NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

*

STRUCTURE AND FUNCTION OF A GENERAL PURPOSE
INPUT/OUTPUT PROCESSOR

by
* * *
A.C. Parker , A, Nagle , and James Gault

DRC-18-13-79
May 1979

* Department of Electrical Engineering
Carnegie-Mellon University
Pittsburgh, PA 15213

** Department of Electrical Engineering
North Carolina State University

ABSTRACT

This paper describes a processor architecture designed specifically .
to perform input/output and interfacing functions for any central-pro-
cessor-peripheral configuration. This architecture is justified on the
~basis of functional 1/0 requirements which are discussed in detail.

This processor is mcroprogranmble with a witeable control store,

al lowing dynamc¢ configuration of the processor for different input/
output and interfacing applications. Underlying the mcrocontrol is a
ROM resi dent nanoprogram which performs the conplex timng, handshaking,
and*_bookkeepi ng control tasks. The processor architecture i's modul ar

and bus oriented.

Keywords,. Input/Qutput, Interfacing, Mcroprogrammng, Processor Architecture

o
o GITSBtFm PEN\SYLVAN A 15213

2)-

STRUCTURE AND FUNCTI N GF :
A GENERAL PURPCSE | NPUT/ QUTPUT PROCESSCR

| I NTRCDUCTI ON

The intent of this paper is to present an architecture of a
general purpose input/output processor, Pio, which is based on design
goals and constraints specific to the input/output environment. Pre-
‘sent input/output processors - including channel's, comunication pro-
cessors, data link controllers and device controllers - do not exhibit
an architectural style which is optimal for input/output. 1n fact, I/0
processors have architectures ranging fromthose which can be character-
ized as Von Neunan to ad hoc or even hardwired systems which cannot
even be partitioned into data-menory and control parts. Exanpleg of
these systens will be discussed in Section II.

WWile a strong argunent could be made for an end to the gﬂ_ﬁmu;
probl emspecific design of 1/0 processors, the notivation for abandoning
or severely modifying the Von Neuman style architecture nust be presented.
A comparison of the goals and design constraints of CPU design and I/0
processor design, partitioned into the four categories of control, data
mani pul ation, data input/output, and data storage, will illustrate the
desirability and the need for a differe .t architectural style for 1/0

processors.

Mhe PVB notation of Bell & Newell {Bel. 7.1] is used in this paper to
abbreviate structural entities in the processor. A single capita

|etter symbolizes a genre of conponents: P for processor, Mfor menory,
S for swtch, Kfor controller, T for transducer. Small letters charac-
terize the particular instance of the conponent under discussion. Thus

Pyo 1S @n input/output processor

The research described in this paper was -partially suggorted by the
U.S. Arny Research Office under grant # DAAR9- 76- G 0224. o

- 3.

The fol lowing generalizations about 1/0 processors can be drawn from

the information in Table 1:

0 Sinple bit manipulations and control over the states and transi-
tions of individual /O lines are inpbrtant
0 Precise timng and synchronization’of register transfers and
110 operationé are inportant '
0 Data storage can be restricted to FIFO queues and registers
0 The overall system functions nust be controlled at a |ower
level than in.a CPU
0 |/0O processors contain nultiple independent, asynchronous
processes.)
In addition, there is one other constraint on digital systens
design - available technology. A major factor in central processor
pérfornance is main nenory cycle time, or cache cycle time if that
scheme is used. Since data and sometinmes program storage requirenents
for /0 processing could be met with registers and fast memories, speed
of processing could be optimzed by altering the architecture in ways
which woul d not have been effective for CPU optimzation
Underlying the goals and constraints discussed above is an over-
all conceptual difference between central processors and input/output
processors. CPUs might be said to be "introverted" and Pios "extroverted"
Central processors interpret an instruction set for manipulating arith-
metic, logical and synbolic data - types while input/output processors

manage peripherals and transmt information without change except for

—

error chécking/detecfing, ehgadfﬁé, formatting, and searching. -For-this

reason, the performance requirements applied to CPUs (such as nunber of bits
processed per second) do not -apply to Pios; data through-put is a nore valid
measure. These differences in performance criteria, along wth inherent

functional differences, inply structural differences also

- 4-

DESI GN GOALS AVD CONSTRAI NTS

FUNCTI ON CENTRAL PROCESSCRS | NPUT/ QUTPUT PROCESSORS
DATA COVPLEX DATA OPERATI ONS DESIRED, SPEED CF SIMPLE OPERATI ONS REPEATED ON LARGE AMOUNTS CF DATA
MANI PULATI ON § OPERATI ONS | MPORTANT; ARI THVETI C OPERATIONS | (FORMATTING, ENCODI NG, “SERI AL/ PARALLEL CONVERS! ONS.
(FLOATING PO NT FOR EXAWPLE) DESI RABLE: PACKING, ERRCR CHECKI NG |
(WORD PROCESSING DESI RABLE) |
CONTROL SPEED CF I NSTRUCTI ON FETCH, DECCDE AND EXECUTE] LOWLEVEL |NSTRUCTIONS (BI'T MANI PULATI ONS) | MPORTANT;
| MPCRTANT; FLEXI BLE SEQUENCING GF | NSTRUCTI ONS | SEQUENCI NG OF I NSTRUCTI ONS MUST BE TIMED AND SYNCHROM
AND DATA DEPENDENT SEQUENCI NG | MPORTANT; | ZED, CONTROL OF REG STER TRANSFERS MUST BE CAREFULLY
POMERFUL, H GHLEVEL | NSTRUCTI ON -SETS TIMED - RAW SPEED LESS | MPORTANT THAN CORRECT TIM NG
DESI RABLE, TI M NG AND SYNCHRONI ZATI ON CONTROL OF PROCESSCR MUST BE PARTIALLY BASED ON THE
OPERATI ONS TRANSPARENT TO PROGRAWER, BI T STATES AND TRANSI TIONS OF EXTERNAL LINES; MAY HAVE MULTI -
MANIPULATI ONS LESS | NPORTANT; RARELY PLE PROCESSES EXECUTI NG ASYNCHRONCUSLY IN A SINGLE
ASYNCHRONCUS OPERATI ONS CONCURRENT IN A PROCESSCR
SINGLE PROCESSCR
DATA STCRAGE | RANDOM ACCESSI NG OF DATA AND | NSTRUCTI ONS VERY LITTLE QR NO RANDOM ACCESSI NG OF DATA AND | NSTRUG

NECESSARY; EASY/ FAST ACCESS TO A SMALL
NUVBER CF OPERANDS | NPORTANT

TIONS NEEDED; FIFO ACCESSING OF DATA DESI RABLE

i

; TABLEL.1 A Conparison of Design Goals and Constraints for OPU architectures and 1/0 architectures -

DESI GN GOALS AND CONSTRAINTS (CON' T)

DATA SYNCHRONOUS GPERATI ONS AND MCST OONTROL TRANG | NAXI M ZE SPEED OF DATA THROUGHOUT, ALLOW FLEXI BLE
| NPUT/ QUTPUT [PARENT. TO THE USER, 1/0 ASSUNES A SECONDARY | HANDSHAKI NG CPERATI ONS; CONTROL DATA 1/0 PRECI SELY
ROLE TO DATA MANI PULATI ONS; SPEED CF 1/0
CPTIMAL O\LY VHEN SPECIAL PROCESSCRS ENPLOYED
(DA FCR EXAMPLE) | '

TABLET,1 A conparison of Design CGoals and Constraints for CPU architectures and PIO architectures

