
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

AN AUTOMATIC ALGORITHM DESIGNER:
AN INITIAL IMPLEMENTATION

by

E. Kant & A. Newell

December, 1983

DRC-15-21-83

AN AUTOMATIC ALGORITHM DESIGNER:
AN INITIAL IMPLEMENTATION

Elaine Kant and Allen Newell

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

May 9,1983

• • ' To appear in AAAI-83

Abstract

This paper outlines a specification for an algorithm-design system (based on previous work involving
protocol analysis) and describes an implementation of the specification that is a combination frame
and production system. In the implementation, design occurs in two problem spaces - one about
algorithms and one about the task domain. The partially worked out algorithms are represented as
configurations of data-flow components. A small number of general-purpose operators construct and
modify the representations. These operators are adapted to different situations by instantiation and
means-ends analysis rules. The data-flow space also includes symbolic and test-case execution rules
that drive the component-refinement process by exposing both problems and opportunities. A
domain space about geometric images supports test-case execution, domain-specific problem
solving, recognition and discovery.

This research is supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81 -K-1539. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government

UNIVERSITY LIBRARIES .
CARNEGIE-MELLON UNIVERSITY •

PITTSBURGH, PENNSYLVANIA 15213

Kant&Neweil An Automatic Algorithm Designer 1

1. Approaches to Design
We are interested in systems that automatically design algorithms and create programs for them.

The process of algorithm design requires a significant degree of both knowledge and intelligence,
and may even require additional structure to make creative discoveries. In this paper, we briefly
present our specifications for a design system and describe an initial implementation. The main goal
of the research is to produce a successful automatic design system, but a secondary goal is to show
that careful examination of human behavior can suggest novel and worthwhile system organizations.

Related research on program synthesis and transformation, formal derivation, and automated
discovery suggests some possible approaches to the automation problem. However, none provides a
satisfactory paradigm for the whole task of automatic algorithm design.

Program synthesis systems [1,5,13] often successively refine programs by transformations. Most
of these systems lack robustness because they require numerous transformation rules to specify all
the details about programming and because they have no problem-solving abilities other than simple
pattern matching on the rules. This may indicate the desirability of having a few general operators
with more sophisticated techniques for adapting rules to situations.

Formal derivation systems typically do have a small number of general operators. However, they
require complete, formal specifications, which may not be available initially [14], and they often apply
rather rigid methods to choose among applicable transformation rules. People still must specify the
interesting lemmas or auxiliary definitions and decide among alternative axiom sets. One system [2]
does address the choice problem by guessing recursive solutions to logical equations and verifying
the guesses with a theorem prover and a small model.

Discovery systems are quite rare, and those that exist are either open-ended exploration systems
rather than problem-solving systems that focus on a specific task [3,10] or work in very narrow
domains such as algebraic models [9].

We propose an approach that includes relatively few basic operators, specific knowledge about
instantiation rather than many transformation rules, and several problem-solving methods that work
with domain knowledge. We also attempt a structure that permits discoveries.

2. A Functional Specification for an Algorithm-Design System
The specifications for an algorithm-design system described here are based closely on the results

of protocol analysis [6,7].1 We take algorithms about computational geometry (for example,
producing the convex hull of a set of points in the plane) as our first task domain because it forces us
to consider the interplay between external geometric models, mental imagery, and computationally
efficient serial algorithms.

We analyzed protocols of human problem-solving and design strategies in algorithm-discovery tasks because a system
organization that parallels human reasoning lets us draw on human experts for techniques, promises to be flexible and robust,
and has potential for learning.

KantSNewell An Automatic Algorithm Designer 2

2 . 1 . Algorithm-design methods to be supported
Design begins with the hypothesis of a kernel schema or solution plan and proceeds by successive

refinement. Two closely related methods of program execution guide the gradual refinement of the
initial schema. Symboiic execution uncovers information by running a partial algorithm description
with symbols as data. During execution, the algorithm and symbols are elaborated (new assertions
and new components are added). If symbolic execution is not sufficient to permit progress, a specific
example is constructed that permits detailed execution (test-case execution).

