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1. Introduction

With the advent of LSI technology digital system designers have had to search for

structured approaches to the design task, because the cost of using traditional design

techniques for LSI-based systems has become prohibitive. These highly complex designs are

simply not amenable to the last minute patch-up, the ambiguous documentation, and the

premature attention to detail that characterised the "good old days11 of a thousand or so

transistors on a chip.

The notion Of top-down digital system design [6] has been promulgated by various

engineers for a number of years as the best alternative to ad hoc design. The main thrust of

this approach is the orderly progression from a high-level design specification for a system

to an equivalent low-level design specification, using computer simulation of designs in moving

from one level of abstraction to another. References [6] and [5] describe this approach, in

which the design specification of a system and the simulation model of that system are in fact

equivalent. What should be remembered is that

1. this design methodology implies that digital design specifications must be
formally described at a number of levels, and that

2. each level of abstraction to be dealt with directly by the designer needs a
simulation capability at that level for the designer to use.

In light of the above, it is not surprising that formal descriptive systems ( and their

associated simulators) for digital hardv/are have been fruitful and multiplied, so to speak.

What is surprising is the lack of attention that has been paid to the area of interfacing and

I/O hardware. After all, it is clear that interconnection design has a significant effect on the

price and performance of complex digital systems such as multiprocessors. Nonetheless, until

recently no complete register-transfer level hardware descriptive language existed to

address the nocd to describe, for example, the behaviour of peripheral devices on an I/O bus.

Currently existing general purpose hardware descriptive languages , as well as past I/O

hardware descriptive proposals, have been found unsuitable in one way or another for

describing complicated interconnection strategics [22]. With current simulation techniques,

one is limited to goto and circuit- level simulations of I/O hardware, unless one is willing to

construct a simulation program from a programming language such as APL or a simulation

language such as SIMULA. An approach which allows a cleaner user interface is to compile

from a hardware descriptive language to a programming language for simulation purposes.

It is evident that a real gap has existed in the set of hardware descriptive languages.

SLIDE, a Structured Language for Interface Design and Evaluation, has been developed at

Carnegie-Mellon to serve as a stand-alone behavioural description language for I/O and



interfacing strategies [22]. It is intended Unit SLIDE will serve as a specification, verification,

and simulation vehicle within the larger context of the design automation effort at CMU, filling

the I/O descriptive gap.

Not surprisingly in the context of this discussion, the most immediate technical task arising

from the existence of SLIDE was simulation. The goal of this Master's Research Project was

to provide, as a first application of SLIDE, an I/O and interfacing hardware simulation facility

for the CMU DA community, subject to these constraints :

- SIMULA-67 [1] , because of its rich repertoire of discrete event simulation
primitives, was the programming language of choice.

- SLIDE simulations wore to be incorporated into a developing multi-level
simulation facility.

It should bo noted that these two problem constraints came about at different points in

time. It was indeed decided a priori to simulate SLIDE using SIMULA-67 as the simulation

vehicle. However, the other main constraint to the problem , to embed SLIDE device

descriptions in a "multi-level11 simulator [8], was only introduced in the spring term. This

point is addressed in the next chapter.

The above task was simplified by the existence of a SLIDE compiler [23]. This compiler

does a syntactic check on SLIDE descriptions and produces a Global Data Base parse tree

similar to that used by ISPS [2], [3]. Even so, the programming problem as stated gave rise

to these sub-problems :

- A suitable mapping from SLIDE to SIMULA had to be devised such that the
resulting code would be compatible with the multi-level simulator.

- A code generation program had to be written that would produce the required
mappings.

- Software had to be designed that v/ould glue together the translated SLIDE
descriptions and the multi-level simulator.

The purpose of this report is to describe the nature of the problems encountered , and the

solutions produced, during the past 15 months of this project. Chapter 2 provides some

motivation and background related to the problem of SLIDE simulation. Chapter 3 discusses

the implementation and executing environment of the SLIDE simulator. Chapter 4 describes

Throughout this report, a certain clogroo of familiarity will bo assumed on the reador'o part with SLIDE. Reference
[22] IB a good introduction to tho language.



the way SLIDE w.r; mapped into SIMULA, and Chapter 5 illustrates the code generator

program that produces these mappings. Finally, an example test case of the SLIDE simulator

is presented in Chapter 6, and the report is completed with conclusions in Chapter 7.



2. Motivation and Background

The SLIDE simulator is a tool that will answer a number of questions a systems designer

might raise with respect to an interface or interconnection strategy. These questions include:

- Does the design function as planned

- Is the design sensitive to wirelengths and other timing dependencies

- What is the effect of occurrence of exception conditions on operation of the
proposed design

- What are the bottlenecks which limit speed of operation of the design

- What is the average device latency and is the maximum allowable latency
exceeded

- Is resource allocation with the proposed strategy vulnerable to starvation and/or
deadlock problems, and does it add an "acceptable" amount of overhead or not

It should be noted here that some properties of interconnection strategies (deadlocks, for

example) might only be discovered through formal verification procedures, such as that

proposed by Wallace [24]. However, simulation does provide a design aid which, if properly

constructed and used, can provide a designer significant assistance in answering the above

questions.

The purpose of this chapter is to elaborate on the research problem that was solved by

this project, and on why this problem was unique in light of previous work. As the first step

in doing this some clarification is provided in the next section as to the motives that were

served in this research.

2.1 The Need For SLIDE Simulation

To the reader familiar with the present body of work in digital hardware simulation, it may

seem unnecessary to have built this SLIDE simulation package. After all, behavioural

descriptions of I/O hardware at higher levels than SLIDE have been written and simulated

using special purpose programming languages such as ASPOL [5]; the simulation problem is

"already solved". The answer to this is two-fold. First, production of an I/O hardware

simulator using cither special purpose or general purpose programming languages is not a

trivial task. It requires the user to manually produce code to handle the I/O primitives and

related semantics which SLIDE already describes and which the SLIDE simulator will

automatically translate and execute. So the distance from conception to simulation is

considerably shortened with the SLIDE simulator. Second, SLIDE is being proposed as a

formal descriptive and formal verification tool as well as a descriptive language for a



simulator. In I his connection, the development of SLIDE itself as a useful new hardware

descriptive language v/ili be enhanced greatly if "real world" user feedback on the language

can bo encouraged. The quality and quantity of such feedback from the users of a SLIDE

simulator will almost certainly be superior to that from the users of a sterile

paper-and-pencil language. It is clear that the simulation of SLIDE, then, was a research

problem that was indeed worth pursuing.

2.2 Inclusion Of the Multi-Level Simulator

Originally, it was thought that a dedicated simulator for SLIDE would be built along the lines

of the ISPS simulator at CMU [3]. Thus it would accept and simulate one SLIDE description at

a time. SLIDE nesting capabilities would be used to to describe inter-device structuring as

well as intr.i-device structuring. However, it was subsequently decided that SLIDE

descriptions of devices would instead be translated into functional modules for a multi-level

simulator [8] which was being constructed at the same time. This multi-level simulator is

designed to allow a ur.cr to simulate digital systems whose components may be gate,

register-transfer, or system level modules. It has as its heart a uniform interconnection and

representation mechanism for digital devices , and an interactive command language to allow

the user to build tost configurations from a library of device modules . From a simple

conceptual viewpoint, adding SLIDE to this simulator meant allowing SLIDE-described devices

to be added to the library.

There are a number of advantages to the above decision. For instance, one must recognise

that a given interconnection strategy (i.e., protocol, resource allocation, addressing , etc. )

assumes one or more topologies for device interconnection, e.g. star, loop. Since a particular

topology can have a wide variety of instantiations, it is desirable ( even imperative ) for the

designer of the interconnection strategy to test out that strategy using as many different

configurations of devices as possible. Having to rewrite the SLIDE description for each such

test would be inconvenient and slow. As it is, the SLIDE nesting constructs do not convey

topological information as well as they do behavioural information. If the SLIDE description of

a device could be fixed for each interconnection scheme, i.e., if the SLIDE nesting constructs

were reserved for internal device structuring, which is less variable than inter-device

connections, then once the member components of an interconnection strategy had been

specified in SLIDE , they would not need to be recompiled while various system configurations

were being tested out. The multi-level simulation environment provides exactly such a

capability.

Another advantage is increased utility for SLIDE as a design tool. This comes as a natural

by-product of being in a multi-level simulation environment, because general digital



components, not just their interfaces, can be interconnected and simulated at various levels of

detail. Thus, more general tests of interconnection schemes can be provided than simply

those involving hooking up SLIDE-described devices to each other; for example a SLIDE I/O

interface for a CPU could be connected to a high level functional description of the CPU,

which could in turn be interfaced to some gate-level device structure. This capability would

not have existed in a dedicated SLIDE simulator.

The principal disadvantage was in terms of project logistics. Because the implementation

of the multi-level simulator was already well underway when the decision to incorporate

SLIDE was made, this author was faced with a software fait accompli. This is one of the

reasons why the project was especially challenging : SLIDE simulation had to be designed to

conform to the multi-level simulator structure^ .

In summary, it can be said that the sum of the following points made this project "unique" :

- A new and different HDL was to be simulated

- It was to be set inside a multi-level simulator

Additionally, due to project timing problems, the burden of software compatibility was

unidirectional, which made the project task more difficult than originally anticipated.

Before moving on to discuss the SLIDE simulator itself, it may be helpful to try and

quantify the relationship this simulator has to existing hardware simulators. In the next

section, an informal taxonomy for digital hardware simulators is presented, and it is used as a

framework for comparison of some currently existing digital hardware simulators.

2.3 A Hardware Simulator Taxonomy

The following taxonomy for digital hardware simulators was developed during informal

discussions with some members of the CMU DA group. No claims are made for it other than

as a simple basis for discussion of the hardware simulator "space". This taxonomy is based

upon eight design decisions for this class of software. These design decisions are not

uncorrelated, and it is debatable whether a "complete" set of uncorrelated decisions exists at

References [1 ] and [20] discuss the advantages of being ablo to go from high level, low detail functional descriptionB
to low level, high rlolail structural descriptions within one simulation as A way of gotting around the drawbacks of
purely high level / purely low lovel simulation.

2
Some sof tware extensions woro made to the multi-lovel simulator after the fact , however.



all for digital hardware simulator design. It should be noted that the set of all possible

outcomes of these decisions does not constitute a total ordering on the set of possible

simulators.

The eight design decisions are :

1. Types of descriptive languages

a. Abstract Models (e.g. Petri net)

b. Hardware Descriptive Languages

c. Special Purpose Programming Languages (e.g. GPSS)

d. General Purpose Programming Languages

e. General Purpose Programming Languages extended for hardware
description (e.g. AHPL [15])

2. Types of levels of abstraction

a. Circuit Level

b. Gate Level

c. Register Transfer Level

d. System Lovel

3. Number of Levels of Abstraction / Number of Languages

a. 1 / 1

b. >1 / 1

c. >1 / >1

4. Characterisation of Behaviour

a. Stochastic

b. Deterministic

5. Characterisation of Structure

a. Formal (e.g. SL/1 [10], SDL [21])

b. Informal (i.e. interactive commando)



6. Degree of Separation of Structure from Behaviour

a. None (e.g. CAP [18])

b. Weak (most simulators)

c. Strong (e.g. SARA [9])

7. Binding of Structure and/or Behaviour

a. Before Simulation (batch)

b. During Simulation (interactive)

8. Characterisation of Operation

a. Orientation

i. Event Oriented

ii. Activity Oriented

iii. Process Oriented

b. Execution

i. Table-driven

ii. Interpretive

iii. Compiled

Each of these design decisions will now be briefly described and discussed.

"Types of descriptive languages" refers to the category of structural and/or behavioural

descriptive vehicle that the user provides to the simulator as input. It is hoped that the

definitions of the five listed categories are intuitively obvious.

"Types of levels of abstraction" relates to the choice of descriptive focus that the

simulator will give to the user. The four generally agreed upon levels of abstraction are

enumerated ; *gain it is expected that the definitions are well Known lo the reader.

"Number of Levels of Abstraction / Number of Languages" refers to the intertwined

decisions about, first, whether the simulator will support modelling of components at different

levels of abstraction, and second, the number of descriptive languages that will be used to



describe that modelling. If one chose single-level modelling, it would imply a single

descriptive language. Out multi-level modelling could be supported by a single descriptive

language such as ADLIB, as well ar, by assigning one language per level of abstraction.

"Characterisation of Behaviour" attempts to make a distinction between the probablistic

style of behavioural description ( e.g. data arrives at a terminal in an exponentially

distributed fashion ) and the more common deterministic style, wherein the actions of

components aro described ( to at least some degree ) so that their behaviour at a given point

in time may be precisely known.

"Characterisation of Structure" refers to the dichotomy between methods of structure

description in simulators. On the one hand, structure or topology may be described in an

informal, interactive fashion by the user. On the other hand, some simulators insist on the

use of formal methods to describe system structuring.

"Degree of Separation of Structure from Behaviour" refers to the emphasis that is placed

on the uses of the available descriptive languages. By extension, this also refers to the

degree to which separation of structure from behaviour is promoted by the simulator itself.

Some simulators want to separate the use of languages along strict structural / behavioural

lines ; others want a single language to do everything. Most simulators , though, allow their

descriptive languages to cross the boundaries to some degree.

"Binding of Structure and/or Behaviour" is a design decision that relates to the point in

time when a user finalises the description of the system to be simulated. In a "batch"

simulator this binding must be done before simulation is to begin, and is fixed thereafter. In

an "interactive" simulator the binding can be modified after simulation has begun.

