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ABSTRACT

This paper describes a processor architecture designed specifically

to perform input/output and interfacing functions for any central-pro-

cessor-peripheral configuration. This architecture is justified on the

basis of functional I/O requirements which are discussed in detail.

This processor is microprogrammable with a writeable control store,

allowing dynamic configuration of the processor for different input/

output and interfacing applications. Underlying the microcontrol is a

ROM-resident nanoprogram which performs the complex timing, handshaking,

and bookkeeping control tasks. The processor architecture is modular

and bus oriented.
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STRUCTURE AND FUNCTION OF

A GENERAL PURPOSE INPUT/OUTPUT PROCESSOR

I. INTRODUCTION

The intent of this paper is to present an architecture of a

general purpose input/output processor, Pio, which is based on design

goals and constraints specific to the input/output environment. Pre-

sent input/output processors - including channels, communication pro-

cessors, data link controllers and device controllers - do not exhibit

an architectural style which is optimal for input/output. In fact, I/O

processors have architectures ranging from those which can be character-

ized as Von Neuman to ad hoc or even hardwired systems which cannot

even be partitioned into data-memory and control parts. Examples of

these systems will be discussed in Section II.

While a strong argument could be made for an end to the ad hoc,

problem-specific design of I/O processors, the motivation for abandoning

or severely modifying the Von Neuman style architecture must be presented.

A comparison of the goals and design constraints of CPU design and I/O

processor design, partitioned into the four categories of control, data

manipulation, data input/output, and data storage, will illustrate the

desirability and the need for a differe .t architectural style for I/O

processors.

The PMS notation of Bell & Newell [Bel. 7.1] is used in this paper to
abbreviate structural entities in the processor. A single capital
letter symbolizes a genre of components: P for processor, M for memory,
S for switch, K for controller, T for transducer. Small letters charac-
terize the particular instance of the component under discussion. Thus
P. is an input/output processor.

The research described in this paper was partially supported by the
U.S. Army Research Office under grant # DAAG29-76-G-0224.
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The following generalizations about I/O processors can be drawn from

the information in Table 1:

o Simple bit manipulations and control over the states and transi-

tions of individual I/O lines are important

o Precise timing and synchronization of register transfers and

I/O operations are important

o Data storage can be restricted to FIFO queues and registers

o The overall system functions must be controlled at a lower

level than in a CPU

o I/O processors contain multiple independent, asynchronous

processes.

In addition, there is one other constraint on digital systems

design - available technology. A major factor in central processor

performance is main memory cycle time, or cache cycle time if that

scheme is used. Since data and sometimes program storage requirements

for I/O processing could be met with registers and fast memories, speed

of processing could be optimized by altering the architecture in ways

which would not have been effective for CPU optimization.

Underlying the goals and constraints discussed above is an over-

all conceptual difference between central processors and input/output

processors. CPUs might be said to be "introverted" and Pios "extroverted".

Central processors interpret an instruction set for manipulating arith-

metic, logical and symbolic data - types while input/output processors

manage peripherals and transmit information without change except for

error checking/detecting, encoding, formatting, and searching. For this

reason, the performance requirements applied to CPUs (such as number of bits

processed per second) do not apply to Pios; data through-put is a more valid

measure. These differences in performance criteria, along with inherent

functional differences, imply structural differences also.
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DESIGN GOALS AMD CONSTRAINTS

FUNCTION

DATA

MANIPULATION

CONTROL

DATA STORAGE

CENTRAL PROCESSORS

COMPLEX DATA OPERATIONS DESIRED; SPEED OF

OPERATIONS IMPORTANT; ARITHMETIC OPERATIONS

(FLOATING POINT FOR EXAMPLE) DESIRABLE: .

(WORD PROCESSING DESIRABLE)

SPEED OF INSTRUCTION FETCH, DECODE AND EXECUTE

IMPORTANT;FLEXIBLE SEQUENCING OF INSTRUCTIONS

AND DATA DEPENDENT SEQUENCING IMPORTANT;

POWERFUL, HIGH-LEVEL INSTRUCTION SETS

DESIRABLE; TIMING AND SYNCHRONIZATION

OPERATIONS TRANSPARENT TO PROGRAMMER; BIT

MANIPULATIONS LESS IMPORTANT; RARELY

ASYNCHRONOUS OPERATIONS CONCURRENT IN A

SINGLE PROCESSOR

RANDOM ACCESSING OF DATA AND INSTRUCTIONS

NECESSARY; EASY/FAST ACCESS TO A SMALL

NUMBER OF OPERANDS IMPORTANT

INPUT/OUTPUT PROCESSORS

SIMPLE OPERATIONS REPEATED ON LARGE AMOUNTS OF DATA

(FORMATTING, ENCODING, SERIAL/PARALLEL CONVERSIONS.

PACKING, ERROR CHECKING)

LOW LEVEL INSTRUCTIONS (BIT MANIPULATIONS) IMPORTANT;

SEQUENCING OF INSTRUCTIONS MUST BE TIMED AND SYNCHRON-

IZED; CONTROL OF REGISTER TRANSFERS MUST BE CAREFULLY

TIMED - RAW SPEED LESS IMPORTANT THAN CORRECT TIMING;

CONTROL OF PROCESSOR MUST BE PARTIALLY BASED ON THE

STATES AND TRANSITIONS OF EXTERNAL LINES; MAY HAVE MULTI-

PLE PROCESSES EXECUTING ASYNCHRONOUSLY IN A SINGLE

PROCESSOR

VERY LITTLE OR NO RANDOM ACCESSING OF DATA AND INSTRUC-

TIONS NEEDED; FIFO ACCESSING OF DATA DESIRABLE

#

TABLE 1.1 A Comparison of Design Goals and Constraints for CPU architectures and I/O architectures
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DATA

INPUT/OUTPUT

DESIGN GOALS AND CONSTRAINTS (CON'T)