In addition to driving the successive refinement, the two execution methods generate
consequences and expose problems and complications.2 The test-case execution method allows
the problem solver to generate examples that contain the right level of detail to make progress (the
relevant knowledge must be evoked by concrete retrieval cues) while avoiding complications (such as
boundary conditions) that are not important until the basic outline of the algorithm has been
developed. However, test-case execution is more time consuming than symbolic execution because
loops are executed for individual items, whereas symbolic execution is linear in the size of the
algorithm structure. Thus, if the system understands a step well enough, it will execute it
symbolically. Simple inferences may also be made during the execution process.

Design includes problem solving and reasoning about the task domain. Examples are generating
test cases, attempting to find counterexamples, and "provingH conjectures by demonstration (first on
"typical" and later on boundary-condition examples). An extreme, but important, example of
reasoning is discovery, the sudden viewing of a situation from a new perspective that presents an
opportunity to solve an outstanding problem or make an improvement What is perceived is not a
solution to the main goal at the time the insight occurs; however, there is usually some preparation for
the discovery - some previously considered but unsolved problem. The new perspective often arises
out of a novel and accidental alignment of objects or facts.3 A general recognition-based control
structure for all the methods seems to be the appropriate device to support the possibility of such
juxtapositions.

2.2. A problem space for representing algorithms
Much of the design process occurs within a single problem space of schematic structures that

represent algorithms. A small number of basic types of components are instantiated and configured
in multiple ways to represent algorithms. Expert design concepts (for example, schemas for divide
and conquer and for dynamic programming) are built up from and coexist with the simpler
vocabulary.

Components may be augmented with assertions that give additional information such as an
ordering for a generator or a predicate on a test An assertion is not limited to concepts in the
algorithm space. For example, it can describe a relationship in the task space that must be satisfied.

Our analysis of human protocols showed that half of the design time was spent on symbolic and test-case execution, and
design time was proportional to the number of components in the algorithm description. Even when subjects had difficulties in
designing the algorithms, their unsuccessful behavior had a similar character of hypothesizing new structures and repeatedly
attempting to execute thfe partial algorithm on sample data. Symbolic and test-case execution also had major roles in verifying,
describing and analyzing algorithms. • — -

3Our human subjects sometimes made discoveries while feeling lost and staring "blankly" at a figure during test-case
execution.

. Kant£ Newell An Automatic Algorithm Designer 3

The assertions drive the decisions about how to refine a component into a new configuration of
components.

The problem space must include operators that refine partially specified structures (add new
components, links between components, or assertions) and that carry out the execution methods.
The refinement operators must not insist that configurations form complete or consistent algorithms.
While most components will have a set of standard inputs and outputs to represent primary data
relationships, operators can add new connections at any time without checking for type mismatches.
Instead, problems noticed during test-case or symbolic execution will be handled as they arise. All
the problem-space operators should be very general and will require instantiation before they are
applied.

Since kernel ideas, instantiation, and indeed all design decisions can be wrong, design involves
search in the problem space. Most search-control knowledge should be provided by rules that select
instantiations of the operators that modify components and assertions and select parts of the
algorithm to refine or execute. In the absence of specific knowledge for instantiation, other search-
control rules must provide more general techniques, such as means-ends analysts, to help adapt an
operator to a specific problem state.

2.3. A problem space for the application-domain
The application-domain space must support test-case execution of algorithms, problem solving

about the domain, and discovery. Test-case execution requires operations that produce specific
examples (and judge their suitability) and operations that evaluate assertions (such as predicates on
tests) in the domain space.

Our initial task domain will be a problem space for manipulating geometric images. It includes
objects, such as points, line segments, and polygons; specific geometric operators, such as create a
point or construct a line segment; and general operators (perceive, find, partition) that are typically
specialized in geometric ways (partition a point set). The operators help create test cases (such as
sets of points) and check assertions (such as whether a point lies above the X-axis).

Working within a geometric task domain imposes important (but largely unknown) constraints, as
indicated by the facility with which humans process visual scenes and reason spatially. Our design
for a geometric problem space is modeled upon the imagery simulation of Kosslyn and Shwartz [8]. It
consists of a short-term image buffer (a planar array), with the image centered around a focal point of
attention. External (perceived) and internal (imagined) images are coalesced into a single image.
Several operators (rotate, pan, zoom and scan) change the focus by regenerating the buffer around
the focus point, rather than shifting the center in a fixed space. A variable amount of detail is present
depending on point of view created by the movement operators. The image is viewed by a recognizer
centered on the focus point, with the image memory permitting recognition of combined scenes.
However, there are no operators that construct the image directly (write new patches of image into
the buffer). Rather, all parts of the image are supported by the underlying semantic representation,
and modifications are made to this underlying structure which is then pictured in the image.

