible to read the report
in order. The tiro could be used ns a guide by which subsections could be synthesised into
sections, sections into chapters, and chapters into a report, without paying any attention to
the semantics of the lag names, only lo their location in the tree.

The preprocessor is r« program that tries to apply the principles (hopefully) conveyed by
the above analogy. If a general body of text is able to have a relational structure specified
for its constituent sub-texts , then, given only the sub-texts - suitably labelled - and a
specification of Ihe structure, the preprocessor program will recreate the original text body
out of the input sub-texts. In particular, lhe preprocessor expects the structure to be
specifiable as a tree, and it will piece together the text by following a post-order traversal of
the tree. Thus, it combines the text specified by the sons of a node before moving on to the
right-hand brother of the node.

The requirement for tree-specification of tevl body structure is not a problem for this
application of Ihe pmprocessor, namely the creation of one SIMULA program from a
multiplicity of input text files. As a high-level programming language, SIMULA has a specific

syntactic structure lo adhere to which is quite amenable lo a tree-like representation.

Incorporated in lhe text input to the preprocessor will be commands that will guide its
Operation . Them nro four such commands : a tree structure specification command , a text _
labelling command , n premature tree Iravrrs.il command, and a file inclusion command . The
purpose of the former two commands should he clear from the above discussion. The latter
two commands will be described next.

The premature tree traversal command forces the text associated with the subtree of a
node in the structure tree to be combined into a single fragment, and tagged with the node

7

label. To sor Iho ulility of such a comm.md, consider a simple example. Assume that
computer programs in some language have boon structurally described as a single level tree,
i.e., as consisting of Declarations and Actions, Given n fragmented programs, where each
program is presented a% a piece of code labelled Declarations and a piece of code labelled
Actions, to bo input together to the preprocessor, the desired output would of course be n
single programs. However, if the tree traversal process were to run continuously from
beginniﬁg until end, the resulting body of text would be an attempt at one large program,
with the n declaration sections of the n programs grouped together followed by the n action
sections. This is because each occurrence of a given label is the same from the point of view
of the tree ; any two text fragments that are labelled identically will have, by definition, no
predetermined ordor with respect to each other, only with respect to differently labelled
fragments. Th'us, all the declarations and then all the actions would be lumped into an

amorphous whole, because? no line was drawn between them.

The premature Iroc traversal command, properly invoked , would allow such a line to be

drawn botwen programs, so that thn respective fragments could be properly congealed into
1

individual programs. To do this requires a certain degree of physical organisation among

the input fragmrnk; thi". could not be achieved in a totally randomised setting. Thus, the
premature tree traversal comancl is not a general replacement for a more detailed structure
specification. However, under the right conditions it ir, useful in eliminating the need to

overspecify structure in order to achieve the* dosirod results.

"Iho file inclusion command i» simply a drvico for specifying input files to the preprocessor.'
They can be nrsird so that groups of input files may be treated as a single entity by the
preprocessor. Thus the code generator may safely output multiple fragment files for a single

SLIDE device mapping, ao long as it provides the necessary file inclusion commands.

5.1.3 Final Simulator Program

Another element of the operating context of the code generator is the final SIMULA
program to which its output must conform. The form of the final program is constant, and can
be described as follows :

lTho rotative) orclnrmg of program*; in Urn mnuHing output would ho rnnriom

)

Special IIMr laratinns

Class definitions - Simulator Cor?
Class nnrl Pi nr«Mlui-ro definitions - SLIDE
Procedure dr»fini tionr. - nnimulotnr core
Global varia»lo dofinilions

Glohal vnrisiblc initialisations

Main program

The simulator core parts of the above program correspond to the non-precompiled part of
the core as soon in Figure 2. This part is entered in fragmented form to the preprocessor ,
and is fixed. Note that lhn simulator main program is the front-end monitor with which the
user will interact.

Of course, the slot marked off for SLIDE clashes and definitions is reserved for the output
of the code gonernior, after rearrangement by the preprocessor. Moving in for a closer look,
it is soon that the ultimate structure of the code that is produced by the code generator will
be as follows :

SP (Simulation Process)
Chain

Spniir-rj Prorp'/.n-, (pi nrp’.’,ri’\ derived from parallel compound stmts)
Procedures -itirl Prnconr.eo (SLIDE subroutines and processes)

Each of the above sections corresponds to a node in the structure tree that will be passed
to tho preprocessor./l I he particular partitioning is more a reflection of certain code
generator output logistic requirements than of anything else. For instance, the relative
ordering of class wul procedure definitions is immaterial in SIMULA ; many other
arrangements would have been equally suitable in this sense.

To achieve this structuring in tho final preprocessor output, the code generator uses the
full arsenal of preprocessor commands. For example, the premature tree traversal commands
are utilised to insure that the above sections are not inadvertently grouped with the
corresponding sections of other SLIDE device mappings.

L Thin r.druelurn in fixorl for nil SI 101. rinvicon, HO 1I»O currr.porwlinp prrproc*»nn®r commando »© pariaod in |ho
non-prncompilorl par\ input filn \n r.p.ro lhi» corin gonor.ilor having to do it oner for nach SHOT ditvico, which is clonrly
unnncoTi.iry.

bl

5.2 Discussion of Operation

The code generator program is designed to operate within the context described in the
previous section to produce SIMULA code that will eventually form SLIDE device modules
within the simulator. Its input is a single file containing the GDB tree of one SLIDE
description. The code generator traverses the tree exactly one time, producing SIMULA code
on the fly as required. Suitable labelling of this code and proper insertion of commands to
the preprocessor assure that the output will be correctly rearranged into the intended
format.

5.2.1 Uniqueness of Variable Names

Upon invocation by the user, the code gcnrralor will ask the user for the name of the GDB
file, and the name by which he or she wants the resulting SLIDE device type to be known in
the simulator. Among other things, those names arc used to insure uniqueness of the
resulting SIMULA class and procedure names in the final simulator program.

The effort to minimise the chances of vaiinhlr name clashes in the simulator is based first
on the fact that inside a SLIDE description, identifiers musl Lie unique across a given process
level only. Thus, by appending process Irvrls to identifier names, the code generator
prevents n.ime clashes within a given Sl IDF. drvicc in the simulator. To deal with the problem
across devices w/r, not as straightforward. It was decided to base SIMULA class and
procedure nnmrs o\) the user inputs described above. If the user names different SLIDE
descriptions uniquely, i.e.,, does not use the same file name or module name for different
SLIDE devices, then lliesc names can be used to insure complete uniqueness of all identifiers
in the simulator. As long as the u".or is made aware of this minor constraint , there should be
little ensuing difficulty.

5.2.2 Procedure Interaction and Related Comments

The operation of tho code generator is summarised in figure 9, which diagrams the major
procedures and their interactions with each other and other facilities. By way of explanation,
each of the pictured procedures is briefly described herein.

Initialisation 1 hi', procedure initialises glnh.il variables, dumps beginning code for the
$P and Ilip Chain, and initialises the low-levrl utilities (creates the
symbol table, opens filr.% etc.) .