"Characterisation of Operation" is broken down into two sub-decisions. The first is

orientation, which describes the overall outlook of the simulator as it executes. The second is

execution, which describes the method by which the actual running simulation is achieved.

The three orientation categories are event , activity, and process oriented* . These

categories grow out of the notion of "discrete event simulation", whereby the work that is

done by the model being simulated is broken down into discrete units of work, and each of

these work unit'.; h*v, a certain execution lime associated with it. An activity is the chosen

fundamental unit of work in a simulation for a given viewpoint or level of abstraction.

Whether or not it can bo further dissected is of little concern ; it is selected to be a single

Thoeo catogorioo worn dorivod from tho discussion of nimutation languagOB found in reference [16 ]
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work step for the particular level of abstraction. A process is an ordered collection of

activities, and like activities, processes arc discrete entities that occur dynamically. An event

is an instantaneous change of system state that can cauoc activities or processes to initiate

or suspend execution. One can say that a simulating system is characterised by the dynamic

interactions of processes, and these interactions are governed by the occurrence of events.

Activity oriented and process oriented simulators are those that are concerned with the

dynamic scheduling and rescheduling of activities and processes, respectively. The viewpoint

in process oriented simulators ( and to a lesser degree activity oriented simulators ) is biased

in a vertical, multi-level direction, in that a given activity can be expanded into a process at a

lower level of abstraction, and of course a process can be expanded into one or more

activities. In contrast, event driven simulators are concerned with the scheduling of events.

The outlook in an event oriented simulator is horizontal, i.e., it ranges over the entire

simulated system, and is typically restricted to a single level of abstraction.

The three execution modes arc table-driven, interpretive, and compiled. Given a system

description, a table-driven simulator will build tables that will be used to drive a special

program. The execution of this program in accordance with what is in the tables constitutes

the simulation of the description. An interpretive simulator will scan the description,

executing what it seer, as it goer, without any sort of intermediate translation step. A

compiled simulator will actually translate the system description into an executable program,

and then run that program to simulate the system.

To reiterate, this hardware simulator taxonomy is ^\^ informal attempt to provide a

discussion base. Each reader will probably be able to punch his or her own set of holes

through it, and encouraging just that was part of the reason for presenting it.

Examples of various leaves on the above taxonomy tree may be found in the general body

of design automation and hardware descriptive literature. Among multi-level simulators such

as N.mPc [17], Multi-Sim [7], and MODAL [12] are found the leaves having the closest

relationship to I he SI IDF: simulator. Two leaves in particular, SARA [9] and SABLE [13], will

be discussed in the following section.

2.4 Discussion of SARA and SABLE

SARA embodies an extremely general design tool of which behavioural simulation is only a

part. One of the fundamental concepts of SARA is the required separation of structure from

behaviour to enforce intended design modularity. In this regard, two sets of modelling

primitives are provided in SARA, one for structure and one for behaviour. The structural

primitives are embodied in a language called SL/1 [10], and the behavioural primitives exist in



the form of Graph Models of Behaviour (GMG) [19].

An SL/1 structural model is built up with "modules" whose internal structures are not

visible from the outside. Modules interface with each other through "sockets" which can be

connected to other modules' sockets. Since one can substitute the unseen internal structure

of a system module for an explicit structure of interconnected modules without affecting

other parts of the system, hierarchical modelling becomes possible.

These structural models are empty shells in the sense that there is nothing in particular to

simulate in the absence of a behavioural model. GMB's provide behavioural specification, and

are simulated with a GMD simulator [19]. They are divided into control primitives and data

primitives; thus the designer is required to be able to make this separation in describing his

design. The control primitives are in the style of Petri nets, having control nodes, control

arcs, and tokens. Additional control primitives are input and output control "logics", which

control the flow of tokens according to logical relationships among the associated control

arcs. The data primitivrs consist of data sets ( which arc passive collections of data ), data

processors - controlled (by a control node) and ync_qnlrqllrd -, and data arcs to glue together

sets and processors. Iking these primitives the user can create a hierarchical model of the

behaviour of the system. Before it can be simulated though, the behaviour of the processors

must be specified. PUP, a modification of PL/1 , is used to describe the actions of the

processors.

After a behavioural model of control and data graphs has been specified the GMO simulator

can execute it on a "token machine". The capabilities of this simulator include interactive

commands to start and end simulation, set breakpoints, specify initial token distributions, and

examine the graph states.

A more recent development in the hardware simulator domain is SABLE [14]. SABLE stands

for Structure And Behaviour Linking Environment , and as its name suggests, it represents a

more integrated approach to structural and behavioural description. As in SARA, different

description mechanisms are used to specify behaviour and structure. System components,

called complyper., are modelled as self-contained units that communicale through nets. Unlike

SARA, components are not separated as to data and control; it is up to the user to enforce

any such distinction. The structural nesting of components and component interconnections

are described in a structural description language called SDL [21]. The behaviour of a

component is described in ADLIB [13], an extension of PASCAL. SABLE will pull together

A CPU would bo an oxamplo of a controlled thin processor; combinational logic would be an example of an
uncontrolled data proencnor.
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ADLIB-specificcI components according lo wh.it it sees in the SDL structural model for a given

system, so that a r.yr;lem thus modelled can be simulated. Now, since a given system can be

described at various structural levclr. with SDL, i.e., levels of structural refinement in a

hierarchically modelled system, and at various data levels with ADLIB, i.e., layers of data

structures that approximate other data structures, multi-level simulation is indeed achieved in

SABLE.

There are two modes of behaviour specification for SABLE components. One is

characterised by reaction to events at component nets, the other by clocked behaviour.

These are the only mechanisms provided to activate component actions. Components are not

allowed to access nets that are not their ov/n. What results is a high degree of modularity in

the simulated model, since the internal details of components have no effect other than where

they are immediately employed.

At this point, one can go back to the taxonomy tree and locate SARA and SABLE. On an

item-by-item basis, it is found that

- SARA uses an abstract language (GMB) and a slightly modified general purpose
programming language (PL1P) to describe behaviour; SABLE uses an extended
general purpose programming language (ADLIB).

- SABLE and SARA cover levels of abstraction from system level to gate level, but
SABLE uc.es only 1 language while SARA uses two.

- SABLE and SARA characterise behaviour detcrministically, and structure formally
(SDL and 5L/1).

- By providing separate descriptive mechanisms for behaviour and structure both
SABLE and SARA promote a strong degree of separation between the two.

- In both SARA and SABLE the binding of structure and behaviour takes place
before simulation begins.

- SARA is best described as an event oriented simulator ; SABLE is a mix of event
oriented and process oriented actions.

- The execution of SABLE can bo characterised as compiled (into PASCAL) whereas
that of SARA is interpretive.

Having gone through lhir» exercise, the degree of similarity that exists between SARA and

SABLE should be more evident. Comparison and contrast along topological lines with the

SLIDE simulator will bo delayed until some notion of its structure and function has been

related. The next chapter will provide such an overview.



3. SLIDE Simulator : Implementation and Executing Environment

The purpose of this chapter is to describe how the user goes about producing a runnable

simulator from SLIDE, as well as the nature of the resulting simulation environment.

3.1 Implementation

As has been previously mentioned, SLIDE devices are simulated inside a simple multi-level

simulator. SLIDE devices use this simulator as a software breadboarding faclility, allowing the

user to interconnect interfaces and simulate them. Figure 1 illustrates the relationship that

SLIDE modules have with this multi-level simulator core,and Appendix 1 provides a summary of

the interactive simulator commands that arc available to the user.

By way of explanation of this implementation, consider an example scheme in which n

different kinds of devices are to be interconnected. The communication strategy specified for

the scheme dictator, tho interfacing behaviour of each device type. So the first step in

realising a simulation of the communicating system is to write a SLIDE behavioural description

for each type of component. Note that only one description per device type need be written.

Once the n device types have been so specified, a number of processing steps are done on

those SLIDE descriptions, the end result of which is a runnable simulation environment. This

environment contains a library of devices that now includes executable models of each of the

n original dovic n typos. These models exist as dynamic data and control structures, so that

unprcdctcrminecl numbers of these devices can be interactively created and connected. In

this way, the designer can proceed to put together a variety of sample configurations and

simulate them using the software breadboard of the simulator core.

Various properties of each SLIDE description may be parameterised. This is done by

allowing numbers in a SLIDE description to be replaced by special identifiers called

simulation time parameters (STP). STP's sre bound interactively, by the user,for each

instance of a SLIDE functional module in the simulator.



Figure 1: Simulator Structure
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It has been mentioned that there are corlain processing steps that the user performs to

produce a runnable SLIDE simulator. These processing steps are illustrated in Figure 2. To

begin, the SLIDE descriptions must be checked for syntactic correctness, and so the first step

is to put each one through the SLIDE compiler. Once the descriptions have been syntactically

cleaned up, the compiler will produce a GDQ parse tree file for each of them. A Global Data

Base (GDB) is an ASCII representation of the parse tree of a SLIDE description. The mapping

from SLIDE source to GDD is a reversible transformation. For details of the SLIDE compiler

and the GDD it produces see reference [23].

The next step involves performing the mapping for each GDB file from parse tree to

SIMULA code. The SLIDE-to-SIMULA code generator is responsible for performing this

function. The form of its output is not a monolithic SIMULA program, however. It is a

collection of SIMULA code fragments, where each fragment has a label associated with it that

marks where that particular fragment is to go within the eventual simulation program. Now,

after each GDB file has been put through the code generator, it is time to combine the

various SIMULA fragments into a single program. The preprocessor, which was designed and

written by Rich Bollinrer, is used to perform this function. The preprocessor operates on the

labelling information provided in the fragment files to piece together one syntactically correct

SIMULA program.* Notice that in addition to whatever SLIDE files are provided by the user,

the preprocessor uses as input a pnrt of the multi-level simulator core. This part contains a

library of standard devices such as gates and counters , plus the simulator monitor. This part

of the core provides the necessary skeletal code to guarantee that the output of the

preprocessor is indeed a complete SIMULA program.

The rest of the multi-level simulator core consists of support code for both SLIDE

simulation and general simulation. This code has been precompiled ; it is linked with the

compiled preprocessor output to produce the final runnable simulator.

3.2 The Multi-Level Simulator

Ono in!oror.tinpf nnporl of thin in that llm olMill A code ^onoraled from tho SI IDT modulon doon nol havo lo bo
exactly nlructurrd on defined by SIMULA r.ynlnx ruler. For oxample, declarations can bo gonoratod and inGorfod on tho
f ly by tho codo ^onor.ilor m the GDR filo in proconnod; the preprocessor will clean up and roordor tho SIMULA code for
tho SIMULA compiler. Thin dtntribution of tho tankn of a complex problem among different software look simplified the
programming problem grontly
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3.2.1 Requirements for Multi-Level Simulation

The multi-level simulator provides a decentralized, dynamically alterable environment for

the interconnection and simulation of digital systems. It embodies the basic vertical

communication* requirements described by MacDougall [16] for multi-level simulation. In a

nutshell, MacDougall asserts that standardised vertical communications are the fundamental

prerequisite to multi-level simulation. An invariant interface for inter-component

communication should exist that all components both can and must use to communicate with

each other, no matter what their relative levels of abstraction may be.

This standard interface must be general enough to support the varying amounts of data

detail that will be transmitted through it. The design of the interface itself and of the

communications that it supports should be done with the emphasis on efficiency, since thjs is

clearly an area whore a little extra overhead one way or the other will have a significant

effect on simulation execution speed.

A side effect of this interfacing requirement is that a certain amount of separation between

structure and behaviour is encouraged on the user's part. Having to define a standard

vertical communications interface pre-supposes the ability to draw a dotted line around an

entity and label it a "component", which in turn needs to be interfaced to other "components".

Thus, the problem of describing a collection of hardware is broken down into one of defining

components ( having behaviour and internal structure) and defining their interconnections

(external structure or topology). So software that supports multi-level simulation must by

extension encourage the partitioning of the digital system description problem into

behavioural and structural description sub-problems.

3.2.2 SIMULA

The implementation of the simulator core is based on the coroutining and discrete event

simulation primitives provided by SIMULA-67 [4]. A simulation program written in SIMULA

uses special coroutines called processes. For a process to execute, it must be scheduled by

placing it in a special linked list called the event list. The list is ordered by the simulation

time associated with each process. The process at the front of the list is due to resume

execution, and the lime associated with this process is considered to be the "current"

simulation time. A process can be removed from the list and rescheduled at a later time.

Thus, time moves ahead in discrete jumps, and the simulation is process oriented .

Communication from one level of abstraction to another.
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3.2.3 Data and Control Structures of the Simulator Core

The structure of the simulator core is characterized by three classes of dynamic data

structures and the operations performed on them. These are: The Element^ the Chain and

the Simulation Process (SP). Together, the Element, Chain and the SP completely specify the

functioning of a given digital device module.

The Element and the Chain constitute the common external characteristics of the device

modules; the internal structural and behavioural differences have been abstracted away.

Together, the Element and the Chain form the standardised vertical communication interface

that MacDougall describes, enabling multi-level modelling and simulation.

The SP contains the information internal to a device module - the meat of a device

description. It is a general data structure that can reference a number of SIMULA processes.

The SP is the structure that corresponds to a "component" in the simulator ; SP's can only

communicate with other SPY* through the provided interface , that is, the Element and the

Chain. Figure 3 illustrates the partitioning of a device along the above lines.

The Element is designed ar. a passive vehicle for the interconnection of device modules.

Each Element contains n set of records representing the "ports" of a device. Ports can be

connected to other ports, and the stale of the data represented by the ports of a device

module indicates the externally visible state of the device.