“I1. A HEIRARCHY OF | NTERFACING PRI M TI VES

A Survey of the I/Q interfacing, and communication environnents
reveals a set of common functions which collectively formprimtive
operations; Their inplenentations vary wdely; some salient
exanpl es of this are given in Table 2.1. The functions of the primi-
tives are clarified by natching themw th inplementation "levels", shown
infigure 2.1. This heirarchy of levels is evident in the IM hard-
ware and software, as shown in figure 2.2. The hardware displays the
signal, and gate and fIip'flop | evels, while the software has a modul ar
structure‘mhich allows routines to exist on the systemlevel (link rou-
tines'), register transfer level (MODEM TO IMP), and‘gate and flfp f1op
level (TINMEQUT).[HEATQ) It can be seen that the highest level, the
"systent' level, has long been the only level made available for soft-
ware modification in Pios. At.aII other levels, the primtives have been bound
by hardware, tailored to meet the needs of a singie CPU and pefiphera
device. The 1/0 processor presented later in this paper is programable
across all levels of the inplementation hierarchy, and therefore can enu-
late a variety of interfaces, matching any CPU peripheral environment. Vhat
m croprogranming has done for genekal purpose central processors is applied
here to a general purpose /0 processor. Vital to this application are the
interfacing primtives, which are detailed_beldw in groups: CONTROL, DATA I/Q
DATA NANPPULATICN,Iand DATA STORAGE

In the following paragraphs, we give exanples of current inple-
mentations of these primtives and point out the flexibility inherent
in these inplenmentations, in contrast to the flexibility of a general-

pur pose Pio.

-7 -

FUNCTI ONAL PRIM TI VE
CLASS OPERATI ON EXAWPLES -
TTYM™STCP and START bits, UNIBUS™ bus request and
QONTRL Pr ot ocol grant |ines; RFD, DAV and DAC tines on the |EEFA88 bus
Sequenci ng Mcroprogram flipflops or CPU instructions which
cause the PIO to change internal state]
fining Timeout while waiting for a response; timng of

pul se trains

-Synchroni zation

Simul taneous input and output of data through a
PIO, timng of latches to input synchronous data

DATA | NPUT/ QUTPUT

Priority Allocation

W

Latching and 1/0

Interrupt request and grant circuitry; allocation
of multiplexer

Involves the 1/0 of information on data lines ,the
associated data paths and hardware

DATA MANI PULATI ON

Electrica

Error Checking

Conpatibility

Involves level shifting, line drivers and receivers,
I npedance matching and other interface circuitry

Parity; redundancy checks; nessage counts for data
|ink transm ssion

DATA STORAGE

Formatting

Buffering

~Queues, shift registers,

Flags for data link transmssion; packing/unpacking
bits/bytes and words '

menories for tenporary storage of data

TABLE 2.1 INPUT/ QUTPUT AND | NTERFACING FUNCTI ONAL PRI'M TIVES, EXAMPLES AND/ OR DESCRI PTI ONS

SYSTEM LEVEL - cont Aol *

o [] I*
FUNCTI ONAL
(ALGORI THM C)
LEVEL
REG STER REG STER
TRANSFER - TRANSFER
LEVEL LEVEL
GATE AND . ' GATE AND
EEVIEL FLOP : FLIP FLOP
.) ' LEVEL
. SIQWAL dat a o - EE%{\L 5 |
LEVEL ocol * fionmatting* ¢ ocol
rotocol : ot 0co
o gg* data va o lc-:Jthzakl_ng* Eata (i Qg* 1
ele.ctAic. al and . -} pniotvlty tsiaYi &hvi and . eZtdtxlcat !l
compatibility Ay?ic% orlzal jara allocation® ¥ a5 Aync?hom za- Lomadl bilky
. bu™ Al ng* bui i w nQ¥ on j
FROV TO FROV TO G P7AVCARR o TRR B e TR FRMTO |
CPUPI O CPUPI O CPUPIO fdevice or remte § fCyperipheral § FlOfeeripheral §P1Qfperi pheral
i nk evice or device or device or
remte |ink renote link Jremte link |
N
<& U *Primitilve Peri pher al —
Devi ce or
Remote Link

Figure 21 An Input/Qutput Processor Depicted as a Herarchy of Levels, with each
/O Primtive shown at the appropriate |evel.

Arrowt

[0 COWPLETION

Rardmare Interruats

tadU4tt [t

witt J subroutine. C4>
eveAluclly return bece« JD-"" The *rro-
t oiote«rru*t* 4nd *

Not e

tedt o »ndfd-«r

Llnx

HOOCH | to PP

M»QE8 2 tO {MP
e D e e
W 'y tor TAR

~
d

1WF to MODEM

o ..lll\/PtOI—D'I

- i MOST to Imp
L -
12
. -
. .1 NC« -
» TINLOT
Ll it 191
PN ERARPT tASK
) [ol UG
control &S B4lltd
1; control wilt
TCLCTYPC

|h# lowtr priority rout*"t\ C4fl botH

CAli

t> wrt oroqrd"i

«i lubroutUci.

QH Prafsa-manle harduarg {nterrunt

x_x

- fake oA

suulnul

J SFATISTICS |
T o———]

I11f1 At 11A] I ON

0ACKOOUNO

=

-Program control structure

TMLREAS NG PPTTR]TY

1M i#* v
CMe«MI ' = ARy -
[LLILIR TN

104 wl (IOK :

akH#006 [I»f»

[T N[YILY

o *<lt/

" —I MP oni(iK«nalion

Figure 2.2 .The Hardware and Software Structure of the IMP (From [HEA 70J).
Note the Heirarchy of levels simlar to figure 2.1.

vy

=M i

g]
UL (1]
—_—

L %]

L W D

- 10 -

Qontrol

In the CONTROL group are PROTOCOL, SEQUENCING TIMNG SYNCHROMN
IZATIOM and PRIORI TY ALLOCATI ON,

The PROTOCOL primtive controls the handshaki ng operations which
acconpany the flow of information fromor to a processor. Thi's ranges
fromthe insertion, detection, and deletion of start and stop bits of
Teletypem1I/O to the manipulation of bus lines such as "data availabl e/
"data received", and "ready for data". The inplenmentation of this prim
itive is transparent to the user of IBMchannels, and on the CD6600 PPUs

- (peripheral processor units), for exanple, and is performed entirely by

the hardware, allowing no user flexibility in interfacing these processors
to nonstandard nodules in a system The DEC POM 70 (progranmable data
mover), designed to control data aquisition in a.laboratory or industria
environment, is simlarly hardwred; it uses a single strobe pulée for
parallel data transfers, waiting until an external device signals that

data has been received or is ready: For serial data transfers the standard
start and stop bits are used. An experimental disk controller, [TNT 74
buiI't from INTEL 3000 series nicroprocessor modul es, contains special hard-
wired logic for the bus protocol on the CPU side of the controller; and

for the pulse capturing on the disk side. The Mtorola Peripheral Inter-

face Adaptor (PIA) chip has programable protocols as one of its nost
flexible features. Hardwired inplementations of the protocol prinitive
abound; few have the flexibility required to emulate different protocols.