SYNCHRONOUS OPERATIONS AND MOST CONTROL TRANS-

PARENT. TO THE USER; I/O ASSUMES A SECONDARY

ROLE TO DATA MANIPULATIONS; SPEED OF I/O

OPTIMAL ONLY WHEN SPECIAL PROCESSORS EMPLOYED

(DMA FOR EXAMPLE)

MAXIMIZE SPEED OF DATA

HANDSHAKING OPERATIONS

THROUGHOUT; ALLOW

; CONTROL DATA I/O

FLEXIBLE

PRECISELY

TABLET,1 A comparison of Design Goals and Constraints for CPU architectures and PIO architectures
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II. A HEIRARCHY OF INTERFACING PRIMITIVES

A Survey of the I/O, interfacing, and communication environments

reveals a set of common functions which collectively form primitive

operations. Their implementations vary widely; some salient

examples of this are given in Table 2.1. The functions of the primi- *

tives are clarified by matching them with implementation "levels", shown

in figure 2.1. This heirarchy of levels is evident in the IMP hard-

ware and software, as shown in figure 2.2. The hardware displays the

signal, and gate and flip flop levels, while the software has a modular

structure which allows routines to exist on the system level (link rou-

tines'), register transfer level (MODEM-TO-IMP), and gate and flip flop

level (TIMEOUT).[HEA7O] It can be seen that the highest level, the

"system11 level, has long been the only level made available for soft-

ware modification in Pios. At all other levels, the primitives have been bound

by hardware, tailored to meet the needs of a single CPU and peripheral

device. The I/O processor presented later in this paper is programmable

across all levels of the implementation hierarchy, and therefore can emu-

late a variety of interfaces, matching any CPU/peripheral environment. What

microprogramming has done for general purpose central processors is applied

here to a general purpose I/O processor. Vital to this application are the

interfacing primitives, which are detailed below in groups: CONTROL, DATA I/O,

DATA MANIPULATION, and DATA STORAGE.

. In the following paragraphs, we give examples of current imple-

mentations of these primitives and point out the flexibility inherent

in these implementations, in contrast to the flexibility of a general-

purpose Pio.
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EXAMPLES

CONTROL

DATA INPUT/OUTPUT

DATA MANIPULATION

DATA STORAGE

Protocol

Sequencing

Timing

Synchronization

Priority Allocation

Latching and I/O

Electrical Compatibility

Error Checking

Formatting

Buffering

TTY™ STOP and START bits, UNIBUS™ bus request and
grant lines;RFD,DAV and DAC tines on the IEEE488 bus

Microprogram, flipflops or CPU instructions which
cause the PIO to chanqe internal state

Timeout while waiting for a response; timing of
pulse trains

Simultaneous input and output of data through a
PIO, timing of latches to input synchronous data

Interrupt request and grant circuitry; allocation
of multiplexer

Involves the I/O of information on data lines ,the
associated data paths and hardware

Involves level shifting, line drivers and receivers,
impedance matching and other interface circuitry

Parity; redundancy checks; message counts for data
link transmission
Flags for data link transmission; packing/unpacking
bits/bytes and words

Queues, shift registers, registers, latches,
memories for temporary storage of data

TABLE 2.1 INPUT/OUTPUT AND INTERFACING FUNCTIONAL PRIMITIVES, EXAMPLES AND/OR DESCRIPTIONS
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Control

In the CONTROL group are PROTOCOL,SEQUENCING, TIMING, SYNCHRON-

IZATION, and PRIORITY ALLOCATION,

The PROTOCOL primitive controls the handshaking operations which

accompany the flow of information from or to a processor. This ranges

from the insertion, detection, and deletion of start and stop bits of

Teletype m I/O to the manipulation of bus lines such as "data available/

"data received", and "ready for data". The implementation of this prim-

itive is transparent to the user of IBM channels, and on the CD6600 PPUs

(peripheral processor units), for example, and is performed entirely by

the hardware, allowing no user flexibility in interfacing these processors

to nonstandard modules in a system. The DEC POM/70 (programmable data

mover), designed to control data aquisition in a laboratory or industrial

environment, is similarly hardwired; it uses a single strobe pulse for

parallel data transfers, waiting until an external device signals that

data has been received or is ready. For serial data transfers the standard

start and stop bits are used. An experimental disk controller, [TNT 74]

built from INTEL 3000 series microprocessor modules, contains special hard-

wired logic for the bus protocol on the CPU side of the controller, and

for the pulse capturing on the disk side. The Motorola Peripheral Inter-

face Adaptor (PIA) chip has programmable protocols as one of its most

flexible features. Hardwired implementations of the protocol primitive

abound; few have the flexibility required to emulate different protocols.

The second CONTROL primitive, SEQUENCING, moves the processor or

controller through states, whether by instruction execution or hardwired

state transitions. Implementations of this primitive display more flex-

ibility. For example, IBM channel controllers execute "programs11 stored
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in primary memory. Channel command words (CCW) are fetched and executed

sequentially until an interrupt condition arises (e.g. end of data trans-

fer); a limited branching facility also exists to permit storing CCW's

in random locations. Looping, conditional branching, test and skip, and

other control features are not provided. An early computer, the PILOT

at the NBS, had wired plugboards for I/O system flexibility. The INTEL

3000 disk controller is microprogrammed, and currently implemented with

a ROM; flexibility could be enhanced by substituting a writeable con-

trol store. The IMPs (Interface Message Processors) on the ARPA net-

work are minicomputers and can be reprogrammed. The PDM70 is programm-

able from a keyboard and the Motorola 6820 PIA device is programmed by

conroands from the processor. SEL (Systems Electronic Laboratory) mini-

computers use microprogrammed I/O processors, but the microprograms are

stored in ROMs. Note that the flexibility allowed in the above ex-

amples is at high implementation levels.

Control over TIMING can occur at different levels in a digital

system and so comparisons across levels are somewhat inaccurate. For

the present discussion, TIMING is intended to include the pulse timing

of bits over a serial data link, the timeout in micro or milliseconds

while waiting for a handshaking or error signal, the time between data

transmissions in terms of seconds, and the counting of clock pulses.

