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Abstract

Shortcut Methods for Complex Distillation Columns:

Part 2 ~ Number of Stages and Feed Tray Location

This paper is the second part of a two-part paper on shortcut methods

for ordinary and complex columns. The shortcut method to estimate the num-

ber of stages is based on Edmister's method. The method includes a new

approach which locates feed trays to minimize the total number of stages

within the column.

Several example problems demonstrate the method and show, where com-

parisons are available, that it compares favorably with other approaches.
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(I) Conventional distillation columns:

By introducing the notion of an effective absorption factor A ,

Edmister (1957) developed the following expression (see Figure 1),

"R (A ) -1

which relates the amounts of jth-component contained in the vapor stream

coming up f^om the feed plate and in the top product, through variables

like the reflux ratio (R), the number of ideal stages in the rectifying

section section (IL) and the effective absorption factor (A ) . .

As stated in Part I, the rectifying section of a conventional distilla-

tion column serves to remove the heavy key from the vapor stream so that the

fraction of the amount of heavy key in the feed present in the top product

is (l-r..^), where r__ is the fraction of the heavy key in the feed to be

His. HK

recovered in the bottom product B. Equation (1) can be used as the recti-

fying section design equation when written for the heavy key. By rearranging

equation (1), one can write

|.H-(Ae-l)(vBR/d)1

Using the rectifying section design specification

dHK = (1"rHK)fHK

and the definition of R, the ratio (vM/d)ul_, can be expressed asrlK

(3)
HK 'T'HK
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Figure 1. Conventional distillation column
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where x_, is the heavy key mole fraction in the feed, while yf is its mole

fraction in the vapor leaving the feed plate. Equation (3) assumes constant

molar overflow in each section of the column. Substituting (3) into (2)

.

*"
R(A -1) +A

e e

Edmister (1957) derived an analogous equation to (1) for the exhausting

section too, which is

IL+1

V °X <Se>1 -1

where (S ), is the effective stripping factor for the jth-component and (S ).

is its stripping factor at the reboiler:

< V j " IT (Kj>Reb. <6>

As the heavy key is the design component for the rectifying section,

the light key is the design component for the exhausting section. From

equation (5), one can write

but

where (x ) is the light key mole fraction in the liquid coming down

from the feed plate. Replacing equation (8) in (7) gives

Xn "ruc> Ls (s -i, _
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For sharp separations between the keys, the recovery fractions r and

r are close to 1. In such cases, design equations (4) and (9) can be
Lux
simplified to eliminate either C Y f / ^ ) ^ o r ^f^^LK' w h o s e evaluation is

difficult. A simple order of magnitude analysis will help us to achieve this

simplification. Typical values for the variables present in equation (4) are

shown in Table 1. From them it can be concluded that

for sharp separations. Ignoring the term 'I1, equation (4) can be written

-1 < V m r ,- n /5r
Jtnd-r^) -J&nI_R-» * ^1+Anl (R+l)±3+£n^—

„ -S-sa. t-ss-

"R An<A
e
)HK

Characteristic values for each term in the numerator of equation (10)

are shown in Table 2. For any type of separation, difficult or not, the

typical value of the last term is much smaller than the other ones and may

be neglected. In most cases, this simplification causes an error of less

than one ideal stage.

Therefore, for sharp separations, the simplified version of Edmister's

rectifying section design equation is given by
-1

(11)

where n^ represents a good approximation to the variable n^. In order

to compute the value of (A ) later in this paper, an optimal criterion
e n.Jx

for feed tray location will be derived.