The second CONTROL primitive, SEQUENCING noves the processor or
controller through states, whether by instruction execution or hardwired
state transitions. Inplenentations of this prinitive display more flex-
ibility. For exanple, |BMchannel controllers execute "prograns™ stored

11 -

in primry menory. Channel conmand words (CCW are.fetched and execut ed
sequentially until an interrupt condition arises (e.g. end of data tréns-
fer); a limted branching facility also exists to permt storing CCWs
“in randomlocations. Looping, conditional branching, test and skip, and
.other control features are not provided. An early conputer, the PILOT

at the NBS, had wired plugboards for I/O systemflexibility. The INTEL
3000 disk controller is mcroprogramed, and cUrrentIy | mpl ement ed mjth-

a_ROw fléxibility could be enhanced by substituting a writeable con-

trol store. The IMPs (Interface Message Processors) on the ARPA net -
work are miniconputers and can be reprogranmed. The PDM70 i s programm
able froma keyboard and the Mtorola 6820 PIA device is progrénnEd by
conroands fromthe processor. SEL (Systems Electronic Laboratory) ninil
conputers use mcroprogramed /O processors, but the microprograms are
stored in ROMs. Note that the flexibility éllomed in the above ex-

amples is at high inplementation |evels.

Control over TIMNG can occur at different levels in a digita
system and so conparisons across |evels are somewhat inaccurate. For
the present discussion, TIMNG is intended to include the pulse timng
of bits over a serial data link, the timeout in mcro or mlliseconds
while waiting for a handshaking or error signal, the time between data
transnissions in terms of seconds, and the counting of clock pulses
The inplenentation of TIMNG structures in I/O processors and controll-
ers is varied. The PDM 70 has pfogran1control over data /O in terns
of seconds, and the INTEL 3000 controller can measure time delays in
m croseconds under mcroprogramcontrol. UART (Universal Asynchronous
Receiver/transmtter) chips contain precise timng control for transmt-

ting/detecting single character bit strings with start and stop bits.

- 12 -

Al so nﬁny serial asynchronous data link controllers have selectable Baud
rates-1/0 processors and controllers for channels and peripheral devices
in general do not have any erxibIe control over timng

There are essentially three levels of SYNCHRON ZATI ON whi ch occur
in 1/Q comunications, and interfacing. The |owest level of SYNCHRON -
ZATION involves the transmssion/detection of data hits synchronously
over a data link or to/froma disk or mgnetic tape. The data hits arrive

at a fixed fmfe, sonetimes with the clock alternating with the data bits,

sonetimes with encoding which allows the receiving device to synchronize
on the transmtted data, sonetimes with a conbination of both. Be-
cause of the speedé_involved, any attenpt to allow flexibility*ih this
type of SYNCHRONI ZATION is limted to changing the data rates of the
- transm ssion/ detection. ‘ '

The second level of SYNCHRONIZATION which occurs in 1/0 process-
ors and controllers is the SYNCHRONI ZATI ON between different hardware
.processés in a single processor. In order to discuss this problem the
notion of a hardware process must be explored. A hardware process is a
sequence of actions which is controlled independently.of other sequences
of actions. In a disk controller, for exanple, the process of formng
words fromsingle bits runs in parallel both wth the process of test-
ing the cyclic redundancy check (CRC) bits for errors, and with the pro-
cess of sending the assembled and tested word tolthe central processor
Due to the synchronous nature of the vord assembly, and the time constraints
on the input process, the only connunication with the other processes may
be thrbugh a signal that-a word has been assenbled, and the return signals
that indicate enough words have been assembled or an error has occured.

- 13 -

A second process, the CRC, checks the assenbled word, independent of the
assembly process, as long as it knows the location of the word and its
readiness for checking. A third process is activated when it is signalled
by the second process that a word is ready to be transmtted to the cen-
tral processor: Ignoring menory contention problens and variations in
comuni cations between processes, there is still the basic synchronization
problenltolresolve. Even hardware Ienguage descriptions of concurrent

i ndependent, asynchronous processes are difficult to construct and do not
really represent the operations of the hardware. Addition, in controlling
separate hardware processes with a central processor executing_a single
programis virtually inpossible with current notions of instruction exe-

cution. As a result, the processes are inplenented in hardware

obviating the flexibility desired in a general purpose I/O processor
For exanple, the Intel 3000 disk controller has inplenented each of the
processes described above in separate hardware subprocessors. The high-
est level of synchronization is the control over devices transmtting/
receiving data at different rates, synchronously or asynchronously, or
in different quanta of information. Flexibility on this level would re-
quire variable buffer memories, programmable hardware for data rate vari-
ation, and the ability to adapt to synchronous or asynchronous transm ssion,.
PRIORITY ALLOCATION, the last CONTROL prinitive to be di scussed, is
one of the primtives often inplenented within the peripheral device hard-
ware, with the device interconnection scheme or as a central processor
function. Devices are often "daisy-chained" together so that interrupt
priorities are wired into the system Wen central precessors | Ssue

eqnngnds to I/0 processors and controllers, priority allocation is often

- 14 -

done hy the central processor prior to the command issuance- 110 process-
ors and controllers linked to more than one device often service in a
"round-robin* fashion. (n a higher level, the IMP is the best example

of PRICRITY ALLOCATION in a comunications processor. It responds to a
message with a Ready For Next Message (RFNM) acknow edgement and does not
al | ow receptidn of a second nessage-over the sane logical link until the
first has been acknow edged. On a lower |evel when transmtting nessages
it uses a head-of -the-1ine (HOL) scheme « . It allocates priority to in-
comng packets which formone message depending on the order in which
they were sent. The only exception is that acknow edgement messages
have priority over data traffic. | -

The next division of prinitives, the DATA /0 sectfbn,-contains'the
primtives DATA TRANSFER and ELECTRI CAL COVPATI BILITY. DATA TRANSFER
refers to the movenment of data into/out of the I/0 procéssor, interface
or controller. This primtive differs in inplenentation depending not
so much on the specific systemor processor but on the type of data to
be input/output. If the data is static (is.valid on the 1/0 lines

until the receiver signals data received) then sinple gating into
registers solves the [/O problem If, however, the data input is
signalled by strobe pul ses, start hits, special flags preceeding the

dafa or other neans, and thé data changes dynamcally without intervention
ffon1the receiver, then special consideration nust be given to the capture
of each word or bit as it is available. A second conﬁlicatioh can

occur when the data hits are represented not by voltage |evels which
signify I's and Os but by transitions in voltages. Decoding nust occur

at the tine the data is input, and encoding at the time data is oufput.

- 15 -

Since data transfef as a primtive refers to levels at and bel ow the
register transfer level, flexibility-of this prinitive function nost
often occurs as the 1/0 design is underway, and not under program
control, or even console switch control

ELECTRICAL COVPATIBILITY is the Iowest |evel MIMaMiMM-
facing functions, and maybe should not be considered with the others, were

it not for the fact that integrated circuits exist which pefforn1nnst of

the electrical interfacing tasks required, and these IG5 occur in

specific places in an |/O processor, connunications‘controller, periphera
controller, or interface architecture. Hence they can be used as

mdules in a modular architecture, and various inplenentations can contain
different circuits, as needed, in the electrical conpatibility module
locations. Further discussion of the nature of ELECTRICAL COVPATIBILITY

is beyond the scope of this paper.

-

Data Mnipulation :]
DATA MANI PULATI ON és a functional division is present in all dit-

ital systems. The principal types of data manipulation found in /0 and

interfacing are ERROR CHECKING and FORMATTING The two basic nethods of

error checking to be discussed here are parity checking and parity bhit

generation, and redundancy checks. Cyclic redundancy checks (CRCs) are
often used with disks, and latitudinal and |ongitudinal redundancy checks
are used with magnetic tapes. Parity bits are used nost often for data 1/0
that involves single word transfers and in particular for binary, BCD and
ASCII I/Q Another type of error checking that occurs is the counting of
NROWBVET, TTexi bty can bhe made available in a general purpose Pio

by providing several different /O nodules which can be addressed

under program control

- 16 -

messages sent, received, and acknow edged over synchronous data* |inks.
Al'though all of these checks could be done by software, the message count-
ing is the method most often inplenented in that manner. The introduction
of integrated circuits for parity andredundancy checks has further reduced
the likelihood of realizing these checks in software, and in nmost cases
software is relatively slow. However, the flexibility needed for general -
purpose 1/Ois lost when wired checks are inplenmented.