The implementation of TIMING structures in I/O processors and controll-

ers is varied. The PDM/70 has program control over data I/O in terms

of seconds, and the INTEL 3000 controller can measure time delays in

microseconds under microprogram control. UART (Universal Asynchronous

Receiver/transmitter) chips contain precise timing control for transmit-

ting/detecting single character bit strings with start and stop bits.



Also many serial asynchronous data link controllers have selectable Baud

rates-I/O processors and controllers for channels and peripheral devices

in general do not have any flexible control over timing.

There are essentially three levels of SYNCHRONIZATION which occur

in I/O, communications, and interfacing. The lowest level of SYNCHRONI-

ZATION involves the transmission/detection of data bits synchronously

over a data link or to/from a disk or magnetic tape. The data bits arrive

at a fixed ratfe, sometimes with the clock alternating with the data bits,

sometimes with encoding which allows the receiving device to synchronize

on the transmitted data, sometimes with a combination of both. Be-

cause of the speeds involved, any attempt to allow flexibility*in this

type of SYNCHRONIZATION is limited to changing the data rates of the

transmission/detection.

The second level of SYNCHRONIZATION which occurs in I/O process-

ors and controllers is the SYNCHRONIZATION between different hardware

processes in a single processor. In order to discuss this problem, the

notion of a hardware process must be explored. A hardware process is a

sequence of actions which is controlled independently.of other sequences

of actions. In a disk controller, for example, the process of forming

words from single bits runs in parallel both with the process of test-

ing the cyclic redundancy check (CRC) bits for errors, and with the pro-

cess of sending the assembled and tested word to the central processor.

Due to the synchronous nature of the word assembly, and the time constraints

on the input process, the only conmunication with the other processes may

be through a signal that-a word has been assembled, and the return signals

that indicate enough words have been assembled or an error has occured.
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A second process, the CRC, checks the assembled word, independent of the

assembly process, as long as it knows the location of the word and its

readiness for checking. A third process is activated when it is signalled

by the second process that a word is ready to be transmitted to the cen-

tral processor: Ignoring memory contention problems and variations in

communications between processes, there is still the basic synchronization

problem to resolve. Even hardware language descriptions of concurrent

independent, asynchronous processes are difficult to construct and do not

really represent the operations of the hardware. Addition, in controlling

separate hardware processes with a central processor executing a single

program is virtually impossible with current notions of instruction exe-

cution. As a result, the processes are implemented in hardware,

obviating the flexibility desired in a general purpose I/O processor.

For example, the Intel 3000 disk controller has implemented each of the

processes described above in separate hardware subprocessors. The high-

est level of synchronization is the control over devices transmitting/

receiving data at different rates, synchronously or asynchronously, or

in different quanta of information. Flexibility on this level would re-

quire variable buffer memories, programmable hardware for data rate vari-

ation, and the ability to adapt to synchronous or asynchronous transmission,

PRIORITY ALLOCATION, the last CONTROL primitive to be discussed, is

one of the primitives often implemented within the peripheral device hard-

ware, with the device interconnection scheme or as a central processor

function. Devices are often "daisy-chained11 together so that interrupt

priorities are wired into the system. When central processors issue

commands to I/O processors and controllers, priority allocation is often



done hy the central processor prior to the command issuance- I/O process-

ors and controllers linked to more than one device often service in a

"round-robin11 fashion. On a higher level, the IMP is the best example

of PRIORITY ALLOCATION in a communications processor. It responds to a

message with a Ready For Next Message (RFNM) acknowledgement and does not

allow reception of a second message over the same logical link until the

first has been acknowledged. On a lower level when transmitting messages

it uses a head-of-the-line (HOL) scheme « . It allocates priority to in-

coming packets which form one message depending on the order in which

they were sent. The only exception is that acknowledgement messages

have priority over data traffic.

The next division of primitives, the DATA I/O section, contains the

primitives DATA TRANSFER and ELECTRICAL COMPATIBILITY. DATA TRANSFER

refers to the movement of data into/out of the I/O processor, interface,

or controller. This primitive differs in implementation depending not

so much on the specific system or processor but on the type of data to

be input/output. If the data is static (is.valid on the I/O lines

until the receiver signals data received) then simple gating into

registers solves the I/O problem. If, however, the data input is

signalled by strobe pulses, start bits, special flags preceeding the

data or other means, and the data changes dynamically without intervention

from the receiver, then special consideration must be given to the capture

of each word or bit as it is available. A second complication can

occur when the data bits are represented not by voltage levels which

signify Is and O's but by transitions in voltages. Decoding must occur

at the time the data is input, and encoding at the time data is output.
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Since data transfer as a primitive refers to levels at and below the

register transfer level, flexibility of this primitive function most

often occurs as the I/O design is underway, and not under program
2

control, or even console switch control.

ELECTRICAL COMPATIBILITY is the lowest level of I/O and inter-

facing functions, and maybe should not be considered with the others, were

it not for the fact that integrated circuits exist which perform most of

the electrical interfacing tasks required, and these ICs occur in

specific places in an I/O processor, communications controller, peripheral

controller, or interface architecture. Hence they can be used as

modules in a modular architecture, and various implementations can contain

different circuits, as needed, in the electrical compatibility module

locations. Further discussion of the nature of ELECTRICAL COMPATIBILITY

is beyond the scope of this paper.

Data Manipulation

DATA MANIPULATION as a functional division is present in all dit-

ital systems. The principal types of data manipulation found in I/O and

interfacing are ERROR CHECKING and FORMATTING. The two basic methods of

error checking to be discussed here are parity checking and parity bit

generation, and redundancy checks. Cyclic redundancy checks (CRCs) are

often used with disks, and latitudinal and longitudinal redundancy checks

are used with magnetic tapes. Parity bits are used most often for data I/O

that involves single word transfers and in particular for binary, BCD and

ASCII I/O. Another type of error checking that occurs is the counting of

^However, flexibility can be made available in a general purpose P.

by providing several different I/O modules which can be addressed

under program control.
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messages sent, received, and acknowledged over synchronous data* links.