A similar typical value analysis can be made for the exhausting sec-

tion (see Tables 1 and 2) to simplify equation (9), yielding



Table 2

Typical values for each term In the numerators of equations (10) and
of the similar one for the exhausting section

Terms

Ordinary
Separations

Difficult
Separations

Terms

Ordinary
Separations

Difficult
Separations

4.60

4.60

4.60

4.60

C n (" T? • 1 1

. 1.61

2.83

S

° Se"1 LK

2.14

3.21

F

0.22

1.25

1

0.56

1.38

Bit) t XT IV ^

-0.105

0.182

0.182

0.182

I

I



• Table 1

Characteristic values for the variables in equations (4) and (9),
for multicomponent, sharp separations

Variables

Ordinary
Separations

Difficult
Separations

Variables

Ordinary
Separations

Difficult
Separations

<VHK

1.40

1.10

<Se>LK

1.40

1.10

R

1.50

6.0

R1

2.5

7.0

(D/F)

0.50

0.50

(B/F)

0.50

0.50

(KfV

0.60

0.80

5

14

<VVHK

1.50

1.50

1.20

1.20

WHK

0.90

1.20

rLK

0.99

0.99

rHK

0.99

0.99

(**)

84

48

(*)

45

42

(*) Characteristic values for [ (Ae)HR-l] (
V
BR/<*)HK

(**) Characteristic values for [ (Se)LK"ll (
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r
LK.

R + g-fj- LK

Evaluation of the effective stripping and absorption factors (A )
e HK

and (Se)LK:

Assuming that the effective factors are functions of terminal condi-

tions (e.i. top and bottom plates in each section), Edmister (1946) derived

the following expressions:

Ae = ^ ( V D + O ^ S ! * -0.50 (13)

Se = tST(SB+l)+O.25l^ -0.50 (14)

which result from analyzing a two theoretical plate-column. When the

value of A (or S ) is close to unity, this effective factor short-cut

procedure provides very accurate results even for many plates (Edmister,

1948). In the above expressions, the subscripts T and B stand for top and

bottom trays in the section.

Horton and Franklin (1940) also assumed that A (or S ) is a function

of the terminal conditions and proposed

Ae - 0.7 Afi + 0.3 AT (15)

Se * °-7 ST + °*3 SB <16>

when A^ (or S^) is between 1.0 and 4.0, which is almost always the range

for the values of (A e) R R and (Se)tR. As Edmister (1957) mentioned,

equations (15) and (16) give essentially the same v£ ues for A and S that
e e

are found by equations (17) and (18). Equations (15) and (16) may then be

used to develop an optimal feed tray location criterion. By replacing the

definitions of the absorption and stripping factors in equations (15) and

(16), it follows that
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e H K ( K >

(X) a (K )
(Se>LK = °-7° L'/V' + °'30 (SBX>LK

where the superscripts and subscripts R and X stand for rectifying and

exhausting sections, respectively. By defining the factor F

K VHK
(R) (X)

both design effective factors (A ) and (S )_„ can be expressed in terms
e HK e LK

of (K ) t t v by replacing equation (19) in (18)BR HK

<Se>UC " °-70 ( J / V ^ + °-30 <SBX>I* <2°»

Where sharp separations are considered between two adjacent components,

the compositions of the products are readily determined and so are the values

of (A—)-,., and (S_V)T1.. In this situation, they can be considered as con-
1K HK DA LK

stants, i.e. independent of the location of the feed tray.

When the sharp separation is between two non-adjacent keys with one or

more distributed components, the split of the distributed components between

the two final products must be estimated before evaluating ( A T R ) H K and (S R X) T

However, even in this case, one can assume that the product compositions are

a weak function of the feed tray location (within a certain span of possible

locations not far from the optimal one), without making a significant error.
(R)

Therefore, equations (17) and (20) show the design effective factors (A )„„
(X) e H K

and (S ) as functions of the feed tray location, through the variable
e J_IK

(Kg-J^., assuming that the factor FR defined by (19) to be approximately

constant.

As the operating cost continues to soar, the optimal flow conditions

approach the limiting ones. Moreover, the temperatures at both extreme
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sections of a distillation column change rather slightly (because of the

distributed components) as the reflux ratio increases from its minimal

value to the optimal one. Thus, one can propose for a fast estimation of

F^ the following expression:

(\t \ fD 4-i'VfP ' 4-1 ̂

— _ TX HK = m m (7\\

K (KBR}HK QrLKRmR<m

which holds at minimum reflux when the pinch zones occur at the trays

right above and below the feed plate (see Part I).