~ FORMATTING of data is a primitive operation which covers any hit.
mani pul ations which do not change the information content of the data.
Exanpl es of this include packing and unpacking of bytes into words, the
insertion and deletion of flags on messages, the insertion and' deletion
of stop and start buts on ASO | characters, BCD to hinary conversion, and
other low |evel procedures which rearrange data. In addition, FORMATTING
includes the data dependent rearrangement of data. This enconpasses sort-
ing procedures most often carried dut by the central processor but in
sonme cases (the CDC6600 PPUs for exanple) by the I/O processors. Bit
Insertion and.flag insertion, along with data packing/unpacking are
often done by the hardware, while code conversion, sorting and searching
are done by firmmare of software.

Data Storage

DATA STORAGE in central processors usually refers to register storage
(direct access) and randomaccess storage. Any other data structures (link-
ed lists, stacks, queues, for exanple) are inplemented with software. In

|10 processors, data is either buffered in a save register as it is trans-

ferred through the system or ina FIFO queue which contains a string of
data words, hits or bytes. These queues are- inplenented with software in
the majority of cases, although I1C queues are available for limted applica-
tions. Software queues are used in the ARPA Network IMP, for exanple. In

- 17 -

the INTEL 3000 disk controller, data is noved to the processor memory as -
fast as it is accessed, and so the use of a queue is not necessary. It is
necessary, however, to maintain a nemory for block transfers in general
purpose /0O processors, but there is rarely a demand for random access capa®
bilities in these memories. An exception to this occurs if certain queue

itens have a higher priority and are to be renioved before other itens.
Summry .

The /O primtive functions discussed above are quite different from
the functions one mght describe as primtive for central processors. In add-
ition, the range of levels covered by these primtives is broader than CPU
prinitives, and each primtive itself covers a broader functional Eoncept. The
architecture designed to inplement this set of primtives is therefore somewhat

different fromthe architecture of a central processor.

-18 -

I11 A GENERAL-PURPOSE, MCDULAR | NPUT/ QUTPUT ARCH TECTURE

A review of the constraints and design goals of I/O processbrs

“indicates three fundanental principles of 1/0 processing:

The data-nemory portion of the hardware should be designed to
optinize data through-put, -

The processor should be able to support nultiple, asynchronous
operations or sequences of operations (processes)

The user shduld have control over timing, synchronization, and bit

mani pul at i ons

The above goals and constraints, in addition to the general - purpose nature

of the processor, force the following design decisions:

0

The data-menory architecture should be modul ar, each modul e containing
progranmabl e hardware in order to maintain nultiple processes

w thout conplex central cohtrpl '

The flexible nature of the data paths indicates a bus for data
transfers, but the asynchronous, concurrent operations and the

need for optimzed data flow through the processor indicate a

~multiple data path architecture. A dual bus structure is intended

to solve these problens,
The data-menory structure shbuld support first-in first-out store

and. access

- The architecture should acconpdate variable data wi dt hs
The architecture should support a pipelined sequence of data

“operations to optimze the speed of data flow

- 19 -

0 The processor must address its own program memory

0 The program memory should be supported by an underlying control
structure which can manage internal handshaking operations, bookkeepin§
tasks, and other processor operations which should be transparent to
the user

0 The processor éhould be programmable at the register-transfer level,

and in some cases at the gate/flop-flop level

These architectural features, in combination with a design which can be imple-
mented with high-speed . circuitry to meet the speed requirements of I/0
controllers, produce a processor which is generalized to the extent that it '
can perform under the following circumstances:)

variable data widths

variable flag formats on synchronous data

variable formats of data (packing densities, for example)

variable types of error checking

variable handshaking requirements

variable priority allocation schemes for multiple servicing

variable encoding and decoding operations

variable buffer lengths and word widths

v§riab1e timing of synchronous and asynchronous data I/0

The generalized Pio emulates a variety of processors, interfaces,
and controllers with the same hardware. Thus, the generalized Pio assumes the
role of host processor to a set of target processors spanning a range of
possible Pios. This type emulation is more difficuit than central processor
emulation beciuse the I/0 processor must emulate, for the central processor,
the interface the central processor expecfs to see, and-must also emulate,
for the device, data link, device controller, oerther processor, the inter-

face it expects to see, all with the correct timing. In addition, these two

- 20 -

enul ations must be synchronized within the generalized host Pio. An alter-
native viewis to consider the generalized 1/0 processor to be the base
mechine and the processors inplenented to be virtual machines. [t should
be noted that the Pio is not designed to support multiple enulations on a
dynami ¢ basis. Hence, if the CPU linked to the Pio should force the Pio
to handle more than one configuration at a time, the control
nicroprogran1WI| have to deal with the ensuing data changes in buffers
and registers. This mechanismis presented |ater in this section in nore
-detail. |

This need for control on a lower level than with conventional pro-
cessors inplies the requirenent of a writeable control store. - However, at
the same tine the conplexity of nicrocoded interfacing and /O operations
precludes user programmng. Thus a two-level mcroprogrant nanoprogram com
bination is used to allow the user the freedomto program sequences of
operations and- some timng paraneters wthout mcrocoding each individual
control signal. | |

The nanoprogram control performs the ultimate control and reconfig-
uring functions of the processor, keeping track of addresses, buffers, and
hardware programmng, while beimg transparent to the user. It also controls
instruction fetch and execution for the mcrostore.

Sone of the.mcroword fields in each microinstruction cause initiation
of nanoinstruction sequences while others control the processor directly.

- Thus, the control signals in the processor originate in both the nicroinstruc--

tion register and the nanoinstruction register. This configuration, along
with the level of operations evoked by the mcro and nanoinstructions, illus-
trates a level of control lower than the two level conbination of assenbly

|anguage/nicroprograhning conmonly inplemented in CPU s,

ph— . e o mtm og e it et e et o e el m————a B e . .- W e o RS e e e

e

-2 -

In general, it can be said that the nicroprogram describes what the
processor is to do, while the nanoprogram controls the timng of each task,
the synchroni zation bet veen mul tiple tasks executed sinultaneously, and the
handshaking and internal control signals needed to perform the operations.
Thus, the mcroprogram describes a target processor and the nanoprogram per-
forms the actual mpping of the target 1/0 proéessor onto the host processor.
Thi s feature'has been described and used by others in the past: by Lesser
to define two levels of control, the conventional level and a global |eve
of control [LES 73] - and by Nanodata Corporation in the QWj. [NAN74] .

In order to progranlﬁhis processor, the user wites a program which
consists of a main body and one or more processes. The main body merely de-
fines the hardvare configuration to be maintained by each nodule inside the
Pio, and describes the conditions for initiation of each process. Each pro-
cess can be given a priority by the user, if needed, and can be initiated
individually by data and control conditions specified by the user. Each
process consists of a set of statements which performa particular 1/0 func-
tion in a logical time dependent order. For exanple, if the processor is
to enulate a disk controller, the read operation fromthe disk would be a

separate process fromthe wite operation.

IV, THE OVERALL PIO DATA-MEMORY ARCH TECTURE

In order to discuss the processor performance and function an idea of

the structure has to be devel oped

The generalized processor data-nemory structure consists of modul es

~interconnected asynchronously by a.dual data bus and a control bus. This

interconnection is shown as a PVMS*diagramin figure 4.1, This structure is

simlar-to the Honeywel | enulation machine described by Jensen [JEN 77].