Although all of these checks could be done by software, the message count-

ing is the method most often implemented in that manner. The introduction

of integrated circuits for parity andredundancy checks has further reduced

the likelihood of realizing these checks in software, and in most cases

software is relatively slow. However, the flexibility needed for general -

purpose I/O is lost when wired checks are implemented.

FORMATTING of data is a primitive operation which covers any bit

manipulations which do not change the information content of the data.

Examples of this include packing and unpacking of bytes into words, the

insertion and deletion of flags on messages, the insertion and'deletion

of stop and start buts on ASCII characters, BCD to binary conversion, and

other low level procedures which rearrange data. In addition, FORMATTING

includes the data dependent rearrangement of data. This encompasses sort-

ing procedures most often carried out by the central processor but in

some cases (the CDC6600 PPUs for example) by the I/O processors. Bit

insertion and flag insertion, along with data packing/unpacking are

often done by the hardware, while code conversion, sorting and searching

are done by firmware of software.

Data Storage

DATA STORAGE in central processors usually refers to register storage

(direct access) and random access storage. Any other data structures (link-

ed lists, stacks, queues, for example) are implemented with software. In

I/O processors, data is either buffered in a save register as it is trans-

ferred through the system, or in a FIFO queue which contains a string of

data words, bits or bytes. These queues are- implemented with software in

the majority of cases, although IC queues are available for limited applica-

tions. Software queues are used in the ARPA Network IMP, for example. In
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the INTEL 3000 disk controller, data is moved to the processor memory as

fast as it is accessed, and so the use of a queue is not necessary. It is

necessary, however, to maintain a memory for block transfers in general

purpose I/O processors, but there is rarely a demand for random access capa^

bilities in these memories. An exception to this occurs if certain queue

items have a higher priority and are to be renioved before other items.

Summary

The I/O primitive functions discussed above are quite different from

the functions one might describe as primitive for central processors. In add-

ition, the range of levels covered by these primitives is broader than CPU

primitives, and each primitive itself covers a broader functional concept. The

architecture designed to implement this set of primitives is therefore somewhat

different from the architecture of a central processor.
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III A GENERAL-PURPOSE, MODULAR INPUT/OUTPUT ARCHITECTURE

A review of the constraints and design goals of I/O processors

indicates three fundamental principles of I/O processing:

o The data-memory portion of the hardware should be designed to

optimize data through-put,

o The processor should be able to support multiple, asynchronous

operations or sequences of operations (processes)

o The user should have control over timing, synchronization, and bit

manipulations

The above goals and constraints, in addition to the general-purpose nature

of the processor, force the following design decisions:

o The data-memory architecture should be modular, each module containing

programmable hardware in order to maintain multiple processes

without complex central control

o The flexible nature of the data paths indicates a bus for data

transfers, but the asynchronous, concurrent operations and the

need for optimized data flow through the processor indicate a

multiple data path architecture. A dual bus structure is intended

to solve these problems,

o The data-memory structure should support first-in first-out store

and access

o The architecture should accomodate variable data widths

o The architecture should support a pipelined sequence of data

operations to optimize the speed of data flow
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o The processor must address its own program memory

Q The program memory should be supported by an underlying control

structure which can manage internal handshaking operations, bookkeeping

tasks, and other processor operations which should be transparent to

the user

o The processor should be programmable at the register-transfer level,

and in some cases at the gate/flop-flop level

These architectural features, in combination with a design which can be imple-

mented with high-speed . circuitry to meet the speed requirements of I/O

controllers, produce a processor which is generalized to the extent that it

can perform under the following circumstances:

variable data widths

variable flag formats on synchronous data

variable formats of data (packing densities, for example)

variable types of error checking

variable handshaking requirements

variable priority allocation schemes for multiple servicing

variable encoding and decoding operations

variable buffer lengths and word widths

variable timing of synchronous and asynchronous data I/O

The generalized Pio emulates a variety of processors, interfaces,

and controllers with the same hardware. Thus, the generalized Pio assumes the

role of host processor to a set of target processors spanning a range of

possible Pios, This type emulation is more difficult than central processor

emulation because the I/O processor must emulate, for the central processor,

the interface the central processor expects to see, and must also emulate,

for the device, data link, device controller, or other processor, the inter-

face it expects to see, all with the correct timing. In addition, these two



- 20 -

emulations must be synchronized within the generalized host Pio. An alter-

native view is to consider the generalized I/O processor to be the base

machine and the processors implemented to be virtual machines. It should

be noted that the Pio is not designed to support multiple emulations on a

dynamic basis. Hence, if the CPU linked to the Pio should force the Pio

to handle more than one configuration at a time, the control

microprogram will have to deal with the ensuing data changes in buffers

and registers. This mechanism is presented later in this section in more

detail.

This need for control on a lower level than with conventional pro-

cessors implies the requirement of a writeable control store. However, at

the same time the complexity of microcoded interfacing and I/O operations

precludes user programming. Thus a two-level microprogram/nanoprogram com-

bination is used to allow the user the freedom to program sequences of

operations and some timing parameters without microcoding each individual

control signal.

The nanoprogram control performs the ultimate control and reconfig-

uring functions of the processor, keeping track of addresses, buffers, and

hardware programming, while being transparent to the user. It also controls

instruction fetch and execution for the microstore.

Some of the .microword fields in each microinstruction cause initiation

of nanoinstruction sequences while others control the processor directly.

Thus, the control signals in the processor originate in both the microinstruc-

tion register and the nanoinstruction register. This configuration, along

with the level of operations evoked by the micro and nanoinstructions, illus-

trates a level of control lower than the two level combination of assembly

language/microprogramming commonly implemented in CPU's.
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In general, it can be said that the microprogram describes what the

processor is to do, while the nanoprogram controls the timing of each task,

the synchronization between multiple tasks executed simultaneously, and the

handshaking and internal control signals needed to perform the operations.