Discovery seems to occur through a recognition of some interesting configuration in the task space.
Certain configurations of data items lead to recognition or automatic inferences (for example,
completing polygons that are missing one edge, seeing polygons in regular patterns of points, being

KaniSMewell An Automatic Algorithm Designer 4

reminded of related algorithms). The image structure just described seems to be appropriate to
facilitate this recognition.

3. An Implementation of an Algorithm-Design System
We are implementing an algorithm-design system that is both a protocol analysis/simulation system

and a fully automated design system. The basic structure is a combination frame and production
system. It is implemented in Lisp and can run with or without the OPS5 production system [4] as the
automated control structure.

In the simulation mode, the user (rather than the production rules) makes the decisions about which
design commands to invoke and how to instantiate them. Design commands include component,
assertion, and item construction, symbolic and test-case execution, and goal creation and
modification. The implementation also includes objects such as protocol phrases, episode
groupings, and comments (all represented by frames), and it has operators that create and edit the
objects and insert them into a history of design commands. The total history describes an actual
protocol and its interpretation. The user interface includes facilities for graphic display of component-
configurations, fqr saving-, restoring, and undoing history sequences, and for command completion
(with prompts for arguments and access to help files).

The automatic mode is an augmentation of the simulation mode. Normally, the production rules
make instantiation and search-control decisions and a history of design steps only (no protocols) is
maintained. However, the modes can be mixed and the user can take over or relinquish control in
midstream.

3 . 1 . Representing algorithms with data-flow configurations
Partially specified algorithms are represented as states in a data-flow problem space, DFS. Each

state is a data-flow configuration.4 The algorithm steps are represented by process components.
There are a small number of generic process components (a memory, and the flow-control
components generate, test, and select) and a general apply component that can be specialized to
domain operations such as make-line-segment The inputs and outputs of the process components
are represented by ports connected by links. Process components can be further specified by
assertions. The components and assertions together modify and control the flow of items that
represent data objects such as points and line segments. Items can fill several roles •• generic
descriptions, symbols (for symbolic execution), and specific domain-space data. Assertions can be
attached to any object, including an item, a process component, a whole configuration of
components, and a problem space.

Figure 3-1 shows an example of a simple OFS configuration that, given a set of points, finds the
subset that lies above (on the left side of) the X-axis. The input, {i}, is a memory containing a set of
points, { A B C D}, which are enumerated by Generate1 . These points that satisfy the predicate
associated with Test., are added to the output set memory {o}. In the figure, points A, B and C have
been enumerated. A was discarded, B has been added to the output, and C has not yet been tested.

Data-flow representations have been studied in computer architecture research and have been used to describe artificial
intelligence programs [11,12] and to express algorithm transformations [15].

Kant&Newell An Automatic Algorithm Designer

{i} XfeMrat^—[C]—

{•} contains point set {A B C 0}
{o} contains point set {B} •

Figure 3 -1 : A subset test

Components, links, ports, assertions, and items are all implemented by frame data structures
chained in a tangled hierarchy (a directed acyclic graph). A refinement of a component is
represented by a slot containing the names of the components in the configuration that implements it
For example, the TOP-LEVEL component frame has a slot called Components-list whose value is
(MEMORY-1 GENERATOR-1 TEST-1 MEMORY-2). Two frames that define the Test1 component of
Figure 3-1 are shown in Figure 3-2. Backpointers between related frames (such as the Component-of
slot in TEST-1) are automatically maintained. In addition to the value and default facets shown in the
figure, if-needed servant functions and if-added/if-removed demons are provided via facets.
Furthermore, all objects have a life time (creation and deletion dates) so that different DFS states can
be represented concisely/and the history oT events is tree-structured to enable alternate design paths
to be tried. Different inheritance mechanisms allow objects to be viewed from different historical
perspectives - such as the current configuration of "visible" objects, or a "remembered" version of
past states.

Component:
slot

Creation-date
AKO
Input-ports
Output-ports
Instances

facet

Value
Value

TEST
value

HISTORY-0
COMPONENT

Default-filler TEST-III
Default-filler TRUE-EXIT
Value

Component:
slot

Creation-date
AXO
Component-of
Input-ports
Output-ports
Assertions

facet

Value
Value
Value
Value
Value
Value

TEST-1

TEST-1 •
value

HISTORY-3
TEST
TOP-LEVEL
TEST-IN-1
TRUE-EXH-1
ASSERTION-2

Flgu re 3-2: Frames for the test components.