Finalisation Ihis procedure dumps Ihm» code to generate SLIDE hardware variables
plus the final code for Ihr SP and the Chain, and wraps up the low-level
utility chores (closes files, outputs iINCLUDE commands, etc.). '

PROGRAMgen

PROCESSgen

Mainset

DECLARgcn

INITgen

SUBRgen

STMTSgen

STMTpren

Expgen

This procedure does the bulk of the SIMULA mapping for the SLIDE
description MAIN process.

Generales the SIMULA mapping for the body of any SLIDE process.
Since SLIDF processes are nested inside each other, PROCESSgen can
invoke ilsell.

Handlea the mapping required for the case when the current process is
the MAIN pracess. It esaenlially does whal INITgen would do if there
were an Init slalement for MAIN processes in SLIDE.

Handles any dedarations that may exist in the current SLIDE process by
calling the four procedures TABLFgen, CLOCKgen, COMBgen, and
HARDgeen, as indicated by the current node in the GDB tree. TABLEgen,
CLOCKgen, and COMBgen create the code needed for SLIDE table, clock,
and combinatorial logic declarations, respectively. HARDgen gencrates
the SIMULA declarations for SLIDE hardware variables (cf. Finalisation).

Fncountering the Init stolement for a SLIDE process in the GDB lree
causes INITgen lo be invoked. This procedure will dump the SIMULA
code thal will cause a new SLIDE process to officially exist as a data
structure although ifs body has nol yet been specified, viz. enter a new
node in the priorily tree , a new entry in procedure check, and so on.

Dumpa the beginning and end code for any SLIDE subroutine that is
encountered in the GDB ; STMTSpen is invoked to handle the body of the
subroutine.

Thi< procedure generates the SIMULA code for a sequence of SLIDE
slalements,

Thie procedure generales the SIMULA code for a single SLIDE statement,
by invoking one of the len procedures diagrammed, as appropriate. For
example, LOOPgen generales the code for LOOP stalements |, and so on.
A cequence of SLIDE stalements brackeled by BCGIN, END is treated as
cither a parallel compound «talemenl (Pprocessgen), or as an ordinary
sequence of statements (STMTSgen), depending on the context.

Thic procedure generales the appropriate SIMULA mappings for all SLIDE
expressions, Since cxpressions are often found embedded in other
CxXpressions, expgen is recursive.

Figure 9: Procedure Interaction In The Code Generator

/ Code Gjnerator \
Initialisation PRCER?Ngen Finalisation
PROCESSgen
t] ¥y Y i
Kaituu-% Dr-CLAii"en FOCLi0.S en 1K I'lgen SUL”.Rp;on STMTSren

| l | L
v T Y Y

HARDgen TABLEgen CLOCKgen COMEgen

; |

STMTgen

EXPgen

Y

Pprocessgen

A 4

o

NOPgen CALLgen DELAYgen ASSITgen | Fgen LGOPgen
EXPgen
Q ———mp» 7 Q calls z
X—y—p 7 X & Q each call Z

| FERRORgen BRgen

STMrgen

- ey - R R] — L T Ema R

All tho cdiii',rimmr(J procedure”, interact with the low-level resources of the program,
namely the symbol table, and the input and output utilities. The symbol table is the
repository of basic information about the various entities of a SLIDE description. DECLARgen,
INITgen, and SUBRgen will enter the variable names and relevant parameters of SLIDE
hardware, etc. into the symbol table table as they encounter them. The information in the
table is both updated and used by other procedures during their code generation tasks. The
input utilities contain the data structures and inputting primitives necessary to support GDB
tree file access and traversal. The output utilities provide corresponding primitives to handle
the output requirements of the code generator, such as simultaneous outputs to multiple files

and delaying output of generated code by use of text stacks.

Not surprisingly, the '.truelure of the procrdurcs as shown in Figure 9 clorrespohds to that
of the GDB of a general SLIDE description ; it reflects the tree traversal operation that is the
driving component of the code generator program. The GDB provides another benefit aside
from a structured representation of SLIDE descriptions , which is that the code generator is
free to base its actions on the assumption that the original SLIDE description was
syntactically toirrcl. This is a simplifying factor in many instances. For example, in the case
of an unconditional branch (BR) to a labelled statement, where the program is unable to find
the label in the symbol table, it goes ahead and generates tho SIMULA mapping anyway ; the

compiler.

The syntactic correctness assumption is one factor that allows the code generator to be
implemented ar. a oné-pass program. In the above example, a second pass would have been
necessary to resolve the question of the label's existence. The preprocessor is another

factor in preventing multiple passes through the GDB. It gives the code generator the

freedom to output any code it deems necessary, at any stage its execution. Thus there is no -

need to ever "wait until the next time around" to perform a code generation task because
"it's too late to do it now" .

5.3 Points Of Interest

In this section, some of tho difficulties lli«t arose during the solution of the code
generation problem will be described, and example occurrences of each will be briefly
discussed. They all arise out of |he following observation : although the software tools exist
to physically provide the code generator the freedom to generate any category of SIMULA
code at any point in its execution, there are still limits to what can be accomplished at any

One time. These limitations result because of the nature of some of the SLIDE to SIMULA

-

mappings, and because of insufficient information during the tree traversal.

The above points can be itemized along the following lines . Having arrived at a given
point in the GDB tree, it is desired to perform a certain code generation task. However, it is
possible that

- Some of the code that is to be generated must be saved up and output at a later
time because of the nature of the SLIDE to SIMULA mapping, or

- There will not be enough informalion to do the task until the entire GDB tree has
been processed, or

- There will not be enough information to do the completed task during any part of
the codn generation phase , only at runtime.

The first stumbling block is really a consequence of the fact that the preprocessor is only
useful in structural specification of lext. While SLIDE statements are being processed,
behaviour is being described ; there can be no structural ordering that says that all DELAY
statements must come before all CALL statements, for instance. Thus , when a non-sequential
mapping arises for a SUOf statement, there is no recourse to structural semantics to make
the output sequential ap.jin. An example where this comes up is in the parallel compound
statement mapping (Section 1A3) where the body of a spewed process is to be bracketed by
extra SIMULA code (Activate and "Delay"). This mapping is achieved through use of a text
stack facility that allows tho "Delay" section to be saved and automatically dumped later on at
the appropriate point. Only the Activate part is immediately written by the program ; the
rest is put on the stack and the program moves on. The preprocessor could not be used to
get around this case because no adequate structuring is definable.

The remaining two stumbling blocks deal with the more fundamental question of desired
task vs. information vs. time. That is, given the desire to perform a certain code generation
task, there will exist cases where that task cannot be fully performed by the code generator
because of a lack of information at the time, which will necessitate waiting either 1) until the
whole input GDB has been processed, or 2) until runtime. Although the particular cases cited
next are peculiar to this project, this should not lake away from the fact that these are basic
issues of the problem of code generation that managed to surface in spite of the power of
the operating environment.

An example of case 1) that arises is SLIDE hardware variable generation. One of the
parameters of class hard is an integer that specifics tho length of the list of procedure check
entries for that variable (Sec Section 1A1). This parameter is named ma*.. When the
declaration is arrived at for a SLIDE hardware variable in the GDB tree, max is not known. In

Ry — . - £S

Bis

fact, the value of mav is not finally cletcrminnd until the entire SLIDE description has been
processed. The operational consequence of this is that as described previously, procedure
HARDgcn only produces the declarations for SLIDE hardware ; the actual creation of SLIDE
hardware variables is delayed until the end, when procedure Finalisation does it.