Thus, the microprogram describes a target processor and the nanoprogram per-

forms the actual mapping of the target I/O processor onto the host processor.

This feature has been described and used by others in the past: by Lesser '

to define two levels of control, the conventional level and a global level

of control [LES 73] and by Nanodata Corporation in the QM-1 [NAN 74].

In order to program this processor, the user writes a program which

consists of a main body and one or more processes. The main body merely de-

fines the hardware configuration to be maintained by each module inside the

Pio, and describes the conditions for initiation of each process. Each pro-

cess can be given a priority by the user, if needed, and can be initiated

individually by data and control conditions specified by the user. Each

process consists of a set of statements which perform a particular I/O func-

tion in a logical time dependent order. For example, if the processor is

to emulate a disk controller, the read operation from the disk would be a

separate process from the write operation.
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IV. THE OVERALL PIO DATA-MEMORY ARCHITECTURE

In order to discuss the processor performance and function an idea of

the structure has to be developed.

The generalized processor data-memory structure consists of modules

interconnected asynchronously by a dual data bus and a control bus. This

interconnection is shown as a PMS3diagram in figure 4.1. This structure is

similar to the Honeywell emulation machine described by Jensen [JEN 77 ].

The data-memory modules can be grouped into functional classes, as shown

below, corresponding tp the primitives discussed

Data Manipulation Modules: Data Input/Output Modifies:

ALU Module Input Shift Register Module

Code Converter Output Shift Register Module

Parity Check Module

Redundancy Check Module Control Modules:

Unpacking Module Initiation Module

Packing Module Interrupt/Protocol Modules

Decoding Module Nanostore

Encoding Module Microstore

Format Module Timer

Synchronization Modules

Arithmetic and Logic Unit

Data Storage Modules: Registers

Buffer

Register Module

Some of the data storaae. data I/O and data maniDulation modules are similar

in architecture to the QED modules specified by Dejka [DEJ 73]

Processor-Memory-Switch notation [BEL 71]
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L. DATA [0:2; 32 bits]

P. DATA MANIPULATION
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L.CONTROL
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P. OUTPUT SHIFT REG
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P.OUTPUT
PROTOCOL/
INTERRUPT
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P. OUTPUT
~" SYNCHRONIZATION _

LOGIC MODULES
[0:8]

L. SYNCHRONOUS [9 bits]

STERS

K. CENTRAL
I

L.DATABUS
[32 bits]

. . BUFFER MEMORY

K. BUFFER MANAGEMENT

I
TEMPORARY !

M(. REGISTERS |_
K1. REGISTER CONTROL

P: = Processor
K: • Memory
S: * Switch
T: = Transducer

X: - Outside world
K: = Control
L: = Link
D: = Data Operator

L. DATA
[0:2 t?32 bits]

P. INPUT
SHIFT REG.
[0:2 ;32 bits]

'11
P. INPUT SHIFT
REG.[0:1;32 bits]

P. INPUT PROTOCOL/
-INTERRUPT

P. PROCESSOR
INITIATE

\
L.CONTROL
[0:1,32 bits]

D INPUT
v-SYNCHRONIZATION

LOGIC [0:8] ""I
L. SYNCHRONY
OUS [9bits]

Data Paths Control Paths

Figure 4.1 PMS Diagram of the P.I/O Data- Memory Structure
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Most of the data-memory modules have the following capabilities and features:

o The capability to be addressed by the control

o The capability to perform handshaking with the control in order

to be programmed or to transfer data

o The capability of being programmed over the control lines to perform

an operation or sequence of operations

o Residual control: the capability to be preprogrammed for an

entire process execution or indefinitely

o The capability to transfer data on/off the internal data buses

under microprogram control

o The capability of accepting variable data widths as programmed

by the control

o The capability of raising an error line for data errors or hard-

ware malfunction

o The capability to output status information to the control

o High output impedances (tri-state logic) and TTL Compatible

I/O lines

o A 10ns clock rate, the minor cycle time of the control

The modules must possess programmable sequential logic in order to

realize these capabilities, requiring the Pio to possess distributed control.

The modules represent special purpose processors activated by signals from

the control to perform functions determined by module type. For example,

the buffer module [PAR 77] actually-can contain up to four queues, and the

width of the words stored in each queue can vary from 4 to 32 bits. Once queue
lengths and word widths are preset by commands from the central control, the
buffer module itself updates queue pointers, checks for full and empty condi-
tions and maintains the present bit widths and queue lengths, all o* which is
transparent to the central control. The PMS structure of a typical data-
manipulation module is shown in figure 4.2.
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I

I

D. OPERATOR LOGIC

S. MULTIPLEXER /

L. DATA BUSES=t
[32 bit]
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Figure 4.2 PMS Diagram of A Typical Oata Manipulation Module
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Each module is addressed by the control module via the control bus,

as shown in figure 4,1, The use of dedicated control and enable lines is

used in modular designs such as Torode's logic machine, [TOR 74} where the

number of modules is small. However, for variable-function ., reconfigurable

systems with many modules, the wiring rapidly becomes complicated and the

control store word width unwieldy when multiple enable lines rather than

addressing is used. Using addressing, the functional module set is easily

expanded, and the configuration has fail soft capability.

When a module is addressed, that module latches the control bus and

performs the specified functions• In order to activate two or more modules

to input data, to output data, to manipulate data or for concurrent opera-

tions to occur, each module must be addressed.

Concurrent operation of several modules is accomplished by addressing

them sequentially, the deactivating them later by separate commands. The

modules are activated in the order in which the functions naturally occur.

For example, the signal to output data on the bus comes first, then the

signal to another module to input data and operate on it and then the signal

to output the data operated on. There is a signal from the control to each

module when deactivation is to occur. The timing sequence lengths are

. variable in multiples of 10 nanoseconds and the nanoprogram word contains

the timing information.