The active part of tho interconnection mechanism resides in the Chain. One Chain is

associated with ench clement; the Chain is responsible for the actions and reactions of a

device with respect to ils ports. The Chain also acts as an intermediary between the SP and

the Element, which do not interact directly. The Chain is implemented as a coroutine, whose

actions are performed in zero time and are invisible to the SIMULA scheduler.

An example of a simple device module representing an inverter is given in Figure 4 . The

SP is shown as SIMULA code, the Element ir, represented as an abstract data structure, and

the Chain is illustrated in its role as interface between the two.
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Figure 3: Partitioning of a Digital Device in the Multi-level Simulator
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ELEMENT
D PORT 1

PORT 2

DATA

INITIALISATION

WHILE TRUE DO
BEGIN

SCHEDULE S.P.;
DETACH;

END:

CHAIN

DATA

WHILE TRUE DO
BEGIN

GET THE DATA AT P0RT.1;
COMPLEMENT IT;
WRITE THE RESULT TO P0RT2;
PASSIVATE:

END;

S.P.

Figure 4: Representation of an Inverter Module
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3.2.4 The Modulo Interconnections

Modules can be interconnected in two ways in this simulator - directly and via special wire

modules. Direct connections allow the data records at one port to be directly accessible by

all connected ports. This concept is useful, for example, when a CPU module has been

described as a number of submodules, whose ports exist only as an abstraction. (A Z80 CPU

has been described in this manner [8]). This method of interconnection allows structured

design and pretesting of each submodule.

The more common connection method for large system simulations is the wire connection,

meant to correspond to the usual physical interconnection of digital devices. A wire can be

considered a degenerate case of a digital module, having no SP or explicit ports. Through its

chain, the wire houses the actual wire data, and identification information and procedures

which allow its logical behavior to be modelled. A wire connection is modelled as the direct

access of ports to the same wire device, not to each other. A good example of this type of

connection is an open-collector bus, since the data presented to the bus wires at a port

might not reflect the actual logic values on the bus.

Wire typos arc dktinguished by logical behavior, data representation , and synchrony ;

interconnection!"* of wircr. with differing properties is in general not allowed by the simulator.

The user can interactively wire together the components of his system, producing a structure

like that shown in Figure 5 . Changer, in the system being simulated can be made by adding

components without halting program execution.
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Figure 5: Representation of Device Interconnection by Wire

PORT 2

WIRE
ELEMENT

WIRE
CHAIN

"A"
ELEMENT

CHAIN

PORT 6
"B"

ELEMENT

"B"
CHAIN

CONNECTION

LINKED LIST OF PORTS CONNECTED TO THIS WIRE



The multi-lovel simulator trentr. Ihe creation of complete devices as something to be

delayed until just before actual simulation. When the user is interactively connecting ports,

only the Elements are involved; the Chain and the SP are not yet created. When the

simulator does create the rest of the device, it will only explicitly create the Chain. The

Chain is expected to create Ihe SP as part of its initial actions, and the SP in turn will initiate

the remaining internal data and control structure initialisation.

During execution, the SP's may write to ports by depositing data in the appropriate wire

device, via a series of references. The v/ire Chain coroutine is called, and it proceeds

through a linked li&t of the ports connected to the wire, activating the Chain associated with

each port. This givos each relevant device the opportunity to schedule processes, and it

proceeds in zero simulation time. Delays are introduced only by the scheduling of processes

related to a device module and by explicit delays within each device module's SP.

3-3 SLIDE Simulation Overview

The previous sections have provided a glimpse of the way SLIDE simulations are produced

along with the surrounding core environment, and a summary of the workings of the core

itself. The discussion moves on now to consider more closely the particular nature of the

SLIDE device / simulator core relationship, followed by an explication of the mechanics of

SLIDE simulation.

3.3.1 Overall Relationship to the Core

Given thr Inck of simulating a rcjjisler-lransfcr level hardware descriptive language such

as SLIDE , there is no inherent reason why that simulation cannot be accomplished in either

table-driven, interpretive, or compiled mode. However, in addition to the normal requirement

for speed of execution in an interactive program, in this project there was a requirement of

compatibility with the multi-level simulator core. The nature of device simulation in the core

forced the simulation of SLIDE descriptions to be done in compiled mode. This most immediate

result of the embedding decision characterises Ihe nature of the relationship between SLIDE

and the core.

As has boon alludoH !o olr.cwhore in this report, there is a one-to-one relationship

between a SLIDE description and a resulting device in the simulator. That is, SLIDE

descriptions will be mapped to exactly one library device, not three or ten. This may seem to

be a trivial point, but the fact is that there were alternatives. It was suggested early in the

project that SLIDE descriptions bo automatically analysed structurally as well as behaviourally

to ultimately produce a group of directly connected subcJcvices. The aggregate behaviour of



the subdevicc; would constitute the simulation of the original SLIDE description. This

alternative was rejcclrd because it v/ould havo been necessary to force an artificial software

structure onto tho coro in order to accomoriale SLIDE interprocess relationships, and because

it would have added an order of magnitude in complexity to the problem at hand without

adding any fidelity or efficiency lo the simulation. The more intuitive notion of one library

device per SLIDE description v/as chosen instead, the tradeoff being in the relative difficulty

of deleting devices from interconnection structures; deletion in the multiple device approach

should be easier, theoretically.

Since SLIDE descriptions map into one Element, one Chain, and one SP, their superficial

characteristics do not immediately set them apart from other devices. What does set them

apart is their imdcrlyinu characteristics - for example the behaviour and data structuring of

the SP for a SLIDE device. Note that the degree of complexity of the SP for a given device,

even a SLID! dovicr, is not disccrnable by tho core. This reflects the software decision to

bury the details of SLIDE behaviour so that they v/ould not affect the multi-level simulation as

such. Even those software extensions that v/crc made to the core such as adding in a new

wire type that could handle the high level of data detail required for SLIDE simulation were

just that - extensions, not design modifications. To sum up, then, the relationship of SLIDE

devices to the core is equivalent to that of non-SLIDE devices.

3.3.2 SLIDE Dovico Functioning During Simulation

The outlook of SLIDE device simulation is process oriented in that the focus of attention is

the manipulation of SLIDE processes on the SIMULA scheduling list. But even beyond the

narrow definition of "process oriented", SLIDE simulation necessarily reflects the point of

view of SLIDE descriptions, and the SLIDE process is the fundamental descriptive tool of the

language. So to describe the simulation of SLIDE processes is to describe the basic

functioning of SLIDE device simulations.

At the beginning of the simulation ( t«0 ) , after variable initialisation, all the SLIDE

processes of a given device instance are given a chance to begin executing if they can.

According to the semantics of the SLIDE language, a process may start executing whenever

1. Its declared initialisation conditions become true, AND

2. All the processes of which it is a subprocess are executing, AND

3. No process at the same "process level" is executing and has a higher priority.

Processes that could have started but for cither or both of the second two points above



are put into a r.pecml linknd list. As each 51 IDE process starts its execution, it evokes the

"SLIDE Scheduler" which chocks this list to see if any of the members can start up as a result

of its initialisation. The SLIDE Scheduler will also assure that any executing process which is

at the same "process level" ,but of a lov/er priority than the process which is about to begin

executing, will be terminated. As a SLIDE process executes its actions, variables such as

lines, buffers and registers will be accessed. Each time such a hardware variable is written

to, it is responsible? for checking if any of the relevant expressions of which it is a member

are now true, and if they arc, evoking the SLIDE scheduler. As each SLIDE process

terminates, whether by completing its actions , or by the mechanisms described above, it is

entered into the special linked list. The list is once again checked to see if any of its

members can begin execution.

This special linknd list ic> the key data structure in the operation of the SLIDE scheduler. It

will contain those processes that ^rc likely to attempt to begin executing due to implicit

changes in system state , i.e., SLIDE process initiations or terminations, as opposed to explicit

changes in system state , i.o., changes in GLIDE variables. This list fulfills a need for

scheduling efficiency ; it would not otherwise be known, when an implicit state change

occurred which procossns would nred to bo checked for possible initiation and which could

be safely ignored. Contrast this with explicit slate changes , where the set of processes that

can be safely ignored is fixed.

It should be noted lh;il whenever a member of the list is being checked, it will be removed

from the lir.t if its Doolonn initiation conditions are found to be false. This ensures that

members of tho list are only those that could be started due to implicit state changes.

Rolovanl oxprcr.ninng nio thono which appear in tho initi.ilinalion conditions of a procosB, or in a DELAY staloment

In torminnling, tho old imlnnco of n proenna in garhagn-collnctod, and ft now instance of tho procos* is created. I t
is this now instance* that ontors tho list.



4. Mapping SLIDE to SIMULA

The programming taf>k presented by this project was, like many non-trivial tasks, best

attacked by breaking it down into a set of sub-tasks to be performed. The SLIDE simulation

task was broken down into three sub-tasks , namely

- A SIMULA code mapping had to be devised that would not only simulate the
intended behaviour of a SLIDE description as closely as possible, but would also
fit into Ihe multi-level simulator environment.

- With this mapping specified, a program had to be written that would do the
actualtranslation from GDD file to SIMULA.

- Software had to be written to take a group of such translated SLIDE descriptions
and incorporate them into Ihe multi-level simulator.

The rest of this chapter will elaborate on the first of these tasks and on the nature of the

software solution. The last two tasks will be dealt with in subsequent chapters.

4.1 A Review of SIMULA

The classical code generation tar»k ir> that of mapping a complicated high level language into

a simple low level language, CC- Tertian to PDP-11 assembly language. In the case of this

project, it wns required to translate instead from a register-transfer level hardware

descriptive language to a powerful special purpose programming language. While this meant

that the solutions had to be to a certain extent ad hoc, this did present a certain advantage,

namely, the ability to build a sophisticated body of support code that would enable the

eventual code generator to produce shorter and simpler programs. To have reached as high

a level of complexity in assembly language support code as was reached in SIMULA would

have required infinitely more time and effort.

The semantics of SIMULA provide mechanisms for building new capabilities on top of

existing oner, in a structured fashion. This feature of the language was to be at least as

important as procer,r» oriented simulation primitives were to the successful completion of the

project. One can define in SIMULA a dynamic structure called a class. Like PASCAL records,

SIMULA classes contain heterogeneous data, nnd numerous instances of a given class, called

objects, can be cronlrd during program execution. In addition, though, SIMULA classes can

have actions c'l'^ocuilrd with them , nnd each object will have its own copy of the actions of

the class. Ther.e action', are executed no coroutines. Once a class has been specified, it may

be used as a prefix to create subclasses which, in addition to any attributes they may have

defined for themselves will automatically have access to the attributes of the prefix. For

example, given class A , A class B, D class C, D-objects will have copies of A-type data and



actions that they c,nn accrv.r. in addition lo those in Ihe actual definition of D. Similarly,

C-objccts will havo hotii A and B capabilities available. The order of execution of actions is

according to'prefix order-, when a C-objecl executes ils actions, it will run through A actions
«

and B actions before doing C-actions.

The simulation primitives provided in SIMULA are embodied in a special prefix that the

language provides called class SIMULATION. SIMULA processes are objects of the class

PROCESS, a prefix that SIMULATION makes available to the programmer. The task at hand in

producing simulations of SLIDE processes was in part to build up the correct capabilities

using PROCESS as a building block.

4.2 SLIDE Device Implementation

Every SP of a SLIDF device modulo in the simulator is a subclass of class BOX. Class BOX

contains the data and routines that am constant for each SLIDE device; device specific data

and procedures are specified in the subclass itself. The subclass therefore houses all the

SLIDE hardware variable., the priority tree, rind pointers to other relevant data. Creating a

new instantiation of the SLIDE device in the simulator means that a new BOX subclass object

is created, <m<\ this in turn causer, the creation of every data and control structure needed

for the simulation of the SLIDE device.

4.3 SLIDE Processes

4.3.1 Issues

In bringing together the divergent concepts of SLIDE process simulation and SIMULA

process simulation, certain programming issues had to be addressed.

-Each SLIDE modulo, is a mapping of an independent SLIDE description, each
having its own SI IDE process structure. The process structure and hence the
particular scheduling constraints of a given SLIDE device are independent of all
other SLIDE devices. The multi-level simulator has already been seen to run in a
decentralized fashion; each device ic. a collection of autonomous SIMULA objects.
It soemod consistent lo make each SLIDE device responsible for the scheduling
of its associated processes, rather Ih.m create a central core scheduler of some
sort. So, Ihe SP nf a SLIDE device was given Ihe control structures to implement
the scheduling la* k for that device. Each SLIDE device module houses a related,
but unique, version of the SLIDE scheduler.

- SIMULA processes as such are not endowed by class SIMULATION with sufficient
scheduling dala structures to correctly model SLIDE processes. A SLIDE process
within a SLIDE description is a member of a complex priority tree, specified in
the description by the static nesting of the process ancJ by explicit priority



numbering. Initiation and termination of a GLIDE process must always be
referenced to Iho priority tree. Such bookkeeping is clearly beyond the scope
of a SIMULA process. Resides, the concept of termination itself , implying the
automatic garbage-collection and recreation of a process and all its
subprocesses, does not exist for SIMULA processes. Thus , most SLIDE process
semantics had to be built up, using class PROCESS as a prefix, plus additional
control structures.

- Each SLIDE scheduler within a SLIDE module needs to be invoked as the result of
many different events. For example, a process can be started or terminated due
to a change in a SLIDE variable ( explicit stale change ). Because of the priority
structure, a process can also be initiated or terminated as a side-effect of some
other process initiation/termination, even if these processes do not explicitly
communicate at all (implicit state change ). The SLIDE DELAY statement adds
another complication by allowing a process to reschedule itself at any time, and
to be woken up on some set of conditions* (possibly subject to a timeout).
Hence extra control structures were designed to allow a simulating SLIDE device
to evoke the scheduler at all such significant events.