The following example of case 2) involves the handling of timing between SLIDE statements.
As was mentioned in Section 4A4, the code generator is to determine the significance of any
given SLIDE statement. (Any SLIDE statement that could cause the SLIDE scheduler to be
invoked or could cause activity at the ports of the SLIDE device is said to be significant.) The
exact time at which this determination can be made varies with the statement, however.

If each SLIDE_ statement is surveyed, it is seen that the significance of DELAY statements,
NOP statements, and [3R statements is unchanging (the first two are always significant*" , and
the last one is never significant), and so the code generator will output the code that sets or
clears the Boolean flap, as required. The significance of LOOP, IF, IFERROR, and CALL
statements is determined solely by the SLIDE statements that they cause to be executed,;
they have no "infringe" significance. In these cases, the code generator will not insert any
code, but just lot thn current flag value pass through as is. The significance of the SLIDE
assignment statement is a function of the particular SLIDE hardware variable that is being
written to. If the may parameter mentioned earlier is zero for a local SLIDE hardware
variable that is being written to , the code generator cannot make a decision one way or the
other. It miy be that later on in the SLIDE description the variable will be involved in a
DELAY or INIT statomcnl, and so max will become non-zero, but that can't be told as yet.
Since it is impractical tr. hold up the generation of assignment statements until the finalisation
part, it is left to the executing SIMULA code to determine significance in this case. Therefore,
this is an example where a certain code decision is actually deferred until runtime.

If the code generator has to defer the decision to runtime, the code that is normally
inserted before a significant statement will still be inserted, but bracketed by the following :

IF the variables max parameter \ 8 then
BEGIN

END;

Since the significance of a statement is corv.tant in a SLIDE cicscription, having to defer the

lNOP io considored nignifiennf bocaupo Ihc gnly Fomanlic ©ffeel of NOP NEXT is lo advance limo.

13V

decision until runlimo gnve slightly inefficient results. In retrospect, this is one case where
having a two-pass code generator implementation could have been advantageous.

aam em - © e e,

o
il

6. The SLIDE Simulator Test Case

This chapter describes a test run in which SLIDE descriptions were written, compiled,
interconnected and simulated in order to demonstrate some of the capabilities of the SLIDE

simulator. This rxamplo represents a single point in the space of simulations that can be
executed with this facility.

The example involves the following configuration: (see Figure 10)

- The PDP-11 UNIBUS

A UNIDUS CPU.

A Peripheral Device attached to the bur..

A small CMOS memory attached to the bus.

A synchronous data link connected lo the peripheral device and to a black box -
the source of the synchronous data.

The data link uses an SDLC-liko protocol. The peripheral device converts received
synchronous data bits into 16 bit words, and writes them to the memory over the bus.

To expedite the lest, the following simplifications were made:

- The CPU consists only of the processor status words and the bus arbitrator.
- The data link protocol is always in information-transfer format.

- No error checking is done on the data link.

The omitted details could have been included and simulated ; SLIDE could even be used for
CPU description although it is not intended for that purpose.

6.1 Peripheral Device Description

The SLIDE description of the peripheral device module, which is the most active module in
the simulation, will now be focusscd upon. As shown in Figure 10, the peripheral device has
two independently executing functional sides. It has an input side, which is responsible for
pulling data off the synchronous.line according to the protocol flag, address, data, flag. It
also has a UNIDUS interface side, which receives a 16 bit data word from the input side. The

bus side is responsible for transferring data words lo memory according to the UNIBUS
protocol.

59

Figure 10: SLIDE Simulator Tost Case

- Bl T- SERI AL
PERI PHERAL BX_IFIEHRO\IOJS
DEVI CE SOURCE
-

PDP-11 UNIBUS @

CPU VEMORY

60

Figure 11: SLIDE Process Structure of the Peripheral Device Model

MAIN PROCESS

SUBMAIN PROCESS: PRIORITY @

GRAB PROCESS: PRIORITY 9 DUMMY PROCESS: PRIORITY 9
FLAGWAIT PROCESS: PRIORITY P BMASTER PROCESS: PRIORITY 1 PASSGRANT PROCESS:
PRIORITY 2

CHOMP PROCESS: PRIORITY 9

6t

The operation of this peripheral device war, modelled with the SLIDE process structure
shown in Figure 1 1.

On the bus interface side, there exist the two processes BMASTER and PASSGRANT,
statically nested inside a dummy process. DMASTER is one level of priority higher than
PASSGRANT, which merely passes grants along the bus when the peripheral device has not
made a bus request. Thus, PASSGRANT is always active unless BMASTER is active, since
BMASTER has higher priority* .

When CHOMP has assembled a word of data, BMASTER is initiated and PASSGRANT is
terminated. When the transfer is completed, BMASTER terminates itself and PASSGRANT
starts again.

The SUDMAIN and DUMMY processes were used to encapsulate local SLIDE variables;
DUMMY isolated the bus interface side of the peripheral device (BMASTER, PASSGRANT) from
the data link side (GRAB, FLAGWAIT, CMOMP). MAIN, SUBMAIN and DUMMY contain no actions
except those embedded in subprocesses; thus they are "active" but asleep (not in a
busy-wait). This is achieved by using the "DELAY WHILE 1" instruction, which puts an active
process to sleep indefinitely.

GRAB, FLAGWAIT and CHOMP input data off the synchronous line, delete inserted zeros and
detect flags and addresses. When the peripheral device address is recognized, the bus
interface process is modified and 16-bit data words are assembled. BMASTER requests the
UNIBUS when data begins to be assembled.

Other devices connected are BLBOX, the black box that generates data for the synchronous
line, and DELAY, a generalized delay gale with a variable delay parameter, logic type and
output bit width. In tho example, a 75 nanosecond delay of open-collector logic type was
created to simulate the UNIBUS skew on the MSYN and SSYN lines.

6.2 Summary Of Simulation Test Results

The simulation run began by instantiating and interconnecting SLIDE modules. Then, the
simulation was started and values were traced. Tho results of the simulation are now

summarised ; a fuller discussion of some of the results may be found in Appendix II.

The actual test was broken down into three cases. The first case ran the configuration as

The initiation condition for PASSGRANT aro “IN1T PASSGRANT WMCN 1"

62

it was, with the synchronous line data rale just below that of the UNIDUS (as it was
modelled). The desired behaviour was indeed observed as data was written into the memory.
This is documented in the traces reproduced in Appendix II.

For the second test case, in order to demonstrate some of the utility of the simulator, the
synchronous line data rate was adjusted to be higher than that of the UNIBUS. Since the
peripheral device had no buffering capability , and data was arriving faster than it could be
formatted and shipped to the memory over the bus, the result was a loss of data. In fact,
since the new data rate was less than twice that of the UNIDUS, every other data word was
lost, as can be seen in Figure I1-9 of the appendix. The above two cases ran on the identical
SLIDE device descriptions. The synchronous line data rate, being a simulation time parameter
in the original SLIDE descriptions of the black box data source and the peripheral device, was

adjustable without need of rccompilation.