The data-memory modul es can be grouped into functional classes, as shown

~below, corresponding tp the primtives -discussed

Data Mani pul ation Mdul es:

ALU Modul e

Code Converter

Parity Check Mdule
Redundancy Check Mbdul e
Unpacking Mdul e
Packi ng Mdul e

Decodi ng Mbdul e
Encoding Mbdul e

Format Mbdule

Data Storage Mdul es:
Buf f er
Register Module

Data | nput/Qut put Mbdifies:
Input Shift Register Mdul e
Qutput Shift Register Module

Control Modul es

[nitiation Mdul e

Interrupt/Protocol Mdul es
Nanost or e

Mcrostore

Ti mer

Synchroni zation Mdul es
Arithnetic and Logic Unit

Regi sters

Sme of the data storaae. data I/O and data maniDulation modules are similar
in architecture to the (GBD modules specified by Dgka [DE] 73]

3The Processor-Memory-Switch notation [BEL 71]

- 23 -

L. DATA [0:2; 32 hits]
P. DATA MANI PULATI ON : B L. DATA

| MODULES - - oy 172t 5]
P. QUTPUT SH FT REQISTERS | CENTRAL 5 | NPUT
— . £0:1;32 bits] I |- _ .—__‘—"‘Si-ll T REG.
P. QUTPUT SH FT ﬁEG!STERs _:..,_._. e W) - [0:2 ;32 bits]
[0:1;32 bits] _—ql. i : *xp — FT"—"H'—'
N 1§ ‘ | VTl T TR0 32 bits] |
1 L. DATABUS i T L. CONTROL
L.OONTROL | [32 bits]) | [0:1,32 hits]
(071 32yt . Z/ ('

]] .

gRgTJTOgg, = = 13 P |WPUT PROTCOCL

WDEEEUPT " I lbEss INERPT ¢

ST | Y I U | |
— -f-}- — -P. PROCESSCR
L NI TIATE —
l |
f TENPORARY |
M., BUFFER NEMORY '\Kﬂl REGSTERS . |__|. L o
: - REG STER OONTROL { ™" SYNCHRONI ZATI ON
P. QUTPUT <1 K BUFFER NANAGENENT | LO3 C [0: 8] |
—3~" SYNCHRON ZATION™ . . _
. ‘j L%gsc MODULES | L. SYNCHRONY
[0:8] , P. = Processor X = Qutside world QS [Sbits]
L. SYNCHRONOUS [9 bits] K o Memor K = Control
S ¥ S\Mtc% L: = Link
T. = Transducer D: = Data Operator
_ Data Paths— Control Paths

Figure 4.1 PVS Diagramof the P.I/O Data- Memory Structure

-2 -

Most of the data-nemory nodul es have the fol|owng capabilities and feat ures
0 The capability to be addressed by the control
0 The capability to perform handshaking with the control in order
| to be programmed or to transfer data |
0 The capability of being programed over the control lines to perform
an operation or’ sequence of operations
0 Residual control: the capability to be preprogramed for an |
entire process execution or indefinitely
0 The capability to transfer data on/off the internal data buses
under nicroprogram contro
0 The capability of accepting variable data widths as programed
by the control
0 ' The capability of rais}ng anerror line for data errors or hard-
ware mal function
0 The capability to output status information to the control
0 Hgh output inpedances (tri-state logic) and TTL Conpatible
110 lines '

0 A 10ns clock rate, the mnor cycle time of the control

The nodul es nust possess programmabl e sequential logic in order to
realize these capabilities, requiring the Pio to possess distributed control
The modul es represent spebial purpose processors activated by signals from
the control to performfunctions deternined by nodule type. For example,
the buffer nodule [PAR 77] actually-can contain up to four queues, and the

wi dth of the words stored in each queue can vary from4 to 32 hits. . Once queue
lengths and word widths are preset by commands fromthe central control, the
buffer nodule itself updates queue pointers, checks for full and enpty condi-
tions and maintains the present bit widths and queue lengths, all o* which is
transparent to the central control. The PMS structure of a typical data-
mani pul ation module is shown in figure 4.2.

- 95 .
|

X | L
|
|
: | ki SENSE LINES (TO CENTRAL
L. MODULE ADDRESS .)
- L. CONTROL BUS |

i (FROM CENTRAL CONTROL) !
|
' I

K. Address DECODER_____-.- ->K. TIMNG AND CONTROL !

B2

i
L. ENABLE ' | I

' « |
== - - - I [}
! I !
| | |
] i I
[| !
| |
i D PERATR Yoac

, |
! |
, !
| '30 :
'\ Y

s wipeEr | S. DEMULT| PLEXER

. e
L. DATA BUSES=(
(32 bit]

v
Figure 4.2 PMS Diagramof A Typical Cata Manipul ation Mdul e

- % -

Each nodule is addressed by the control nodule via the control bus,
as shown in figure 4,1, The use of dedicated control and enable lines is
used in modul ar designs such as Torode's logic machine, [TCR 74} where the
nunber of modules is small. However, for variable-function., reconfigurable
systems with many nodules, the wiring rapidly becomes conplicated and the
control store vord width unw’eldy' when nultiple enable lines rather than
addressing is used. Using addressing, the functional module set is easily
expanded, and the configuration has fail soft capabifity.

WWen a nodul e is addressed, that nodule |atches the control bus and
perforns the specified functionse In order to activate two or more modul es
to input data, to output data, to manipulate data or for concurrent-opera-
tions to occur, each nodule nust be addressed.

Concurrent bperation of several nodules is acconplished by addressing
them sequentially, the deactivating them | ater by separate commands. The
modul es are activated in the order in which the functions naturally occur
For exanple, the signal to output data on the bus conmes first, then the
.signal to another module to input data and operate on it and then the signal
to output the data operated on. There is a signél fromthe control to each
modul e when deactivafion IS to occur. The timng sequence lengths are

variable in nultipleé of 10 nanoseconds and the nanoprdgranlmord contains
the timng i nf or mat i on.

‘The timng and control signals réquiped to store a word in the buffer
modul e are drawn in figure 4.3. During the execution of a time STORE, data
bus Ais only used for a short period, data bus B is unused, and commands are
issued fromthe central control only 25%of the time, underutilizing the Pio
resources. This can be critical in high data-throughput situations, and for

this reason the control has the ability to pipeline data through the Pio. For exanplp

- 27 -

d ock n Nn __" /-—” n r_ r_‘_

Buffer Command
To input Data [

(Data on bus)
Buffer Latches q

Data
"Command Recei ved™ _ | \

[ine from buffer

Buf fer stores

Data -

Control sees l | o .

‘command recei ved"

Bus cleared r \

"ready" line
rali sed

"ready" line ' _
recel %ed f

Figure 4.3 Timing and Control Signals Required to Store as Wrd in the
Buffer Mbdul e

- 28 -

while data., is being stored in the queue,_datm+¥| can be input to the Pio,
and data.j , accessed fromthe queue earlier, can have a parity bit generated.
Meanwhi | e data'.j_.n_,I can be out put. However , during this particular phase,
the queue cannot be accessed to retrieve data. In fact, the data buses are
only used to transfer data to the parity check and buffer modules - otherwise

bus usage conflicts mght occur.

In general, the contention problens which would arise if the data flow
IS pipelined include: '
0 Mdule addressing - only one nodule can be addressed at a tine
0o Use of the data buses .
0 Use of a single nodule for two functions sinultaneously
The control required to support this conplex type of data flowis
discussed in the next section.