In order to evaluate the design effective factors, we must now develop

a criterion to choose (K__)U1-.
D K HK

Criterion for Optimal Feed Tray Location:

The location of the feed tray should be selected to minimize the total

number of theoretical stages n required for a given separation, which is

given by

nt - t^ + i^ + 1 (22)

where the last term on the R.H.S. corresponds to the feed stage. Accounting

for equations (11) and (12), it follows that IL is a function of (KRR)HK»

i.e. the feed tray location, through the variables (A ) and (S )^ .
e HK e LK

Therefore, the optimality condition can be sio expressed

'"WHK
„ ,„.

Although (A ) „ ' shows up in both the numerator and the denominator

e nK

of equation (11), its strong influence on the value of ru is mainly achieved
through the denominator. Thus, a good approximation to (6n /6(A ) ) is

t e HK
(R)

still obtained if the dependency between IL and (A )^Ttr in the numerator
R e HK

is ignored:
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\

where TL gives the value of the numerator at (A ) \_L = (A ) : near the
R e HK. e nss.

sought optimal value
-1

Similarly

( R . + 1

s

A e

A° -1
e

\
2 LK.

)(B/F)(1

S°

e"

(se)<

-rLK }

»X)

( - l

IK

i

From equations (17) and (20)

HK m (L/V)
°70

" °70

(25)

(26)

By substituting equations (24), (26), (28) and (29) into (23) and

rearranging the optimality condition takes the following form:

V Ty <30)y
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However, from equations (17) and (20)

(—h— )

V "K - 1 030 TO0.70 V "K - 1 - 0.30 TO ™ (31)
( V HK ( V HK

(S ) 1V ^UY'TIT
0 70 e L K = 1 - 0 ^0 (32}

Defining

r = ̂  (33)

'x
and replacing equations (31), (32) and (33) in (30), it follows that

(Ae> HK

[1-0.30

In most cases, the ratios [(A__)/A 1 ™ and C(S«V)
TR e HK. D X C XJIX

are not so different, especially when (A /A ) for the heavy key and
TR BR

*
(S___/S ) for the light key are close. Therefore, the R.H.S. of equation
DA 1A

(30) will usually be around 1 when similar recovery fractions for the keys

are considered.

In other words, an approximate solution to equation (30) can be obtained

by solving a much simpler equation:

} HK " * n ( Se } LK

or

S
V HK (Se} LK
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where the superscript (°) means that they are approximate solutions to

(30). By introducing the correction terms A(A )K jl and

the exact solutions to (30) can be written

(36)

(37)

where the correction terms are usually small.

Analytical expressions for the approximate solutions (A ) and

From substituting equations (17) and (20) into (35), it follows

that

°'70 T ^ f " + °*30 (A^̂ = 0 ' 7 0 ' a f f i " + °-30 (SBX>LK
which leads to a quadratic equation in (^ ) given by

whose analytical solution is

ffS^HK-r + ̂ r) +V (38)

where

( }

Finally, the approximate solutions can be evaluated by
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; - 0.70 W W H K + 0 .30(SB X ) L K (42)

Analytical expressions for the correction terms A(A )tTTr and

Optimality condition (30) can also be written

C V LK < V HK

= 0 (43)

where the error function G is equal to zero for the optimal value of the

variable C ^ ) ^ . Taking into account that ( K J L ) ™ is> *-n most cases, a

good estimation of the optimal value, we can use the first term of a Taylor

series to get

o
(KBRW

where the asterisk stands for optimal value. Therefore

G[(K? ) ]

£ 1
L )

H K

BR

By replacing equality (35) into equation (43), the following expression
for G U K J ^ ) ^ is derived:

(45)



-14-

On the other hand,

6(A><*> d ( KBR>HK » < S )
e riK. e 1A

The derivatives in equation (46) can be obtained from equations (43),

(17) and (20). By replacing equality (35) in them, equation (46) leads to

this expression:

dG°

where

HK

0.30(SBX)LK(Z
O)2-2r[l-0.30 ^ ^ I f ] Z° (49)

( 5 0 )

HK

HK

Finally, the optimal value (K--)™. can be evaluated from equation (44)

Its substitution into the equations(17) and (20) gives the sought values

ana <><*>.
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Algorithm

1. Use the product compositions at minimum reflux to get the values

of ( A ^ ) ^ and ( S ^ ) ^ . Then, evaluate FR by equation (21).