The third caso involved inserting a logical error in the SLIDE description of one of the
devices, and so did involve rocompilalion of Ihx»t device. Tho third test was run to illustrate
the effect of a stuck lino on the UNIHUS. MSYN was stuck high and then the memory device
attempted a read, and raised SSYN. The peripheral device operated normally until it delayed
waiting for SSYN to be lowered. The memory held SSYN and waited for MSYN to go down;
MSYN was stuck, and the bus hung up. The results of this are seen in Figures 11-10 and 11-11
in the appendix.

LRI R T rmLco- L S .o Nt | o

63

7. Conclusions

This report has described the design and operation of a new simulation facility for
evaluatihg I/0 and interfacing strategics . The rhetorical task of this report is to be
completed by a brief comparison.of the SLIDE simulator with SARA and with SABLE, and by
some recommendations and speculations concerning the simulator as it now stands.

In Section 2.4, a characterisation of SARA and SADLE was was presented in terms of the
hardware simulator taxonomy of Section 2.3. While SABLE and SARA were found to comprise
distinct leaves on the taxonomic tree, the SLIDE simulator is perhaps best described as a
hybrid. This results from the way the SLIDE simulator came about, i.e., as a simulator
embedded in another simulator. However, if one takes the view that taxonomies should be
free of hybrid leaves always, then one might claim instead that the real problem lies with this
"inadequate" taxonomy. Nevertheless, much of the nature of the SLIDE simulator is reflected
by its location in the taxonomic tree :

- The SLIDE simulator ur.es, for the most part, the SLIDE HDL for behavioural
specification. But the user can also hand code digital device descriptions in
SIMULA and enter thorn into the simulator core. Thus, there are really two
behavioural description languages existing in parallel in the simulator.

- The multi-level simulator core can support simulation of the gate level through
the system level of abstraction, all coded in SIMULA. SLIDE- described devices,
by definition, are restricted to the register transfer level . So there exists a
dual simulation environment supporting on the one hand a number of levels of
abstraction using a single descriptive language (SIMULA) and on the other hand
a single level of abstraction using a single language (SLIDE).

- Characterisation of behaviour is deterministic in the SLIDE simulator, and
structure is informally, interactively specified.

- The degree of separation of structure from behaviour is rather weak in the
SLIDE simulator, since structure can be described to a significant degree in
SLIDE.

- The SLIDE simulator interactively permits the system under test to be modified
during simulation.

- The operation of the SLIDE simulator is process oriented, and its execution can
be categorised as compiled.

It should be evident that there is a significant disparity amongst-these three hardware
simulators. Unfortunately, the determination of which of the simulators is "better" does not
really lie in a metric that can he directly applied to the taxonomy. Rather, it has to do with
application, and in terms of /O hardware simulation, which is the focal point of this project,
the SLIDE simulator can be seen to be superior to either SARA or SABLE.

64

SARA is a powerful tool designed to support a specific design methodology [11]. Its
generality leads one to conclude that anything that could be described and simulated in the
SLIDE simulator could be described and simulated with SARA. However, the task of describing
/O hardware in SARA is surely as complicated as writing a description in some general
purpose programming language from scratch. The sum of the GMB and PLIP descriptive
vehicles is an abstract, non-hardware relative behavioural description system , with no
semantics that relate to I/O and interfacing hardware as such. Such a Petri Net-like
description of an 1/0O bus protocol, for example, would be more a monument to the diligence
and patience of its author than an example of a description that both accurately and clearly
reflects the operation of the bus and the hardware that interfaces to it. In contrast, the
SLIDE language frees the user from having to build up a set of I/O semantics from scratch,
and is designed to reflect the operation of I/O hardware.

To a lesser degree, SARLE suffers from the same problem as SARA with respect to 1/O
hardware description and simulation. For instance, in ADLIB, nets are abstract data
structures, far removed from the "open collector bus" level of description. The assumption is
made that the value that a component believes it has written to a net and the value
subsequently seen by the components attached to that net should be identical always. This is
fine for abstract ckita structures, however it does preclude the wired-or and wired-and
functions common to digital device interconnections; Hill and vanCleempul [14] note that
wired-or's on nets mir.t be fudged by inserting dummy components. Another hindrance is
that in ADLIB event'. such as updates to nets can be scheduled but not cancelled, so that
prospects for succinctly describing such features as system resets are reduced. Finally, the
process structuring and semantics available in SLIDE would, in ADLIB, have to be added on
artificially with extra data and control structures. This would only serve to obscure the true
nature of the hardware's behaviour. Thus, although ADLIB seems to provide the requisite
generality to describe 1/0 and interfacing hardware, its semantic direction makes it less suited
for the job than SLIDE.

The SLIDE simulator as it now stands is not a production-quality software package. To
make it into one a number of improvements will be needed on the user interface. In
particular,

- The style of the user interface provided by the multi-level simulator is towards
the software "hacker" , not towards the average engineering user. If a user
community is ever to be developed for the SLIDE simulator, the user interface
will have 'to be reevalunlcd and redirected away from the SIMULA programmer
and back towards the user.

- As a first level expansion of experimental capabilily, test bed modules should be
added to the simulator core library. These modules, connected to the

. ekt AT WD A e

configuration undor lest, would generate dnla to drive the simulation. This data
could ho produced by the modules themselves via interactively specified
probability dMrilmtion% or fetched from user-specifiable disk files that contain
the data to bo used (trace - driven simulations).

- More interactive tools need to be provided to the user. For example, insertion /
deletion of breakpoints and activity counters in SLIDE descriptions, SLIDE
process activity tracing, and manual setting / resetting of SLIDE variables.

-~ More information and simulation results should be available to the user on
demand, to bo output to di'k files if dosired. For example, records of variable
activity over limn could be provided, ns could SLIDE process activity logs (
including snapshots of the SIMULA event list plus the linked list cool), and
subroutine invocation logs. All provided data should be in a formal suitable for
statistical nnaly«i-.

On another piano, the? SLIDE simulator is not an optimised facility. For instance, no attempt
was made to provide an optimizer for the code produced by the code generator. More
fundamentally, the St.IDf. to SIMUI A mappings themselves have not yet undergone any sort of
performance evaluation and upgrading. In retrospect, not every mapping managed to provide
the most efficient operation j the highest concern at the time was to "get it working". An
example of this is the mapping of SLIDE DELAY statements described in Section 4.4.3, where
it is possible to have processes unnecessarily reactivated only to be immediately put back to
sleep. This could have boon prevented by assigning a boolean flag to each DELAY statement
entry in procedure chock that would be set if the related DELAY statement was currently in
force. Inspecting this flag would prevent the unnecded activations, thereby saving SIMULA

scheduler overhead which is not negligible.