The current knowledge base of the system (before an algorithm is developed) includes the basic
components described above, three types of ports (input, output, and signal-interrupt) and several
named port instances for each component type. This algorithm-component knowledge base is fairly
stable, although it is missing specialized expert schemata, such as divide and conquer. We do not
expect it to grow to more than several times the current size.

. KantSNewell An Automatic Algorithm Designer 6

3.2. Implementing component operators
DFS operators that construct and refine the structures in an algorithm description accomplish

simple but general tasks: adding, deleting, or changing the slot values of components and links.
Other operators move items across links and execute components. A reasonably complete set of
approximately fifty Lisp functions implement these operators. They are quite straightforward, and not
many more appear to be needed.

The operators to construct the subset-test configuration of Figure 3-1 are given in Rgure 3-3. The
new-component operator adds a new instance of the specified component to the current
configuration, but does not link it up in any way. The add-component operator adds the new
component specified in its first argument and links it to an existing output port, described by the
second argument, using the input port on the new component described by the third argument If an
argument is missing (or is nil), defaults are used. In this case, the new components are linked to the
most recently added component, using Default-filler ports for each component type. The process of
instantiating these operators is discussed in section 3.4.

(new-component 'memory)
(add-component 'generator)
(add-component ' t e s t)
(add-component 'memory n i l 'add-eiem)

Figu re 3-3: Constructing the subset test

3.3. Representing and testing assertions
Assertions, which are also represented as frame objects (see Rgure 3-4), can be attached to any

type of object Assertions can take values from the component inputs as parameters (for example,
the TEST-IN port of the test above is a parameter in the assertion show below). There are currently
about twenty-five assertions in several categories (for example: Booleans connectives, test-
predicates, assertions about generator orderings, and references to geometry space operations), but
assertions can denote anything (for example, that a configuration has not yet been refined to handle
initialization). This set will grow as new algorithms are developed.

DFS operators have been written to add, remove, search for, test the truth of, and find the
consequences of assertions. For example, to make the subset algorithm in Rgure 3-1 be a test for the
points above the x-axis, we apply the following operator which results in a new assertion frame.

{add-assertion '(test-predicate (on-side test-in x-axis left)) 'test-1)

slot
Component: ASSERTION-2

facet

Creation-date Value
Body

AKO
About

Value

Value
Value

value

HISTORY-4 *
(TEST-PREDICATE
(ON-SIDE TEST-IN X-AXIS LEFT))

TEST-PREDICATE
TEST-1

Figure 3-4: An assertion frame.

Consider the evaluation of this assertion for point C during the test-case execution of Rgure 3-1.
The system looks for the Truth slot of the assertion. Nothing is recorded there, but the assertion is an

Kant&Newell - An Automatic Algorithm Designer 7

instance of a TEST-PREDICATE, which is in turn an instance of a BOOLEAN-ASSERTION, and there
is an if-needed function that computes the truth value. During this computation, the value of the
ON-SIDE subassertion is needed. If it has not been previously stored, it is calculated by calling a
geometry space function that uses the coordinates of the point C. The result is then stored for future
reference.

3.4. Controlling search with a production system
Search is controlled primarily by production rules, with major goals explicitly represented in frame

structures and with default-fillers for slots to represent typical port or assertion types (e.g., to indicate
that tests have test-predicate assertions). The goal structure is simple - goals have types (e.g., to
refine a component or to execute a component) and can be in a number of states - active, suspended
(waiting for subgoals), sidelined (for lack of immediate relevance or a way to proceed), succeeded,
failed, or cancelled. A hierarchy of subgoal relationships is maintained, but ail goals are in working
memory so the productions can notice whenever any goal is achieved, even if it is not active in the
current state.

#
Operators are instantiated by production rules. For frequently used generic components, specific

instantiation rules describe which process components to add to the algorithm description under
different circumstances, defaults for how to link components together, and so on. Default-fillers are
used by instantiation rules in absence of more specific rules. The current implementation has about
25 instantiation rules, and we anticipate that several orders of magnitude more will be needed.