2. Calculate the first approximation to the optimal design effective

factors, (A°)u v and ( S 0 ) ^ through equations (38), (39), (40), (41)
e UK. e i-iK.

and (42).

3. Evaluate the variables T] TL, and T by equations (25), (27) and

(33), respectively.

4. Get the optimal values for the design effective factors using

equations (45), (47), (48), (49), (50), (44), (17) and (20).

5. Determine the number of theoretical stages required in each column

section, n^ and n , by equations (11) and (12), respectively.

6. Evaluate the total number of theoretical stages required, n ,

by means of equation (22).

(II) Distillation system with a side-stream stripping section

Every distillation system can be regarded as comprising a set of frac-

tionators, each of them yielding two, one or zero products. Such fraction-

ators accomplish the task of separating two of the keys. Thus in Figure 2

the fractionator (1,2) carries out the separation (LK/MK) while (3,4) does

(MK/HK). When the analysis is restricted to sharp separations, all non-

recovered light key component is supposed to come out of the system in the

middle product P as also does the non-recovered heavy key. In turn, the

non-recovered middle key distributes between the products D and B.

The three key component recovery fractions given as design specifica-

tions are not enough to set the design of this distillation system. The

number of ideal stages required in column sections 1 and 4, whose design

component is MK, depends on how the non-recovered middle key distributes

between the products D and B. The additional design specification can be

given through the parameter §, defined by:
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K = 1 - 4 ' 0 < ? < l . (5D
§ is then a design parameter whose value should be appropriately chosen.

When the volatilities or and or are relatively much closer, it is
MK LK

quite obvious that nearly all non-recovered middle key should go up in

the product D. In other words, the parameter § should tend to unity. The

other extreme case is reached when ot and <* are quite similar, for which
MK. ills.

§ should take very small values. From these considerations, the following

criterion was selected to evaluate §:

However, a more precise criterion should account for the effective design

absorption and stripping factor values in each fractionator rather than

volatility values. The next step is to develop simplified design equations

for each of the column sections, especially for the new type CS-3.

Design equation for CS-3:

The goal for CS-3 is to wash the heavy key from the vapor stream. The

derivation of its design equation, giving explicitly the number of ideal

stages n_, requires one to have a relationship between the internal vapor

and liquid compositions at the top .of CS-3, i.e. between (y^-J™ and (x_o)TTtJ
U HJs. 1J Hr

(see Figure 2). Although it is an approximation, the feed tray of frac-

tionator (1,2) can be thought of assuming the role of partial condenser for

the fractionator (3,4). For such a case, Edmister (1957) derived the fol-

lowing design equation:

,/1+(R3+1)(vB3/vT3>\

3 V3'1
Xn(Ae,3>HK
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I Condenser |

Side-stream tray f

B3 | VB3 *B2 ^ V B 2

Feed Tray | j Reboiler [

H f 'T4 T

Figure 2. Distillation system with a side-stream stripping section
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vhere

<Ao,3>HK= Qf3'L

Simplified versions of the column section design equations for sharp

separations:

(i) CS-lfs design equation

CS-1 is a rectifying section whose design component is MK. It

follows from equation (11) that

4- -̂- m
n° « Ae r l (53)

where R1 = 1
1 D

and the value of (A - ).„. should be obtained by an additional criterion.

e,l MK

(ii) CS-2ys design equation

CS-2 is an exhausting section having LK as its design component.