4.3.2 Implementation

To more car.ily understand the nature of the implementation of SLIDE processes in the

simulator, it is worthwhile to examine SIMULA processes. SIMULA processes are not only

characterised by their explicitly defined actions and data, but also by the external control

structures they are associated with. The SIMULA scheduler, consisting of the SIMULA event

list and related scheduling routines, governs the "global context", if you will, of SIMULA

process behaviour. SLIDE processes are also characterised by an external control structure,

the SLIDE scheduler, and by their membership in a fixed data structure ( the SLIDE process

priority tree ) as well ;is by their own explicitly defined actions and data. Together, these

data and control structures govern the global context of SLIDE processes.

Figure 5 illustrates the static data structures of a SLIDE process. In the implementation of

SLIDE processes, class PROCESS was used as a prefix to provide the rudimentary capabilities

of interaction with the SIMULA scheduler. Two other properties that are common to every

SLIDE process arc physical membership in the aforementioned priority tree and possession of

an explicit priority number. These attributes were combined with class PROCESS to produce

class SLIDEPR, the prefix for all SLIDE processes. Each SLIDE process is implemented as a

SLIDEPR subclass with its own particular data and actions ( body ).

The next question in SLIDE process implementation concerns process termination, which

physically calls for the particular process to be garbage collected and replaced. Now,

Thoso conditions aro arithmetic and/or logic «?xprossion9 of SLIDE variabloii



regardless of initiation or termination, the membership of a SLIDE process in the priority tree

is fixed. It is of no value to constantly create, destroy, and recreate parts of a priority tree

along with the SLIDE processes themselves. So rather than support direct SLIDE process

membership in the priority tree, it was decided lo separate the two by implementing the tree

as an independent data structure which the 51 IDE process would reference through a pointer.

Thus, as SLIDE process instances arc created and destroyed, only pointers to the priority

tree come and go, not the components of the tree itself.

Further addressing the question of termination, it is important to try and implement this

task as efficiently as possible, since this is potentially a major source of execution overhead.

This task entails the removal of all references to the dynamic data structure modelling the

SLIDE process at tho time, and redirecting them at a brand new instance of that data

structure. If there was always only one pointer to a given SLIDE process, and that pointer

was always easy to locale, this would reduce the workload of the task immensely. This is

precisely the purpose of Ihc flak object depicted in Figure 6. Flak objects "take the flak", in

that all data structures wanting to directly reference a SLIDE process must settle for an

indirect reference through the flak object instead. As is seen in Figure 6 , although the

SLIDE process is abfe to reference its representative node in the priority tree directly, that

node must go through the flak object to reference Ihc SLIDE process.
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Figure 7: Structures of the SLIDE Scheduler

SLIDE
HARDWARE

dblchk

SIMULA
SCHEDULER

chkactivity chkpriority

PRIORITY
TREE

homm

X X invokes Z

X X accesses Z



The part of the 51.101' proce^ implementation described ahovo is a fixed data structure.

The "SLIDE Scheduler" is embodied in an external control structure that operates on this

fixed data structure as well as on itself, to provide the scheduling function for SLIDE

processes. Three components arc involved in achieving this. First, there is the SIMULA

scheduler, which comes "free" with class PROCESS. Second, there is a dynamically varying

special linked list , named cool, of SLIDE processes ( actually, flak objects) . Third, there is a

set of six major scheduling routines that operate on the priority tree and the special linked

list cool to perform the actual process manipulations. These routines are named check,

chkactivity, chkpriority, kill9dblchkf and homm. The structure of the SLIDE scheduler is

illustrated in Figure 7.

Procedure chock is the central scheduling routine for SLIDE process simulations. Its

operation can be charnrteriscd as follows. In any SLIDE description, there will be a finite

number of DPI AY 'tntements of the kind that contain a Boolean expression, and a finite

number of initinlir.ation condition declarations (or SLIDE processes, each of which will also

involve one SLIDE Boolean expression. All these expressions have the property that if they

become true sometime during the simulation, a SLIDE process may need to be scheduled or

rescheduled. Procedure check catalogues these expressions and the processes they affect.

Whenever check(i) is invoked, the i catalogue entry is evaluated, ancJ if the listed expression

is found to be true then check will attempt to schedule the associated process. Whenever

SLIDE hardware variables have data written lo them (explicit stale change), they will invoke

check once for each catalogue expression in which they appear. The other source of check

invocations is the mechanism that handles implicit state changes, which will be described in

due course.

How far and in vyh.il manner the process scheduling attempted by check will proceed

depends on the type of entry ( initialisation or DELAY statement ), and on the current state of

the simulated device. For example, if the expression in a DELAY statement occurring in an

inactive SLIDE process should happen to become true, it should not and will not have any

scheduling effect on the process. In the absence of such obvious anomalies , scheduling will

indeed be attempted, for a DELAY statement entry, all that is required is that the associated

process be active for the SIMULA scheduler to be immediately invoked. The scheduling task

for an initialisation entry is more complicated, as this calls for verifying that the various

SLIDE procer.s initiation rules will not be violated if the given process is allowed to start. To

handle this necessary bookkeeping, two Boolean procedures are provided : chkactivity and

chkpriority. Check will invoke each of them in turn , and if they both return true this

indicates that the process can indeed begin execution consistent with SLIDE process initiation

rules, and so check can invoke the SIMULA scheduler.



Procedure chkaclivily is responsible for the enforcement of the SLIDE process rule that

states that a process cannot be initialed unless all the processes of which it is a subprocess

are already executing. II (Joes this by traversing the priority tree, making sure that every

ancestor of the given SLIDE process is active, i.e., scheduled on the SIMULA event list.

Procedure chkpriorily is charged with the enforcement of the rule that states that a SLIDE

process may only bo initiated if no process at the same process level is executing and has a

higher explicit priority numbering. It also accomplishes its task by traversing the priority

tree, but this time it examines the siblings of the given SLIDE process. If any of them is

active and has a higher explicit priority number than the given SLIDE process, then

chkpriority returns false. While chKpriority is running, if any of the siblings is found to be

active and possess a Lower priority than the given SLIDE process, then that sibling will be

terminated , as is dictated by SLIDE semantics.

Now, if either of chkpriority or chkactivity returns false, the situation is a special one. The

given SLID! procrv.s has had its initialisation conditions come true, but could not start

because of tho current Male of the device simulation. It is now possible that strictly due to

the initiation or termination of some other profess ( implicit stale change), this process could

become eligible to r.lnrl. It is imperative to keep track of such a process so that it can be

given a chance to start if it can. This is done by having check insert the process into the

linked list cool for future reference.

Another set of processes that could he initialed due to an implicit stale change is the set

of newly-terminated processes, and these too will be inserted into cool by the routine that

handles SLIDE process termination, procedure kill. Procedure kill, besides performing the

actual garbage collection and creation chores, also terminates all the descendants of the

terminated process, as listed in the priority tree.

The mechanism for handling the scheduling task with regard to implicit state changes can

now be described. I inked list cool has been seen to contain all the processes at a given

point in time that could be initiated by an implicit stale change. The scheduling of the

processes in the linked list cool is done in response to every implicit state change that occurs.

Whenever a 5UDE process is initialed , ils very first action is to attempt to activate every

member of cool. This is done by invoking procedure clblchk, which removes each member

from the list in turn and invokes check for its corresponding initialisation entry. Whenever a

process is ahoiil to terminate, ils last action is to have itself "kilTcd and procedure check
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properly invoked, all horn an inclopenden! third party SIMULA process, homm. This

completes the? description of the implementation of SLIDE processes as such. The next

section discusser. Ihn implementation of Iho body of the SLIDE process itself.

4.4 Inside The SLIDE Process

4.4.1 Hardwaro

SLIDE variables can be lines, registers, and buffers, as well as combinational logic and

associative memories. To achieve their simulation, SIMULA classes were written to emulate

the behaviour of each hardware type.

The common characteristics of SLIDE line and register variables, such as read / write

capability and the ability to detect bit transitions, were distilled into a SIMULA prefix, class

hard. Subclasses for lines and registers were built up with class hard. In class hard the

actions of reading nnrl writing data, and of cMocting positive and negative transitions on bits,

are implemented as procedures. The actual actions of the class consist of more than the

expected variable initialisation function, however. The actions of class hard relate to that

part of SLIDE process bookkeeping that accomodates explicit state changes.

A hardware vai iable can affect a given DELAY statement or initialisation condition if it

appears ( either directly or Ihiough combinational logic to which it is an input ) in the

Boolean expression contained therein. From the last section, it is known that all such Boolean

expressions arc catalogued in procedure check of the SLIDE scheduler. Therefore, included in

the mapping of a SLIDE hardware variable is a list of the catalogue entries in procedure

check that the particular variable can affect. The invoked actions of a hard object are to

cycle through Iho entries so listed, calling check for each entry. Whenever a SLIDE line or

register variable ( ^nd in a similar fashion, a SLIDE buffer variable ) is written to by a SLIDE

process, these actions of the variable will be scheduled. In this way, every explicit state

change which could result in some other SLIDE process needing to be non-procedurally

initiated is provided for. Providing the above list limits the scope of the search to only those

entries that am relevant to a particular variable.

Now, class hard is a subclass of class PROCESS, so its actions are treated like those of any

other SIMULA process. This means that the cycling action occurs autonomously from the

Homm must ho a filMlH.A proc^^r, inn IP.-KI of n procoflnro, bocnuno ihn tnrminnting procoss shouldn't force its own
garbogo collodion, which if would bo doing if lo invokp homm meant a procoduro call This point will come up again
when SLIDE hnrdwnre variahlnn aro doacribrd



SLIDE process thai r.ot the variable, i.e., as a separately executing entity. But if as was noted

above, these action:, always occur during a write, it seems reasonable to inquire why they

are separated from the write procedure in Mich a manner, rather than incorporated into it.

The reason lies with the familiar case of 5L1OC process termination. It is possible that during

the course of its execution, a SLIDE process could in writing data to a hardware variable

cause a higher priority brother process to begin executing. SLIDE semantics dictate that the

first SLIDE process would havo to terminate. This cannot be done directly from a procedure

called by that process. As was the case with homm, providing a third party process from

which needed terminations can be directed serves to maintain orderly execution. This is

accomplished by making SLIDE hardware variables into SIMULA processes.

SLIDE global linos and registers represent a special case. They are the variables that are

meant to correspond to "pins" in the 5UDF clovicc description, so they have a responsibility

to not only behave in a manner consistent with other lino and register variables, but also to

interact with I ho device interface to the rest of the simulator. This relationship with the

standardised communication interface is crystallised along the following lines. For each global

variable in I ho description, one port in I ho Moment of the SLIDE device module will be

assigned. The port and the global variable will cooperate to provide correct data to each

other when necessary. That is, each time a global variable is written to, the resulting data is

passed up to the* corresponding port to be written to any wire that may be connected there.

Conversely when a SLIDE device Chain is woken i\pt because the wire connected to one of its

ports has been written to , the Chain will pass the data down to the associated global line or

register.

A special case of the global line is the SLIDE synchronous line. The requirement for

periodicity in behaviour called for a modification of the way the read / write functions were

handled as compared with other lines and registers. A new SIMULA process called the

history process was designed that focuses on the port in the Element that has been

associated with a given synchronous line. Each sync line has one history process provided

for it. The history process is first activated at time zero of a simulation and proceeds with

its actions indefinitely. These actions consist of reading the data at the port once each

period and pushing it into an internal FIFO buffer. Therefore, the history process provides

an external periodic mechanism to which sync lino actions can be referenced. Given thiq, the

establishment of the correct read / write behaviour was straightforward. Whenever an

executing SLIDE statement attempts to read a sync line, that action will be rescheduled on the

SIMULA event list just aHer the history process for that line. Whenever an executing SLIDE

statement attempts to write to a sync line, that action will be rescheduled to just before the

history process.



As an illustrative example, consider SLIDE devices A and B in the simulator library, each

possessing a synchronous line of the same periodicity. The user creates one copy each of A

and D , and connects the respective ports together by wire in the simulator. Say that A is

executing a section of SLIDE code of the form :

LOOP 1000 TIMES DO
BEGIN

x - r NEXT
r •- r + 1

END

where x is the sync line and r is a local register, and say that B is concurrently executing

this piece of SLIDE code :

LOOP 1000 TIHLS DO
BEGIN

bh - y NEXT
END

where bb is a SLIDE buffer and y is the sync line. If the declared periods of y and x are c

time units, then a snapshot of the SIMULA event list would look like this :

Proces
A

AY, his
B'& his

B

lory
tory

Ascociatod
nc
nc
nc
nc

Timo
1
| Order Of
| Execution

V
where n is an integer. The ordering of the history processes relative to one another is

arbitrary. Ar, each procf?',s completes its loop actions it immediately attempts another access

to its sync line. This will be rescheduled to time (rwl)c. Thus by automatically delaying

accesses to synchronous variables until they line up with the associated history processes,

the desired periodic behaviour of sync lines is achieved.

To complete this discussion of SLIDE hardware , the SLIDE buffer, the SLIDE table (

associative memory ) and SLIDE combinational logic will be touched upon. The SLIDE buffer

implementation is similar in principle to that of class hard, except that bit transition checking

does not exist, and a fifo queue data structure is implemented to accomodate buffer read /

write semantics. SLIDE buffers will set a global Boolean flag whenever an attempt is made to

read them while empty or to write to them while full.