In the absence of specific knowledge, means-ends analysis rules find differences and select
operators to reduce the differences. Production rules also describe how to execute components.
The current implementation has approximately 20 rules that control means-ends analysis, voting on
alternatives, and subgoaling, and another 10 that provide the control for symbolic and test-case
execution and assertion checking. Specific Lisp functions associated with objects determine how to
execute individual components and test assertions. As new specializations of components and
assertions are added, corresponding functions ancj instantiation rules may need to be added, but the
control should not change.

The design of the simple algorithm in Figure 3-1 is sketched in Figure 3-5. The first two production-
rule applications decide to add a new component because the difference between the existing
configuration and the desired one is that nothing is present The operator is instantiated to add a
memory, because the givens of the problem include a set of points. A new difference is selected
(application 3), which is that the algorithm contains no active process component The
add-component operator can solve this (4), and it is instantiated to a generator after a voting process
(applications 9-17). Both generators and selectors can follow memories, but a generator is more
likely because it creates a set rather than a single item as output, and the desired output of the
algorithm is a subset of the input. The components are linked according to the default rules. The
system tries to refine the new component, but other than deciding to use the default ordering
assertion, no refinement is necessary at this level (applications 41-59). Since an active process
component is present, symbolic execution is applied (applications 62-89). This proceeds successfully
until there is nothing to do with the output of the generator. A test is added (90-102), and attempts are
made to refine it (103-146). The production rules find a test predicate by looking for assertions about
the types of items that are inputs to the test Symbolic execution then continues (147-172) until the
output of some component (the test) matches the description of elements in the algorithm output

Kant&Newell An Automatic Algorithm Designer 8

(both are points, both have matching assertions about position relative to the X-axis), and the results
are collected in a final memory.

3.5. Implementing the domain space
We have implemented a simple version of the geometry space, with frame objects representing

geometric objects (including points, line segments and polygons). Lisp functions implement
operators (to construct and modify the objects) and determine the relationships between objects
(such as above, between, inside, and convex) that are used in assertions. General operators such as
perceive or find an item with a given property are not yet implemented. Currently the system uses
analytic geometry computations, and the imagery model is not yet implemented.

4. Discussion
Our initial implementation is currently operational. In addition to constructing small examples such

as the subset test described here, we are using the convex hull algorithm (whose discovery has been
worked out by hand in pur protocol-analysis research [6,7]) as a large test case. This example
contains instances of a variety of critical issues for an algorithm-discovery system. There are both
generate-and-test and divide-and-conquer algorithms. The former was found initially and was used in
part in obtaining the latter, so interesting issues of knowledge transfer arise. Some genuine
discoveries occur, providing good tests of whether our system can recognize and capitalize on
adventitious situations. The coupling between the algorithm space and the geometry space is
continuous and intimate, and this will test whether our proposed imagery scheme will have the
desired properties. On the other hand, we have still to address the task of passing from the DFS
representation of an algorithm to a program in some standard language.

Acknowledgements
We thank David Steier for helpful comments on this paper. Steier, Brigham Bell, and Edward Pervin

are helping implement the system.

References
1. Balzer, R. "Transformational implementation: an example." IEEE Transactions on Software
Engineering SE-7,1 (January 1981).

2. Bibel, W. and Horning, K. M. LOPS • A System Based on a Strategical Approach to Program
Synthesis. Proceedings of the International Workshop on Program Construction, France,
September, 1980.

3. Davis, R. and Lenat, D. B.. Knowledge-based Systems in Artificial Intelligence. McGraw-Hill, 1981.

4. Forgy.C. L. OPS5 User's Manual. Tech. Rept. CMU-CS-81 -135, Carnegie-Mellon University, July,
1981.

5. Kant, E. and Barstow, D. R. T h e Refinement Paradigm: The Interaction of Coding and Efficiency
Knowledge in Program Synthesis.H IEEE Transactions on Software Engineering SE-7,5 (September "
1981), 458-471.