Speci fi ¢ Mbdul e Functions

In addition to the buffer nodul e, fhe other data/ memory nodul es
deserve some explanation. The other data storage module, the register
module, is used for tenporary storage of constants and contains access-

i ble registers. _

The data input/output nodules include the input and output shift
register nodules. In addition, the synchronization module perforns I/0
of synchronous data, but is classified as a control module since the syn-

chronfzation har dwar e berforns mainly a control task
| The input shift register nodules act as |atches for.input data of
< 32 bits inwdth and also align the data so that it is right justified
when transferred onto the internal A and B buses. This.way 8 hit wde data
“can be input on lines 1-8 and 9-16 of the shift register module at different

times, and transfered through the interface properly aligned on lines 1-8

- 29 -

of the internal buses. The output shift register modules perform the
opposite function, transferring justified data from the A and B buses to the
output lines. A1l of the data manipulation modules are capable of interacting
with either bus as programmed by the control. The ALU module performs

standard arithmetic and logic functions. The ccda converter contains a memory

fof code conversion from any code to any other, using table lookup. The
decoding module is prewired to perform ASCII, BCD and EBCDIC to binary con-
versions, and the encoding module performs the reverse operations. The
parity check module generates an even/odd parity bit and in the generate
mode appends it to the left or right of the data. In the check mode, it
checks the geﬁerated bit and compares to the existing parity bit alertingthe
control if a.parity error has occured. The redundancy check module performs
a CRC (cyclic redundancy check) on an arbitrary string of data, and returns a
check byte. |

In the yenerate mode this byte is output when commanded by the central
control. In the check mode, the module then accepts a chetk byte, compares
it to the generated byte, and reports errors.The packing module can be pro-
grammed to accept a variable width word and pack n words into a single larger
word, outputting the.packed word when commanded. The unpacking module performs
the reverse, accepting a word of variable width and unpacking it to output
smaller words, one at a time, when commanded. The format module can insert
bits at specified locations in a word by being presented with the bit pattern
to be inserted, along with the word. Alternativé]y{ it can delete bits at
specified locations in a word (stripping 1"1ag's-,h tag bits, etc). Implementation
of all the data manipulation modules including control commands, timing and

block diagrams is described in [PAR 75].

- 30 -

The data menory modul es perform- for the most part - functions which
could be performed by a single cleverly programmed nicroprocessor. However,
the performance - as measured in terns of data throughput - and flexibility
necessary for generalized 1/0 processing cannot be at t ai ned Wi th a single-
processor architecture

o 31 -

V' THE OVERALL PIO CONTRCOL ARCHI TECTURE

| NTRODUCTI ON

The Pio control will be discussed in terns of function and _
structure. -Although the Qverall system functioning inplies a straightforward
control structure, the constraints of user access to a control store and high-
- speed ‘data throughput requirenenfs create a conplex control environment.

Hb-&mﬂbl Envi r onnent

. The Pio Control can be subdivided into three. basic functional categories:
0 Functions external to Pio - Control over protocol and intérrupt
signals, initiation of Pio processes, and synchronous/asynchronous
data 1/Q i
o Functions intefnél to Pio - control over programmng of data-nenory
modul es, Pio configuration and internal data flowL
0 Functions internal to the control itself - control instruction
fetch, decoding, execution and branching.
Since the second and third categories deal with internal Pio control functions,:
they will be covered after a discussion of the control structure
In specific, the Pio control must be responsible for and responsive to
“external events in the followng way. The control must first program the
initiation mdule to respond to certain configufations of the /0 control
and interrupt lines by issuing to the central control the address of a process
to be initiated. In essence, the central control has passed control over pro-
cess initiation(to the iniiiation modul €) This control is not passed back to
the central control until condi tions for process initiation have been met.
The central control then determnes whether the process priority is higher
than the currently executing process.]f so, the central control interrupts

the current process at a suitable break)point and begins the new process. |f

- 32 -

the process desiring initiation has a priority equal to or |ower than the
current process, the process address and priority are saved until the current
process finishes execution. It should be noted that |ower priority,
current; processes are-, i nterrupted at a marked break point in the _
program executing the process. The placement of break points and the result-
ant effects of process fnterruption have not been investigated in detail at
this point. |

The central control has direct control over .transitions on
output protocol and interrupt lines by issuing conmands to the interrupt/
protocol modules. Inaddition, the central control detects incoming interrupts
either via the initiation nndulés (if they are to cause a process initiation)
or by programmng the input.protocol/interrupt nodule to signal the central
control when an interrupt has occurred. This second option,for other than
real -time applications, is also used by the control to inspect protoco
| nes. - The only other central control functions external to the Pio
are the data transfer'connands, mhich, in general, are straight forwérd
The exceptions are the synchronous I/O conmands, which tell theinput
synchroni zation modul e to begin detecting synchronous data (in nbit words), and
to the.output modul e to begin outputting synch?onous data. The synchronous
modul es themsel ves contain hardw red control over the synchronization process
including the detection/generation of sync hits, flags, i moedded cl ock pul ses

and other synchronization ‘i nformation.

- 33-

Internal Control |ines’ External M croprogram
BUS

-=- to all internal nodul es except clock

f{t data buses

SYSTEM
CLOXK

ALU

TIMER

CLOCK

)\
-
|
|
-
4
| _
NANCPROGRAM ROGRAM RESI DUAL OOM
[SEER = =’| NL\'\?DR(]V) o{TROL TABLES
b ' f ' '
e :
i
| |
i o NSTRUC- - SELECTCR AND
Vo WoRESERT} T coviRe
* -
40 BIT SENSE l '
BUS - 40 BI T CONTROL BUS

Flg. 51 The Querall Control Structure

- 34 -

The Control Structure

To an educated obsérver, the control structure of a generalizea
Pio seems overly conplex. W make no effort to justify the conplexity at this
point; rather we point out particularly conplex structures and reserve com

ments on control conplexity until the discussion on control function-

The overal| central control structure is shown in Figure 5.1. The
maj or points of this structure are the nanostore and mcrostore nodul es which
contain a nanoprogram (ultimte control over the Pio) and a user-witeable
mcroprogram It should become evident as the discussion continues why this
is different fromthe conventional machine-level/microstore conbination.

The microcontrol and nanocontrol nodules are the sources of the
control inputs to the other nodules. Control also includes clock and timng
modul es and synchronization circuits for the input and output of synchronous
data. An arithmetic and logic unit is used for instruction sequencing, inter-
nal variable incrementing and other operations of the microprogramand nano-
program There are also registers_to hol d variables and constants used by
the control. Due to the overlap of functional classes, the synchronization
modul es can he considered to be control nodules as well as input/output modul es.
A system clock conpletes the control hndules.

- The tining modul e has a clock, a counter, and an output which is
set after a time delay specified by a conmand fromthe control. The syn-
chroni zation nodules are activated by synchronization mcroinstructions or
I/0 microinstructions involving synchronized input or output |ines. These nod-
ules can be addressed individually or in groups of nine for.parallel'synchronous
data transfer. = They include a programmbl e clock which can be phase |ocked
with an external clock and a shift register for either inputting or outputting

data. In addition, the modules contain logic for gating of the data on and of f

- 35 -

externaI'Lines and for shifting of the registers. A save register is used
to transfer data on or off an internal Pio data bus while synchronized
input or output of data continues. |

The ALU nodul e performs addition, subtraction, multiplication and com
parison for use by the control, but is not used to inplenent the data mani pu-
lation primtives,which have their own nodules attached to the data bus.