Then, from equation (12)

M—s
o,2 e,2 LK

S. o-l (54)

where

(iii) CS-3ys design equation

r H K ) -
1
1

(55)
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(Iv) CS-4's design equation

<56>

where

Evaluation of the design effective factors:

In order to find the optimal locations of the feed trays of both

fractionators (1,2) and (3,4), a similar analysis to that shown for a con-

ventional column should be made. Equations almost equivalent to (38), (39),

(40), (47), (48), (49) and (50) are obtained with small differences. Thus,

for fractionator (1,2):

Use Instead of

(A ) (A ^(R)

(Se,2>LK <Se>(LK

(L1/V1) (L/V)

(L2/V2) < L'/V)

TR HK

(SBX}LK

aLK

Rm

<RV2

The modifications described in the table are indeed only a matter of changing

nomenclature.
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(III) Arbitrary thermally coupled distillation column

Because of its complexity, Petlyuk's thermally coupled distillation

system shown in Figure 3 can serve to generalize the proposed design

approach already applied to a conventional column and to a distillation

system with a side-stream exhausting section. Design equations for column

sections CS-3 and CS-6 can be readily derived from equations (11) and (12)

because they are a rectifying and an exhausting section, respectively. In

turn, column sections CS-1 and CS-5 can be regarded as being rectifying

sections provided with partial condensers. This approximation is quite

good for CS-5. Their design equations are analogous to equation (52).

Finally, column sections CS-2 and CS-4 look like exhausting sections

equipped with partial reboilers, especially CS-4. Then, their design

equations can be derived from equation (12).

In each case, it is important to identify the design component of the

column section (which is one of the keys) before writing its design equation.

When they are available for the entire distillation system, a mathematical

derivation similar to that shown for a conventional column should be carried

out for each of the three fractionators so as to get the optimal locations

for the feed and side-stream trays.

In addition to the three key recovery fractions in each product, three

more specifications should be given to set the design of a Petlyukfs distilla

tion system. That is so because each key is involved in two consecutive

separations as the design component, i.e. key HK in the separations (LK/HK)

and (MK/HK) in fractionators (1,2) and (5,6), respectively. Recovery frac-

tions for HK should be chosen in both fractionators in such a way that their

product is equal to the overall recovery fraction r Since r____ < 1, the

HK HK
partial recovery fractions are always greater than the overall one. This is
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1
I Condenser |

JUpper side-stream tray

JLower side-stream tray

Figure 3: Petlyukfs thermally coupled distillation system
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an undesirable feature of this complex unit because these recovery fractions

are central to the calculation of the total number of ideal stages required

for the separation. In other distillation schemes, only MK acts as the

design component in two successive fractionators. As stated before,

selection of the partial recovery fractions for the keys should be made

accounting for the values of the design absorption and stripping factors in

each fractionator. The larger the design factor is, the greater the partial

recovery fraction should be. This has especially to do with Petlyuk's

distillation system, where one of the fractionators is operated fairly well

beyond its limiting conditions.

(IV) Results and discussion

In the Appendix three examples are included to illustrate the accuracy

of the proposed shortcut method when applied to the design of conventional

columns. Example A.I.I was solved step by step in Table 3 to clarify the

way the algorithm is applied and show its simplicity. The agreement the

results have with the ones provided by more rigorous techniques is satisfac-

tory, especially where key recovery fractions are high and the operating

conditions are not far from the limiting flow situation, as happens in

Example A.I.I.