SLIDE tables arc implemented as subclasses of a prefix class table. The principle of

operation of the SLIDE table implementation is to have two integer vectors store the defining



mappings . Thus LNCOOing and DFCODing are equally easy. SLIDE tables will set a global

Boolean (lag whenever an attempt is made to encode or decode a data value which did not

exist in the defining mapping.

SLIDE combinational logic is also implemented similar to class hard, except that it is not a

SIMULA process, and it is a read-only resource. Whenever a read is performed, the value of

the combinational logic resultant is updated according to the current input data to the

defining expression. It is not the case that the combinational logic output values change

whenever an input changes. These updates only occur when the combinational logic itself is

accessed . This of course saves considerable overhead over the more simple-minded method,

and is just as accurate from the simulation point of view.

SLIDE combinational logic is not implemented as a process because it doesn't need to be ;

the variables that it uses in the defining expression , which must eventually boil down to

lines, registers, and buffers, are aware of their indirect memberships in expressions as inputs

to combinational logic as well as their direct memberships. Hence, the variables will contain in

their special vectors the necessary entries in procedure check. Since whenever check is

actually invoked it v/ill attempt to access the given combinational logic in the expression, the

required updates will always be performed in time.

4.4.2 Subroutines

The basic mapping for a Sl.IDt:. subroutine is onto a SIMULA procedure. This is

straightforward enough, but there is one interesting point concerning their implementation. A

SLIDE subroutine can be called from anywhere within the SLIDE process in which it was

declared. In addition, <\ny of the subprocesses of the defining SLIDE process may also call

the subroutine. This posed a problem that relates to the cataloguing of processes and

Boolean expressions in procedure check in the SLIDE scheduler. Beforehand, each expression

in check could be identified a priori with a unique SLIDE process. This is clearly not the case

with an entry in check that corresponds to a DELAY statement expression when the DELAY

statement occurs in a SLIDE subroutine.

The solution to tho problem entailed extending the cataloguing in check and the mapping of

DELAY statements to provide for variability in the identity of the affected SLIDE process

during device simulation. II ako entailed providing in the mapping of SLIDE subroutines some

bookkeeping facilities to keep track of subroutine calls, so that virtually all cases could be

correctly handled. ( For example, concurrently executing SLIDE processes invoking the

identical subroutine and executing the identical DELAY statement.) r
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4.4.3 Stalomonts

The SIMULA mapping of the CALL, NOP, BR, and IF statements in SLIDE are all

straightforward and intuitive, and will not be elaborated upon here. The IFERROR statement

is just an IF statement that is Keyed on a global Boolean flag. This flag is set whenever a

SLIDE buffer is improperly accessed, and whenever an attempt is made to ENCODE or DECODE

data that not in the specified SLIDE table. Execution of the IFERROR statement clears the

flag. The more interesting mapping tasks v/ere those for LOOP and DELAY statements, and for

parallel compound statements.

The LOOP statement mapping would have been trivial except that the SIMULA WHILE

statement turned out to be unusable. This was due to the fact that SLIDE expression

evaluation in SIMULA requires the execution of a number of SIMULA statements , in general.

Thus SIMULA IF statement constructs had to be employed to achieve the desired functioning.

For example, LOOP 100 TIMES DO <stmt> UNTIL <cxprcssion> maps into :

FOR i : = l STEP J UNTIL 100 DO
BEGIN

< 51 m t >
<Rxprcv;sion eva lua t ion u n t i l Boolean resu l t an t>
IF Lloo lean r e s u l t a n t THEN GOTO e x i t ;

END;
ex i t : . . . .

The SLIDE DF.I.AY MMement is tin? pivotal statement of the language. It provides the fine

in-line timing control that facilitates the accurate description of I/O hardware operation.

While the mapping of the statement DELAY 100 was trivial, because the SIMULA HOLD

statement is semanlicnlly identical , the other two forms of the statement required some

thought. For DELAY UNTIL/WHILE <cxprcssion> the following mapping was used :

labe l : <r»xpr cr.sion eva lua t ion up to Boolean resu l t an t>
IF (NOT) Boolean resu l tan t THEN
BEGIN

HOLD(very large number);
GOTO l abe l ;

END;

To complete the mapping, the catalogue of Boolean expressions in procedure check of the

SLIDE scheduler is updated with <crpression> anci the identity of the process in which the

DELAY statement occurred. From the above example it is seen that the DELAYed process is

never actually removed from the SIMULA event list, just placed very far down it in simulated

time. While this forcer, an otherwise unnecessary GOTO loop to be included in the mapping, it

does serve to provide an easy distinction between processes that have not yet begun



execution ( t h e n nol on I ho event list ) and OfXAYed processes. The SLIDE scheduler uses

this distinction to great advantage.

The final version of the DELAY statement, DELAY 100 UNTIL/WHILE <cxpression> ELSE

<stmt> resulted in a more complex mapping :

x i = c u i T c n t r, i im i lo tcd t ime;
I abe 11 : <PX|>I r"-°.i on eva lua t i on up to Boolean r e s u l t a n t >

IK (NOD Boolean r e s u l U n t THEN
BEGIN

liriL.rU (100;.- SLIDE CLOCK) + x - cu r ren t s imu la ted t i m e ) ;
IT x i (lOOvr SLIDE CLOCK) <> cu r ren t s imula ted t ime

• TURN
BLG1N

<stmt>;
GOTO I oho 12;

END
ELSE GOTO label 1;

END;
I a b e 1 2 :

To understand Ihir. mapping, it is important to keep in mind that this, code will be appearing

inside what is actually a SIMULA process. As the code is entered, the variable x is set to the

simulated time at that point in execution. If the expression evaluation results in the IF

statement condition being true, then the execution of this SIMULA process must be

suspended. This is dono by invoking I ho SIMULA command HOLD, which freezes execution and

schedules the process to be resumed 100 M- SI IDE CLOCK time units from now ( since x =

current simulated time ) . When execution resumes , it will be at the statement following HOLD.

Upon resumption of execution, current simulated time v/ill be greater than or equal to x. If

it is also greater than or equal to x • 100 \: SI IDC CLOCK , then the DELAY statement has

"timed out" and the statements <stmt> must be executed. If the DELAY statement has not

timed out, resumption of execution could hnvo taken place one of two ways. Either the IF

statement statement condition has indeed gone hue, or an uncalled-for reactivation has taken

place. The latter possibility does exist because of the nature of the implementation of

procedure check in the GLIDE scheduler, which does not discriminate between DELAY

statement expressions in an executing SLID!" process. In either case, looping back to label 1

produces the correct behaviour. In the fiisl case, the program will drop through to Iabel2.

In the second ense, the process will be suspended for the amount of time left until a time out

A molhod for nlloring Ihn implnmonlnlinn of procedure chock to plnminnto this popmbilily is montionod in (ho
conclusions.
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would occur, given the original limo al which Iho DELAY began.

The mapping of parallel compound statements is intended to provide "FORK and JOIN"

behaviour. Given the following example :

BEGIN

END
BEGIN

END NEXT
< 31 m t >

SLIDE semantics dictate that the actions in these two statement streams be started at the

same lime (I ORK) f nnd that <slmt> not be executed until all the actions in the two streams

have completed (JOIN).

To accomplish thir., each statement stream is mapped into a separate "degenerate" SLIDE

process f drgrnrjrntr? in that it will have no entry in Iho priority tree. As an example, given

an executing process A in which three parallel compound statements are encountered, name

the compound statements 1,2,3 and their respective statement streams A, M, and T. The

following mappings would result :

PROCESS A : Antivote 1
DELAY UNTIL 1 is finished

PROCESS 1 : A c t i v a t e 2
A
DELAY UNTIL 2 is finished

PROCESS ? : Act ivate 3
M
DELAY UNTIL 3 is finished

PROCESS 3 : T

After the activation statements take place , processes A, 1, and 2 are suspended at the

same simulation time, and process 3 begins execution at that same simulation time. By virtue

of the DELAY statements, process A cannot resume execution until all of 1, 2, and 3 have



completed their action'.. Thus the FORK and JOIN behaviour is achieved. Note that as

separate processes, the throe statement streams do indeed execute autonomously and in

parallel. The so-called DELAY statements shown in the example are meant to signify the form

of the resulting SIMULA mappings . For instance, each of A, 1 , and 2 will have an entry in

check, and their associated expressions will be " 1 (or 2 or 3 respectively) is finished". The

same mechanisms will be used to reschedule the processes as would be used for a real SLIDE

DELAY statement.

As a closing nolr, this mapping for parallel compound statements also includes an

accounting mechanism for the degenerate processes. This is necessary to insure correct

SLIDE process termination. In the above example, if A was to be terminated, the accounting

mechanism would insure that processes 1, 2, and 3 would be terminated as well.

4.4.4 Timing

The liming task in the simulation of a 51 IDE description was considered, and maintaining

time fidelity bolwrmi communicating 51 IDF processes was seen to be crucial for

interconnection simulations. Fortunately however, it was found that in general it is not

necessary for every action in a SLIDE process to occur at the absolutely correct simulation

time, because not every action is necessarily significant . A significant action is said to occur

whenever any SLIDE statement that could possibly cause the SLIDE scheduler to be invoked,

or could produce activity at the ports of the SLIDE device, is executed. It was decided to

include in the code generator an algorithm that would insert correct delays at proper points

with respect to significant actions, to reflect the true passage of time. By not having to

insert delays after non significant actions, the simulation was expected to correspondingly

speed up at no cost to modelling accuracy.

The sequential passage of time in the body of a SLIDE process is embodied in the two

statement separators IMF XT and ; (semicolon). The semicolon indicates that no time is to pass

between the completion of the previous statement and the start of the subsequent statement.

NEXT calls for the insertion of a delay lasting one SLIDE CLOCK period between those two

points. If all statements were treated equally, the mapping of time passage would simply

involve the insertion of a SIMULA HOLD statement wherever a NEXT appears in the SLIDE

description, and inserting nothing wherever the semicolon appears.

The desire to reduce the number of MOLD statements that occur in the generated code

makes the translation more complex. Each SLIDE process will be assigned a Boolean flag that

is to be true only if the statement just executed was significant. There is also an integer

counter that is used to keep track of the number of SLIDE clock periods that the simulated
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time of the cxreuting process if. off hy, by virtue of having ignored r.omc NdXT's. Now , the

code generator dotorminr^ the significance of each statement in a process , as defined

above. If the statement to be executed is significant, it needs to be executed at the correct

simulated time, and so a corrective delay is inserted as follows :

IF counter \ 0 THEN
BEGIN

HOLD(counter * SLIDE CLOCK);
counter := 0;

END;

After any statement completes its execution , the code generator inserts code to set or

clear the Boolean flag as appropriate to the statement just executed. Then the following

code will be inserted if a NEXT was encountered after the statement in the GDB :

I F f i t K i i s iran i i i i .N
BEGIN

HDI D( (counter +1J * SLI OF CLOCK);
count or : - 0 ;

END
ELSE

counter :~ countnr + 1;

Nothing is inserted if a semicolon was encountered.

With the insertion of the above code as necessary before and after SLIDE statements , the

overhead incurred duo to SIMULA HOLD statements is minimized consistent with time fidelity

requirements.

4.4.5 Expressions

The implementation of SLIDE expression evaluation centred on just a few concepts. By and

largo, this implementation was able to make use of the power of the SIMULA language to

produce a flexible mapping that simplified the job of the code generator in producing

executing expressions.

The fundamental operand in SI IDL K the bil-r.rgmcnl, i.e., a string of bits. There is no

inherent limit in SI Il)f" to the width of bit r.rgmrnlo or to their accessibility. The mapping of

bit-segments into SIMUI A had to retain these properties, and this was achieved quite simply

in class Inter. Class inter provides a standardised representation medium for SLIDE data and

forms the basis for evaluation of SLIDE expressions. An inter object is a pointer to a one

Section 5.3 doRcribos tho problems of dolormining slalamonf significance



dimensional army of mirrors. Storing the data in an array removes moot practical limits to

its scope * . Referring to the array through a pointer gives flexibility in operand manipulation

at the cost of extra storage. Most arithmetic and bit-logical operations are implemented to

accept inter objects a*; inputs and to produce inter objects as outputs.

The mechanisms for expression evaluation arc twofold, and are illustrated in Figure 8.

First, there are the various SIMULA procedures that perform the actual SLIDE operations.

Second, there K a runtime stack for storage of temporary results. The SIMULA procedures

co-exist inside an environment called class expression. Class expression, in addition to

housing the procedures, also houses a single inter object, into which operation results are

placed. Class expression will interact with the runtime stack to produce efficient and correct

expression evaluation. The runtime stack will push and pop inter objects. It can also

interchange the two objects at the lop of the slack, which is useful for correctly ordering

operands.

Currontly, nnn SI IDf* l>il in m.ippnd in(n onn mtcgor ; hit fluffing macron will bo nmplcyod in th«* future \o produce
bit-to-bit mapping



Figure 8: SLIDE Expression Implementation
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One expression objocl n»>d ono runtime st»vk will exif.t per SLIDE device instance (they are

located in the SP). More than one set is not necessary for a given SLIDE description.

Limiting the number to only one set in the whole simulator would open up the possibility of

inadvertent data contamination, because of the autonomous and independent nature of the

ongoing device simulations. The decentralised nature of the simulator core precludes the kind

of centralised control of expression evaluation that would be required otherwise .