The timing and control signals required to store a word in the buffer

module are drawn in figure 4.3. During the execution of a time STORE, data

bus A is only used for a short period, data bus B is unused, and commands are

issued from the central control only 25 % of the time, underutilizing the Pio

resources. This can be critical in high data-throughput situations, and for

this reason the control has the ability to pipeline data through the Pio. For examplp
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Figure 4.3 Timing and Control Signals Required to Store as Word in the
Buffer Module
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while data., is being stored in the queue, datai+-| can be input to the Pio,

and data.j_n accessed from the queue earlier, can have a parity bit generated.

Meanwhile data . , can be output. However, during this particular phase,

the queue cannot be accessed to retrieve data. In fact, the data buses are

only used to transfer data to the parity check and buffer modules - otherwise

bus usage conflicts might occur.

In general, the contention problems which would arise if the data flow

is pipelined include:

o Module addressing - only one module can be addressed at a time

o Use of the data buses

o Use of a single module for two functions simultaneously

The control required to support this complex type of data flow is

discussed in the next section.

Specific Module Functions

In addition to the buffer module, the other data/memory modules

deserve some explanation. The other data storage module, the register

module, is used for temporary storage of constants and contains access-

ible registers.

The data input/output modules include the input and output shift

register modules. In addition, the synchronization module performs I/O

of synchronous data, but is classified as a control module since the syn-

chronization hardware performs mainly a control task.

The input shift register modules act as latches for input data of

<_ 32 bits in width and also align the data so that it is right justified

when transferred onto the internal A and B buses. This way 8 bit wide data

can be input on lines 1-8 and 9-16 of the shift register module at different

times, and transfered through the interface properly aligned on lines 1-8
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of the internal buses. The output shift register modules perform the

opposite function, transferring justified data from the A and B buses to the

output lines. All of the data manipulation modules are capable of interactinq

with either bus as programmed by the control. The ALU module performs

standard arithmetic and logic functions. The coda converter contains a memory

for code conversion from any code to any other, using table lookup- The

decoding module is prewired to perform ASCII, BCD and EBCDIC to binary con-

versions, and the encoding module performs the reverse operations. The

parity check module generates an even/odd parity bit and in the generate

mode appends it to the left or right of the data. In the check mode, it

checks the generated bit and compares to the existing parity bit alerting the

control if a.parity error has occured. The redundancy check module performs

a CRC (cyclic redundancy check) on an arbitrary string of data, and returns a

check byte.

In the generate mode this byte is output when commanded by the central

control. In the check mode, the module then accepts a check byte, compares

it to the generated byte, and reports errors.The packing module can be pro-

grammed to accept a variable width word and pack n words into a single larger

word, outputting the packed word when commanded. The unpacking module performs

the reverse, accepting a word of variable width and unpacking it to output

smaller words, one at a time, when commanded. The format module can insert

bits at specified locations in a word by being presented with the bit pattern

to be inserted, along with the word. Alternatively, it can delete bits at

specified locations in a word (stripping flagsx tag bits, etc). Implementation

of all the data manipulation modules including control commands, timing and

block diagrams is described in [PAR 75].
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The data memory modules perform - for the most part - functions which

could be performed by a single cleverly programmed microprocessor. However,

the performance - as measured in terms of data throughput - and flexibility

necessary for generalized I/O processing cannot be attained with a single-

processor architecture
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V THE OVERALL PIO CONTROL ARCHITECTURE

INTRODUCTION

The Pio control will be discussed in terms of function and

structure. Although the overall system functioning implies a straightforward

control structure, the constraints of user access to a control store and high-

speed data throughput requirements create a complex control environment.

Pio Control Environment

The Pio Control can be subdivided into three basic functional categories:

o Functions external to Pio - Control over protocol and interrupt

signals, initiation of Pio processes, and synchronous/asynchronous

data I/O.

o Functions internal to Pio - control over programming of data-memory

modules, Pio configuration and internal data flow.

o Functions internal to the control itself - control instruction

fetch, decoding, execution and branching.

Since the second and third categories deal with internal Pio control functions,

they will be covered after a discussion of the control structure.

In specific, the Pio control must be responsible for and responsive to

external events in the following way. The control must first program the

initiation module to respond to certain configurations of the I/O control

and interrupt lines by issuing to the central control the address of a process

to be initiated. In essence, the central control has passed control over pro-

cess initiation(to the initiation module)This control is not passed back to

the central control until conditions for process initiation have been met.

The central control then determines whether the process priority is higher

than the currently executing process. If so, the central control interrupts

the current process at a suitable break point and begins the new process. If
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the process desiring initiation has a priority equal to or lower than the

current process, the process address and priority are saved until the current

process finishes execution. It should be noted that lower priority,

current; processes are-, i nterrupted at a marked break point in the

program executing the process. The placement of break points and the result-

ant effects of process interruption have not been investigated in detail at

this point.

The central control has direct control over .transitions on

output protocol and interrupt lines by issuing commands to the interrupt/

protocol modules. In addition, the central control detects incoming interrupts

either via the initiation modules (if they are to cause a process initiation)

or by programming the input.protocol/interrupt module to signal the central

control when an interrupt has occurred. This second option,for other than

real-time applications, is also used by the control to inspect protocol

lines. The only other central control functions external to the Pio

are the data transfer commands, which, in general, are straight forward.

The exceptions are the synchronous I/O commands, which tell the input

synchronization module to begin detecting synchronous data (in nbit words), and

to the output module to begin outputting synchronous data. The synchronous

modules themselves contain hardwired control over the synchronization process

including the detection/generation of sync bits, flags, imbedded clock pulses

and other synchronization information.
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The Control Structure

i

To an educated observer, the control structure of a generalized

Pio seems overly complex. We make no effort to justify the complexity at this

point; rather we point out particularly complex structures and reserve com-

ments on control complexity until the discussion on control function-

The overall central control structure is shown in Figure 5.1. The

major points of this structure are the nanostore and microstore modules which

contain a nanoprogram (ultimate control over the Pio) and a user-writeable

microprogram. It should become evident as the discussion continues why this

is different from the conventional machine-level/microstore combination.