When considering the optimisation problem , one cannot avoid the attendant problems of
the SIMULA language itself. SIMULA is an extraordinarily slow and inefficient language, and
the version that exists on the CMU PDP-10*s is rife with runtime bugs. SIMULA is not in wide
use in North America, mo its portability is limited as well. One could speculate that a faster ,
more reliable, and more portable SLIDE simulator would result if the entire package were
translated into, say, pASCAL.} However, the translation would be far from trivial, since the
SLIDE simulator software makes extensive use of the power of SIMULA, from the class
concept on up. The answer to the question of whether to do the translation by just building
SIMULA primitives out of PASCAL or instead to start over from scratch and tailor everything
to SLIDE simulation is not obvious to this author. Realistically though, if such a transition

from SIMULA to another programming language is to be made, it should be done so as early

1

This is prociooly what occurrod in (ho SAOLE projocl

60

as possible in the evolution of the simulator, and , in the interest of programming tractability,
into a language such as PASCAL, ALGOL, or BLISS (as opposed to a language such as
FORTRAN).

Aside from the above language considerations, some speculations are in order on the
future of the SLIDE simulator. One envisioned addition to the simulator has been a facility for
ISPS simulation that would parallel that for SLIDE within the multi-level simulator core. Thus,
ISPS-describecl hardware could be included to make possible some ambitious multi-computer
type simulations. Physical feasibility questions aside, there is a basic problem here, which is
One of building skyscrapers on bungnlow-sizc foundations. The multi-level simulator core and
SLIDE have fortunately made a good marriage. However, the core itself is a primitive
implementation of ideas that arc five years old. For all their I/O descriptive drawbacks, both
SARA and SABLE are much more sophisticated and powerful simulators , and they are
indicative of tho stalr-of-the-art. The simulator core by comparison constitutes the bare
minimum, no more. In this light, it would be ill-advised to base a major multi-level,
multi-language simulation facility for the CMU DA community on the simulator core. Instead, it
would be prudent to take the lessons learned in producing the SLIDE simulator and combine
those with the lessons learned by others in producing their multi-level simulators to come up
with a solid , usable state-of-the-art system. The SLIDE simulator as it currently stands
should be developed as an interconnection strategy evaluation tool, not as a general
multi-level simulator.

<7

References

[1]

(2]

[3]

(4]

(5]

[6]

[7]

[8]

[9]

[10]

Abramovici, M., Drcucr, M. A; Kumar, K.
Concurrent Fault Simulation and Functional Modeling.

In Nth Design Automation Conference Proceedings, pages 128-137. IEEE and ACM,
1977.

Barbacci,M., Barner,,G., Catlcll,R., Sicwiorck,D.
The Symbolic Manipulation of Computer Descriptions ; The ISPS Computer
Description Language.

Technical Report, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pa., March, 1978.

Barbacci.M., Nnplc,A.
The Symbolic Manipulation of Computer Descriptions ; |SPS Application Note: An
ISPS Simulator.

Technical Report, Dcpt. of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pa., March, 1978.

BirtwKtlo, G. ot al.
SIMULA BEGIN.
Petrocclli/Charter, 641 Lexington Ave., NY.C,N.Y. 10022, 1973.

Breuer, M. A. , Editor.

Digital System Design. : Digital System Design Automation : Languages, Simulation,
, and Data Base.

Computer Science Press, Inc, 1975.

Caplcnor, H. D. and Janku, J. A.
Top-Down Approach to LSI Design.
Computer Design 13(8): 143-148, Augur.t, 1974.

Chen, Robert C. and Coffman, James E.
Multi-Sim, A Dynamic Multi-Level Simulator.

In 15th Design Automation Conference Proceedings, pages 386-391. IEEE and ACM,
1978.

DcBencclictis, Erik P.
Multilevel Simulator.

Master's thesis, Dcpt. of Electrical Engineering, Carnegie-Mellon University, Pittsburgh,
Pa. 15213, 1979.

Estrin, G.
Modeling for Synthesis - The Gap Between Intent and Behaviour.

In Proceedings of the Symposium on Design Automation and Microprocessors, pages
54-b9. I1ETE and ACM, 1977.

Gardner, R, Er.trin, G., Potash, H.

A Structural Moddling Language For Architecture of Computer Systems.

In Proceedings of 1975 International Symposium on Computer Hardware Description
Languages, pages 161-171. |IEEE and ACM, 1975. :

e e — ——— [e e f e ——

[11]
[12]
[13]

(14]

[15]
(16]
(17]
(18]
)
(20]

[(21]

Gardner, R. L

A Mcthodology For Digital System Design Based On Structural and Functional
Modcling.

Technical Reporl UCLA-ENG-7488, Compuler Sciemce Department, UCLA, January,
1975.

Hellestrand, G. R.
MODAL : A System for Digilal Hardware Description and Simulalion.
In 14th Design Automation Confcrence Proceedings. 1EEE and ACM, 1977.

Hill, D.
ADLIB : A Modular, Strongly Typed Language .

In Procccedings of 1979 International Symposium on Computer Hardware Description
Languages, pages 75-81. 1EEE and ACM, 1979.

Hill,D., and vanClrempul,W.
SABLE: A Tool for Generating Structured, Mulli-level Simulations.
In Proccedings of the 1979 Design Automation Confercnce. IEEE and ACM, 1979.

Hill, F. J. and Peterson, G. R.

Digital Systems : Hardware Organization and Design.
Wiley, 1978.

Second Edition.

MacDougall, M. H.
System lLevel Simulation.

In Digital System Design Automation : Languages, Simulation, and Data Base, chapter
1. Computer Science Press, Inc., 1975, :

Park.e, Frederic 1L
An Introduction to the NmPc Design Environmenl.

In 16th Design Automation Conference Proceedings, pages 513-519. IEEE and ACM,
1979.

Rammig, F. J.

Hardware Description Language CAP and its Applications.

In Proceedings of 1979 International Symposium On Computer Hardware Description
Languages, pages 133-144. IEEE and ACM, 1979.

Razouk, R.
The Graph Model of Behaviour Simulator,

In Proccedingps of the Sympositum on Design Automation and Microprocessors, pages
67-76. ILLE and ACM, 1977.

Szypenda, S. A, and Lekkos, AL A
Integrated Techniques for Functional and Gate-Level Digital Logic Simulation.

In 10th Design Automation Conference Procecdings, pages 159-172. 1EEE and ACM,
1973.

VanCleemput, W. M.
A Hierarchical Language for the Struclural Descriplion of Digital Systems.

In 14th Design Automation Conference Froccedings, pages 377-385. 1EEE and ACM,
1977.

[22]

[23]

[24]

64

Wallace, J. and Parker, A.
SLIDE: An I/O Hardware Descriptive Language.

In Proceedings of the. 1979 International Symposium on Hardware Descriptive
Languages, Palo Alto, CA. IEEE and ACM, October, 1979.
Wallace, J.

The GLIDE Compiler.

Research note, Electrical Engineering Department, Carnegie-Mellon University, April,
1979.

Wallace, J.

SIGNALS: A Proposed Extension to GLIDE.

Research note, Electrical Engineering Department, Carnegie-Mellon University, Feb.,
1979.

l. Simulator Commands

The éapabilities of the SLIDE simulator are only partly reflected in the commands available
to the user at present. This is because the SLIDE simulator is still under development,
especially at the user interface. The following list of currently implemented commands
therefore docs not represent the maximum performance level of the program.