To close out this overview of SLIDE expression evaluation, the implementation of a unique

expression will be clir.cusr.rd. This expression had to bo realised completely outside the class

expression environment. This was the sequential behaviour expression, which takes the form

X EQL :V1:V?:V3: ... :Vn:. This expression will bo true if, at the simulated time of its evaluation,

the last n valuos on Iho synchronous line were* first VI followed by V2 and so on to Vn. The

expression is falso otherwise. X must be a synchronous line, and the values Vi are constants.

The evaluation of Ihis expression entails Knowing the exact behaviour over time of any

sync line, to within some maximum time window r.i/e. Recalling the implementation of the sync

lines, it is soon that tlu* hi-.lory ptocrs'. of a sync line, through its internal buffer, provides

exactly this rosourm. Tho history procoss maintains from time zero a record of occurring

values on tho lino. Thus, one component in sequential behaviour evaluation is provided by

the relevant history process.

For each occurronco of a sequmlul hrhaviour expression in a SLIDE description, there will

be mapped ono ohjoc.t of class sequonco. Whenever the expression is evaluated, the actions

of the sequence object will be invoked.

The actions of the sequence object are split into a transient phase and a steady state

phase. In the transiont phase, the sequence object simply waits for enough values to have

occurred on tho lino to bogin actual testing for Iho given sequence. Until simulated time

exceeds n timer; tho sync line period, there is nothing to test for, and the result of the

expression evaluation is always false.

After enough timo has passed, tho sequonco object will begin its steady-state phase. Upon

invocation, its actions aro to do a word by word comparison between the sequence to be

tested for and Iho List n values on tho line ns recorded by tho history process in its buffer.

The elapsed timo between successive expression evaluations is taken into account, and the

the location of tho window through which the history process buffer is examined is shifted

accordingly.

Thus, the evaluation of this typo of expression is entirely independent of class expression.

Each occurrence of a sequential behaviour expression results in a new sequence object being



created in the 5P of \\\r GLIDE clovicc modulo. This differs from the conventional operator

implementation in that , for example, no mallrr how many AND's occur in a SLIDE description,

there will be only one ANDing procedure ( inr.idr one expression object ) in the SP. However,

conventional operators have no need to consider the time between successive invocations ;

dependence on the passage of time necessitates a more complex implementation for

sequential behaviour expressions.
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5. SLIDE Code Generator

5.1 Context Of Operation

To fully understand the operating principles of the code generator program, it is necessary

to understand the overall context of its operation within the software system described in

Chapter 3.

5.1.1 Pre-Compiled Code

The mappings from SLIDE to SIMULA discussed in Chapter 4 were expressions of the

nature of the final SIMULA code. Exactly how they are supposed to come about, or where

they fit within a framework of automatic program generation was not discussed. To a first

approximation, desired SIMULA mappings can be broken down into two categories with

respect to the code generation problem : code that is generated anew for each SLIDE

description, and code that is always present in the multi-level simulator. The relationship

between the two is symbiotic ; the always-present code is a continually existing resource

that the code generator program will assume to be available to the code that it generates.

The domain of the always-present part of the SLIDE to SIMULA mapping consists of the

generally used SIMULA prefixes upon which specific instances of SLIDE entities are built, such

as class hard, and globally ur.ed procedures and variables. Conveniently, SIMULA provides a

facility for allowing classes, procedures, and data structures to be independently

pre-compilcd into one new external prefix. Any program that is prefixed by this external

class will have access to the constituent properties of the class. This methodology was used

to implement the always-present part. In the actual implementation, general support code for

the multi-level simulator core is ak>o included in the makeup of the external class. The

advantage of all this is lies in that, for example, class hard has only to be written once and

compiled once to bo accessible to all subsequent SLIDE simulations. The precompilation

facility removes the need for the code generator to be constantly reproducing such code

each time it is executed.

5.1.2 Preprocessor

Another clement in the operational context of the SLIDE code generator is the

preprocessor. As was previously stated in Section 3.1, the preprocessor pieces together

fragments of SIMULA code from any number of code generator output files into a single

SIMULA program. In the original implementation of the simulator core [8], a simple program

existed to piece together the various device modules into a runnable simulator. It was
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designed to allow a user lo write hio own device modules in SIMULA without having to worry

about gross syntactical drUiils. The current preprocessor takes this concept and expands on

it to provide a fAeneî T| tool for the formatting of fragments of text.

A notion of the world-view of the preprocessor can be obtained from the following

analogy. This Report can be considered to be the root of a tree, whose sons could be

"Chapter 1", "Chapter 2", and so on, and each of these could have sons "Section 1", "Section

2", etc. The relationship of the "real" report to the tree is that the tree can completely

specify the ordering of the different parts, subparts, and so on of the report, such that the

report could just ns well be read by traversing the Irce ( in the correct fashion ) as by any

other means. Now, if the tree were stripped to the bare bones and retained, such that each

node contained- only a label such as "Chapter 3" or "Section 16", and the various textual

pieces of thn rrpoi t wore mixed up into a random pile of fragments, with each fragment

tagged "Sulv.ff lion / of Section q of Chapter d", it would still be possible to read the report

in order. The tiro could be used ns a guide by which subsections could be synthesised into

sections, sections into chapters, and chapters into a report, without paying any attention to

the semantics of the lag names, only lo their location in the tree.

The preprocessor is r« program that tries to apply the principles ( hopefully ) conveyed by

the above analogy. If a general body of text is able to have a relational structure specified

for its constituent sub-texts , then, given only the sub-texts - suitably labelled - and a

specification of Ihe structure, the preprocessor program will recreate the original text body

out of the input sub-texts. In particular, Ihe preprocessor expects the structure to be

specifiable as a tree, and it will piece together the text by following a post-order traversal of

the tree. Thus, it combines the text specified by the sons of a node before moving on to the

right-hand brother of the node.

The requirement for tree-specification of tevl body structure is not a problem for this

application of Ihe pmprocessor, namely the creation of one SIMULA program from a

multiplicity of input text files. As a high-level programming language, SIMULA has a specific

syntactic structure lo adhere to which is quite amenable lo a tree-like representation.

Incorporated in Ihe text input to the preprocessor will be commands that will guide its

Operation . Them nro four such commands : a tree structure specification command , a text

labelling command , n premature tree lravrrs.il command, and a file inclusion command . The

purpose of the former two commands should he clear from the above discussion. The latter

two commands will be described next.

The premature tree traversal command forces the text associated with the subtree of a

node in the structure tree to be combined into a single fragment, and tagged with the node



label. To sor I ho ulility of such a comm.md, consider a simple example. Assume that

computer programs in some language have boon structurally described as a single level tree,

i.e., as consisting of Declarations and Actions, Given n fragmented programs, where each

program is presented a% a piece of code labelled Declarations and a piece of code labelled

Actions, to bo input together to the preprocessor, the desired output would of course be n

single programs. However, if the tree traversal process were to run continuously from

beginning until end, the resulting body of text would be an attempt at one large program,

with the n declaration sections of the n programs grouped together followed by the n action

sections. This is because each occurrence of a given label is the same from the point of view

of the tree ; any two text fragments that are labelled identically will have, by definition, no

predetermined ordor with respect to each other, only with respect to differently labelled

fragments. Thus, all the declarations and then all the actions would be lumped into an

amorphous whole, because? no line was drawn between them.

The premature I roc traversal command, properly invoked , would allow such a line to be

drawn b o t w e n programs, so that thn respective fragments could be properly congealed into

individual programs. To do this requires a certain degree of physical organisation among

the input fragmrnk; thir. could not be achieved in a totally randomised setting. Thus, the

premature tree traversal comancl is not a general replacement for a more detailed structure

specification. However, under the right conditions it ir, useful in eliminating the need to

overspecify structure in order to achieve the* dosirod results.

"Iho file inclusion command ir» simply a drvico for specifying input files to the preprocessor.

They can be nrs l rd so that groups of input files may be treated as a single entity by the

preprocessor. Thus the code generator may safely output multiple fragment files for a single

SLIDE device mapping, ao long as it provides the necessary file inclusion commands.

5.1.3 Final Simulator Program

Another element of the operating context of the code generator is the final SIMULA

program to which its output must conform. The form of the final program is constant, and can

be described as follows :

Tho rotative) orclnrmg of program*; in Urn mnuHing output would ho rnnriom



Spec i a I 1"I Mr. I ar a t i nns
C lass d e f i n i t i o n s - S imulator Cor?
C lass nnrl Pi nr«Mlui o d e f i n i t i o n s - SLIDE
Procedure dr»f i n i t ionr. - n imulotnr core
G I oba I var i al.» I o do f i n i 1 i ons
G I oha I vnr i . ib I c i n i t i a I i sa t i ons
Main program

The simulator core parts of the above program correspond to the non-precompiled part of

the core as soon in Figure 2. This part is entered in fragmented form to the preprocessor ,

and is fixed. Note that Ihn simulator main program is the front-end monitor with which the

user will interact.

Of course, the slot marked off for SLIDE clashes and definitions is reserved for the output

of the code gonernior, after rearrangement by the preprocessor. Moving in for a closer look,

it is soon that the ultimate structure of the code that is produced by the code generator will

be as follows :

SP ( S i m u l a t i o n Process )
Cha i n
Spniir-rj Pi o rp ' / .n - , (pi nrp r. r,r i^ der ived from p a r a l l e l compound s tmts)
Procedures - it i r 1 Pr nconr.eo (SLIDE subrout ines and processes)

Each of the above sections corresponds to a node in the structure tree that will be passed

to tho preprocessor./ I he particular partitioning is more a reflection of certain code

generator output logistic requirements than of anything else. For instance, the relative

ordering of class wul procedure definitions is immaterial in SIMULA ; many other

arrangements would have been equally suitable in this sense.

To achieve this structuring in tho final preprocessor output, the code generator uses the

full arsenal of preprocessor commands. For example, the premature tree traversal commands

are utilised to insure that the above sections are not inadvertently grouped with the

corresponding sections of other SLIDE device mappings.

Thin r.lruelurn in fixorl for nil SI 101. rlnvicon, HO II»O currr.porwlinp prrproc*»nn^r commando »r© pariaod in Iho
non-prncompilorl par\ input filn \n r.p.iro lhi» corln gonor.ilor having to do it oner for nach SHOT ditvico, which is clonrly
unnncoTi.iry



5.2 Discussion of Operation

The code generator program is designed to operate within the context described in the

previous section to produce SIMULA code that will eventually form SLIDE device modules

within the simulator. Its input is a single file containing the GDB tree of one SLIDE

description. The code generator traverses the tree exactly one time, producing SIMULA code

on the fly as required. Suitable labelling of this code and proper insertion of commands to

the preprocessor assure that the output will be correctly rearranged into the intended

format.

5.2.1 Uniqueness of Variable Names

Upon invocation by the user, the code gcnrralor will ask the user for the name of the GDB

file, and the name by which he or she wants the resulting SLIDE device type to be known in

the simulator. Among other things, those names arc used to insure uniqueness of the

resulting SIMULA class and procedure names in the final simulator program.

The effort to minimise the chances of vaiinhlr name clashes in the simulator is based first

on the fact that inside a SLIDE description, identifiers musl Lie unique across a given process

level only. Thus, by appending process Irvrls to identifier names, the code generator

prevents n.ime clashes within a given SI IDF. drvicc in the simulator. To deal with the problem

across devices w/r, not as straightforward. It was decided to base SIMULA class and

procedure nnmrs o\) the user inputs described above. If the user names different SLIDE

descriptions uniquely, i.e., does not use the same file name or module name for different

SLIDE devices, then Iliesc names can be used to insure complete uniqueness of all identifiers

in the simulator. As long as the ur or is made aware of this minor constraint , there should be

little ensuing difficulty.

5.2.2 Procedure Interaction and Related Comments

The operation of tho code generator is summarised in figure 9, which diagrams the major

procedures and their interactions with each other and other facilities. By way of explanation,

each of the pictured procedures is briefly described herein.

Initialisation I hi', procedure initialises glnh.il variables, dumps beginning code for the
$P and I lip Chain, and initialises the low-levrl utilities ( creates the
symbol table, opens filr.% etc. ) .

Finalisation Ihis procedure dumps lhr» code to generate SLIDE hardware variables
plus the final code for Ihr SP and the Chain, and wraps up the low-level
utility chores ( closes files, outputs iilNCLUDE commands, etc. ).



PROGRAMgen

PROCESSgcn

Mainr>et

DECLARgcn

INITgen

SUBRgcn

STMTSccn

STMTY.cn

Expgen

Ihir. procedure doer. Ihe bulk of the SIMULA mapping for the SLIDE
description MAIN process.

Generates the SIMUIA mapping for Ihe body of any SLIDE process.
Since SI.IDF processes are nested inside each other, PROCESSgen can
invoke itself.

Handles the mapping required for the case when the current process is
the MAIN process. II essentially does what INITgen would do if Ihere
wore an Init statement for MAIN processes in SLIDE.

I Kindles <my declarations that may exist in the current SLIDE process by
calling the four procedures TARLFgen, CLQCKgen, COMBgen, and
HARDgen, as indicated by the current node in the GDB tree. TABLEgen,
CLOCKgen, and COMRp.en create the code needed for SLIDE table, clock,
and combinatorial logic declarations, respectively. HARDgen generates
the SIMULA declarations for SLIDE hardware variables ( cf. Finalisation ).

Fm.ounlering the Init statement for a SLIDE process in the GDB tree
causes INITgen to be invoked. This procedure will dump the SIMULA
code that will cause a new SLIDE process to officially exist as a data
structure although its body has not yet been specified, viz. enter a new
node in the priority tree , a new entry in procedure check, and so on.

Dumps the beginning and end code for any SLIDE subroutine that is
encountered in the GD13 ; STMTSgen is invoked to handle the body of the
subroutine.