The microcontrol and nanocontrol modules are the sources of the

control inputs to the other modules. Control also includes clock and timing

modules and synchronization circuits for the input and output of synchronous

data. An arithmetic and logic unit is used for instruction sequencing, inter-

nal variable incrementing and other operations of the microprogram and nano-

program. There are also registers to hold variables and constants used by

the control. Due to the overlap of functional classes, the synchronization

modules can be considered to be control modules as well as input/output modules.

A system clock completes the control modules.

The timing module has a clock, a counter, and an output which is

set after a time delay specified by a command from the control. The syn-

chronization modules are activated by synchronization microinstructions or

I/O microinstructions involving synchronized input or output lines. These mod-

ules can be addressed individually or in groups of nine for parallel synchronous

data transfer. They include a programmable clock which can be phase locked

with an external clock and a shift register for either inputting or outputting

data. In addition, the modules contain logic for gating of the data on and off
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external lines and for shifting of the registers. A save register is used

to transfer data on or off an internal Pio data bus while synchronized

input or output of data continues.

The ALU module performs addition, subtraction, multiplication and com-

parison for use by the control, but is not used to implement the data manipu-

lation primitives,which have their own modules attached to the data bus.

The microcontrol module contains a random access memory, an address

register/counter (WCSAR), a data register (WCSDR) and a selector to control

the loading of the address register. In addition, there is a hardware

stack used to contain return addresses from subroutines and a value table which

contains constants used by the microprogram.

The microstore is 80 bits wide. Two 40 bit word instructions or one

80 bit full word instruction can be stored in each memory location. This allows

two shorter instructions to be accessed simultaneously saving about one access

time every four instruction executions if instructions are executed sequentially,

and allowing pipelined execution of two shorter instructions. The half word-full

word type of architecture is used to allow for variable instruction lengths

and to increase execution speed of the interface.

The fixed fields of the microinstruction have specific meanings which

depend on the opcode of the instruction and the location of the fields in the

instruction word, using two level or indirect encoding.

As the microprogram is assembled constants specified in the program

are loaded into a value table, and variables are assigned locations. The value

table and variable pointers are placed in the microinstructions. This allows

variable field length data to be replaced with addresses of constant length in

the microstore. TIME, FREQUENCY and SCALE (multiplication) values specified in
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microinstructions are represented in floating point format.

Since the instructions generally involve only one machine operation

the microprogramming can be referred to as vertical. Generally, vertical

microprogram words would be less than 80 bits wide but.the reconfigura-

tion capability of the hardware adds bits to the microinstruction.

The address space of the microstore and its proposed implementation

in hardware are discussed in detail in (PAR 751. In addition, the bit

widths of the microinstruction fields and an example microprogram for

disk controller emulation may be found there.

Inputs to the microcontrol include an external microstore data bus

for loading the WCS, a set of lines containing a pointer to a process

desiring initiation, and control lines from the nanocontrol. Outputs

from the microcontrol include the contents of the microdata register, and

the two 32 bit internal data buses.

The nanocontrol module contains three main submodules; they are the

read only memory (ROM) which contains the nanoprogram, the residual control

table and the selector and timing control block. In addition there is a

data register (ROMDR), an address register (ROMAR), an address selector for

the ROM and a selector for the control bus.

The residual control table consists of random access memory submodules.

These are pre-loaded with module addresses and can contain flags denoting

process interruption and state information necessary for process restor-

ation.

The selector and timing control block contains control logic, a micro-

instruction stack, a reservation table for modules and internal buses,

a register for the sense bus input and a comparator.
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It has a clock input, the 40 bit sense inputs and the nano and

microinstructions as inputs. The outputs are the 40 control lines to

the modules, 13 lines to control the microstore module and 16 lines to

control the nanostore modules.

The Control Functions - Overall View

At this point it is desirable to consider the overall control flow.

A WCS word is accessed if both halves of the previously accessed word

have been executed. The word accessed is partially decoded to determine

the opcode and instruction length. Appropriate control signals are sent

to the modules needed to perform the specified function. SenseJines

from the modules signal the completion of the task, error messages and

branch conditions the control is to receive. If the information is com-

pleted without errors or branches, the remaining 40 bit instruction is

executed or the next 80 bit physical word is fetched. Of course, if

there are branching or error conditions, the address register is forced

to the appropriate branch or error addresses. The microinstruction access-

ing, decoding and execution are all under control of the nanoprogram.

The microprogram is written in the form of processes. The main process

contains conditions to be met for execution of underlying processes, im-

bedded in INITIATION statements. Usually the state of Pio input lines

from the computer or peripheral determines a condition for-process initia-
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tion. An initiation module is programmed to check for this condition by

the INITIATION microinstructions, and given a microstore address corres-

ponding to the process to be initiated. When the condition occurs, the

pointer is returned to the central control by the initiation module.

Control of the modules, the data bus widths and the buffer con-

figurations can be either of single instruction duration or residual.

In general, RESIDUAL CONTROL microinstructions are used to set module

functions to be maintained for more than one microinstruction, and a CLEAR

microinstruction allows reprogramming of module functions. For example,

the process initiation conditions are stored in residual control registers

inside the initiation modules- Also, residual control is used

to control the data word width for the data storage modules. Data manip-

ulation modules may or may not be programmed with residual control over

data word widths, depending upon whether the data word width processed by

a given module remains constant over more than a few microinstructions.

When a process has completed execution, all residual control

functions set during the process are cleared. When a lower level pro-

cess is initiated by conditions set within a process, all residual con-

trol functions are maintained. When a higher level process is in-

itiated,- the process residual control state is saved . The overall pro-

cess hierarchy is illustrated in figure 5.2.