Kant&Nswell An Automatic Algorithm Designer 9

The full derivation of the subset test includes 190 production-rule applications. The summary trace here omits most of the
applications related to housekeeping tasks, voting procedures, false paths, and means-ends analysis steps. Operator
applications are shown in square brackets, and comments are in braces,
{ the top leve l goal is to r e f i n t algori thm Subset)
1 . not ice-d i f ference: :empty-conf igurat ion
2. reduce-d1fference::eapty-configurat1on

[new-component memory] {a memory component 1s added}
3. notice-difference::no-active-process-component
4. reduce-differenco::no-active-process-component

{it has been decided to apply the operator add-component}
5. instantiate::add-coiaponent:f roa-port

{the from-port 1$ instantiated according to default rules}
g. instantiate::add-conponent:generator-s1nce-need-$et
10. Instantiate::add-ccaponent:generator-fo1lows-memory
11. instantiate: :add-cos3ponent:select-fo1 lows-memory
13. vote {decide on component to instantiate add-component}
14. instantiate::add-conponent:to-port
18. instantiation-complete {a generator component is added}

[add-component generator mem-out-1 gen-1n]
41. reduce-difference::no-assertions

{the current goal is to refine the generator}
42. instantiate::add-assertion:defaults

{assertion about default generator ordering 1s added}
59. goal::sidel1no-»goal-w4th-no-reduce-d1fference

{cannot further refine generator, so sideline goal}
60. goal::msuae-1f-suspended-w1th-sidel1ned-subgoals

{resume goal of refining whole algorithm}
62. reduce-difference::symbolic-executioa
74. symbolic-execution::1nstantiate-1nputs-succeeds *
78 • sy«bol1c-execution::set-up-for-refinements

{find most refined components}
83. symbolic-execution::executable

{symbolically execute memory component}
88. syobolic-execution:executable

{symbolically execute generator component}
90. symbolic-execution::unconnected*!ink

{notice generator output not connected to a component}
{decide to apply add-coaponent operator}

96. instantiate::add-conponent:compare-foilows-component
96. instantiate::remove-if-not-enough-inputs
97. instantiate::add-cwnponent:test-foilows-actfve-coaponent
98. instantiate::add-conponent:apply-follows-active-cooponent
99. instantiate::remove-1f-not-enough-1nputs

{test is only conponent with the proper inputs}
102. instantiate::add-component:to-port

[add-component test gen-out-1 test-in] {test added}
127. reduce-difference::no-assertions

{new goal is to refine test}
128. instantiate::add-assertion:test-relevanta

{a relevant test predicate is found}
[add-assert1on (on-side test-in x-axis left) test]

146. goal::sidel1ne-goal-w1th-no-reduca-difference
{no way to refine test further}

147. goa1::resume-1f-suspended-with-s1de11ned-subgoala
{resume goal of refining whole algorithm}

166. symbolic-execution::set-up-for-refIneaents
{haven't executed test yet}

170. symbolic-execution:executable {so execute test}
172. symbolic-execution::unconnected-11nk-alg-comp1eto

{notice that output on link from test satisfies assertion
on algorithm output, so add final memory component}

[add-component neiaory true-exit add-elem]
{algorithm is now complete}

Figu re 3-5: Sketch of system's design of algorithm in Rgure 3-1.

Kant&Newell An Automatic Algorithm Designer 10

6. Kant, E. and Newell, A. Naive algorithm design techniques: a case study. Proceedings of the
European Conference on Artificial Intelligence, Orsay, France, July, 1982.

7. Kant, E. and Newell, A. Problem Solving for the Design of Algorithms. Tech. Rept CMU-
CS-82-145, Carnegie-Mellon University, November, 1982.

8. Kosslyn, S. M.. Image and Mind. Harvard University Press, Cambridge, Massachusetts, 1980.

9. Langley, P. A., Bradshaw, G. L, and Simon, H. A. Bacon.5: the Discovery of Conservation Laws.
Proceedings of IJCAI-81,1981, pp. 121-126.

10. Lenat, D. B. "The Nature of Heuristics." Artificial Intelligence 79,2 (1982), 189-249.

1 1 . Moore, J. A. The Design and Evaluation of a Knowledge Net for MERLIN. Ph.D. Th., Carnegie-
Mellon University, 1971.

12. Newell, A. Heuristic programming: III structured problems. In Progress in Operations Research,
Aronofsky, J.f Ed.,Wi!ey, 1969, pp. 360-414.

13. Rich, C. Inspection Methods in Programming. Ph.D. ThM Massachusetts Institute of Technology,
June 1980.

14. Swartout, W., and Balzer, R. MOn the Inevitable Intertwining of Specification and
Implementation.- CACM 25,7 (July 1982), 438-440.

15. Tappel.S. Some Algorithm Design Methods. Proceedings of the First Annual National
Conference on Artificial Intelligence, August 18-21,1980, pp. 64-67.