On the other hand, Example A.II, serves to compare the number of ideal

stages required for conventional and thermally coupled schemes for a given

separation. Operating parameters were chosen 1.3 times their limiting values

in each case so that the comparison makes sense. Because of the symmetry of

the volatilities, the partial recovery fractions were all selected equal to

0.995. For Petlyuk's distillation unit this was not a clever decision be-

cause fractionator (3,4) is operated well beyond limiting flow conditions,

as shown by the values of its design effective factors, (A _)-__ and (S , ) T T j r ,
e, 3 MK. e, ** LK
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equal to 1.97 and 1.57, respectively. Although higher partial recovery

fractions in fractionator (3,4) would lead to a smaller total number of

ideal stages, Petlyuk's distillation system, at least in this example,

seems to require a larger number of ideal stages than the conventional schemes,

but not so much as to negate its energy saving. The other thermally coupled

distillation scheme analyzed in Example A.II., a distillation system with a

side-stream stripping section, seems also to be a profitable alternative

leading to savings in both fixed and operating costs.



-24-

Appendix

(I) Examples related to conventional distillation columns

(1,1.) Example proposed by King (1971)

Components

ci

C2

C3(LK)

n-C4(HK)

n-C5

n-C6

Other data:

q = 0.33; r «

fi

26 .

9

25

17

11

12

0.984;

(Vav.

18.65

4.75

1.92

1.00

0.46

0.23

r = 0.9823

di

26

9

24.

0.

59.

6

3

-

9

b

0.

16.

11

12

40.

i

-

-

4

7

1

R = 1.50; R1 = 2.075

Table 3 shows the sequence of partial results which are obtained when

applying the proposed method. Those of special interest are F • 1.37 that

was supposed to be around 1, and (KJL)™ • 0.559 and (K^)™ = 0.547 which

were said to be close.

According to King (1971), Underwood's method provides the following

results for this example:

i^ = 7.1 ; i^ - 7.2 ; nfc = 15.3

while Edmister's stage-to-stage approach gives n = 16



Table 3

Detailed illustration of the proposed method
when applied to Example (A.I.I)

Step From We obtain

1 Rffl - 1.03; R'm - 1.37 and equation (21) FR - 1.78

(K..,,)m« • /—ft-r- and (A,..,) • ,..* ,. ' ' TR HK z*19

3 7TT~T - 7 « 4 (x . ) and (S ) - R'a (K,,..).. (S ) - 6.32

^ 4 /-QV n f i I 1 - **• V^J / U ^ •' I V^TTtr/T5V / i \Ai /nv ^ BV'TV * • v/v/
X DA K. "r 1 ID flJ\. DA L-i 1 X DA DA Liix

Equations (38),(39),(40),(41) and (42)

Equations (25),(27) and (33) T - 1.37

Equations (45), (47) , (48), (49) , (50) , (44), (17) and (20) O ^ R V ' °'547; ( Ae }'HK " 1'^25

(Se)(LK " 1*388

Equations (11),(12) and (22) n_ - 8.07; IL. - 6.25; n. - 15.32
1\ A t
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(1.2) Example proposed by Van Winkle (1967):

Components

i" C4

n-C4(LK)

i-C5(HK)

n-C5

Other data:

n =s 1 • XT =
q ' HK

R = 6.20; R1

Results:

fi

6

17

32 •

45

0.972; r
Ltl

- 2.236

(ai

2.

2.

1.

0.

= 0

>«.

57

04

00

84

1.989

di

6

16

0

_-

23

.81

.89

.7

bi

-

0.

31.

45

76.

19

11

3

\ = 0 8 1 7 * (A 1 v ' = 1 2 7 9 • <̂> \V"-/ - i A Q 4
riJs. e tiis. e jjx

i^ = 7.17; r^ = 9.65; nfc « 17.82

According to Van Winkle (1967), the following values are obtained using

Lewis-Matheson's method:

r^ = 5 ; r^ = 10 ; nt » 16

(1.3) Example proposed by King (1971):

Components

C3(LK)

n-C4(HK)

±mC5

n-C5

Other data:

q - 1; r =

fi

40

40

10

10

rHK " °'98

<Vav.

2.45

1.00

0.49

0.41

di

39.

0.

40

2

8

-

bi

0.

39.