ADD <labol>: <dovico> <paramotors> <namo> <namo> , . . <name>;

e- ¢j. ADD BILL: INVERTER Ul UZ2;
ADD SUE : DELAY U2 U3,

The ADD command creates the data structures for the ports of <device>. The resulting
module is labelled to distinguish it from other instances of <device> in the simulator.
<parameters> is optionally used by non- SLIDE functional modules for passing of
device-related parameters. The remainder of the command field does the wiring for the ports
of <device>. A one-to-one correspondence exists between each <name> and a port of the
device, by the left to rip.ht position of <name>. For each name, a wire model is created and
labelled with <namo>. Then it is connected to the corresponding port. So for BILL in the
above example, WI is the name of a wire that is connected to port 1. W2 is the name of a
wire that is connected to port 2, and to port 1 of SUE. The conceptual results of these two
ADD commands are shown in Figure 1-1.

ALL

This command prints out the accumulated connection information from all the ADD's that
have been done so far.

DUMP <filonamo>

This command dumps out the accumulated connection information to a file called <filename>.

GET <filonamo>

This command retriever* Ihe connection information in <filcnamc> and implements it.

So, the user could build up a test interconnection usinff ADD's, then save it using DUMP. At
any time, even on a different simulation run, he or she could recreate ‘the interconnections by
GETting the appropriate file. '

71

Figure 1-1: Results of example ADD commands

72

PROBE <wiro>
e. g. PROBE ADC
- PRUDE XYZ

This command turns on a trace for the named wire. Whenever this wire is written to, the
state of the wire and the current simulated time will be output to the terminal. -PROBE
<wire> turns off the trace on <wire>.

WHAT <label>

e. g. WHAT SUE
This command caur.es the entire state of the device <label> to be output.

SIMULATE

This causes the actual functional model of each device specified in the ADD commands to be
created. It is at this point that any simulation time parameters specified in the original SLIDE
descrjption arc bound by the user.

GO <number>
Run the simulator for <numbcr> microseconds.

UNTIL <numbor>

Run the simulator until simulated time equals <number>.

FREEZE

This command caur.oo the core imago of the simulation program to be saved. This allows
easy restarts for simulation tests that start at a certain point, but then are personalized via
various parameter combinations, for example.

73

Il. Test Traces And Commentary

This appendix contains the simulator traces for the test runs described in Chapter 6, and
some commentary on the first test run.

Figure 11-2 shows the interconnection commands used to create the example configuration.
The interconnections were fetched from a prepared file using the GET command (the file is
TEST2).” The resulting interconnections are displayed further down with the ALL command.
The GET command result is equivalent to ADDing each of the devices and interconnections
shown individually.

First, an ARDIT device is created from the SLIDE module of the same name, and it is called
"AAI", distinguishing it from other ARDIT devices we may want to use. At this point, the user
has already been given a list of the ports available for interconnection and their names, e.g.,
BBSY corresponds to port 6". At interconnection time, the user may rename these ports to
avoid confusion between multiple copies of devices, and list the names of ports, in order to

the interconnector. Ports are then connected by name correspondance. So, ARBIT device

AA1l might have a BDSY port (port 6) which we will name.BBSYl. ARBIT device AA2 might
have a BBSY port which we will name DDSY2. (Thus the instantiated devices and their
interconnections may not have names corresponding to labels in the SLIDE modules
themselves.) The ports which are named at interconnection time are given in terms of

increasing port numbers from left to right.

In our example (Figure 11-2), "A" caures a wire labelled "A to be created and port 1 of
ARBIT device AA1 to be connected to it. "D" causes port 2 to be connected to wire "D". On
line two of this example, we acid a DEVICEB Module named AB2 to the system model. (This is
the SLIDE module for the peripheral device.) By typing "A" at the port 1 position of AB2, we
connect it to wire A. - '

The most interesting connection of wires is the daisy-chain of bus grant wires on the
UNIBUS. DEVICEB and MEMORY(AC3) each have a grant-in and grant-out line, at ports -9 and
10 and 10 and 11 respectively. The bus arbiter has the grant line emanating from port 19.
By connections shown in the example (Figure 11-2), we achieve the setup shown in Figure
[-1.

74

Figure ll—1r Daisychaining of UNIBUS NPG Line

! 34 34

NG NPG N NPGOUT NPG N NPGOUT
AAI: ARBIT AB2: DEVI CEB AC3: MEMCRY

The GET command (equivalent to the ADD command) causes devices to be connected at the
element level. The SIMU command then causes the chain and simulation process for each
" device to become present. The connections that have been made are checked for
compatibility at this point and any parameters given in the original SLIDE module are given
values at this point. In our example in Figure Il1-2, we see that PER was the period of the
sync line, .ADDR is the SDLC address, and JOPME is the addresé to put the first word in
memory.

The trace facility command, PROBE (PR) caused each wire being probed to output its state

whenever it is written to, whether the value on the wire had changed or not.

Once these preliminary commando wore executed, we ran the simulation for .239 usec with
the UNTIL 0.239 command.

Figure 11-3 shows the tracing on the sync line, called "INTO". It had a period of 30
nanoseconds for this example, so every period the wire got written to, and a trace output
resulted. This trace output printed tho current simulation time, along with the wire name. On
the next line, the logic type, bit width and current wire value were displayed. This figure
shows data on the wire coming after the flag and address. Note the zero insertion after 5
one's, which adheres to the SDLC protocol.

Bus connections were displayed by showing all device ports that are connected to each
wire, along with the values each of them arc putting on the bus.

Figures 11-4 to 11-8 shows the peripheral device actions over the UNIBUS. The device first
gets control of the bus from the bus arbitrator, then acts as a bus master to write data to
the bus memory (bus slave).

it

_EXEC SDTC
[19: 771563
LI NK: TOadi nq

t LNKXCT sDLC EX. utionl .
SLTDF/ ~uj ti-T-eve| Simulator version 1*0
Wel come and Good Luck!t

«GFT TFST2

“SIMJ A _

%8 mjlatl°n timre parameters for AAl
% | nl sbed

$Simulation tim Parameters for *B?
#«ADl j =l on

«PE. 2230

Yfinishe .

%Sl mul ation time parameters far AC3
«TOPMEZ=10

'} [.

98l n»ul ation ¢ime parameters f'or ALA
* PER! s30

*Apl .=t oo

2finished

JALL

;Al_z pRRIT An M8yH SSyN THNTR C PA Py SACK nuSy INIT ACLO bcLl

ApBj T rn*y be b°u"d now

19 %

DEV1CKR irdy be bound no*

iy

¥EMORYy may be bound now

RLRUy may be bound now

f'PP uh4 pRS RR6 BH7 N'G npG4 rGS RGH pu7 PSSy READY:

AB2: NEVICER A O MSYNH SSYNP. <* SACK BR5Y NPR Np~ NPG2 IN'T;
AC3: MEMUzY A n MSYN ssym TNTR C SAC* BBSY *PR NPG2 “PG3j
AD4: ALplyx THTie
AE5: NELAY/DELAY (75)/L0GIr ¢4y MSYN MSYINH,.
AF6: NELAY/DELAY (79)/LUCIr 0 4) SS5YH S5S1WH .
*PR A
* PR n
* PR MSY¥
*PR MSYhP
*PR SSYN_
»PP SSYHP
PR C
«PR SACK Figure I1-2; Firg Test Run : Trace 1
«PR BBSY
* PR NPP
* PR NPC
*PR NPG2
*PR NPG3
*PR INTO
« UNTIL 0% 239
-—> 0.030us TfJTO _
LOGIC= 6 SIZE= o PER nn= 30. 000US
VALUES UN W PK-
0
VALUES A.ONG »!I S
— 0. 060US TNTO