"I his piocedure generates Ihe SIMULA code for a sequence of SLIDE
si airmen Is.

I his procedure grnr ia l rs Ihe SIMUI A code for a single SLIDE statement,
by invoking one of Ihr I m procedures diagrammed, as appropriate. For
example, LOOPgrn generates the code for LOOP statements , and so on.
A sequence of SLIDE statements bracketed by BCGIN, END is treated as
either a parallel compound statement (Pprocessgen), or as an ordinary
sequence of statements (SIMTSgen), depending on the context.

[his procedure generates Ihe appropriate SIMULA mappings for all SLIDE
expressions. Since expressions are often found embedded in other
expressions, expgen is recursive.



Figure 9: Procedure Interaction In The Code Generator
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All tho cJi.ii',r;immr(J procedure", interact with the low-level resources of the program,

namely the symbol table, and the input and output utilities. The symbol table is the

repository of basic information about the various entities of a SLIDE description. DECLARgen,

INITgcn, and SUBRgen will enter the variable names and relevant parameters of SLIDE

hardware, etc. into the symbol table table as they encounter them. The information in the

table is both updated and used by other procedures during their code generation tasks. The

input utilities contain the data structures and inputting primitives necessary to support GDB

tree file access and traversal. The output utilities provide corresponding primitives to handle

the output requirements of the code generator, such as simultaneous outputs to multiple files

and delaying output of generated code by use of text stacks.

Not surprisingly, the '.truelure of the procrdurcs as shown in Figure 9 corresponds to that

of the GDB of a general SLIDE description ; it reflects the tree traversal operation that is the

driving component of the code generator program. The GDB provides another benefit aside

from a structured representation of SLIDE descriptions , which is that the code generator is

free to base its actions on the assumption that the original SLIDE description was

syntactically t o i r r c l . This is a simplifying factor in many instances. For example, in the case

of an unconditional branch (BR) to a labelled statement, where the program is unable to find

the label in the symbol table, it goes ahead and generates tho SIMULA mapping anyway ; the

label must exist, otherwise the original description would never have gotten past the SLIDE

compiler.

The syntactic correctness assumption is one factor that allows the code generator to be

implemented ar. a one -pass program. In the above example, a second pass would have been

necessary to resolve the question of the label's existence. The preprocessor is another

factor in preventing multiple passes through the GDB. It gives the code generator the

freedom to output any code it deems necessary, at any stage its execution. Thus there is no

need to ever "wait until the next time around" to perform a code generation task because

"it's too late to do it now" .

5.3 Points Of Interest

In this section, some of tho difficulties Ili,«t arose during the solution of the code

generation problem will be described, and example occurrences of each will be briefly

discussed. They all arise out of I he following observation : although the software tools exist

to physically provide the code generator the freedom to generate any category of SIMULA

code at any point in its execution, there are still limits to what can be accomplished at any

One time. These limitations result because of the nature of some of the SLIDE to SIMULA



mappings, and because of insufficient information during the tree traversal.

The above points can be itemized along the following lines . Having arrived at a given

point in the GDB tree, it is desired to perform a certain code generation task. However, it is

possible that

- Some of the code that is to be generated must be saved up and output at a later
time because of the nature of the SLIDE to SIMULA mapping, or

- There will not be enough informalion to do the task until the entire GDB tree has
been processed, or

- There will not be enough information to do the completed task during any part of
the codn generation phase , only at runtime.

The first stumbling block is really a consequence of the fact that the preprocessor is only

useful in structural specification of lext. While SLIDE statements are being processed,

behaviour is being described ; there can be no structural ordering that says that all DELAY

statements must come before all CALL statements, for instance. Thus , when a non-sequential

mapping arises for a SUOf statement, there is no recourse to structural semantics to make

the output sequential ap.jin. An example where this comes up is in the parallel compound

statement mapping (Section 1A3) where the body of a spewed process is to be bracketed by

extra SIMULA code (Activate and "Delay"). This mapping is achieved through use of a text

stack facility that allows tho "Delay" section to be saved and automatically dumped later on at

the appropriate point. Only the Activate part is immediately written by the program ; the

rest is put on the stack and the program moves on. The preprocessor could not be used to

get around this case because no adequate structuring is definable.

The remaining two stumbling blocks deal with the more fundamental question of desired

task vs. information vs. time. That is, given the desire to perform a certain code generation

task, there will exist cases where that task cannot be fully performed by the code generator

because of a lack of information at the time, which will necessitate waiting either 1) until the

whole input GDB has been processed, or 2) until runtime. Although the particular cases cited

next are peculiar to this project, this should not lake away from the fact that these are basic

issues of the problem of code generation that managed to surface in spite of the power of

the operating environment.

An example of case 1) that arises is SLIDE hardware variable generation. One of the

parameters of class hard is an integer that specifics tho length of the list of procedure check

entries for that variable (Sec Section 1A1). This parameter is named ma*. When the

declaration is arrived at for a SLIDE hardware variable in the GDB tree, max is not known. In



fact, the value of mav is not finally cletcrminnd until the entire SLIDE description has been

processed. The operational consequence of this is that as described previously, procedure

HARDgcn only produces the declarations for SLIDE hardware ; the actual creation of SLIDE

hardware variables is delayed until the end, when procedure Finalisation does it.

The following example of case 2) involves the handling of timing between SLIDE statements.

As was mentioned in Section 4A4, the code generator is to determine the significance of any

given SLIDE statement. ( Any SLIDE statement that could cause the SLIDE scheduler to be

invoked or could cause activity at the ports of the SLIDE device is said to be significant. ) The

exact time at which this determination can be made varies with the statement, however.

If each SLIDE statement is surveyed, it is seen that the significance of DELAY statements,

NOP statements, and [3R statements is unchanging (the first two are always significant* , and

the last one is never significant), and so the code generator will output the code that sets or

clears the Boolean flap, as required. The significance of LOOP, IF, IFERROR, and CALL

statements is determined solely by the SLIDE statements that they cause to be executed;

they have no "infringe" significance. In these cases, the code generator will not insert any

code, but just lot thn current flag value pass through as is. The significance of the SLIDE

assignment statement is a function of the particular SLIDE hardware variable that is being

written to. If the may parameter mentioned earlier is zero for a local SLIDE hardware

variable that is being written to , the code generator cannot make a decision one way or the

other. It m.iy be that later on in the SLIDE description the variable will be involved in a

DELAY or INIT statomcnl, and so max will become non-zero, but that can't be told as yet.

Since it is impractical tr. hold up the generation of assignment statements until the finalisation

part, it is left to the executing SIMULA code to determine significance in this case. Therefore,

this is an example where a certain code decision is actually deferred until runtime.

If the code generator has to defer the decision to runtime, the code that is normally

inserted before a significant statement will still be inserted, but bracketed by the following :

IF the v a r i a b l e s max parameter \ 8 then
BEGIN

END;

Since the significance of a statement is corv.tant in a SLIDE cicscription, having to defer the

NOP io considored nignifiennf bocaupo Ihc only Fomanlic ©ffeel of NOP NEXT is lo advance limo.



decision until runlimo gnve slightly inefficient results. In retrospect, this is one case where

having a two-pass code generator implementation could have been advantageous.



6. The SLIDE Simulator Test Case

This chapter describes a test run in which SLIDE descriptions were written, compiled,

interconnected and simulated in order to demonstrate some of the capabilities of the SLIDE

simulator. This rxamplo represents a single point in the space of simulations that can be

executed with this facility.

The example involves the following configuration: (see Figure 10)

- The PDP-11 UNIBUS

- A UNIDUS CPU.

- A Peripheral Device attached to the bur..

- A small CMOS memory attached to the bus.

- A synchronous data link connected lo the peripheral device and to a black box -
the source of the synchronous data.

The data link uses an SDLC-liko protocol. The peripheral device converts received

synchronous data bits into 16 bit words, and writes them to the memory over the bus.

To expedite the lest, the following simplifications were made:

- The CPU consists only of the processor status words and the bus arbitrator.

- The data link protocol is always in information-transfer format.

- No error checking is done on the data link.

The omitted details could have been included and simulated ; SLIDE could even be used for

CPU description although it is not intended for that purpose.

6.1 Peripheral Device Description

The SLIDE description of the peripheral device module, which is the most active module in

the simulation, will now be focusscd upon. As shown in Figure 10, the peripheral device has

two independently executing functional sides. It has an input side, which is responsible for

pulling data off the synchronous line according to the protocol flag, address, data, flag. It

also has a UNIDUS interface side, which receives a 16 bit data word from the input side. The

bus side is responsible for transferring data words lo memory according to the UNIBUS

protocol.
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Figure 10: SLIDE Simulator Tost Case
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Figure 11: SLIDE Process Structure of the Peripheral Device Model

MAIN PROCESS

SUBMAIN PROCESS: PRIORITY 0

GRAB PROCESS: PRIORITY 0 DUMMY PROCESS: PRIORITY 0

FLAGWAIT PROCESS: PRIORITY 0 BMASTER PROCESS: PRIORITY 1 PASSGRANT PROCESS:
PRIORITY 2

CHOMP PROCESS: PRIORITY 0



The operation of this peripheral device war, modelled with the SLIDE process structure

shown in Figure 1 1.

On the bus interface side, there exist the two processes BMASTER and PASSGRANT,

statically nested inside a dummy process. DMASTER is one level of priority higher than

PASSGRANT, which merely passes grants along the bus when the peripheral device has not

made a bus request. Thus, PASSGRANT is always active unless BMASTER is active, since

BMASTER has higher priority1 .

When CHOMP has assembled a word of data, BMASTER is initiated and PASSGRANT is

terminated. When the transfer is completed, BMASTER terminates itself and PASSGRANT

starts again.

The SUDMAIN and DUMMY processes were used to encapsulate local SLIDE variables;

DUMMY isolated the bus interface side of the peripheral device (BMASTER, PASSGRANT) from

the data link side (GRAB, FLAGWAIT, CMOMP). MAIN, SUBMAIN and DUMMY contain no actions

except those embedded in subprocesses; thus they are "active" but asleep (not in a

busy-wait). This is achieved by using the "DELAY WHILE 1" instruction, which puts an active

process to sleep indefinitely.

GRAB, FLAGWAIT and CHOMP input data off the synchronous line, delete inserted zeros and

detect flags and addresses. When the peripheral device address is recognized, the bus

interface process is modified and 16-bit data words are assembled. BMASTER requests the

UNIBUS when data begins to be assembled.

Other devices connected are BLBOX, the black box that generates data for the synchronous

line, and DELAY, a generalized delay gale with a variable delay parameter, logic type and

output bit width. In tho example, a 75 nanosecond delay of open-collector logic type was

created to simulate the UNIBUS skew on the MSYN and SSYN lines.

6.2 Summary Of Simulation Test Results

The simulation run began by instantiating and interconnecting SLIDE modules. Then, the

simulation was started and values were traced. Tho results of the simulation are now

summarised ; a fuller discussion of some of the results may be found in Appendix II.

The actual test was broken down into three cases. The first case ran the configuration as

*The initiation condition* for PASSGRANT aro MIN1T PASSGRANT WMCN 1"



it was, with the synchronous line data rale just below that of the UNIDUS (as it was

modelled). The desired behaviour was indeed observed as data was written into the memory.

This is documented in the traces reproduced in Appendix II.

For the second test case, in order to demonstrate some of the utility of the simulator, the

synchronous line data rate was adjusted to be higher than that of the UNIBUS. Since the

peripheral device had no buffering capability , and data was arriving faster than it could be

formatted and shipped to the memory over the bus, the result was a loss of data. In fact,

since the new data rate was less than twice that of the UNIDUS, every other data word was

lost, as can be seen in Figure II-9 of the appendix. The above two cases ran on the identical

SLIDE device descriptions. The synchronous line data rate, being a simulation time parameter

in the original SLIDE descriptions of the black box data source and the peripheral device, was

adjustable without need of rccompilation.

The third caso involved inserting a logical error in the SLIDE description of one of the

devices, and so did involve rocompilalion of lh.»t device. Tho third test was run to illustrate

the effect of a stuck lino on the UNIHUS. MSYN was stuck high and then the memory device

attempted a read, and raised SSYN. The peripheral device operated normally until it delayed

waiting for SSYN to be lowered. The memory held SSYN and waited for MSYN to go down;

MSYN was stuck, and the bus hung up. The results of this are seen in Figures 11-10 and 11-11

in the appendix.
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7. Conclusions

This report has described the design and operation of a new simulation facility for

evaluating I/O and interfacing strategics . The rhetorical task of this report is to be

completed by a brief comparison.of the SLIDE simulator with SARA and with SABLE, and by

some recommendations and speculations concerning the simulator as it now stands.

In Section 2.4, a characterisation of SARA and SADLE was was presented in terms of the

hardware simulator taxonomy of Section 2.3. While SABLE and SARA were found to comprise

distinct leaves on the taxonomic tree, the SLIDE simulator is perhaps best described as a

hybrid. This results from the way the SLIDE simulator came about, i.e., as a simulator

embedded in another simulator. However, if one takes the view that taxonomies should be

free of hybrid leaves always, then one might claim instead that the real problem lies with this

"inadequate" taxonomy. Nevertheless, much of the nature of the SLIDE simulator is reflected

by its location in the taxonomic tree :

- The SLIDE simulator ur.es, for the most part, the SLIDE HDL for behavioural
specification. But the user can also hand code digital device descriptions in
SIMULA and enter thorn into the simulator core. Thus, there are really two
behavioural description languages existing in parallel in the simulator.