10

10

60

8

2

R - 5; R1 - 4
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Results:

* ) w = 0.577; ( A V * > = 1.605; (S*)
v^ - 1.524

i^ = 5.81; r^ = 5.52; nt = 12.33

King (1971) reported that Lewis-Matheson1s method leads in this case

to the following results:

i^ - 4 ; i^ = 5 ; nt = 10

(II) Example related to thermally coupled distillation schemes as

proposed by Stupin and Lockhart (1971):

Components

A(LK)

B(MK)

C(HK)

Other data:

'« = l! rLK =

0.

0.

0.

fi

.333

.334

.333

rMK = rHK = 0.

>av.

9

3

1

99

0.

0.

di

3297

00165

-

0

0

0

Fi

.0033

.3307

.0033

0.

0.

bi

-

00165

3297

Values for the operating parameters were chosen as 1.3 times their

limiting values already determined in Part I. Results are shown in Table 4.



Table 4

Comparison among the number of Ideal stages required in conventional
and thermally coupled distillation schemes, for the Example A.II.l

Type of
distillation unit

Number of ideal stages required
in each fractionator

Total number of
ideal stages

Direct conventional

scheme

First column: 22.20 (+ reboiler)

Second column: 24.51 (+ reboiler)
46.71

Reverse conventional

scheme

First column: 21.07 (+ reboiler)

Second column: 23.40 (+ reboiler)
44.47

i
to
00
I

Distillation system
with a side-stream
exhausting section

Fractionator (3,4): 19.79 (+ reboiler)

Fractionator (1,2): 20.86 (+ reboiler)
40.65

Petlyuk's distillation

system

Fractionator (1,2): 19.64

Fractionator (3,4): 14.34

Fractionator (5,6): 18.90 (+ reboiler)

52.88
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Nomenclature

A : Absorption factor (L/KV), dimensionless

b : Molal flow-rate of a component in the bottom product, mole/h

B : Bottom product molal flow-rate, mole/h

d : Molal flow-rate of a component in the top product, mole/h

D : Top product molal flow-rate, mole/h

f : Molal flow-rate of a component in the feed, mole/h

F : Feed molal flow-rate, mole/h

F : Parameter defined by equation (21)

G : Error function defined by equation (43)

K : Equilibrium constant, dimensionless

I : Molal flow-rate of a component in an internal liquid stream,
mole/h

L : Molal flow-rate of an internal liquid stream, mole/h. Also, the
liquid molal flow-rate in a conventional column rectifying section

Lf : Liquid molal flow-rate in a conventional column exhausting section,
mole/h

n : Number of ideal stages

p : Molal flow-rate of a component in the middle product, mole/h

P : Middle product molal flow-rate, mole/h

R : Liquid reflux ratio in a rectifying section, dimensionless

Rf : Vapor reflux ratio in an exhausting section, dimensionless

S : Stripping factor (KV/L), dimensionless

v : Molal flow-rate of a component in an internal vapor stream, mole/h

V : Molal flow-rate of an internal vapor stream, mole/h. Also, the
vapor molal flow-rate in a conventional column rectifying section

Vf : Vapor molal flow-rate in a conventional column exhausting section,
mole/h
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x : Liquid mole fraction, dimensionless

y : Vapor mole fraction, dimensionless

Z : Parameter defined by equation (50)

Greek letters:

Qf : Volatility of a component relative to that of the heavy key,
dimensionless

Parameters defined by equations (39) and (40), respectively.

Subscripts:

B : Refers to either the bottom tray of a column section or the bottom
product

BR : Refers to the bottom tray of a conventional column rectifying
section

e : Denotes an effective value

f : Refers to the feed tray

F : Refers to the feed

HK : Refers to the heavy key

j : Refers to jth-component

LK : Refers to the light key

m : Denotes limiting value

MK : Refers to the middle key

o : Denotes value defined at the reboiler of an exhausting section

R : Refers to a rectifying section

t : Denotes total

T : Refers to the top tray of a column section

X : Refers to an exhausting section
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Superscripts:

(o) : Denotes approximate value

(R) : Refers to the rectifying section of a conventional column

(X) : Refers to the exhausting section of a conventional column