LOGIC=_ 6 §IZE= O PER OD: 30. 000US
VALUES ON wipk=

1 . _
VALUES AT.ONG | WS

77

Figure I1-3: First Test Run : Trace 2

ce> s10us | NTO L _
LOGI C= 'sSlzts 0 pERIND= 30. 000US

VALUES ON W pgr

X : _
VALUES AT, WG »US-

--> 0. S40+js TNTO o .
LOGI C= 6 S| ZE= 0 PERIND= 3pg.0Q0US
VALUES ON W RE-
1
VALUES AT, 1)NG HUS-
.-> 0. STOUS TNTO L
LOGIC= 6 fiFZEs 0 PERIND= 30. 0UOUS
VALUES ON W RE-
1
VALUES AT NG BUS-
o> 0. 00135 TNTU
LOGI C= f>.sztds o P=RIfD= 3f). 000Us
\1/ALUES UN W pE-
VALUES AT LING1 i UJs- .
--> 0. 630u% TNTO
LOGTC= 6 SiZKs 0 PERIfD= 30. 000US
VALUES OV W Rh-
1
VALUES ATI.'N: MJS-
--> 0, 660us TfJTO o
LOG C= 6 5?17K= 0 PFRIMD= 30. 000US
B/ALUES N W RF>
VALUES AT.UNG , NUS-
--> 0. 690Us Tf4TU .
LOGTC=. 6 SIZKs o PERIND= 30. 000US
VALUES ON W PE-
1
VALUES AT LING BUS.
-e> 0. 720US TNTU
LOGI Cr 6 5l ZEs 0 PERIOD= 30. 000US
VALUES ON W PF>
1
VALUES ATIUNG RIS
N 0, 7'>cus | NTU
LOG C= 6 .SIZL= 0 PERIND= 30. OOOUs
\1/ALUESiO\J W RE-

_VALUES AMJING.BUS.

«»> 1+020u5 TNTO . -
LOGTC= 6 Sl ZEs 0 PERI ODS
VALUES ON W RE-

1

VALUFS AT. ONG nl ?&«

--> 1+ 02fi k; NpR o
LOGI C= 4 S| ZEs 0 PERI ODs
VALUFS ON W PE-

1

VALUFS AT.ONG HHS-

AC3 9

0

AB2 R

1

AAt 14

0

--> 10 "Sus NpG ..
LOGI C* 6 Sl ZEs 0 PERI OD*
VALUFS OM W PE-

1 . .

__VALUES AT.ONG.lUSr__
-2 | "4C29us SACK .
LOGI C= 4 sxzfc: = 0 PERI PD=

YALUES OH W Rf;e
VALUFS AT.ONG HUS-

AC3 7

0

AB2 6

1

AAl 9

0 : _

--> t .02"Us npp

LOGTC= 4 T!ZE= H pEPI OD=
\(/)ALUFS & WRU-

VALUFS AT 1LING BUS-

AC3 9

0

AB2 ft

0

AAL 14

0

-2 1. 030us wpC ,
LOGTC= 6 SIZEs 0 PEPI ODs
VALUES ON WLRE-

0 _
VALUFS AT, (3NG_8"S-
»e > 1 #03t us BHSY

LOGI C= 4 SIZEs (0 PEPI OD-
\1/ALUFS ON W RE-

VALUFS AT.dNG BUS-

AC 3 fl

AB2 7

X ET T - LN T L R e

78

30 . OO0Us

0 . OOOUs

n. noous

0+ OQQus

Figure I1-4: First Test Run : Trace 3a

Ne OO0Us

0« OOQus

0. O0O0QUs

o> _ 1«032us A

79

LOGTC= 4 QZc = 17 pERINp= 0.000us
VALUES Oly W PE-
00000000000000000I
VALUES AT.ONG QUslI
AC3 1 - - :
~000000000000000000
AB2 1 ~
00000000Q0000Q0000I
AAL 1)
000000000000000000 .
Ce> 1.032US n p£R| nn= O. OOOus
LOGTC= 4 92fc= IS
VALUES ON W PF-
11ti11117110110i
GEBUES 2AT. ONG. i WS-
O00000000000N000
AB2 2 _
. 1111111 111101 101
AAl 2
00000000N000Q000
—> 1.032us C . .
LOGTC= 4 S| ZEs 1 pERI PDr O. OOQus
VALUEFS ON W Rg-
10
VALUFS ATONG BUS-
AC3 6
00
AB2 5
10
AAL 6
00 .
--> 1.033us SACK o
LOGTC= 4 N ZE= 0 FERf-I) = 0 . OOQus
VALUFS ON W RE-
0
VALUFS ATUNG BUS-
AC3 7
0
AB2 6
0
AA1 gl
O .
--> 1.1fi5us MsYNB
LOGI C* 4 S| ZEs 0 PERI PHs O. 000Us
¥ALUFS nN W pE-
VALUFS AT. ONG BOS-
AE5 7 _
0 o> 1e?bQUs »MSYH o
AB2 3 LnGIC= 4 SIZEs o PERI OD*
1 VALUES ON W PE-
1
VALUFS ATONG BUS-
AES 1
1
AC! 3
0
AAl 3
0

Figure I1-5: First Test Run : Trace 3b

0. 000uUS

- — T T R T P

80

Figure I1-6: First Test Run : Trace 3c

--> 1.760us
T.03C_ 4 SlZEs
VALUFS ON W PF-

[

VALUFS ATONG B" S-
AF6 1

0

AC! 4

1

AAL 4

0 .o
« > 1.3315us
LOGTC= 4 RT7kE=
VALUFS O WIlRri=

1 .

VALUES AT. NG « IS

AF6 ?

1

AB2 4

0

- 1.]35“5

LnGTC= 4 SI7E=
VALUFS nw ¥ IRg=
0 , .
VALUFS AT!iMG nilSa

AES ?

0

AB2 3

0) .
> 1.136us

LOGIC= 4 S| ZEs
VALUES aw WIRg=
00000000P0O0O0O0000
VALUFS ALONG BUS-
ACS 7 _
0000000000000000
AB2 2 _
0000000000000000
AAL 2 .
0000000000000000 _

S5YN

0 PERIpD=

SSYN J

0 PERIﬂnz

MSYHPR

D

0 PERIMD=

is pERIDD=

0. O00Us

0. 000Us

0.000ll's

0+.000V s

s 1.41111S

81

MSYN ..
LOGICs 4 siZE= 0 PEI'lODr
VALUES ON WIpE-

0 ,

VALUES AT.ONG RUS-

AES5 1

0

AC3 3

0

AAl 3

9

- 1.4 12 Js SSYN .o
LOGTC® 4 SIZEs 0 pERflfJls
VALUES ON W RE-

0 . .