The Control Functions - Microprogram Execution

Execution of the microprogram begins with a fetch and execute of

the first instruction in the microprogram and proceeds tpp down until the

main process has been executed. Execution is implemented by fetching the

microinstruction, partially decoding the opcode and then fetching a set of

nanoinstructionsjn parallel based on the opcode of the microinstruction.
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The microinstruction is then stored in an instruction stack in the nano-

control module to be used by the nanocontrol. The nanoinstructions cause

addresses, conmands and values to be output onto the control lines by

selecting fields from the microinstruction, the value table and the nano-

instruction itself. If the nanocontrol determines the microinstruction

is. not a branch instruction it causes the next microinstruction to be

fetched but not executed until the present instruction execution is com-

pleted, unless special conditions exist.

If the microinstruction is a branch instruction the branch address

is pretransferred from the branch field to the inputs to the WCSAR. If the

branch conditions are met the address is then loaded into the WCSAR. The

prefetching and preaddressing of microinstructions is done to achieve the

high data-throughput rates demanded of a Pio. The microprogram execution

is illustrated in figure 5.3, along with the nanoprogram execution.

The Control Functions - Nanoprogram Execution and Selector and Timing
Control Operation

Ultimate system control resides in the nanoprogram and selector and timing

logic. They control micro- and nanoinstruction fetching and execution,

address incrementing and branching, the internal interface bus structure,

the module functions including residual control and the data flow through

the interface. Their operation depends upon the five major system states:

o Wait for any process initiation conditions to be met

0 Initiate a process

o Execute a process

o Interrupt a Process, and save the state

o End a process, clear residual control

These states have been described previously in functional terms. The

state of interest in this section is the "execute a process11 state, and it
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is discussed here in terms of the overall control flow.

When a process is being executed the nanocontrol accesses the

microstore. It loads the microinstruction into the selector and timing

control microinstruction register. The opcode of the microinstruction

determines the address of the next nanoinstruction word fetched. The phy-

sical nanoword, containing seven nanoinstructions, is loaded into the

selector and timing block. Each nanoinstruction contains three parts.

The first 40 bit part contains fields either to be output onto the 40

bit control bus or to be compared to the 40 sense inputs. The second part

and third part (40 bits total) contain bits which: *

o control the output of the other nanoinstructinn and

selected microinstruction fields onto the control bus-

o are directly output onto the internal control lines tn

the nanostore and microstore modules,

o determine whether the nanoinstruction fields are to be

output or be compared to sense lines,

o determine branching and wait conditions and control fetching

and execution of the next microinstruction.

The seven instructions are executed sequentially at minor clock cycle

intervals. As soon as a nanoword has-been accessed another is fetched.

The first nanoinstruction fetched is usually combined with selected

microinstruction fields and output onto the 40 bit control bus. The selector

and timing control essentially outputs control information by multiplexing

the nanoprogram and microprogram fields without editing.

If a response is anticipated on the sense lines the pattern expected
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is contained in the next nanoinstruction. The nanocontrol either waits

until the pattern expected is received or branches depending on the fields

of the nanoinstruction which control internal functioning. Each nanoword

fetch takes 3 minor clock cycles plus the nanostore access time, and the

average microinstruction is executed in five or less nanoword access

times. The functions of the selector and timing control are:

o Output control words to the modules

o Input sense words from the modules

o Branch the nanoprogram on sense input conditions

o Cycle the nanoprogram

o Cycle the microprogram

On the whole, it is sensitive to input information by comparing the actual

sense information with the nanoinstruction. This reduces the functioning

of this block primarily to multiplexing,comparing, timing and synchronization.

Table 5.1 gives a compilation of conmands which are output from the selector

and timing control and which are directed toward the central control func-

tioning. The selector and timing control essentially provides an inter-

face between the control and data-memory part of the Pio.

VII Discussion

The Pio design presented here is in the early stages of development;

the next step is simulation of the entire system at a high level. This

design is the result of studying the requirements of the computer I/O

environment, from high speed disk I/O to lower speed asynchronous I/O,

and attempting to merge the necessities in a general purpose processor.

At this point, several conclusions can be drawn:

o The feasibility of a general purpose I/O processor has been

demonstrated.

o The speeds required of the I/O processor combined with flexibility



- 44 -

I Destination

Nanocontxol Moduler

Selector in Nano-
control Module

Output Selector
in Nanocontrol
Module

Microstore Module

Command

Output from ROMDR
Input to ROMDR
Input to ROMAR
Output from ROMAR
Access ROM
Increment ROM Address

Select ROMAR+1
Select ROMDR
Select WCSDR

Select ROMDR •
Select WCSDR
Select RC Table
Output from Selector

. Access RC Table
Load RC Table

Select WCSAR+1
Select WCSDR
Select Initiate Pointer
Access WCS
Input to WCSAR
Output from WCSAR
Output from WCSDR
Select Bus #1
Select Bus #2
Access Value Table
Input WCSDR to Address Value Table
Output Value
Decode Microinstruction

Table 5.1 Selector and Timing Control Commands
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desired in a general purpose processor forces a high degree

of complexity into the P. controller,

o It is difficult and in some cases impossible to achieve

electrical compatibility with programmable hardware/ However,

gate level compatibility is possible to sane extent and is being

implemented in many microprocessors I/O chips,

o Conventional digital system simulation techniques prove un-

desirable for I/O simulation since timing, synchronization and

multiple asynchronous 'processes are difficult to handle,

also and mostly, because conventional digital simulators

require a gate level description as input,

o I/O could be described with a formal high-level language

(GLIDE- a Generalized Language for Interface Description and

Evaluation) [PAR 75-11] which translated into the Pio microcode,

o The GLIDE language and I/O primitives provided a basis for

ongoing research into the automation pf digital interface and

Pio design.

Future investigations of this general-purpose Pio include the possibility

of redesigning the architecture into bit-slice data paths so that specific

Pio's can be configured and hardwired, as desired. This would greatly

simplify control complexity and system cost, with the loss of generality

of course.
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