The mcrocontrol nodule contains a random access nmemory, an address
registef/counter (WCSAR), a data register (WCSDR) and a selector to control
the loading of the address register. In addition, there is a hardware
stack used to contain return addresses from subroutines and a value table which
._contains constants used by the m croprogram - |

The microstore is 80 hits wide. Two 40 bit word instructiohs or one
80 bit full word instruction can-be stored in each menory location. This allows
two shorter instructions to be accessed sinmultaneously saving about one access
time every four instruction executions if instructions are executed sequentially,
and al | owi ng pi pel i ned execution of two shorter instructions. The half word-ful
word type of architecture is used to allow = for variable instruction |engths

and to increase execution speed of the interface

The fixed fields of the microinstruction have speci fic meanings which
depend on the opcode of the instruction and the location of the fields in the
instruction word, using two level or indirect encoding. |

As the‘nicroprogram_is assembl ed constants specified in the program
are loaded into a value table, and variables are assigned |ocations. The value
table and variable pointers are placed in the mcroinstructions. This allows
variable field length data to be replaced with addresses of constant length in
the mcrostore. TIME, FREQUENCY and SCALE (nultiplication) values specified in

- 36 -

mcroinstructions are represented in floating point formt.

Since the instructions generally involve only one machine operation
the mcroprogranming can be referred to as vertical. Generally, vertica
m croprogramwords woul d be-less than 80 hits wde but.the reconfigura-
tion capability of the hardware adds hits to the i cr oi nstruct i on

The address space of the mcrostore and its proposed inplementation
in hardware are discussed in detail in (PAR 751. In addition, the bit
widths of the microinstruction fields and an exanpl e mcroprogram for
disk controller emlation may be found there.

Inputs to the mcrocontrol include an external mcrostore data bus
for |oading the WCS, a set of Iines containing a pointer to a process
desiring initiation, and control lines fromthe nanocontrol. Qutputs
fromthe microcontrol include the contents of the microdata register, and
the two 32 bit internal data buses.

The nanocontrol nodule contains three main submodul es; they are the

read only menory (ROM which contains the nanoprogram the residual control

table and the selector and timng control block. In addition there is a

data register (ROMDR), an address register (ROMAR), an address selector for
the ROMand a selector for the control bus.

ation.

The residual control table consists of random access nemory submodul es.
These are pre-loaded with nodul e addresses and can contain flags denoting

process interruption and state information necessary for process restor-

The selector and timng control block contains cont rol logic, a mcro-
instruction stack, a reservation table for modules and internal buses,
a register for the sense bus input and a conparator.

- 37 -

It has a clock input, the 40 bit sense inputs and the nano and
mcroinstructions as inputs. The outputs are the 40 control lines to
the modules, 13 lines to control the mcrostore nodule and 16 lines to

control the nanostore qqggles.

The Control Functions - CNeréII Vi ew

A this point it is desirable to consider the overall control flow
A WCS word is accessed If both halves of the previously accessed word
have been exebuted. The word accessed is partially decoded to determne
the opQOde and instruction length. Appropriate control signals are sent
to the modules needed to performthe specified function. Senselines
fromthe nodules signal the conpletion of the task, error messages and
branch conditions the control is to receive. If the information is com
pleted without errors or branches, the remaining 40 bit instruction is
executed or the next 80 bit physical word is fetched. O course, if
there are branching or error conditions, the address register is forced
to the appropriate branch or error addresses. The mcroinstruction access-
ing, decoding and execution are all under control of the nanoprogram

The mcroprogramis witten in the formof processes. The main process

contains conditions to he met for execution of underlying processes, im
bedded in INITIATION statements. Usually the state of Pio input [ines

fromthe conputer or peripheral deternines a condition for-process initia-

- 38 -

tion. An initiation module is programmed to check for this condition by
the INITIATION microinstructions, and given a microstore address corres-
ponding to the process to be initiated. When the condition occurs, the
pointer is returned to the central control by the initiation module.

- Control of the modules, the data bus widths and the buffer con-
figurations can be either of single instruction duration or residual.
In general, RESIDUAL CONTROL microinstructions are used to set module
functions to be maintained for more than one microinstruction, and a CLEAR
microinstruction allows reprogramming of module functfons. For example,
the process initiation conditions are stored in residual control registers
inside the initiation modules. Also, residual control is used
to control the data word width for the data storage modules. Data manip-
ulation modules may or may not be programmed with residual control over
data word widths, depending upon whether the data word width processed by
a given module remains constant over more than a few microinstructions.

When a process has completed execution, all residual control
functions set during the process are cleared. When a 1owef level pro-
cess is initiated by conditions set within a process, all residual con-
trol functions are maintained. When a higher Tlevel process is in-
jtiated,- the process residual control state is saved . The oVera11 pro-

cess hierarchy is illustrated in figure 5.2.

The Control Functions - Microprogram Execution'

_ Execution of the microprograﬁ begins with a fetch and execute of
the first instruction in the microprogram and proceeds tgp down until the
main process has been executed. Execution is implemented by fetching the
microinstruction, partially decoding the opcodé and then fetching a set of

nanoinstructions in parallel based on the opcode of the microinstruction. .

- 39 -

Resi dual Control ‘ MAIN PROCESS

Set by MAN INITIATE Pl (Condi tions)(Priority) j

process In

effect _ __ | _J INTIATE P2, (Conditions)(Priority) i} —

| |

i v | P \ |
INITIATE PIl (Conditions) INITIATE P21 (Condi ti ons)
(Priority) . | (Priority) l
Resi dual Control set Resi dual Oontr:ol set bY MAIN
by MUN and PI processes &nd P2 procegﬁlag IR effect I
In effect !

—— - — — . —— — . — — . i oo -—— &-Iu-- Y — —I
Resi dual Control set | Residual Control set by e
by MAIN Pl and Pl _ Main, P2 and P21 processes

Al processes in effecti, P | in effect j
\ j W '

| l

Y S WA S . T B L — —

Note: If Pl has higher priority than P2 and its conditions for initiation
are met while P2 i's executing, all of the P2 residual control
|nfortrrat|on Is saved, the nodules are cleared, and Pl .begins .
execution,

Figure 5-2 Qverall Process Hearchy in the Pio

b 40 -

The mcroinstruction is then.stored in an instruction stack in the nano-
control nodule to be used by the nanocontrol. The nanoinstructions cause
addresses, conmands and -val ues to be output onto the control lines by
selecting fields fromthe mcroinstruction, the value table and the nano-
instruction itself. [f the nanocontrol deternines the microinstruction
Is. not a brancH instruction it causes the next microinstruction to be
fetched but not executed until the present instruction execution is com
pleted, unless speciél conditions exist.

If the mcroinstruction is a branch instruction the branch address
Is pretransferred fromthe branch field to the inputs to the WCSAR. |f the
branch conditions are met the address is then |oaded into the WCSAR The
prefetching and preaddressing of mcroinstructions is done to achieve the
high data-throughput rates demanded of a Pio. The mcroprogram execution
is illustrated in figure 5.3, along with the nanoprogram execution. |

The Control Functions - Nanoprogram Execution and Selector and Timng
Control Qperation

Utimate systemcontrol resides in the hanoprogranland'selector and timng
logic. They control mcro- and nanoinstruction fetching and execution
address increnentihg and branching, the internal interface bus structure,
the modul e functions including residual control and the data flow through

the interface. Their operation depends upon the five major system states:

0 - Wit for any process initiation conditions to be met
0 Initiate a_pfocess

0 Execute a pr ocess

0 Interrupt a Process, and save the state

0 End a process, clear residual control

These states have been described previously in functional terms. The

state of interest in this section is the "execute a process state, and it

Access Val ue
CQut put
(nt o* Bus

Has a Process

Initiation
Condi tion
Seen Mat ?