VALUES ATONG BIIS-

AF6 1

0

AC3 . 4

0

AAt 4

A _

> 1.438us A L
LOGC= 4 SIZEs 17 PER ODS
VALUES ON W PR-
00000000N000N00000

VALUES AT.UNG BUSI

AC3 1 _
00000000N000N00000

AB2 1 _
000000000000000000

AA 1 -

£0900000 009 e 0 _
LOGIC>? 4 SIZEs t pER ODs
VALUES - ON W PE-

00

VALUES AT.UNG H«.»S-

Aeh 6

00

AB2 5

00

AAt %

00 . .

=) 1.43%s RRpSY o
LOGIC= 4 SIZE= 0 pERIP))=

VALUES ON HI RE-
0]

VALUES ALONG BUS-
AC3 8

0.000USs

Figure I1-7: First Test Run : Trace 3d

N.000US

0.000US

Nn.000us

0.00Nnus

1.4B7us SSYNP

0
AB2 7 -
0 ———
AAt 10 LOGICs 4 SIZEs
0 VALUES ON WiRg=-
0
VALUES AT.UNG BHS«
AF6 2
0
AB2 4

0

0 PERIND=

0.0Cous

e ———

N . 1.504Us
« WHAT Aci_ _
*State O AC}

NPG3]

LOAE Cs 6 SlzZfcs
VALUES ON W PF-

0
VALUFS AT. ONG N".S-
NP2 _
LOG Cs 6 SIZE=
VALUES ON W pE-

0
VALUES AT, NG »US-
NPP

LOG Cs 4 S| ZEs
VALUES ON W RE-

0
VALUFS AT-CINJ BUS-
AC3 9

0 .

AB2 8

0
AL H

0
STATF OF. M :
00000000N000N00C
000000000000N000
0000000000000000
00000000N0000000
00000000NUOUO0000
00000000N0000000
00000000N000N000
00000000N00UN0O00
0000000000000000
Uilllllilioiirs
00000000N000N000
> _ 6.979us
H#WHAT AC?
xState Of RC3
NPG3

LOGTC= A STIZE=
VALUFS ON WIRE=-
0 .
VALUES ATONGR! I S-

STATE Ob H
0000000000000000

0000000060000000
0011101100100001

111111133439430%
0011101 47371101101

1111111 4 oo om0
0011101 47341901101
1111111 1 hyi onooi

Q91Hah 111101101
000000000000N000
*BEX1T

82
0 PERR(il)s Nn. 000US
0 PERI OHs n. 000US
0 PERI PDr 0. OO0Us
Figure 11-8: First Test Run : Trace 3e
o PERLOD= 6.000u5

40 Garbace col |l ections executed during 8322 m

End of SJHUL~ oroarmt execution,

CPU tjirp: u=1}?2 tei,

pont i~ e

83

«EXEC SDT.C
t18:i0:00j

LINK: T .oaciing

LNKXCT sDLC £Xeciitjonl

LIDE/Muyii ~teve; sipujatoer version .0
Wel come and food Lucfclj

«CGET TFST2

1s1Mu _

tSimylation ¢ime n z
*flnisheq ¢ bArafeters fo, AAlL
-%fh??;?;;on U ime parameters {or AU2 » DEVICER way be bound nw
PERs=20

tfinished -

%6i nul at lon time paran»ete,s fo AC

. TOPME: =10
tflnlsherj,)

?%ng;g%lon ti~e parameters fo, Aud ' BLROY may b, bound now
«Apl:=10n
trinigheq

| PP A
#PR D
* PP MSYn
PP WSYNP
*PR SSYN
: E‘; (%Yb' P Figure 11-9: Second Test Run : Trace 1
PP SACK
PP PBSY
* PR Npp
* PP NPC
*PR NPC2
*PR NPG3
*PP | NTO
« UNTIL O 239
-:>GIC— 0«020Us TNTO

n _ .)
VALUES 11w g1ppl-s O PERInnr 2n.000Us
0
VALUFS AT.ONG 3US-<
==> 0.040us | NTU - -

LOGIC= 6 R17E= 0 PERi nn= 20.000Us STATE G:“M :
VALUES OV WIRpe 00000000N000N0O0OU
1 [iuniif nut ioi
VALUES ATUNG RUS- 00000000N0000000
mm> 0.060us THTU o 1111111111101101

LOGTE= | wrmac= 0 PlcRDIr 20. 000Us 0000000000000000
VALUFS ON 111111111011 101

00000000P0000000
[Tuiiii ruoiioi
00000000000U0000
11111111711101101

0000000000000000—

» flIpPA*T myv be boynd no*

+ O

MEMORY may be bound no*

-=> O.MINUS Y.

LOtGICc= -1 S17k= OPr PI()=
VATj UFS UM WIB =
1
VALUFS AT.M'i.. Bls=-
A5 1
0
AC3 3
0
AAL 3
! _
_— n_o00lj s n
LNGIC= 1 S172E= 18 pprnInNL=s
000000000C0000N0
VALUFS AP BNSe-
AC3 7
nUOuo(inuououo-no
AH? 7
000000.000001i 0000
AMI ?
A00YNNDUNEN ALY
->
LoGTe=s 1 AH= o wiPIrus
qALHrS (WA I + ST
1
VALLES alLlL™, uh3e
AP6 1
0
AC3 4
1
AA1 4
9
-=2 (L0308 1 0
LrLIe= A oel7e= G nERIN;=
VALI'Fti u® I Rp -
0
VALHFYS AT.H TG 3n5=-
-2 foALGlus 1T
Lib C;T(!= h siZK= 0 PERUORS
yALUFS UM "1pt.=-
1
VAL WS AT.i:i'N; ill15=
- f_onJlvus MyRYHER
Lnere= 1 S1%i= o PEPINDg
VALUFS UM JIRE-
1

VAI..UFS /KT, iIN(G (HT5 -

1
F Y1V, 3
0
N_NT5us S5YNKN
LnurC= A sl7k= n pE"I0H=
VALUFS OB M RE~
1
VAT.UF5 iiT »J"C t311;5=
AK®6 ?
1
AB2 4
0

-

0.000us

Figure 11-10: Third Test Run : Trace 1

0. 000<;

0. O0OQus

JO. O0O0OUS

JO. OCOus

n. nuCOus

n,.0U0hx

Figure I1-11: Third Test Run

-->

1.03'ius

pfH, TC= -1 *J7L=
0

VAT.UFS AT.jNc: bllo-
AC3 7

0

pR o F

a

pA1 a

0 .

L e> 1.059%08
LOCGICS ~ 2 17F=

VallUrs NN TP

0

VALUFS al.NG G-
IS 1_ngEnas
lLpcije= (> S171r

YARMUFES O JTRE=

f

JALUFS Ataila dins=-

85

. Trace 2
SACK .
o pK™If;r 0.000us
0 pEFiON= JO.oonys
TTCI
0o PEOILCPE 10.000«S
bOOOQOOUOOOOOOOO
000000000000000U

NLUOUNONYARNHHBYRG
QOOOOOOOODOOOOOO
0000000000000000

0V000 000000() 000 0
000000°0000() 0000
00000 ()0Onono0000
00000000n(j 00000u
0000000000000000

ououooQuoooonooo
LIS S|