- The multi-level simulator core can support simulation of the gate level through
the system level of abstraction, all coded in SIMULA. SLIDE- described devices,
by definition, are restricted to the register transfer level . So there exists a
dual simulation environment supporting on the one hand a number of levels of
abstraction using a single descriptive language ( SIMULA ) and on the other hand
a single level of abstraction using a single language ( SLIDE ).

- Characterisation of behaviour is deterministic in the SLIDE simulator, and
structure is informally, interactively specified.

- The degree of separation of structure from behaviour is rather weak in the
SLIDE simulator, since structure can be described to a significant degree in
SLIDE.

- The SLIDE simulator interactively permits the system under test to be modified
during simulation.

- The operation of the SLIDE simulator is process oriented, and its execution can
be categorised as compiled.

It should be evident that there is a significant disparity amongst these three hardware

simulators. Unfortunately, the determination of which of the simulators is "better" does not

really lie in a metric that can he directly applied to the taxonomy. Rather, it has to do with

application, and in terms of I/O hardware simulation, which is the focal point of this project,

the SLIDE simulator can be seen to be superior to either SARA or SABLE.



SARA is a powerful tool designed to support a specific design methodology [11]. Its

generality leads one to conclude that anything that could be described and simulated in the

SLIDE simulator could be described and simulated with SARA. However, the task of describing

I/O hardware in SARA is surely as complicated as writing a description in some general

purpose programming language from scratch. The sum of the GMB and PLIP descriptive

vehicles is an abstract, non-hardware relative behavioural description system , with no

semantics that relate to I/O and interfacing hardware as such. Such a Petri Net-like

description of an I/O bus protocol, for example, would be more a monument to the diligence

and patience of its author than an example of a description that both accurately and clearly

reflects the operation of the bus and the hardware that interfaces to it. In contrast, the

SLIDE language frees the user from having to build up a set of I/O semantics from scratch,

and is designed to reflect the operation of I/O hardware.

To a lesser degree, SAF3LE suffers from the same problem as SARA with respect to I/O

hardware description and simulation. For instance, in ADLIB, nets are abstract data

structures, far removed from the "open collector bus" level of description. The assumption is

made that the value that a component believes it has written to a net and the value

subsequently seen by the components attached to that net should be identical always. This is

fine for abstract ckita structures, however it does preclude the wired-or and wired-and

functions common to digital device interconnections; Hill and vanCleempul [14] note that

wired-or's on nets mir.t be fudged by inserting dummy components. Another hindrance is

that in ADLIB eventr. such as updates to nets can be scheduled but not cancelled, so that

prospects for succinctly describing such features as system resets are reduced. Finally, the

process structuring and semantics available in SLIDE would, in ADLIB, have to be added on

artificially with extra data and control structures. This would only serve to obscure the true

nature of the hardware's behaviour. Thus, although ADLIB seems to provide the requisite

generality to describe I/O and interfacing hardware, its semantic direction makes it less suited

for the job than SLIDE.

The SLIDE simulator as it now stands is not a production-quality software package. To

make it into one a number of improvements will be needed on the user interface. In

particular,

- The style of the user interface provided by the multi-level simulator is towards
the software "hacker" , not towards the average engineering user. If a user
community is ever to be developed for the SLIDE simulator, the user interface
will have to be reevalunlcd and redirected away from the SIMULA programmer
and back towards the user.

- As a first level expansion of experimental capabilily, test bed modules should be
added to the simulator core library. These modules, connected to the
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configuration undor lest, would generate dnla to drive the simulation. This data
could ho produced by the modules themselves via interactively specified
probability dMrilmtion% or fetched from user-specifiable disk files that contain
the data to bo used ( trace - driven simulations ).

More interactive tools need to be provided to the user. For example, insertion /
deletion of breakpoints and activity counters in SLIDE descriptions, SLIDE
process activity tracing, and manual setting / resetting of SLIDE variables.

More information and simulation results should be available to the user on
demand, to bo output to dir.k files if dosired. For example, records of variable
activity over limn could be provided, ns could SLIDE process activity logs (
including snapshots of the SIMULA event list plus the linked list cool), and
subroutine invocation logs. All provided data should be in a formal suitable for
statistical n

On another piano, the? SLIDE simulator is not an optimised facility. For instance, no attempt

was made to provide an optimizer for the code produced by the code generator. More

fundamentally, the St.IDf. to SIMUl A mappings themselves have not yet undergone any sort of

performance evaluation and upgrading. In retrospect, not every mapping managed to provide

the most efficient operation j the highest concern at the time was to "get it working". An

example of this is the mapping of SLIDE DELAY statements described in Section 4.4.3, where

it is possible to have processes unnecessarily reactivated only to be immediately put back to

sleep. This could have boon prevented by assigning a boolean flag to each DELAY statement

entry in procedure chock that would be set if the related DELAY statement was currently in

force. Inspecting this flag would prevent the unnecded activations, thereby saving SIMULA

scheduler overhead which is not negligible.

When considering the optimisation problem , one cannot avoid the attendant problems of

the SIMULA language itself. SIMULA is an extraordinarily slow and inefficient language, and

the version that exists on the CMU PDP-10*s is rife with runtime bugs. SIMULA is not in wide

use in North America, r»o its portability is limited as well. One could speculate that a faster ,

more reliable, and more portable SLIDE simulator would result if the entire package were

translated into, say, PASCAL. However, the translation would be far from trivial, since the

SLIDE simulator software makes extensive use of the power of SIMULA, from the class

concept on up. The answer to the question of whether to do the translation by just building

SIMULA primitives out of PASCAL or instead to start over from scratch and tailor everything

to SLIDE simulation is not obvious to this author. Realistically though, if such a transition

from SIMULA to another programming language is to be made, it should be done so as early

This is prociooly what occurrod in (ho SAOLE projocl



as possible in the evolution of the simulator, and , in the interest of programming tractability,

into a language such as PASCAL, ALGOL, or BLISS (as opposed to a language such as

FORTRAN).

Aside from the above language considerations, some speculations are in order on the

future of the SLIDE simulator. One envisioned addition to the simulator has been a facility for

ISPS simulation that would parallel that for SLIDE within the multi-level simulator core. Thus,

ISPS-describecl hardware could be included to make possible some ambitious multi-computer

type simulations. Physical feasibility questions aside, there is a basic problem here, which is

One of building skyscrapers on bungnlow-sizc foundations. The multi-level simulator core and

SLIDE have fortunately made a good marriage. However, the core itself is a primitive

implementation of ideas that arc five years old. For all their I/O descriptive drawbacks, both

SARA and SABLE are much more sophisticated and powerful simulators , and they are

indicative of tho stalr-of-the-art. The simulator core by comparison constitutes the bare

minimum, no more. In this light, it would be ill-advised to base a major multi-level,

multi-language simulation facility for the CMU DA community on the simulator core. Instead, it

would be prudent to take the lessons learned in producing the SLIDE simulator and combine

those with the lessons learned by others in producing their multi-level simulators to come up

with a solid , usable state-of-the-art system. The SLIDE simulator as it currently stands

should be developed as an interconnection strategy evaluation tool, not as a general

multi-level simulator.
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I. Simulator Commands

The capabilities of the SLIDE simulator are only partly reflected in the commands available

to the user at present. This is because the SLIDE simulator is still under development,

especially at the user interface. The following list of currently implemented commands

therefore docs not represent the maximum performance level of the program.

ADD <labol>: <dovico> <paramotors> <namo> <namo> , . . <name>;

e- cj. ADD BILL: INVERTER Ul U2;
ADD SUE : DELAY U2 U3;

The ADD command creates the data structures for the ports of <device>. The resulting

module is labelled to distinguish it from other instances of <device> in the simulator.

<parameters> is optionally used by non- SLIDE functional modules for passing of

device-related parameters. The remainder of the command field does the wiring for the ports

of <device>. A one-to-one correspondence exists between each <name> and a port of the

device, by the left to rip.ht position of <name>. For each name, a wire model is created and

labelled with <namo>. Then it is connected to the corresponding port. So for BILL in the

above example, Wl is the name of a wire that is connected to port 1. W2 is the name of a

wire that is connected to port 2, and to port 1 of SUE. The conceptual results of these two

ADD commands are shown in Figure 1-1.

ALL

This command prints out the accumulated connection information from all the ADD's that

have been done so far.

DUMP <filonamo>

This command dumps out the accumulated connection information to a file called <filename>.

GET <filonamo>

This command retriever* Ihe connection information in <filcnamc> and implements it.

So, the user could build up a test interconnection usinff ADD's, then save it using DUMP. At

any time, even on a different simulation run, he or she could recreate the interconnections by

GET ting the appropriate file.
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Figure 1-1: Results of example ADD commands

Wl W2
SUE W3

1 2
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PROBE <wiro>

e. g. PROBE ADC
-PRUDE XYZ

This command turns on a trace for the named wire. Whenever this wire is written to, the

state of the wire and the current simulated time will be output to the terminal. -PROBE

<wire> turns off the trace on <wire>.

WHAT <label>

e. g. WHAT SUE

This command caur.es the entire state of the device <label> to be output.

SIMULATE

This causes the actual functional model of each device specified in the ADD commands to be

created. It is at this point that any simulation time parameters specified in the original SLIDE

description arc bound by the user.

GO <number>

Run the simulator for <numbcr> microseconds.

UNTIL <numbor>

Run the simulator until simulated time equals <number>.

FREEZE

This command caur.oo the core imago of the simulation program to be saved. This allows

easy restarts for simulation tests that start at a certain point, but then are personalized via

various parameter combinations, for example.
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II. Test Traces And Commentary

This appendix contains the simulator traces for the test runs described in Chapter 6, and

some commentary on the first test run.

Figure II-2 shows the interconnection commands used to create the example configuration.

The interconnections were fetched from a prepared file using the GET command ( the file is

TEST2). The resulting interconnections are displayed further down with the ALL command.

The GET command result is equivalent to ADDing each of the devices and interconnections

shown individually.

First, an ARDIT device is created from the SLIDE module of the same name, and it is called

"AAl", distinguishing it from other ARDIT devices we may want to use. At this point, the user

has already been given a list of the ports available for interconnection and their names, e.g.,
MBBSY corresponds to port 6". At interconnection time, the user may rename these ports to

avoid confusion between multiple copies of devices, and list the names of ports, in order to

the interconnector. Ports are then connected by name correspondance. So, ARBIT device
«r

AA1 might have a BDSY port (port 6) which we will name BBSY1. ARBIT device AA2 might

have a BBSY port which we will name DDSY2. (Thus the instantiated devices and their

interconnections may not have names corresponding to labels in the SLIDE modules

themselves.) The ports which are named at interconnection time are given in terms of

increasing port numbers from left to right.

In our example (Figure II-2), "A" caur.es a wire labelled "AM to be created and port 1 of

ARBIT device AA1 to be connected to it. "D" causes port 2 to be connected to wire "D". On

line two of this example, we acid a DEVICEB Module named AB2 to the system model. (This is

the SLIDE module for the peripheral device.) By typing "A" at the port 1 position of AB2, we

connect it to wire A.

The most interesting connection of wires is the daisy-chain of bus grant wires on the

UNIBUS. DEVICEB and MEM0RY(AC3) each have a grant-in and grant-out line, at ports 9 and

10 and 10 and 11 respectively. The bus arbiter has the grant line emanating from port 19.

By connections shown in the example (Figure II-2), we achieve the setup shown in Figure

II-l.



Figure II—1 r Daisychaining of UNIBUS NPG Line

NPG

AAl: ARBIT

NPGIN NPGOUT

AB2: DEVICEB

NPGIN NPGOUT

AC3: MEMORY



The GET command (equivalent to the ADD command) causes devices to be connected at the

element level. The SIMU command then causes the chain and simulation process for each

device to become present. The connections that have been made are checked for

compatibility at this point and any parameters given in the original SLIDE module are given

values at this point. In our example in Figure II-2, we see that .PER was the period of the

sync line, .ADDR is the SDLC address, and JOPME is the address to put the first word in

memory.

The trace facility command, PROBE (PR) caused each wire being probed to output its state

whenever it is written to, whether the value on the wire had changed or not.

Once these preliminary commando wore executed, we ran the simulation for .239 usec with

the UNTIL 0.239 command.

Figure II-3 shows the tracing on the sync line, called "INTO". It had a period of 30

nanoseconds for this example, so every period the wire got written to, and a trace output

resulted. This trace output printed tho current simulation time, along with the wire name. On

the next line, the logic type, bit width and current wire value were displayed. This figure

shows data on the wire coming after the flag and address. Note the zero insertion after 5

one's, which adheres to the SDLC protocol.

Bus connections were displayed by showing all device ports that are connected to each

wire, along with the values each of them arc putting on the bus.

Figures II-4 to II-8 shows the peripheral device actions over the UNIBUS. The device first

gets control of the bus from the bus arbitrator, then acts as a bus master to write data to

the bus memory (bus slave).
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Figure I I -3: First Test Run : Trace 2
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--> 1«032us A
LOGTC= 4 SlZfc;= 17

VALUES ON WIPE-

oooooooooooooooooi
VALUES AT.ONG QUsl
AC 3 1

oooooooooooooooooo
AB2 1

oooooooooooooooooi
AA1 1
oooooooooooooooooo
-•> 1.032US n
LOGTC= 4 Sl?.fc:= IS

VALUES ON WIPF-
11ti1111711o11oi
VALUES AT.ONG iWS-

79

O.OOOus

Figure I I -5: First Test Run : Trace 3b
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Figure I I -6: First Test Run : Trace 3c
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Figure I I - 11 : Third Test Run : Trace 2
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