Value
Painter £n
Instructio.
?

Qut put Fields of
u Instruction and
First n Instruc-
tion

execute New a
I nstruction
I f Possible

HO
YES
Sel ector and Ti nmi ng
Loads Initiate
Poi nter into
WCSAR
Fetch
Mcro Instructions;
Load Into
WCSDR
YES
9
Fet ch

Cor r espondi ng
n Instructions

4 Iosetructicn
?

Store Inform--
ftion in RC
Tabl e

J

Reset RC Tabl e

Wit for Process
Initiation

Figure 5.3 Microprogram Execution Control -Flow

- 42 -

I's discussed here in terms of the overall control flow

Wen a proceés'is being executed the nanocontrol accesses the
microstore. It loads the mcroinstruction into the selector.and timng
control mcroinstruction register. The opcode of the nicroinstruction
determnes the address of the next nanoinstruction word fetched. The phy-.
sical nanoword, contairning seven nanoinstructions, is loaded into the
selector and tining block. Each nanoinstruction contains three parts.

The first 40 bit part contains fields either to be output onto the 40
bit control bus or to be conpared to the 40 sense inputs. The second part
and third part (40 bits total) contain hits whi ch: *
0 control the output of the other nanoinstructinn ahd
sel écted mcroinstruction fields onto the control bus-
0 are directly output onto the internal control lines tn |
the nanostore and microstore modul es,
0 deterim ne whether the nanoinstruction fields are to be
output or be conpared to sense Iines,
0 detefnine branching and wait conditions and control fetching

and execution of the next mcroinstruction

The seven instructions are executed sequentially at mnor clock cycle

intervals. As soon as a nanoword has-been accessed another is fetched.

The first nanoinstruction fetched is_uéually conbined with selected
mcroinstruction fields and output onto the 40 bit control bus. The selector
and timng control essentially outputs control information by multiplexing
the nanoprogram and mcroprogram fields wthout editing.

If a response is anticipated on the sense lines the pattern expected

e,

- 43 -

is contained in the next nanoinstruction. The nanocontrol either waits
until the pattern expected is received or branches depending on the fields
of the nanoinstruction which control internal functioning. Each nanoword
fetch takes 3 mnor clock cycles plus the nanostore access tine, and the
average mcroinstruction is executed in five or Iess nanoword access

times. The functions of the selector and timng control are:

0 Qutput control words to the modul es

0 Inpuf sense words from the modul es

0 Branch the nanoprogram on sense input conditions
o Cycle the hanoprogram

0 Cycle the mcroprogram -

On the whole, it is sensitive to input infornation by conparing the actua

sense information with the nanoinstruction. This reduces the functioning

of this block primarily to nultiplexing,conparing, tining and synchronization.,

Table 5.1 gives a conpilation of conmands which are output fromthe selector
and timng control and which are directed toward the central control func-
tioning. The selector and timng control essentially provides an inter-

face between the control and data-menory part of the Pi 0.

VI1 Discussion

The Pio design presented here is in the early stages of devel opnent;
the next step is simulation of the entire systemat a high level. This
design is the result of studying the requirements of the computer /0

environment, fromhigh speed disk 1/0to |ower speed asynchronous |/Q

~and attenpting to merge the necessities in a general purpose processor

At this point, several conclusions can be drawn:
0 The feasibility of a general purpose 1/0 processor has been
denmonst r at ed. '

0 Thé speeds required of the /O processor combined with flexibility

- 44 -

Destination

Conmand

Nanocont>_<o| Modul e

Qut put from ROVDR

| nput to ROVDR

| nput to ROVAR

Qut put from ROVAR
Access ROM ‘

| ncrenment ROM Addr ess

Sel ector in Nano-
control WNodul e

Sel ect ROVAR+1.
Sel ect ROVDR
‘Sel ect WCSDR -

Jout put Sel ect or
i n Nanocontr ol
Modul e

Sel ect ROVMDR

Sel ect WCSDR

Sel ect RC Tabl e

Qut put from Sel ect or
Access RC Tabl e
Load RC Tabl e

M crostore Mdul e

Sel ect WCSAR+1

Sel ect WCSDR

Select Initiate Pointer
Access WCS

| nput to WCSAR

Qut put from WCSAR

Qut put from WCSDR

Sel ect Bus #1

Sel ect Bus #2

Access Val ue Tabl e

I nput WCSDR to Address Val ue Table
CQut put Val ue.

Decode M croinstruction

Table 5.1

Sel ector and Timing Control Commands

- 45 -

desired in a general purpose processor forces a high degree
of conplexity into the Pﬁo control ler,

0 It is difficult and in some cases inpossible to achieve
electrical conpatibility with progranmable hardware/ However
gate level conmpatibility is possible to sane extent and is being
i npl emented in many mcroprocessors 1/0 chips,

0 Conventional digital systeﬁisinulation techni ques prove un-
desirable for I/O simulation since timng, synchronization and
mul tiple asynchronous 'processes are difficult to handle,

~also and mostly, because conventional digital simlators
require a gate level description as input,

0 I/Ocould be described with a formal high-level [anguage
(GLIDE- a Generalized Language for Interface Description and
Eval uati on) [WR?&HJchhHamMmdimotMI%omwow%f

0 The GLIDE language and 1/0 primtives providéd a hasis for

ongoing research into the automation pf digital interface and
Pio design.

Future investigations of this general-purpose Pio include the possibility

of redesigning the architecture into bit-slice data paths so that specific
Pio's can be configured and hardwred, as desired. This would greatly

sinplify control conplexity and systemcost, with the loss of . generality
of course. '

- 46 -
VIII REFERENCES

[BEL 711 Bell, C.G., and Newell, A., Computer Structures: Readings
and Examples, McGraw Hill, 1971.

[DEJ Dejka, William, "Implementation of Mathematica] Functions,"
1973 Simulation and Modeling Conference, Pittsburgh, Pa.
April, 1973.

[HEA 70} Heart, F.E., et.al., "The Interface Message Processor for the
ARPA Computer Network", Spring Joint Computer Conference,
1970, pp. 551 - 567.

[INT 74) INTEL Corporation Application Note, 1974.

[JEN 771 ~ Jensen, E. Douglas, "The Honeywell Modular Microprogram
Machine: M3," Proceedings of the 4th Annual Symposium on
Computer Architecture, March, 1977, pp. 17-28.

{LES 73] Lesser, Victor R., "Dynamic Control Structures and their
use in Emulation”, Ph.D. Thesis, Stanford University, 1974.

[NAN 74] QM-1 Manual, Nanodata Corporation, 1974.
- [PAR 75] Parker, Alice, "A Generalized Approach to Digital Inter-
facing," Ph.D. Thesis, North Carolina State University
Raleigh.

[PAR 75I1] Parker, Alice and Gault, J.W.,"A 1language for the Specifica-
tion of Digital Interfacing Problems"? Proceedings of the
1975 International Symposium on Computer Hardware Descrip-
tion Languages and their Applications, pp, 85-90.

[PAR 77] Parker, Alice and Nagle, Andrew " Hardware/Software
Tradeoffs in a Variable Word Width, Variable Queue Length
Buffer Memory," Proceedings of the 4th Annual Symposium
on Computer Architecture, March 1977 pp. 159-164.

[TOR 14] Torode, J.Q. and Kehl, T.H., "The Logic Machine:A Modular
Computer System, "IEEE Transactions on Computers, Vol. C-23
No. 11, Nov. 1974, pp. 1164-1168.

